xref: /linux/drivers/infiniband/core/addr.c (revision dc0d1c4519095a6c6bbd9ec4a808674aba502741)
1 /*
2  * Copyright (c) 2005 Voltaire Inc.  All rights reserved.
3  * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
4  * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
5  * Copyright (c) 2005 Intel Corporation.  All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #include <linux/mutex.h>
37 #include <linux/inetdevice.h>
38 #include <linux/slab.h>
39 #include <linux/workqueue.h>
40 #include <linux/module.h>
41 #include <net/arp.h>
42 #include <net/neighbour.h>
43 #include <net/route.h>
44 #include <net/netevent.h>
45 #include <net/addrconf.h>
46 #include <net/ip6_route.h>
47 #include <rdma/ib_addr.h>
48 #include <rdma/ib.h>
49 #include <rdma/rdma_netlink.h>
50 #include <net/netlink.h>
51 
52 #include "core_priv.h"
53 
54 struct addr_req {
55 	struct list_head list;
56 	struct sockaddr_storage src_addr;
57 	struct sockaddr_storage dst_addr;
58 	struct rdma_dev_addr *addr;
59 	void *context;
60 	void (*callback)(int status, struct sockaddr *src_addr,
61 			 struct rdma_dev_addr *addr, void *context);
62 	unsigned long timeout;
63 	struct delayed_work work;
64 	int status;
65 	u32 seq;
66 };
67 
68 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0);
69 
70 static DEFINE_SPINLOCK(lock);
71 static LIST_HEAD(req_list);
72 static struct workqueue_struct *addr_wq;
73 
74 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = {
75 	[LS_NLA_TYPE_DGID] = {.type = NLA_BINARY,
76 		.len = sizeof(struct rdma_nla_ls_gid)},
77 };
78 
79 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh)
80 {
81 	struct nlattr *tb[LS_NLA_TYPE_MAX] = {};
82 	int ret;
83 
84 	if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR)
85 		return false;
86 
87 	ret = nla_parse(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh),
88 			nlmsg_len(nlh), ib_nl_addr_policy, NULL);
89 	if (ret)
90 		return false;
91 
92 	return true;
93 }
94 
95 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh)
96 {
97 	const struct nlattr *head, *curr;
98 	union ib_gid gid;
99 	struct addr_req *req;
100 	int len, rem;
101 	int found = 0;
102 
103 	head = (const struct nlattr *)nlmsg_data(nlh);
104 	len = nlmsg_len(nlh);
105 
106 	nla_for_each_attr(curr, head, len, rem) {
107 		if (curr->nla_type == LS_NLA_TYPE_DGID)
108 			memcpy(&gid, nla_data(curr), nla_len(curr));
109 	}
110 
111 	spin_lock_bh(&lock);
112 	list_for_each_entry(req, &req_list, list) {
113 		if (nlh->nlmsg_seq != req->seq)
114 			continue;
115 		/* We set the DGID part, the rest was set earlier */
116 		rdma_addr_set_dgid(req->addr, &gid);
117 		req->status = 0;
118 		found = 1;
119 		break;
120 	}
121 	spin_unlock_bh(&lock);
122 
123 	if (!found)
124 		pr_info("Couldn't find request waiting for DGID: %pI6\n",
125 			&gid);
126 }
127 
128 int ib_nl_handle_ip_res_resp(struct sk_buff *skb,
129 			     struct nlmsghdr *nlh,
130 			     struct netlink_ext_ack *extack)
131 {
132 	if ((nlh->nlmsg_flags & NLM_F_REQUEST) ||
133 	    !(NETLINK_CB(skb).sk))
134 		return -EPERM;
135 
136 	if (ib_nl_is_good_ip_resp(nlh))
137 		ib_nl_process_good_ip_rsep(nlh);
138 
139 	return skb->len;
140 }
141 
142 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr,
143 			     const void *daddr,
144 			     u32 seq, u16 family)
145 {
146 	struct sk_buff *skb = NULL;
147 	struct nlmsghdr *nlh;
148 	struct rdma_ls_ip_resolve_header *header;
149 	void *data;
150 	size_t size;
151 	int attrtype;
152 	int len;
153 
154 	if (family == AF_INET) {
155 		size = sizeof(struct in_addr);
156 		attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4;
157 	} else {
158 		size = sizeof(struct in6_addr);
159 		attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6;
160 	}
161 
162 	len = nla_total_size(sizeof(size));
163 	len += NLMSG_ALIGN(sizeof(*header));
164 
165 	skb = nlmsg_new(len, GFP_KERNEL);
166 	if (!skb)
167 		return -ENOMEM;
168 
169 	data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS,
170 			    RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST);
171 	if (!data) {
172 		nlmsg_free(skb);
173 		return -ENODATA;
174 	}
175 
176 	/* Construct the family header first */
177 	header = skb_put(skb, NLMSG_ALIGN(sizeof(*header)));
178 	header->ifindex = dev_addr->bound_dev_if;
179 	nla_put(skb, attrtype, size, daddr);
180 
181 	/* Repair the nlmsg header length */
182 	nlmsg_end(skb, nlh);
183 	rdma_nl_multicast(skb, RDMA_NL_GROUP_LS, GFP_KERNEL);
184 
185 	/* Make the request retry, so when we get the response from userspace
186 	 * we will have something.
187 	 */
188 	return -ENODATA;
189 }
190 
191 int rdma_addr_size(const struct sockaddr *addr)
192 {
193 	switch (addr->sa_family) {
194 	case AF_INET:
195 		return sizeof(struct sockaddr_in);
196 	case AF_INET6:
197 		return sizeof(struct sockaddr_in6);
198 	case AF_IB:
199 		return sizeof(struct sockaddr_ib);
200 	default:
201 		return 0;
202 	}
203 }
204 EXPORT_SYMBOL(rdma_addr_size);
205 
206 int rdma_addr_size_in6(struct sockaddr_in6 *addr)
207 {
208 	int ret = rdma_addr_size((struct sockaddr *) addr);
209 
210 	return ret <= sizeof(*addr) ? ret : 0;
211 }
212 EXPORT_SYMBOL(rdma_addr_size_in6);
213 
214 int rdma_addr_size_kss(struct __kernel_sockaddr_storage *addr)
215 {
216 	int ret = rdma_addr_size((struct sockaddr *) addr);
217 
218 	return ret <= sizeof(*addr) ? ret : 0;
219 }
220 EXPORT_SYMBOL(rdma_addr_size_kss);
221 
222 void rdma_copy_addr(struct rdma_dev_addr *dev_addr,
223 		    const struct net_device *dev,
224 		    const unsigned char *dst_dev_addr)
225 {
226 	dev_addr->dev_type = dev->type;
227 	memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
228 	memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
229 	if (dst_dev_addr)
230 		memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN);
231 	dev_addr->bound_dev_if = dev->ifindex;
232 }
233 EXPORT_SYMBOL(rdma_copy_addr);
234 
235 int rdma_translate_ip(const struct sockaddr *addr,
236 		      struct rdma_dev_addr *dev_addr)
237 {
238 	struct net_device *dev;
239 
240 	if (dev_addr->bound_dev_if) {
241 		dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
242 		if (!dev)
243 			return -ENODEV;
244 		rdma_copy_addr(dev_addr, dev, NULL);
245 		dev_put(dev);
246 		return 0;
247 	}
248 
249 	switch (addr->sa_family) {
250 	case AF_INET:
251 		dev = ip_dev_find(dev_addr->net,
252 			((const struct sockaddr_in *)addr)->sin_addr.s_addr);
253 
254 		if (!dev)
255 			return -EADDRNOTAVAIL;
256 
257 		rdma_copy_addr(dev_addr, dev, NULL);
258 		dev_put(dev);
259 		break;
260 #if IS_ENABLED(CONFIG_IPV6)
261 	case AF_INET6:
262 		rcu_read_lock();
263 		for_each_netdev_rcu(dev_addr->net, dev) {
264 			if (ipv6_chk_addr(dev_addr->net,
265 					  &((const struct sockaddr_in6 *)addr)->sin6_addr,
266 					  dev, 1)) {
267 				rdma_copy_addr(dev_addr, dev, NULL);
268 				break;
269 			}
270 		}
271 		rcu_read_unlock();
272 		break;
273 #endif
274 	}
275 	return 0;
276 }
277 EXPORT_SYMBOL(rdma_translate_ip);
278 
279 static void set_timeout(struct addr_req *req, unsigned long time)
280 {
281 	unsigned long delay;
282 
283 	delay = time - jiffies;
284 	if ((long)delay < 0)
285 		delay = 0;
286 
287 	mod_delayed_work(addr_wq, &req->work, delay);
288 }
289 
290 static void queue_req(struct addr_req *req)
291 {
292 	spin_lock_bh(&lock);
293 	list_add_tail(&req->list, &req_list);
294 	set_timeout(req, req->timeout);
295 	spin_unlock_bh(&lock);
296 }
297 
298 static int ib_nl_fetch_ha(const struct dst_entry *dst,
299 			  struct rdma_dev_addr *dev_addr,
300 			  const void *daddr, u32 seq, u16 family)
301 {
302 	if (rdma_nl_chk_listeners(RDMA_NL_GROUP_LS))
303 		return -EADDRNOTAVAIL;
304 
305 	/* We fill in what we can, the response will fill the rest */
306 	rdma_copy_addr(dev_addr, dst->dev, NULL);
307 	return ib_nl_ip_send_msg(dev_addr, daddr, seq, family);
308 }
309 
310 static int dst_fetch_ha(const struct dst_entry *dst,
311 			struct rdma_dev_addr *dev_addr,
312 			const void *daddr)
313 {
314 	struct neighbour *n;
315 	int ret = 0;
316 
317 	n = dst_neigh_lookup(dst, daddr);
318 	if (!n)
319 		return -ENODATA;
320 
321 	if (!(n->nud_state & NUD_VALID)) {
322 		neigh_event_send(n, NULL);
323 		ret = -ENODATA;
324 	} else {
325 		rdma_copy_addr(dev_addr, dst->dev, n->ha);
326 	}
327 
328 	neigh_release(n);
329 
330 	return ret;
331 }
332 
333 static bool has_gateway(const struct dst_entry *dst, sa_family_t family)
334 {
335 	struct rtable *rt;
336 	struct rt6_info *rt6;
337 
338 	if (family == AF_INET) {
339 		rt = container_of(dst, struct rtable, dst);
340 		return rt->rt_uses_gateway;
341 	}
342 
343 	rt6 = container_of(dst, struct rt6_info, dst);
344 	return rt6->rt6i_flags & RTF_GATEWAY;
345 }
346 
347 static int fetch_ha(const struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
348 		    const struct sockaddr *dst_in, u32 seq)
349 {
350 	const struct sockaddr_in *dst_in4 =
351 		(const struct sockaddr_in *)dst_in;
352 	const struct sockaddr_in6 *dst_in6 =
353 		(const struct sockaddr_in6 *)dst_in;
354 	const void *daddr = (dst_in->sa_family == AF_INET) ?
355 		(const void *)&dst_in4->sin_addr.s_addr :
356 		(const void *)&dst_in6->sin6_addr;
357 	sa_family_t family = dst_in->sa_family;
358 
359 	/* Gateway + ARPHRD_INFINIBAND -> IB router */
360 	if (has_gateway(dst, family) && dst->dev->type == ARPHRD_INFINIBAND)
361 		return ib_nl_fetch_ha(dst, dev_addr, daddr, seq, family);
362 	else
363 		return dst_fetch_ha(dst, dev_addr, daddr);
364 }
365 
366 static int addr4_resolve(struct sockaddr_in *src_in,
367 			 const struct sockaddr_in *dst_in,
368 			 struct rdma_dev_addr *addr,
369 			 struct rtable **prt)
370 {
371 	__be32 src_ip = src_in->sin_addr.s_addr;
372 	__be32 dst_ip = dst_in->sin_addr.s_addr;
373 	struct rtable *rt;
374 	struct flowi4 fl4;
375 	int ret;
376 
377 	memset(&fl4, 0, sizeof(fl4));
378 	fl4.daddr = dst_ip;
379 	fl4.saddr = src_ip;
380 	fl4.flowi4_oif = addr->bound_dev_if;
381 	rt = ip_route_output_key(addr->net, &fl4);
382 	ret = PTR_ERR_OR_ZERO(rt);
383 	if (ret)
384 		return ret;
385 
386 	src_in->sin_family = AF_INET;
387 	src_in->sin_addr.s_addr = fl4.saddr;
388 
389 	/* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
390 	 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
391 	 * type accordingly.
392 	 */
393 	if (rt->rt_uses_gateway && rt->dst.dev->type != ARPHRD_INFINIBAND)
394 		addr->network = RDMA_NETWORK_IPV4;
395 
396 	addr->hoplimit = ip4_dst_hoplimit(&rt->dst);
397 
398 	*prt = rt;
399 	return 0;
400 }
401 
402 #if IS_ENABLED(CONFIG_IPV6)
403 static int addr6_resolve(struct sockaddr_in6 *src_in,
404 			 const struct sockaddr_in6 *dst_in,
405 			 struct rdma_dev_addr *addr,
406 			 struct dst_entry **pdst)
407 {
408 	struct flowi6 fl6;
409 	struct dst_entry *dst;
410 	struct rt6_info *rt;
411 	int ret;
412 
413 	memset(&fl6, 0, sizeof fl6);
414 	fl6.daddr = dst_in->sin6_addr;
415 	fl6.saddr = src_in->sin6_addr;
416 	fl6.flowi6_oif = addr->bound_dev_if;
417 
418 	ret = ipv6_stub->ipv6_dst_lookup(addr->net, NULL, &dst, &fl6);
419 	if (ret < 0)
420 		return ret;
421 
422 	rt = (struct rt6_info *)dst;
423 	if (ipv6_addr_any(&src_in->sin6_addr)) {
424 		src_in->sin6_family = AF_INET6;
425 		src_in->sin6_addr = fl6.saddr;
426 	}
427 
428 	/* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
429 	 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
430 	 * type accordingly.
431 	 */
432 	if (rt->rt6i_flags & RTF_GATEWAY &&
433 	    ip6_dst_idev(dst)->dev->type != ARPHRD_INFINIBAND)
434 		addr->network = RDMA_NETWORK_IPV6;
435 
436 	addr->hoplimit = ip6_dst_hoplimit(dst);
437 
438 	*pdst = dst;
439 	return 0;
440 }
441 #else
442 static int addr6_resolve(struct sockaddr_in6 *src_in,
443 			 const struct sockaddr_in6 *dst_in,
444 			 struct rdma_dev_addr *addr,
445 			 struct dst_entry **pdst)
446 {
447 	return -EADDRNOTAVAIL;
448 }
449 #endif
450 
451 static int addr_resolve_neigh(const struct dst_entry *dst,
452 			      const struct sockaddr *dst_in,
453 			      struct rdma_dev_addr *addr,
454 			      u32 seq)
455 {
456 	if (dst->dev->flags & IFF_LOOPBACK) {
457 		int ret;
458 
459 		ret = rdma_translate_ip(dst_in, addr);
460 		if (!ret)
461 			memcpy(addr->dst_dev_addr, addr->src_dev_addr,
462 			       MAX_ADDR_LEN);
463 
464 		return ret;
465 	}
466 
467 	/* If the device doesn't do ARP internally */
468 	if (!(dst->dev->flags & IFF_NOARP))
469 		return fetch_ha(dst, addr, dst_in, seq);
470 
471 	rdma_copy_addr(addr, dst->dev, NULL);
472 
473 	return 0;
474 }
475 
476 static int addr_resolve(struct sockaddr *src_in,
477 			const struct sockaddr *dst_in,
478 			struct rdma_dev_addr *addr,
479 			bool resolve_neigh,
480 			u32 seq)
481 {
482 	struct net_device *ndev;
483 	struct dst_entry *dst;
484 	int ret;
485 
486 	if (!addr->net) {
487 		pr_warn_ratelimited("%s: missing namespace\n", __func__);
488 		return -EINVAL;
489 	}
490 
491 	if (src_in->sa_family == AF_INET) {
492 		struct rtable *rt = NULL;
493 		const struct sockaddr_in *dst_in4 =
494 			(const struct sockaddr_in *)dst_in;
495 
496 		ret = addr4_resolve((struct sockaddr_in *)src_in,
497 				    dst_in4, addr, &rt);
498 		if (ret)
499 			return ret;
500 
501 		if (resolve_neigh)
502 			ret = addr_resolve_neigh(&rt->dst, dst_in, addr, seq);
503 
504 		if (addr->bound_dev_if) {
505 			ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
506 		} else {
507 			ndev = rt->dst.dev;
508 			dev_hold(ndev);
509 		}
510 
511 		ip_rt_put(rt);
512 	} else {
513 		const struct sockaddr_in6 *dst_in6 =
514 			(const struct sockaddr_in6 *)dst_in;
515 
516 		ret = addr6_resolve((struct sockaddr_in6 *)src_in,
517 				    dst_in6, addr,
518 				    &dst);
519 		if (ret)
520 			return ret;
521 
522 		if (resolve_neigh)
523 			ret = addr_resolve_neigh(dst, dst_in, addr, seq);
524 
525 		if (addr->bound_dev_if) {
526 			ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
527 		} else {
528 			ndev = dst->dev;
529 			dev_hold(ndev);
530 		}
531 
532 		dst_release(dst);
533 	}
534 
535 	if (ndev) {
536 		if (ndev->flags & IFF_LOOPBACK)
537 			ret = rdma_translate_ip(dst_in, addr);
538 		else
539 			addr->bound_dev_if = ndev->ifindex;
540 		dev_put(ndev);
541 	}
542 
543 	return ret;
544 }
545 
546 static void process_one_req(struct work_struct *_work)
547 {
548 	struct addr_req *req;
549 	struct sockaddr *src_in, *dst_in;
550 
551 	req = container_of(_work, struct addr_req, work.work);
552 
553 	if (req->status == -ENODATA) {
554 		src_in = (struct sockaddr *)&req->src_addr;
555 		dst_in = (struct sockaddr *)&req->dst_addr;
556 		req->status = addr_resolve(src_in, dst_in, req->addr,
557 					   true, req->seq);
558 		if (req->status && time_after_eq(jiffies, req->timeout)) {
559 			req->status = -ETIMEDOUT;
560 		} else if (req->status == -ENODATA) {
561 			/* requeue the work for retrying again */
562 			spin_lock_bh(&lock);
563 			if (!list_empty(&req->list))
564 				set_timeout(req, req->timeout);
565 			spin_unlock_bh(&lock);
566 			return;
567 		}
568 	}
569 
570 	req->callback(req->status, (struct sockaddr *)&req->src_addr,
571 		req->addr, req->context);
572 	req->callback = NULL;
573 
574 	spin_lock_bh(&lock);
575 	if (!list_empty(&req->list)) {
576 		/*
577 		 * Although the work will normally have been canceled by the
578 		 * workqueue, it can still be requeued as long as it is on the
579 		 * req_list.
580 		 */
581 		cancel_delayed_work(&req->work);
582 		list_del_init(&req->list);
583 		kfree(req);
584 	}
585 	spin_unlock_bh(&lock);
586 }
587 
588 int rdma_resolve_ip(struct sockaddr *src_addr, const struct sockaddr *dst_addr,
589 		    struct rdma_dev_addr *addr, int timeout_ms,
590 		    void (*callback)(int status, struct sockaddr *src_addr,
591 				     struct rdma_dev_addr *addr, void *context),
592 		    void *context)
593 {
594 	struct sockaddr *src_in, *dst_in;
595 	struct addr_req *req;
596 	int ret = 0;
597 
598 	req = kzalloc(sizeof *req, GFP_KERNEL);
599 	if (!req)
600 		return -ENOMEM;
601 
602 	src_in = (struct sockaddr *) &req->src_addr;
603 	dst_in = (struct sockaddr *) &req->dst_addr;
604 
605 	if (src_addr) {
606 		if (src_addr->sa_family != dst_addr->sa_family) {
607 			ret = -EINVAL;
608 			goto err;
609 		}
610 
611 		memcpy(src_in, src_addr, rdma_addr_size(src_addr));
612 	} else {
613 		src_in->sa_family = dst_addr->sa_family;
614 	}
615 
616 	memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
617 	req->addr = addr;
618 	req->callback = callback;
619 	req->context = context;
620 	INIT_DELAYED_WORK(&req->work, process_one_req);
621 	req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq);
622 
623 	req->status = addr_resolve(src_in, dst_in, addr, true, req->seq);
624 	switch (req->status) {
625 	case 0:
626 		req->timeout = jiffies;
627 		queue_req(req);
628 		break;
629 	case -ENODATA:
630 		req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
631 		queue_req(req);
632 		break;
633 	default:
634 		ret = req->status;
635 		goto err;
636 	}
637 	return ret;
638 err:
639 	kfree(req);
640 	return ret;
641 }
642 EXPORT_SYMBOL(rdma_resolve_ip);
643 
644 int rdma_resolve_ip_route(struct sockaddr *src_addr,
645 			  const struct sockaddr *dst_addr,
646 			  struct rdma_dev_addr *addr)
647 {
648 	struct sockaddr_storage ssrc_addr = {};
649 	struct sockaddr *src_in = (struct sockaddr *)&ssrc_addr;
650 
651 	if (src_addr) {
652 		if (src_addr->sa_family != dst_addr->sa_family)
653 			return -EINVAL;
654 
655 		memcpy(src_in, src_addr, rdma_addr_size(src_addr));
656 	} else {
657 		src_in->sa_family = dst_addr->sa_family;
658 	}
659 
660 	return addr_resolve(src_in, dst_addr, addr, false, 0);
661 }
662 
663 void rdma_addr_cancel(struct rdma_dev_addr *addr)
664 {
665 	struct addr_req *req, *temp_req;
666 	struct addr_req *found = NULL;
667 
668 	spin_lock_bh(&lock);
669 	list_for_each_entry_safe(req, temp_req, &req_list, list) {
670 		if (req->addr == addr) {
671 			/*
672 			 * Removing from the list means we take ownership of
673 			 * the req
674 			 */
675 			list_del_init(&req->list);
676 			found = req;
677 			break;
678 		}
679 	}
680 	spin_unlock_bh(&lock);
681 
682 	if (!found)
683 		return;
684 
685 	/*
686 	 * sync canceling the work after removing it from the req_list
687 	 * guarentees no work is running and none will be started.
688 	 */
689 	cancel_delayed_work_sync(&found->work);
690 
691 	if (found->callback)
692 		found->callback(-ECANCELED, (struct sockaddr *)&found->src_addr,
693 			      found->addr, found->context);
694 
695 	kfree(found);
696 }
697 EXPORT_SYMBOL(rdma_addr_cancel);
698 
699 struct resolve_cb_context {
700 	struct completion comp;
701 	int status;
702 };
703 
704 static void resolve_cb(int status, struct sockaddr *src_addr,
705 	     struct rdma_dev_addr *addr, void *context)
706 {
707 	((struct resolve_cb_context *)context)->status = status;
708 	complete(&((struct resolve_cb_context *)context)->comp);
709 }
710 
711 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
712 				 const union ib_gid *dgid,
713 				 u8 *dmac, const struct net_device *ndev,
714 				 int *hoplimit)
715 {
716 	struct rdma_dev_addr dev_addr;
717 	struct resolve_cb_context ctx;
718 	union {
719 		struct sockaddr     _sockaddr;
720 		struct sockaddr_in  _sockaddr_in;
721 		struct sockaddr_in6 _sockaddr_in6;
722 	} sgid_addr, dgid_addr;
723 	int ret;
724 
725 	rdma_gid2ip(&sgid_addr._sockaddr, sgid);
726 	rdma_gid2ip(&dgid_addr._sockaddr, dgid);
727 
728 	memset(&dev_addr, 0, sizeof(dev_addr));
729 	dev_addr.bound_dev_if = ndev->ifindex;
730 	dev_addr.net = &init_net;
731 
732 	init_completion(&ctx.comp);
733 	ret = rdma_resolve_ip(&sgid_addr._sockaddr, &dgid_addr._sockaddr,
734 			      &dev_addr, 1000, resolve_cb, &ctx);
735 	if (ret)
736 		return ret;
737 
738 	wait_for_completion(&ctx.comp);
739 
740 	ret = ctx.status;
741 	if (ret)
742 		return ret;
743 
744 	memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
745 	*hoplimit = dev_addr.hoplimit;
746 	return 0;
747 }
748 
749 static int netevent_callback(struct notifier_block *self, unsigned long event,
750 	void *ctx)
751 {
752 	struct addr_req *req;
753 
754 	if (event == NETEVENT_NEIGH_UPDATE) {
755 		struct neighbour *neigh = ctx;
756 
757 		if (neigh->nud_state & NUD_VALID) {
758 			spin_lock_bh(&lock);
759 			list_for_each_entry(req, &req_list, list)
760 				set_timeout(req, jiffies);
761 			spin_unlock_bh(&lock);
762 		}
763 	}
764 	return 0;
765 }
766 
767 static struct notifier_block nb = {
768 	.notifier_call = netevent_callback
769 };
770 
771 int addr_init(void)
772 {
773 	addr_wq = alloc_ordered_workqueue("ib_addr", 0);
774 	if (!addr_wq)
775 		return -ENOMEM;
776 
777 	register_netevent_notifier(&nb);
778 
779 	return 0;
780 }
781 
782 void addr_cleanup(void)
783 {
784 	unregister_netevent_notifier(&nb);
785 	destroy_workqueue(addr_wq);
786 	WARN_ON(!list_empty(&req_list));
787 }
788