1 /* 2 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 3 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 4 * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved. 5 * Copyright (c) 2005 Intel Corporation. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #include <linux/mutex.h> 37 #include <linux/inetdevice.h> 38 #include <linux/slab.h> 39 #include <linux/workqueue.h> 40 #include <net/arp.h> 41 #include <net/neighbour.h> 42 #include <net/route.h> 43 #include <net/netevent.h> 44 #include <net/ipv6_stubs.h> 45 #include <net/ip6_route.h> 46 #include <rdma/ib_addr.h> 47 #include <rdma/ib_cache.h> 48 #include <rdma/ib_sa.h> 49 #include <rdma/ib.h> 50 #include <rdma/rdma_netlink.h> 51 #include <net/netlink.h> 52 53 #include "core_priv.h" 54 55 struct addr_req { 56 struct list_head list; 57 struct sockaddr_storage src_addr; 58 struct sockaddr_storage dst_addr; 59 struct rdma_dev_addr *addr; 60 void *context; 61 void (*callback)(int status, struct sockaddr *src_addr, 62 struct rdma_dev_addr *addr, void *context); 63 unsigned long timeout; 64 struct delayed_work work; 65 bool resolve_by_gid_attr; /* Consider gid attr in resolve phase */ 66 int status; 67 u32 seq; 68 }; 69 70 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0); 71 72 static DEFINE_SPINLOCK(lock); 73 static LIST_HEAD(req_list); 74 static struct workqueue_struct *addr_wq; 75 76 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = { 77 [LS_NLA_TYPE_DGID] = {.type = NLA_BINARY, 78 .len = sizeof(struct rdma_nla_ls_gid), 79 .validation_type = NLA_VALIDATE_MIN, 80 .min = sizeof(struct rdma_nla_ls_gid)}, 81 }; 82 83 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh) 84 { 85 struct nlattr *tb[LS_NLA_TYPE_MAX] = {}; 86 int ret; 87 88 if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR) 89 return false; 90 91 ret = nla_parse_deprecated(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh), 92 nlmsg_len(nlh), ib_nl_addr_policy, NULL); 93 if (ret) 94 return false; 95 96 return true; 97 } 98 99 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh) 100 { 101 const struct nlattr *head, *curr; 102 union ib_gid gid; 103 struct addr_req *req; 104 int len, rem; 105 int found = 0; 106 107 head = (const struct nlattr *)nlmsg_data(nlh); 108 len = nlmsg_len(nlh); 109 110 nla_for_each_attr(curr, head, len, rem) { 111 if (curr->nla_type == LS_NLA_TYPE_DGID) 112 memcpy(&gid, nla_data(curr), nla_len(curr)); 113 } 114 115 spin_lock_bh(&lock); 116 list_for_each_entry(req, &req_list, list) { 117 if (nlh->nlmsg_seq != req->seq) 118 continue; 119 /* We set the DGID part, the rest was set earlier */ 120 rdma_addr_set_dgid(req->addr, &gid); 121 req->status = 0; 122 found = 1; 123 break; 124 } 125 spin_unlock_bh(&lock); 126 127 if (!found) 128 pr_info("Couldn't find request waiting for DGID: %pI6\n", 129 &gid); 130 } 131 132 int ib_nl_handle_ip_res_resp(struct sk_buff *skb, 133 struct nlmsghdr *nlh, 134 struct netlink_ext_ack *extack) 135 { 136 if ((nlh->nlmsg_flags & NLM_F_REQUEST) || 137 !(NETLINK_CB(skb).sk)) 138 return -EPERM; 139 140 if (ib_nl_is_good_ip_resp(nlh)) 141 ib_nl_process_good_ip_rsep(nlh); 142 143 return 0; 144 } 145 146 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr, 147 const void *daddr, 148 u32 seq, u16 family) 149 { 150 struct sk_buff *skb = NULL; 151 struct nlmsghdr *nlh; 152 struct rdma_ls_ip_resolve_header *header; 153 void *data; 154 size_t size; 155 int attrtype; 156 int len; 157 158 if (family == AF_INET) { 159 size = sizeof(struct in_addr); 160 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4; 161 } else { 162 size = sizeof(struct in6_addr); 163 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6; 164 } 165 166 len = nla_total_size(sizeof(size)); 167 len += NLMSG_ALIGN(sizeof(*header)); 168 169 skb = nlmsg_new(len, GFP_KERNEL); 170 if (!skb) 171 return -ENOMEM; 172 173 data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS, 174 RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST); 175 if (!data) { 176 nlmsg_free(skb); 177 return -ENODATA; 178 } 179 180 /* Construct the family header first */ 181 header = skb_put(skb, NLMSG_ALIGN(sizeof(*header))); 182 header->ifindex = dev_addr->bound_dev_if; 183 nla_put(skb, attrtype, size, daddr); 184 185 /* Repair the nlmsg header length */ 186 nlmsg_end(skb, nlh); 187 rdma_nl_multicast(&init_net, skb, RDMA_NL_GROUP_LS, GFP_KERNEL); 188 189 /* Make the request retry, so when we get the response from userspace 190 * we will have something. 191 */ 192 return -ENODATA; 193 } 194 195 int rdma_addr_size(const struct sockaddr *addr) 196 { 197 switch (addr->sa_family) { 198 case AF_INET: 199 return sizeof(struct sockaddr_in); 200 case AF_INET6: 201 return sizeof(struct sockaddr_in6); 202 case AF_IB: 203 return sizeof(struct sockaddr_ib); 204 default: 205 return 0; 206 } 207 } 208 EXPORT_SYMBOL(rdma_addr_size); 209 210 int rdma_addr_size_in6(struct sockaddr_in6 *addr) 211 { 212 int ret = rdma_addr_size((struct sockaddr *) addr); 213 214 return ret <= sizeof(*addr) ? ret : 0; 215 } 216 EXPORT_SYMBOL(rdma_addr_size_in6); 217 218 int rdma_addr_size_kss(struct __kernel_sockaddr_storage *addr) 219 { 220 int ret = rdma_addr_size((struct sockaddr *) addr); 221 222 return ret <= sizeof(*addr) ? ret : 0; 223 } 224 EXPORT_SYMBOL(rdma_addr_size_kss); 225 226 /** 227 * rdma_copy_src_l2_addr - Copy netdevice source addresses 228 * @dev_addr: Destination address pointer where to copy the addresses 229 * @dev: Netdevice whose source addresses to copy 230 * 231 * rdma_copy_src_l2_addr() copies source addresses from the specified netdevice. 232 * This includes unicast address, broadcast address, device type and 233 * interface index. 234 */ 235 void rdma_copy_src_l2_addr(struct rdma_dev_addr *dev_addr, 236 const struct net_device *dev) 237 { 238 dev_addr->dev_type = dev->type; 239 memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN); 240 memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN); 241 dev_addr->bound_dev_if = dev->ifindex; 242 } 243 EXPORT_SYMBOL(rdma_copy_src_l2_addr); 244 245 static struct net_device * 246 rdma_find_ndev_for_src_ip_rcu(struct net *net, const struct sockaddr *src_in) 247 { 248 struct net_device *dev = NULL; 249 int ret = -EADDRNOTAVAIL; 250 251 switch (src_in->sa_family) { 252 case AF_INET: 253 dev = __ip_dev_find(net, 254 ((const struct sockaddr_in *)src_in)->sin_addr.s_addr, 255 false); 256 if (dev) 257 ret = 0; 258 break; 259 #if IS_ENABLED(CONFIG_IPV6) 260 case AF_INET6: 261 for_each_netdev_rcu(net, dev) { 262 if (ipv6_chk_addr(net, 263 &((const struct sockaddr_in6 *)src_in)->sin6_addr, 264 dev, 1)) { 265 ret = 0; 266 break; 267 } 268 } 269 break; 270 #endif 271 } 272 return ret ? ERR_PTR(ret) : dev; 273 } 274 275 int rdma_translate_ip(const struct sockaddr *addr, 276 struct rdma_dev_addr *dev_addr) 277 { 278 struct net_device *dev; 279 280 if (dev_addr->bound_dev_if) { 281 dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 282 if (!dev) 283 return -ENODEV; 284 rdma_copy_src_l2_addr(dev_addr, dev); 285 dev_put(dev); 286 return 0; 287 } 288 289 rcu_read_lock(); 290 dev = rdma_find_ndev_for_src_ip_rcu(dev_addr->net, addr); 291 if (!IS_ERR(dev)) 292 rdma_copy_src_l2_addr(dev_addr, dev); 293 rcu_read_unlock(); 294 return PTR_ERR_OR_ZERO(dev); 295 } 296 EXPORT_SYMBOL(rdma_translate_ip); 297 298 static void set_timeout(struct addr_req *req, unsigned long time) 299 { 300 unsigned long delay; 301 302 delay = time - jiffies; 303 if ((long)delay < 0) 304 delay = 0; 305 306 mod_delayed_work(addr_wq, &req->work, delay); 307 } 308 309 static void queue_req(struct addr_req *req) 310 { 311 spin_lock_bh(&lock); 312 list_add_tail(&req->list, &req_list); 313 set_timeout(req, req->timeout); 314 spin_unlock_bh(&lock); 315 } 316 317 static int ib_nl_fetch_ha(struct rdma_dev_addr *dev_addr, 318 const void *daddr, u32 seq, u16 family) 319 { 320 if (!rdma_nl_chk_listeners(RDMA_NL_GROUP_LS)) 321 return -EADDRNOTAVAIL; 322 323 return ib_nl_ip_send_msg(dev_addr, daddr, seq, family); 324 } 325 326 static int dst_fetch_ha(const struct dst_entry *dst, 327 struct rdma_dev_addr *dev_addr, 328 const void *daddr) 329 { 330 struct neighbour *n; 331 int ret = 0; 332 333 n = dst_neigh_lookup(dst, daddr); 334 if (!n) 335 return -ENODATA; 336 337 if (!(n->nud_state & NUD_VALID)) { 338 neigh_event_send(n, NULL); 339 ret = -ENODATA; 340 } else { 341 neigh_ha_snapshot(dev_addr->dst_dev_addr, n, dst->dev); 342 } 343 344 neigh_release(n); 345 346 return ret; 347 } 348 349 static bool has_gateway(const struct dst_entry *dst, sa_family_t family) 350 { 351 if (family == AF_INET) 352 return dst_rtable(dst)->rt_uses_gateway; 353 354 return dst_rt6_info(dst)->rt6i_flags & RTF_GATEWAY; 355 } 356 357 static int fetch_ha(const struct dst_entry *dst, struct rdma_dev_addr *dev_addr, 358 const struct sockaddr *dst_in, u32 seq) 359 { 360 const struct sockaddr_in *dst_in4 = 361 (const struct sockaddr_in *)dst_in; 362 const struct sockaddr_in6 *dst_in6 = 363 (const struct sockaddr_in6 *)dst_in; 364 const void *daddr = (dst_in->sa_family == AF_INET) ? 365 (const void *)&dst_in4->sin_addr.s_addr : 366 (const void *)&dst_in6->sin6_addr; 367 sa_family_t family = dst_in->sa_family; 368 369 might_sleep(); 370 371 /* If we have a gateway in IB mode then it must be an IB network */ 372 if (has_gateway(dst, family) && dev_addr->network == RDMA_NETWORK_IB) 373 return ib_nl_fetch_ha(dev_addr, daddr, seq, family); 374 else 375 return dst_fetch_ha(dst, dev_addr, daddr); 376 } 377 378 static int addr4_resolve(struct sockaddr *src_sock, 379 const struct sockaddr *dst_sock, 380 struct rdma_dev_addr *addr, 381 struct rtable **prt) 382 { 383 struct sockaddr_in *src_in = (struct sockaddr_in *)src_sock; 384 const struct sockaddr_in *dst_in = 385 (const struct sockaddr_in *)dst_sock; 386 387 __be32 src_ip = src_in->sin_addr.s_addr; 388 __be32 dst_ip = dst_in->sin_addr.s_addr; 389 struct rtable *rt; 390 struct flowi4 fl4; 391 int ret; 392 393 memset(&fl4, 0, sizeof(fl4)); 394 fl4.daddr = dst_ip; 395 fl4.saddr = src_ip; 396 fl4.flowi4_oif = addr->bound_dev_if; 397 rt = ip_route_output_key(addr->net, &fl4); 398 ret = PTR_ERR_OR_ZERO(rt); 399 if (ret) 400 return ret; 401 402 src_in->sin_addr.s_addr = fl4.saddr; 403 404 addr->hoplimit = ip4_dst_hoplimit(&rt->dst); 405 406 *prt = rt; 407 return 0; 408 } 409 410 #if IS_ENABLED(CONFIG_IPV6) 411 static int addr6_resolve(struct sockaddr *src_sock, 412 const struct sockaddr *dst_sock, 413 struct rdma_dev_addr *addr, 414 struct dst_entry **pdst) 415 { 416 struct sockaddr_in6 *src_in = (struct sockaddr_in6 *)src_sock; 417 const struct sockaddr_in6 *dst_in = 418 (const struct sockaddr_in6 *)dst_sock; 419 struct flowi6 fl6; 420 struct dst_entry *dst; 421 422 memset(&fl6, 0, sizeof fl6); 423 fl6.daddr = dst_in->sin6_addr; 424 fl6.saddr = src_in->sin6_addr; 425 fl6.flowi6_oif = addr->bound_dev_if; 426 427 dst = ipv6_stub->ipv6_dst_lookup_flow(addr->net, NULL, &fl6, NULL); 428 if (IS_ERR(dst)) 429 return PTR_ERR(dst); 430 431 if (ipv6_addr_any(&src_in->sin6_addr)) 432 src_in->sin6_addr = fl6.saddr; 433 434 addr->hoplimit = ip6_dst_hoplimit(dst); 435 436 *pdst = dst; 437 return 0; 438 } 439 #else 440 static int addr6_resolve(struct sockaddr *src_sock, 441 const struct sockaddr *dst_sock, 442 struct rdma_dev_addr *addr, 443 struct dst_entry **pdst) 444 { 445 return -EADDRNOTAVAIL; 446 } 447 #endif 448 449 static bool is_dst_local(const struct dst_entry *dst) 450 { 451 if (dst->ops->family == AF_INET) 452 return !!(dst_rtable(dst)->rt_type & RTN_LOCAL); 453 else if (dst->ops->family == AF_INET6) 454 return !!(dst_rt6_info(dst)->rt6i_flags & RTF_LOCAL); 455 else 456 return false; 457 } 458 459 static int addr_resolve_neigh(const struct dst_entry *dst, 460 const struct sockaddr *dst_in, 461 struct rdma_dev_addr *addr, 462 u32 seq) 463 { 464 if (is_dst_local(dst)) { 465 /* When the destination is local entry, source and destination 466 * are same. Skip the neighbour lookup. 467 */ 468 memcpy(addr->dst_dev_addr, addr->src_dev_addr, MAX_ADDR_LEN); 469 return 0; 470 } 471 472 return fetch_ha(dst, addr, dst_in, seq); 473 } 474 475 static int rdma_set_src_addr_rcu(struct rdma_dev_addr *dev_addr, 476 const struct sockaddr *dst_in, 477 const struct dst_entry *dst) 478 { 479 struct net_device *ndev = READ_ONCE(dst->dev); 480 481 /* A physical device must be the RDMA device to use */ 482 if (is_dst_local(dst)) { 483 int ret; 484 /* 485 * RDMA (IB/RoCE, iWarp) doesn't run on lo interface or 486 * loopback IP address. So if route is resolved to loopback 487 * interface, translate that to a real ndev based on non 488 * loopback IP address. 489 */ 490 ndev = rdma_find_ndev_for_src_ip_rcu(dev_net(ndev), dst_in); 491 if (IS_ERR(ndev)) 492 return -ENODEV; 493 ret = rdma_translate_ip(dst_in, dev_addr); 494 if (ret) 495 return ret; 496 } else { 497 rdma_copy_src_l2_addr(dev_addr, dst->dev); 498 } 499 500 /* 501 * If there's a gateway and type of device not ARPHRD_INFINIBAND, 502 * we're definitely in RoCE v2 (as RoCE v1 isn't routable) set the 503 * network type accordingly. 504 */ 505 if (has_gateway(dst, dst_in->sa_family) && 506 ndev->type != ARPHRD_INFINIBAND) 507 dev_addr->network = dst_in->sa_family == AF_INET ? 508 RDMA_NETWORK_IPV4 : 509 RDMA_NETWORK_IPV6; 510 else 511 dev_addr->network = RDMA_NETWORK_IB; 512 513 return 0; 514 } 515 516 static int set_addr_netns_by_gid_rcu(struct rdma_dev_addr *addr) 517 { 518 struct net_device *ndev; 519 520 ndev = rdma_read_gid_attr_ndev_rcu(addr->sgid_attr); 521 if (IS_ERR(ndev)) 522 return PTR_ERR(ndev); 523 524 /* 525 * Since we are holding the rcu, reading net and ifindex 526 * are safe without any additional reference; because 527 * change_net_namespace() in net/core/dev.c does rcu sync 528 * after it changes the state to IFF_DOWN and before 529 * updating netdev fields {net, ifindex}. 530 */ 531 addr->net = dev_net(ndev); 532 addr->bound_dev_if = ndev->ifindex; 533 return 0; 534 } 535 536 static void rdma_addr_set_net_defaults(struct rdma_dev_addr *addr) 537 { 538 addr->net = &init_net; 539 addr->bound_dev_if = 0; 540 } 541 542 static int addr_resolve(struct sockaddr *src_in, 543 const struct sockaddr *dst_in, 544 struct rdma_dev_addr *addr, 545 bool resolve_neigh, 546 bool resolve_by_gid_attr, 547 u32 seq) 548 { 549 struct dst_entry *dst = NULL; 550 struct rtable *rt = NULL; 551 int ret; 552 553 if (!addr->net) { 554 pr_warn_ratelimited("%s: missing namespace\n", __func__); 555 return -EINVAL; 556 } 557 558 rcu_read_lock(); 559 if (resolve_by_gid_attr) { 560 if (!addr->sgid_attr) { 561 rcu_read_unlock(); 562 pr_warn_ratelimited("%s: missing gid_attr\n", __func__); 563 return -EINVAL; 564 } 565 /* 566 * If the request is for a specific gid attribute of the 567 * rdma_dev_addr, derive net from the netdevice of the 568 * GID attribute. 569 */ 570 ret = set_addr_netns_by_gid_rcu(addr); 571 if (ret) { 572 rcu_read_unlock(); 573 return ret; 574 } 575 } 576 if (src_in->sa_family == AF_INET) { 577 ret = addr4_resolve(src_in, dst_in, addr, &rt); 578 dst = &rt->dst; 579 } else { 580 ret = addr6_resolve(src_in, dst_in, addr, &dst); 581 } 582 if (ret) { 583 rcu_read_unlock(); 584 goto done; 585 } 586 ret = rdma_set_src_addr_rcu(addr, dst_in, dst); 587 rcu_read_unlock(); 588 589 /* 590 * Resolve neighbor destination address if requested and 591 * only if src addr translation didn't fail. 592 */ 593 if (!ret && resolve_neigh) 594 ret = addr_resolve_neigh(dst, dst_in, addr, seq); 595 596 if (src_in->sa_family == AF_INET) 597 ip_rt_put(rt); 598 else 599 dst_release(dst); 600 done: 601 /* 602 * Clear the addr net to go back to its original state, only if it was 603 * derived from GID attribute in this context. 604 */ 605 if (resolve_by_gid_attr) 606 rdma_addr_set_net_defaults(addr); 607 return ret; 608 } 609 610 static void process_one_req(struct work_struct *_work) 611 { 612 struct addr_req *req; 613 struct sockaddr *src_in, *dst_in; 614 615 req = container_of(_work, struct addr_req, work.work); 616 617 if (req->status == -ENODATA) { 618 src_in = (struct sockaddr *)&req->src_addr; 619 dst_in = (struct sockaddr *)&req->dst_addr; 620 req->status = addr_resolve(src_in, dst_in, req->addr, 621 true, req->resolve_by_gid_attr, 622 req->seq); 623 if (req->status && time_after_eq(jiffies, req->timeout)) { 624 req->status = -ETIMEDOUT; 625 } else if (req->status == -ENODATA) { 626 /* requeue the work for retrying again */ 627 spin_lock_bh(&lock); 628 if (!list_empty(&req->list)) 629 set_timeout(req, req->timeout); 630 spin_unlock_bh(&lock); 631 return; 632 } 633 } 634 635 req->callback(req->status, (struct sockaddr *)&req->src_addr, 636 req->addr, req->context); 637 req->callback = NULL; 638 639 spin_lock_bh(&lock); 640 /* 641 * Although the work will normally have been canceled by the workqueue, 642 * it can still be requeued as long as it is on the req_list. 643 */ 644 cancel_delayed_work(&req->work); 645 if (!list_empty(&req->list)) { 646 list_del_init(&req->list); 647 kfree(req); 648 } 649 spin_unlock_bh(&lock); 650 } 651 652 int rdma_resolve_ip(struct sockaddr *src_addr, const struct sockaddr *dst_addr, 653 struct rdma_dev_addr *addr, unsigned long timeout_ms, 654 void (*callback)(int status, struct sockaddr *src_addr, 655 struct rdma_dev_addr *addr, void *context), 656 bool resolve_by_gid_attr, void *context) 657 { 658 struct sockaddr *src_in, *dst_in; 659 struct addr_req *req; 660 int ret = 0; 661 662 req = kzalloc(sizeof *req, GFP_KERNEL); 663 if (!req) 664 return -ENOMEM; 665 666 src_in = (struct sockaddr *) &req->src_addr; 667 dst_in = (struct sockaddr *) &req->dst_addr; 668 669 if (src_addr) { 670 if (src_addr->sa_family != dst_addr->sa_family) { 671 ret = -EINVAL; 672 goto err; 673 } 674 675 memcpy(src_in, src_addr, rdma_addr_size(src_addr)); 676 } else { 677 src_in->sa_family = dst_addr->sa_family; 678 } 679 680 memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr)); 681 req->addr = addr; 682 req->callback = callback; 683 req->context = context; 684 req->resolve_by_gid_attr = resolve_by_gid_attr; 685 INIT_DELAYED_WORK(&req->work, process_one_req); 686 req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq); 687 688 req->status = addr_resolve(src_in, dst_in, addr, true, 689 req->resolve_by_gid_attr, req->seq); 690 switch (req->status) { 691 case 0: 692 req->timeout = jiffies; 693 queue_req(req); 694 break; 695 case -ENODATA: 696 req->timeout = msecs_to_jiffies(timeout_ms) + jiffies; 697 queue_req(req); 698 break; 699 default: 700 ret = req->status; 701 goto err; 702 } 703 return ret; 704 err: 705 kfree(req); 706 return ret; 707 } 708 EXPORT_SYMBOL(rdma_resolve_ip); 709 710 int roce_resolve_route_from_path(struct sa_path_rec *rec, 711 const struct ib_gid_attr *attr) 712 { 713 union { 714 struct sockaddr _sockaddr; 715 struct sockaddr_in _sockaddr_in; 716 struct sockaddr_in6 _sockaddr_in6; 717 } sgid, dgid; 718 struct rdma_dev_addr dev_addr = {}; 719 int ret; 720 721 might_sleep(); 722 723 if (rec->roce.route_resolved) 724 return 0; 725 726 rdma_gid2ip((struct sockaddr *)&sgid, &rec->sgid); 727 rdma_gid2ip((struct sockaddr *)&dgid, &rec->dgid); 728 729 if (sgid._sockaddr.sa_family != dgid._sockaddr.sa_family) 730 return -EINVAL; 731 732 if (!attr || !attr->ndev) 733 return -EINVAL; 734 735 dev_addr.net = &init_net; 736 dev_addr.sgid_attr = attr; 737 738 ret = addr_resolve((struct sockaddr *)&sgid, (struct sockaddr *)&dgid, 739 &dev_addr, false, true, 0); 740 if (ret) 741 return ret; 742 743 if ((dev_addr.network == RDMA_NETWORK_IPV4 || 744 dev_addr.network == RDMA_NETWORK_IPV6) && 745 rec->rec_type != SA_PATH_REC_TYPE_ROCE_V2) 746 return -EINVAL; 747 748 rec->roce.route_resolved = true; 749 return 0; 750 } 751 752 /** 753 * rdma_addr_cancel - Cancel resolve ip request 754 * @addr: Pointer to address structure given previously 755 * during rdma_resolve_ip(). 756 * rdma_addr_cancel() is synchronous function which cancels any pending 757 * request if there is any. 758 */ 759 void rdma_addr_cancel(struct rdma_dev_addr *addr) 760 { 761 struct addr_req *req, *temp_req; 762 struct addr_req *found = NULL; 763 764 spin_lock_bh(&lock); 765 list_for_each_entry_safe(req, temp_req, &req_list, list) { 766 if (req->addr == addr) { 767 /* 768 * Removing from the list means we take ownership of 769 * the req 770 */ 771 list_del_init(&req->list); 772 found = req; 773 break; 774 } 775 } 776 spin_unlock_bh(&lock); 777 778 if (!found) 779 return; 780 781 /* 782 * sync canceling the work after removing it from the req_list 783 * guarentees no work is running and none will be started. 784 */ 785 cancel_delayed_work_sync(&found->work); 786 kfree(found); 787 } 788 EXPORT_SYMBOL(rdma_addr_cancel); 789 790 struct resolve_cb_context { 791 struct completion comp; 792 int status; 793 }; 794 795 static void resolve_cb(int status, struct sockaddr *src_addr, 796 struct rdma_dev_addr *addr, void *context) 797 { 798 ((struct resolve_cb_context *)context)->status = status; 799 complete(&((struct resolve_cb_context *)context)->comp); 800 } 801 802 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid, 803 const union ib_gid *dgid, 804 u8 *dmac, const struct ib_gid_attr *sgid_attr, 805 int *hoplimit) 806 { 807 struct rdma_dev_addr dev_addr; 808 struct resolve_cb_context ctx; 809 union { 810 struct sockaddr_in _sockaddr_in; 811 struct sockaddr_in6 _sockaddr_in6; 812 } sgid_addr, dgid_addr; 813 int ret; 814 815 rdma_gid2ip((struct sockaddr *)&sgid_addr, sgid); 816 rdma_gid2ip((struct sockaddr *)&dgid_addr, dgid); 817 818 memset(&dev_addr, 0, sizeof(dev_addr)); 819 dev_addr.net = &init_net; 820 dev_addr.sgid_attr = sgid_attr; 821 822 init_completion(&ctx.comp); 823 ret = rdma_resolve_ip((struct sockaddr *)&sgid_addr, 824 (struct sockaddr *)&dgid_addr, &dev_addr, 1000, 825 resolve_cb, true, &ctx); 826 if (ret) 827 return ret; 828 829 wait_for_completion(&ctx.comp); 830 831 ret = ctx.status; 832 if (ret) 833 return ret; 834 835 memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN); 836 *hoplimit = dev_addr.hoplimit; 837 return 0; 838 } 839 840 static int netevent_callback(struct notifier_block *self, unsigned long event, 841 void *ctx) 842 { 843 struct addr_req *req; 844 845 if (event == NETEVENT_NEIGH_UPDATE) { 846 struct neighbour *neigh = ctx; 847 848 if (neigh->nud_state & NUD_VALID) { 849 spin_lock_bh(&lock); 850 list_for_each_entry(req, &req_list, list) 851 set_timeout(req, jiffies); 852 spin_unlock_bh(&lock); 853 } 854 } 855 return 0; 856 } 857 858 static struct notifier_block nb = { 859 .notifier_call = netevent_callback 860 }; 861 862 int addr_init(void) 863 { 864 addr_wq = alloc_ordered_workqueue("ib_addr", 0); 865 if (!addr_wq) 866 return -ENOMEM; 867 868 register_netevent_notifier(&nb); 869 870 return 0; 871 } 872 873 void addr_cleanup(void) 874 { 875 unregister_netevent_notifier(&nb); 876 destroy_workqueue(addr_wq); 877 WARN_ON(!list_empty(&req_list)); 878 } 879