xref: /linux/drivers/infiniband/core/addr.c (revision 6093a688a07da07808f0122f9aa2a3eed250d853)
1 /*
2  * Copyright (c) 2005 Voltaire Inc.  All rights reserved.
3  * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
4  * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
5  * Copyright (c) 2005 Intel Corporation.  All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #include <linux/mutex.h>
37 #include <linux/inetdevice.h>
38 #include <linux/slab.h>
39 #include <linux/workqueue.h>
40 #include <net/arp.h>
41 #include <net/neighbour.h>
42 #include <net/route.h>
43 #include <net/netevent.h>
44 #include <net/ipv6_stubs.h>
45 #include <net/ip6_route.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/ib_sa.h>
49 #include <rdma/ib.h>
50 #include <rdma/rdma_netlink.h>
51 #include <net/netlink.h>
52 
53 #include "core_priv.h"
54 
55 struct addr_req {
56 	struct list_head list;
57 	struct sockaddr_storage src_addr;
58 	struct sockaddr_storage dst_addr;
59 	struct rdma_dev_addr *addr;
60 	void *context;
61 	void (*callback)(int status, struct sockaddr *src_addr,
62 			 struct rdma_dev_addr *addr, void *context);
63 	unsigned long timeout;
64 	struct delayed_work work;
65 	bool resolve_by_gid_attr;	/* Consider gid attr in resolve phase */
66 	int status;
67 	u32 seq;
68 };
69 
70 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0);
71 
72 static DEFINE_SPINLOCK(lock);
73 static LIST_HEAD(req_list);
74 static struct workqueue_struct *addr_wq;
75 
76 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = {
77 	[LS_NLA_TYPE_DGID] = {.type = NLA_BINARY,
78 		.len = sizeof(struct rdma_nla_ls_gid),
79 		.validation_type = NLA_VALIDATE_MIN,
80 		.min = sizeof(struct rdma_nla_ls_gid)},
81 };
82 
83 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh)
84 {
85 	struct nlattr *tb[LS_NLA_TYPE_MAX] = {};
86 	int ret;
87 
88 	if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR)
89 		return false;
90 
91 	ret = nla_parse_deprecated(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh),
92 				   nlmsg_len(nlh), ib_nl_addr_policy, NULL);
93 	if (ret)
94 		return false;
95 
96 	return true;
97 }
98 
99 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh)
100 {
101 	const struct nlattr *head, *curr;
102 	union ib_gid gid;
103 	struct addr_req *req;
104 	int len, rem;
105 	int found = 0;
106 
107 	head = (const struct nlattr *)nlmsg_data(nlh);
108 	len = nlmsg_len(nlh);
109 
110 	nla_for_each_attr(curr, head, len, rem) {
111 		if (curr->nla_type == LS_NLA_TYPE_DGID)
112 			memcpy(&gid, nla_data(curr), nla_len(curr));
113 	}
114 
115 	spin_lock_bh(&lock);
116 	list_for_each_entry(req, &req_list, list) {
117 		if (nlh->nlmsg_seq != req->seq)
118 			continue;
119 		/* We set the DGID part, the rest was set earlier */
120 		rdma_addr_set_dgid(req->addr, &gid);
121 		req->status = 0;
122 		found = 1;
123 		break;
124 	}
125 	spin_unlock_bh(&lock);
126 
127 	if (!found)
128 		pr_info("Couldn't find request waiting for DGID: %pI6\n",
129 			&gid);
130 }
131 
132 int ib_nl_handle_ip_res_resp(struct sk_buff *skb,
133 			     struct nlmsghdr *nlh,
134 			     struct netlink_ext_ack *extack)
135 {
136 	if ((nlh->nlmsg_flags & NLM_F_REQUEST) ||
137 	    !(NETLINK_CB(skb).sk))
138 		return -EPERM;
139 
140 	if (ib_nl_is_good_ip_resp(nlh))
141 		ib_nl_process_good_ip_rsep(nlh);
142 
143 	return 0;
144 }
145 
146 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr,
147 			     const void *daddr,
148 			     u32 seq, u16 family)
149 {
150 	struct sk_buff *skb = NULL;
151 	struct nlmsghdr *nlh;
152 	struct rdma_ls_ip_resolve_header *header;
153 	void *data;
154 	size_t size;
155 	int attrtype;
156 	int len;
157 
158 	if (family == AF_INET) {
159 		size = sizeof(struct in_addr);
160 		attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4;
161 	} else {
162 		size = sizeof(struct in6_addr);
163 		attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6;
164 	}
165 
166 	len = nla_total_size(sizeof(size));
167 	len += NLMSG_ALIGN(sizeof(*header));
168 
169 	skb = nlmsg_new(len, GFP_KERNEL);
170 	if (!skb)
171 		return -ENOMEM;
172 
173 	data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS,
174 			    RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST);
175 	if (!data) {
176 		nlmsg_free(skb);
177 		return -ENODATA;
178 	}
179 
180 	/* Construct the family header first */
181 	header = skb_put(skb, NLMSG_ALIGN(sizeof(*header)));
182 	header->ifindex = dev_addr->bound_dev_if;
183 	nla_put(skb, attrtype, size, daddr);
184 
185 	/* Repair the nlmsg header length */
186 	nlmsg_end(skb, nlh);
187 	rdma_nl_multicast(&init_net, skb, RDMA_NL_GROUP_LS, GFP_KERNEL);
188 
189 	/* Make the request retry, so when we get the response from userspace
190 	 * we will have something.
191 	 */
192 	return -ENODATA;
193 }
194 
195 int rdma_addr_size(const struct sockaddr *addr)
196 {
197 	switch (addr->sa_family) {
198 	case AF_INET:
199 		return sizeof(struct sockaddr_in);
200 	case AF_INET6:
201 		return sizeof(struct sockaddr_in6);
202 	case AF_IB:
203 		return sizeof(struct sockaddr_ib);
204 	default:
205 		return 0;
206 	}
207 }
208 EXPORT_SYMBOL(rdma_addr_size);
209 
210 int rdma_addr_size_in6(struct sockaddr_in6 *addr)
211 {
212 	int ret = rdma_addr_size((struct sockaddr *) addr);
213 
214 	return ret <= sizeof(*addr) ? ret : 0;
215 }
216 EXPORT_SYMBOL(rdma_addr_size_in6);
217 
218 int rdma_addr_size_kss(struct __kernel_sockaddr_storage *addr)
219 {
220 	int ret = rdma_addr_size((struct sockaddr *) addr);
221 
222 	return ret <= sizeof(*addr) ? ret : 0;
223 }
224 EXPORT_SYMBOL(rdma_addr_size_kss);
225 
226 /**
227  * rdma_copy_src_l2_addr - Copy netdevice source addresses
228  * @dev_addr:	Destination address pointer where to copy the addresses
229  * @dev:	Netdevice whose source addresses to copy
230  *
231  * rdma_copy_src_l2_addr() copies source addresses from the specified netdevice.
232  * This includes unicast address, broadcast address, device type and
233  * interface index.
234  */
235 void rdma_copy_src_l2_addr(struct rdma_dev_addr *dev_addr,
236 			   const struct net_device *dev)
237 {
238 	dev_addr->dev_type = dev->type;
239 	memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
240 	memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
241 	dev_addr->bound_dev_if = dev->ifindex;
242 }
243 EXPORT_SYMBOL(rdma_copy_src_l2_addr);
244 
245 static struct net_device *
246 rdma_find_ndev_for_src_ip_rcu(struct net *net, const struct sockaddr *src_in)
247 {
248 	struct net_device *dev = NULL;
249 	int ret = -EADDRNOTAVAIL;
250 
251 	switch (src_in->sa_family) {
252 	case AF_INET:
253 		dev = __ip_dev_find(net,
254 				    ((const struct sockaddr_in *)src_in)->sin_addr.s_addr,
255 				    false);
256 		if (dev)
257 			ret = 0;
258 		break;
259 #if IS_ENABLED(CONFIG_IPV6)
260 	case AF_INET6:
261 		for_each_netdev_rcu(net, dev) {
262 			if (ipv6_chk_addr(net,
263 					  &((const struct sockaddr_in6 *)src_in)->sin6_addr,
264 					  dev, 1)) {
265 				ret = 0;
266 				break;
267 			}
268 		}
269 		break;
270 #endif
271 	}
272 	return ret ? ERR_PTR(ret) : dev;
273 }
274 
275 int rdma_translate_ip(const struct sockaddr *addr,
276 		      struct rdma_dev_addr *dev_addr)
277 {
278 	struct net_device *dev;
279 
280 	if (dev_addr->bound_dev_if) {
281 		dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
282 		if (!dev)
283 			return -ENODEV;
284 		rdma_copy_src_l2_addr(dev_addr, dev);
285 		dev_put(dev);
286 		return 0;
287 	}
288 
289 	rcu_read_lock();
290 	dev = rdma_find_ndev_for_src_ip_rcu(dev_addr->net, addr);
291 	if (!IS_ERR(dev))
292 		rdma_copy_src_l2_addr(dev_addr, dev);
293 	rcu_read_unlock();
294 	return PTR_ERR_OR_ZERO(dev);
295 }
296 EXPORT_SYMBOL(rdma_translate_ip);
297 
298 static void set_timeout(struct addr_req *req, unsigned long time)
299 {
300 	unsigned long delay;
301 
302 	delay = time - jiffies;
303 	if ((long)delay < 0)
304 		delay = 0;
305 
306 	mod_delayed_work(addr_wq, &req->work, delay);
307 }
308 
309 static void queue_req(struct addr_req *req)
310 {
311 	spin_lock_bh(&lock);
312 	list_add_tail(&req->list, &req_list);
313 	set_timeout(req, req->timeout);
314 	spin_unlock_bh(&lock);
315 }
316 
317 static int ib_nl_fetch_ha(struct rdma_dev_addr *dev_addr,
318 			  const void *daddr, u32 seq, u16 family)
319 {
320 	if (!rdma_nl_chk_listeners(RDMA_NL_GROUP_LS))
321 		return -EADDRNOTAVAIL;
322 
323 	return ib_nl_ip_send_msg(dev_addr, daddr, seq, family);
324 }
325 
326 static int dst_fetch_ha(const struct dst_entry *dst,
327 			struct rdma_dev_addr *dev_addr,
328 			const void *daddr)
329 {
330 	struct neighbour *n;
331 	int ret = 0;
332 
333 	n = dst_neigh_lookup(dst, daddr);
334 	if (!n)
335 		return -ENODATA;
336 
337 	if (!(n->nud_state & NUD_VALID)) {
338 		neigh_event_send(n, NULL);
339 		ret = -ENODATA;
340 	} else {
341 		neigh_ha_snapshot(dev_addr->dst_dev_addr, n, dst->dev);
342 	}
343 
344 	neigh_release(n);
345 
346 	return ret;
347 }
348 
349 static bool has_gateway(const struct dst_entry *dst, sa_family_t family)
350 {
351 	if (family == AF_INET)
352 		return dst_rtable(dst)->rt_uses_gateway;
353 
354 	return dst_rt6_info(dst)->rt6i_flags & RTF_GATEWAY;
355 }
356 
357 static int fetch_ha(const struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
358 		    const struct sockaddr *dst_in, u32 seq)
359 {
360 	const struct sockaddr_in *dst_in4 =
361 		(const struct sockaddr_in *)dst_in;
362 	const struct sockaddr_in6 *dst_in6 =
363 		(const struct sockaddr_in6 *)dst_in;
364 	const void *daddr = (dst_in->sa_family == AF_INET) ?
365 		(const void *)&dst_in4->sin_addr.s_addr :
366 		(const void *)&dst_in6->sin6_addr;
367 	sa_family_t family = dst_in->sa_family;
368 
369 	might_sleep();
370 
371 	/* If we have a gateway in IB mode then it must be an IB network */
372 	if (has_gateway(dst, family) && dev_addr->network == RDMA_NETWORK_IB)
373 		return ib_nl_fetch_ha(dev_addr, daddr, seq, family);
374 	else
375 		return dst_fetch_ha(dst, dev_addr, daddr);
376 }
377 
378 static int addr4_resolve(struct sockaddr *src_sock,
379 			 const struct sockaddr *dst_sock,
380 			 struct rdma_dev_addr *addr,
381 			 struct rtable **prt)
382 {
383 	struct sockaddr_in *src_in = (struct sockaddr_in *)src_sock;
384 	const struct sockaddr_in *dst_in =
385 			(const struct sockaddr_in *)dst_sock;
386 
387 	__be32 src_ip = src_in->sin_addr.s_addr;
388 	__be32 dst_ip = dst_in->sin_addr.s_addr;
389 	struct rtable *rt;
390 	struct flowi4 fl4;
391 	int ret;
392 
393 	memset(&fl4, 0, sizeof(fl4));
394 	fl4.daddr = dst_ip;
395 	fl4.saddr = src_ip;
396 	fl4.flowi4_oif = addr->bound_dev_if;
397 	rt = ip_route_output_key(addr->net, &fl4);
398 	ret = PTR_ERR_OR_ZERO(rt);
399 	if (ret)
400 		return ret;
401 
402 	src_in->sin_addr.s_addr = fl4.saddr;
403 
404 	addr->hoplimit = ip4_dst_hoplimit(&rt->dst);
405 
406 	*prt = rt;
407 	return 0;
408 }
409 
410 #if IS_ENABLED(CONFIG_IPV6)
411 static int addr6_resolve(struct sockaddr *src_sock,
412 			 const struct sockaddr *dst_sock,
413 			 struct rdma_dev_addr *addr,
414 			 struct dst_entry **pdst)
415 {
416 	struct sockaddr_in6 *src_in = (struct sockaddr_in6 *)src_sock;
417 	const struct sockaddr_in6 *dst_in =
418 				(const struct sockaddr_in6 *)dst_sock;
419 	struct flowi6 fl6;
420 	struct dst_entry *dst;
421 
422 	memset(&fl6, 0, sizeof fl6);
423 	fl6.daddr = dst_in->sin6_addr;
424 	fl6.saddr = src_in->sin6_addr;
425 	fl6.flowi6_oif = addr->bound_dev_if;
426 
427 	dst = ipv6_stub->ipv6_dst_lookup_flow(addr->net, NULL, &fl6, NULL);
428 	if (IS_ERR(dst))
429 		return PTR_ERR(dst);
430 
431 	if (ipv6_addr_any(&src_in->sin6_addr))
432 		src_in->sin6_addr = fl6.saddr;
433 
434 	addr->hoplimit = ip6_dst_hoplimit(dst);
435 
436 	*pdst = dst;
437 	return 0;
438 }
439 #else
440 static int addr6_resolve(struct sockaddr *src_sock,
441 			 const struct sockaddr *dst_sock,
442 			 struct rdma_dev_addr *addr,
443 			 struct dst_entry **pdst)
444 {
445 	return -EADDRNOTAVAIL;
446 }
447 #endif
448 
449 static bool is_dst_local(const struct dst_entry *dst)
450 {
451 	if (dst->ops->family == AF_INET)
452 		return !!(dst_rtable(dst)->rt_type & RTN_LOCAL);
453 	else if (dst->ops->family == AF_INET6)
454 		return !!(dst_rt6_info(dst)->rt6i_flags & RTF_LOCAL);
455 	else
456 		return false;
457 }
458 
459 static int addr_resolve_neigh(const struct dst_entry *dst,
460 			      const struct sockaddr *dst_in,
461 			      struct rdma_dev_addr *addr,
462 			      u32 seq)
463 {
464 	if (is_dst_local(dst)) {
465 		/* When the destination is local entry, source and destination
466 		 * are same. Skip the neighbour lookup.
467 		 */
468 		memcpy(addr->dst_dev_addr, addr->src_dev_addr, MAX_ADDR_LEN);
469 		return 0;
470 	}
471 
472 	return fetch_ha(dst, addr, dst_in, seq);
473 }
474 
475 static int rdma_set_src_addr_rcu(struct rdma_dev_addr *dev_addr,
476 				 const struct sockaddr *dst_in,
477 				 const struct dst_entry *dst)
478 {
479 	struct net_device *ndev = READ_ONCE(dst->dev);
480 
481 	/* A physical device must be the RDMA device to use */
482 	if (is_dst_local(dst)) {
483 		int ret;
484 		/*
485 		 * RDMA (IB/RoCE, iWarp) doesn't run on lo interface or
486 		 * loopback IP address. So if route is resolved to loopback
487 		 * interface, translate that to a real ndev based on non
488 		 * loopback IP address.
489 		 */
490 		ndev = rdma_find_ndev_for_src_ip_rcu(dev_net(ndev), dst_in);
491 		if (IS_ERR(ndev))
492 			return -ENODEV;
493 		ret = rdma_translate_ip(dst_in, dev_addr);
494 		if (ret)
495 			return ret;
496 	} else {
497 		rdma_copy_src_l2_addr(dev_addr, dst->dev);
498 	}
499 
500 	/*
501 	 * If there's a gateway and type of device not ARPHRD_INFINIBAND,
502 	 * we're definitely in RoCE v2 (as RoCE v1 isn't routable) set the
503 	 * network type accordingly.
504 	 */
505 	if (has_gateway(dst, dst_in->sa_family) &&
506 	    ndev->type != ARPHRD_INFINIBAND)
507 		dev_addr->network = dst_in->sa_family == AF_INET ?
508 						RDMA_NETWORK_IPV4 :
509 						RDMA_NETWORK_IPV6;
510 	else
511 		dev_addr->network = RDMA_NETWORK_IB;
512 
513 	return 0;
514 }
515 
516 static int set_addr_netns_by_gid_rcu(struct rdma_dev_addr *addr)
517 {
518 	struct net_device *ndev;
519 
520 	ndev = rdma_read_gid_attr_ndev_rcu(addr->sgid_attr);
521 	if (IS_ERR(ndev))
522 		return PTR_ERR(ndev);
523 
524 	/*
525 	 * Since we are holding the rcu, reading net and ifindex
526 	 * are safe without any additional reference; because
527 	 * change_net_namespace() in net/core/dev.c does rcu sync
528 	 * after it changes the state to IFF_DOWN and before
529 	 * updating netdev fields {net, ifindex}.
530 	 */
531 	addr->net = dev_net(ndev);
532 	addr->bound_dev_if = ndev->ifindex;
533 	return 0;
534 }
535 
536 static void rdma_addr_set_net_defaults(struct rdma_dev_addr *addr)
537 {
538 	addr->net = &init_net;
539 	addr->bound_dev_if = 0;
540 }
541 
542 static int addr_resolve(struct sockaddr *src_in,
543 			const struct sockaddr *dst_in,
544 			struct rdma_dev_addr *addr,
545 			bool resolve_neigh,
546 			bool resolve_by_gid_attr,
547 			u32 seq)
548 {
549 	struct dst_entry *dst = NULL;
550 	struct rtable *rt = NULL;
551 	int ret;
552 
553 	if (!addr->net) {
554 		pr_warn_ratelimited("%s: missing namespace\n", __func__);
555 		return -EINVAL;
556 	}
557 
558 	rcu_read_lock();
559 	if (resolve_by_gid_attr) {
560 		if (!addr->sgid_attr) {
561 			rcu_read_unlock();
562 			pr_warn_ratelimited("%s: missing gid_attr\n", __func__);
563 			return -EINVAL;
564 		}
565 		/*
566 		 * If the request is for a specific gid attribute of the
567 		 * rdma_dev_addr, derive net from the netdevice of the
568 		 * GID attribute.
569 		 */
570 		ret = set_addr_netns_by_gid_rcu(addr);
571 		if (ret) {
572 			rcu_read_unlock();
573 			return ret;
574 		}
575 	}
576 	if (src_in->sa_family == AF_INET) {
577 		ret = addr4_resolve(src_in, dst_in, addr, &rt);
578 		dst = &rt->dst;
579 	} else {
580 		ret = addr6_resolve(src_in, dst_in, addr, &dst);
581 	}
582 	if (ret) {
583 		rcu_read_unlock();
584 		goto done;
585 	}
586 	ret = rdma_set_src_addr_rcu(addr, dst_in, dst);
587 	rcu_read_unlock();
588 
589 	/*
590 	 * Resolve neighbor destination address if requested and
591 	 * only if src addr translation didn't fail.
592 	 */
593 	if (!ret && resolve_neigh)
594 		ret = addr_resolve_neigh(dst, dst_in, addr, seq);
595 
596 	if (src_in->sa_family == AF_INET)
597 		ip_rt_put(rt);
598 	else
599 		dst_release(dst);
600 done:
601 	/*
602 	 * Clear the addr net to go back to its original state, only if it was
603 	 * derived from GID attribute in this context.
604 	 */
605 	if (resolve_by_gid_attr)
606 		rdma_addr_set_net_defaults(addr);
607 	return ret;
608 }
609 
610 static void process_one_req(struct work_struct *_work)
611 {
612 	struct addr_req *req;
613 	struct sockaddr *src_in, *dst_in;
614 
615 	req = container_of(_work, struct addr_req, work.work);
616 
617 	if (req->status == -ENODATA) {
618 		src_in = (struct sockaddr *)&req->src_addr;
619 		dst_in = (struct sockaddr *)&req->dst_addr;
620 		req->status = addr_resolve(src_in, dst_in, req->addr,
621 					   true, req->resolve_by_gid_attr,
622 					   req->seq);
623 		if (req->status && time_after_eq(jiffies, req->timeout)) {
624 			req->status = -ETIMEDOUT;
625 		} else if (req->status == -ENODATA) {
626 			/* requeue the work for retrying again */
627 			spin_lock_bh(&lock);
628 			if (!list_empty(&req->list))
629 				set_timeout(req, req->timeout);
630 			spin_unlock_bh(&lock);
631 			return;
632 		}
633 	}
634 
635 	req->callback(req->status, (struct sockaddr *)&req->src_addr,
636 		req->addr, req->context);
637 	req->callback = NULL;
638 
639 	spin_lock_bh(&lock);
640 	/*
641 	 * Although the work will normally have been canceled by the workqueue,
642 	 * it can still be requeued as long as it is on the req_list.
643 	 */
644 	cancel_delayed_work(&req->work);
645 	if (!list_empty(&req->list)) {
646 		list_del_init(&req->list);
647 		kfree(req);
648 	}
649 	spin_unlock_bh(&lock);
650 }
651 
652 int rdma_resolve_ip(struct sockaddr *src_addr, const struct sockaddr *dst_addr,
653 		    struct rdma_dev_addr *addr, unsigned long timeout_ms,
654 		    void (*callback)(int status, struct sockaddr *src_addr,
655 				     struct rdma_dev_addr *addr, void *context),
656 		    bool resolve_by_gid_attr, void *context)
657 {
658 	struct sockaddr *src_in, *dst_in;
659 	struct addr_req *req;
660 	int ret = 0;
661 
662 	req = kzalloc(sizeof *req, GFP_KERNEL);
663 	if (!req)
664 		return -ENOMEM;
665 
666 	src_in = (struct sockaddr *) &req->src_addr;
667 	dst_in = (struct sockaddr *) &req->dst_addr;
668 
669 	if (src_addr) {
670 		if (src_addr->sa_family != dst_addr->sa_family) {
671 			ret = -EINVAL;
672 			goto err;
673 		}
674 
675 		memcpy(src_in, src_addr, rdma_addr_size(src_addr));
676 	} else {
677 		src_in->sa_family = dst_addr->sa_family;
678 	}
679 
680 	memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
681 	req->addr = addr;
682 	req->callback = callback;
683 	req->context = context;
684 	req->resolve_by_gid_attr = resolve_by_gid_attr;
685 	INIT_DELAYED_WORK(&req->work, process_one_req);
686 	req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq);
687 
688 	req->status = addr_resolve(src_in, dst_in, addr, true,
689 				   req->resolve_by_gid_attr, req->seq);
690 	switch (req->status) {
691 	case 0:
692 		req->timeout = jiffies;
693 		queue_req(req);
694 		break;
695 	case -ENODATA:
696 		req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
697 		queue_req(req);
698 		break;
699 	default:
700 		ret = req->status;
701 		goto err;
702 	}
703 	return ret;
704 err:
705 	kfree(req);
706 	return ret;
707 }
708 EXPORT_SYMBOL(rdma_resolve_ip);
709 
710 int roce_resolve_route_from_path(struct sa_path_rec *rec,
711 				 const struct ib_gid_attr *attr)
712 {
713 	union {
714 		struct sockaddr     _sockaddr;
715 		struct sockaddr_in  _sockaddr_in;
716 		struct sockaddr_in6 _sockaddr_in6;
717 	} sgid, dgid;
718 	struct rdma_dev_addr dev_addr = {};
719 	int ret;
720 
721 	might_sleep();
722 
723 	if (rec->roce.route_resolved)
724 		return 0;
725 
726 	rdma_gid2ip((struct sockaddr *)&sgid, &rec->sgid);
727 	rdma_gid2ip((struct sockaddr *)&dgid, &rec->dgid);
728 
729 	if (sgid._sockaddr.sa_family != dgid._sockaddr.sa_family)
730 		return -EINVAL;
731 
732 	if (!attr || !attr->ndev)
733 		return -EINVAL;
734 
735 	dev_addr.net = &init_net;
736 	dev_addr.sgid_attr = attr;
737 
738 	ret = addr_resolve((struct sockaddr *)&sgid, (struct sockaddr *)&dgid,
739 			   &dev_addr, false, true, 0);
740 	if (ret)
741 		return ret;
742 
743 	if ((dev_addr.network == RDMA_NETWORK_IPV4 ||
744 	     dev_addr.network == RDMA_NETWORK_IPV6) &&
745 	    rec->rec_type != SA_PATH_REC_TYPE_ROCE_V2)
746 		return -EINVAL;
747 
748 	rec->roce.route_resolved = true;
749 	return 0;
750 }
751 
752 /**
753  * rdma_addr_cancel - Cancel resolve ip request
754  * @addr:	Pointer to address structure given previously
755  *		during rdma_resolve_ip().
756  * rdma_addr_cancel() is synchronous function which cancels any pending
757  * request if there is any.
758  */
759 void rdma_addr_cancel(struct rdma_dev_addr *addr)
760 {
761 	struct addr_req *req, *temp_req;
762 	struct addr_req *found = NULL;
763 
764 	spin_lock_bh(&lock);
765 	list_for_each_entry_safe(req, temp_req, &req_list, list) {
766 		if (req->addr == addr) {
767 			/*
768 			 * Removing from the list means we take ownership of
769 			 * the req
770 			 */
771 			list_del_init(&req->list);
772 			found = req;
773 			break;
774 		}
775 	}
776 	spin_unlock_bh(&lock);
777 
778 	if (!found)
779 		return;
780 
781 	/*
782 	 * sync canceling the work after removing it from the req_list
783 	 * guarentees no work is running and none will be started.
784 	 */
785 	cancel_delayed_work_sync(&found->work);
786 	kfree(found);
787 }
788 EXPORT_SYMBOL(rdma_addr_cancel);
789 
790 struct resolve_cb_context {
791 	struct completion comp;
792 	int status;
793 };
794 
795 static void resolve_cb(int status, struct sockaddr *src_addr,
796 	     struct rdma_dev_addr *addr, void *context)
797 {
798 	((struct resolve_cb_context *)context)->status = status;
799 	complete(&((struct resolve_cb_context *)context)->comp);
800 }
801 
802 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
803 				 const union ib_gid *dgid,
804 				 u8 *dmac, const struct ib_gid_attr *sgid_attr,
805 				 int *hoplimit)
806 {
807 	struct rdma_dev_addr dev_addr;
808 	struct resolve_cb_context ctx;
809 	union {
810 		struct sockaddr_in  _sockaddr_in;
811 		struct sockaddr_in6 _sockaddr_in6;
812 	} sgid_addr, dgid_addr;
813 	int ret;
814 
815 	rdma_gid2ip((struct sockaddr *)&sgid_addr, sgid);
816 	rdma_gid2ip((struct sockaddr *)&dgid_addr, dgid);
817 
818 	memset(&dev_addr, 0, sizeof(dev_addr));
819 	dev_addr.net = &init_net;
820 	dev_addr.sgid_attr = sgid_attr;
821 
822 	init_completion(&ctx.comp);
823 	ret = rdma_resolve_ip((struct sockaddr *)&sgid_addr,
824 			      (struct sockaddr *)&dgid_addr, &dev_addr, 1000,
825 			      resolve_cb, true, &ctx);
826 	if (ret)
827 		return ret;
828 
829 	wait_for_completion(&ctx.comp);
830 
831 	ret = ctx.status;
832 	if (ret)
833 		return ret;
834 
835 	memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
836 	*hoplimit = dev_addr.hoplimit;
837 	return 0;
838 }
839 
840 static int netevent_callback(struct notifier_block *self, unsigned long event,
841 	void *ctx)
842 {
843 	struct addr_req *req;
844 
845 	if (event == NETEVENT_NEIGH_UPDATE) {
846 		struct neighbour *neigh = ctx;
847 
848 		if (neigh->nud_state & NUD_VALID) {
849 			spin_lock_bh(&lock);
850 			list_for_each_entry(req, &req_list, list)
851 				set_timeout(req, jiffies);
852 			spin_unlock_bh(&lock);
853 		}
854 	}
855 	return 0;
856 }
857 
858 static struct notifier_block nb = {
859 	.notifier_call = netevent_callback
860 };
861 
862 int addr_init(void)
863 {
864 	addr_wq = alloc_ordered_workqueue("ib_addr", 0);
865 	if (!addr_wq)
866 		return -ENOMEM;
867 
868 	register_netevent_notifier(&nb);
869 
870 	return 0;
871 }
872 
873 void addr_cleanup(void)
874 {
875 	unregister_netevent_notifier(&nb);
876 	destroy_workqueue(addr_wq);
877 	WARN_ON(!list_empty(&req_list));
878 }
879