1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for the TI TMAG5273 Low-Power Linear 3D Hall-Effect Sensor
4 *
5 * Copyright (C) 2022 WolfVision GmbH
6 *
7 * Author: Gerald Loacker <gerald.loacker@wolfvision.net>
8 */
9
10 #include <linux/bitfield.h>
11 #include <linux/bits.h>
12 #include <linux/delay.h>
13 #include <linux/module.h>
14 #include <linux/i2c.h>
15 #include <linux/regmap.h>
16 #include <linux/pm_runtime.h>
17
18 #include <linux/iio/iio.h>
19 #include <linux/iio/sysfs.h>
20
21 #define TMAG5273_DEVICE_CONFIG_1 0x00
22 #define TMAG5273_DEVICE_CONFIG_2 0x01
23 #define TMAG5273_SENSOR_CONFIG_1 0x02
24 #define TMAG5273_SENSOR_CONFIG_2 0x03
25 #define TMAG5273_X_THR_CONFIG 0x04
26 #define TMAG5273_Y_THR_CONFIG 0x05
27 #define TMAG5273_Z_THR_CONFIG 0x06
28 #define TMAG5273_T_CONFIG 0x07
29 #define TMAG5273_INT_CONFIG_1 0x08
30 #define TMAG5273_MAG_GAIN_CONFIG 0x09
31 #define TMAG5273_MAG_OFFSET_CONFIG_1 0x0A
32 #define TMAG5273_MAG_OFFSET_CONFIG_2 0x0B
33 #define TMAG5273_I2C_ADDRESS 0x0C
34 #define TMAG5273_DEVICE_ID 0x0D
35 #define TMAG5273_MANUFACTURER_ID_LSB 0x0E
36 #define TMAG5273_MANUFACTURER_ID_MSB 0x0F
37 #define TMAG5273_T_MSB_RESULT 0x10
38 #define TMAG5273_T_LSB_RESULT 0x11
39 #define TMAG5273_X_MSB_RESULT 0x12
40 #define TMAG5273_X_LSB_RESULT 0x13
41 #define TMAG5273_Y_MSB_RESULT 0x14
42 #define TMAG5273_Y_LSB_RESULT 0x15
43 #define TMAG5273_Z_MSB_RESULT 0x16
44 #define TMAG5273_Z_LSB_RESULT 0x17
45 #define TMAG5273_CONV_STATUS 0x18
46 #define TMAG5273_ANGLE_RESULT_MSB 0x19
47 #define TMAG5273_ANGLE_RESULT_LSB 0x1A
48 #define TMAG5273_MAGNITUDE_RESULT 0x1B
49 #define TMAG5273_DEVICE_STATUS 0x1C
50 #define TMAG5273_MAX_REG TMAG5273_DEVICE_STATUS
51
52 #define TMAG5273_AUTOSLEEP_DELAY_MS 5000
53 #define TMAG5273_MAX_AVERAGE 32
54
55 /*
56 * bits in the TMAG5273_MANUFACTURER_ID_LSB / MSB register
57 * 16-bit unique manufacturer ID 0x49 / 0x54 = "TI"
58 */
59 #define TMAG5273_MANUFACTURER_ID 0x5449
60
61 /* bits in the TMAG5273_DEVICE_CONFIG_1 register */
62 #define TMAG5273_AVG_MODE_MASK GENMASK(4, 2)
63 #define TMAG5273_AVG_1_MODE FIELD_PREP(TMAG5273_AVG_MODE_MASK, 0)
64 #define TMAG5273_AVG_2_MODE FIELD_PREP(TMAG5273_AVG_MODE_MASK, 1)
65 #define TMAG5273_AVG_4_MODE FIELD_PREP(TMAG5273_AVG_MODE_MASK, 2)
66 #define TMAG5273_AVG_8_MODE FIELD_PREP(TMAG5273_AVG_MODE_MASK, 3)
67 #define TMAG5273_AVG_16_MODE FIELD_PREP(TMAG5273_AVG_MODE_MASK, 4)
68 #define TMAG5273_AVG_32_MODE FIELD_PREP(TMAG5273_AVG_MODE_MASK, 5)
69
70 /* bits in the TMAG5273_DEVICE_CONFIG_2 register */
71 #define TMAG5273_OP_MODE_MASK GENMASK(1, 0)
72 #define TMAG5273_OP_MODE_STANDBY FIELD_PREP(TMAG5273_OP_MODE_MASK, 0)
73 #define TMAG5273_OP_MODE_SLEEP FIELD_PREP(TMAG5273_OP_MODE_MASK, 1)
74 #define TMAG5273_OP_MODE_CONT FIELD_PREP(TMAG5273_OP_MODE_MASK, 2)
75 #define TMAG5273_OP_MODE_WAKEUP FIELD_PREP(TMAG5273_OP_MODE_MASK, 3)
76
77 /* bits in the TMAG5273_SENSOR_CONFIG_1 register */
78 #define TMAG5273_MAG_CH_EN_MASK GENMASK(7, 4)
79 #define TMAG5273_MAG_CH_EN_X_Y_Z 7
80
81 /* bits in the TMAG5273_SENSOR_CONFIG_2 register */
82 #define TMAG5273_Z_RANGE_MASK BIT(0)
83 #define TMAG5273_X_Y_RANGE_MASK BIT(1)
84 #define TMAG5273_ANGLE_EN_MASK GENMASK(3, 2)
85 #define TMAG5273_ANGLE_EN_OFF 0
86 #define TMAG5273_ANGLE_EN_X_Y 1
87 #define TMAG5273_ANGLE_EN_Y_Z 2
88 #define TMAG5273_ANGLE_EN_X_Z 3
89
90 /* bits in the TMAG5273_T_CONFIG register */
91 #define TMAG5273_T_CH_EN BIT(0)
92
93 /* bits in the TMAG5273_DEVICE_ID register */
94 #define TMAG5273_VERSION_MASK GENMASK(1, 0)
95
96 /* bits in the TMAG5273_CONV_STATUS register */
97 #define TMAG5273_CONV_STATUS_COMPLETE BIT(0)
98
99 enum tmag5273_channels {
100 TEMPERATURE = 0,
101 AXIS_X,
102 AXIS_Y,
103 AXIS_Z,
104 ANGLE,
105 MAGNITUDE,
106 };
107
108 enum tmag5273_scale_index {
109 MAGN_RANGE_LOW = 0,
110 MAGN_RANGE_HIGH,
111 MAGN_RANGE_NUM
112 };
113
114 /* state container for the TMAG5273 driver */
115 struct tmag5273_data {
116 struct device *dev;
117 unsigned int devid;
118 unsigned int version;
119 char name[16];
120 unsigned int conv_avg;
121 enum tmag5273_scale_index scale_index;
122 unsigned int angle_measurement;
123 struct regmap *map;
124
125 /*
126 * Locks the sensor for exclusive use during a measurement (which
127 * involves several register transactions so the regmap lock is not
128 * enough) so that measurements get serialized in a
129 * first-come-first-serve manner.
130 */
131 struct mutex lock;
132 };
133
134 static const char *const tmag5273_angle_names[] = { "off", "x-y", "y-z", "x-z" };
135
136 /*
137 * Averaging enables additional sampling of the sensor data to reduce the noise
138 * effect, but also increases conversion time.
139 */
140 static const unsigned int tmag5273_avg_table[] = {
141 1, 2, 4, 8, 16, 32,
142 };
143
144 /*
145 * Magnetic resolution in Gauss for different TMAG5273 versions.
146 * Scale[Gauss] = Range[mT] * 1000 / 2^15 * 10, (1 mT = 10 Gauss)
147 * Only version 1 and 2 are valid, version 0 and 3 are reserved.
148 */
149 static const struct iio_val_int_plus_micro tmag5273_scale[][MAGN_RANGE_NUM] = {
150 { { 0, 0 }, { 0, 0 } },
151 { { 0, 12200 }, { 0, 24400 } },
152 { { 0, 40600 }, { 0, 81200 } },
153 { { 0, 0 }, { 0, 0 } },
154 };
155
tmag5273_get_measure(struct tmag5273_data * data,s16 * t,s16 * x,s16 * y,s16 * z,u16 * angle,u16 * magnitude)156 static int tmag5273_get_measure(struct tmag5273_data *data, s16 *t, s16 *x,
157 s16 *y, s16 *z, u16 *angle, u16 *magnitude)
158 {
159 unsigned int status, val;
160 __be16 reg_data[4];
161 int ret;
162
163 mutex_lock(&data->lock);
164
165 /*
166 * Max. conversion time is 2425 us in 32x averaging mode for all three
167 * channels. Since we are in continuous measurement mode, a measurement
168 * may already be there, so poll for completed measurement with
169 * timeout.
170 */
171 ret = regmap_read_poll_timeout(data->map, TMAG5273_CONV_STATUS, status,
172 status & TMAG5273_CONV_STATUS_COMPLETE,
173 100, 10000);
174 if (ret) {
175 dev_err(data->dev, "timeout waiting for measurement\n");
176 goto out_unlock;
177 }
178
179 ret = regmap_bulk_read(data->map, TMAG5273_T_MSB_RESULT, reg_data,
180 sizeof(reg_data));
181 if (ret)
182 goto out_unlock;
183 *t = be16_to_cpu(reg_data[0]);
184 *x = be16_to_cpu(reg_data[1]);
185 *y = be16_to_cpu(reg_data[2]);
186 *z = be16_to_cpu(reg_data[3]);
187
188 ret = regmap_bulk_read(data->map, TMAG5273_ANGLE_RESULT_MSB,
189 ®_data[0], sizeof(reg_data[0]));
190 if (ret)
191 goto out_unlock;
192 /*
193 * angle has 9 bits integer value and 4 bits fractional part
194 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
195 * 0 0 0 a a a a a a a a a f f f f
196 */
197 *angle = be16_to_cpu(reg_data[0]);
198
199 ret = regmap_read(data->map, TMAG5273_MAGNITUDE_RESULT, &val);
200 if (ret < 0)
201 goto out_unlock;
202 *magnitude = val;
203
204 out_unlock:
205 mutex_unlock(&data->lock);
206 return ret;
207 }
208
tmag5273_write_osr(struct tmag5273_data * data,int val)209 static int tmag5273_write_osr(struct tmag5273_data *data, int val)
210 {
211 int i;
212
213 if (val == data->conv_avg)
214 return 0;
215
216 for (i = 0; i < ARRAY_SIZE(tmag5273_avg_table); i++) {
217 if (tmag5273_avg_table[i] == val)
218 break;
219 }
220 if (i == ARRAY_SIZE(tmag5273_avg_table))
221 return -EINVAL;
222 data->conv_avg = val;
223
224 return regmap_update_bits(data->map, TMAG5273_DEVICE_CONFIG_1,
225 TMAG5273_AVG_MODE_MASK,
226 FIELD_PREP(TMAG5273_AVG_MODE_MASK, i));
227 }
228
tmag5273_write_scale(struct tmag5273_data * data,int scale_micro)229 static int tmag5273_write_scale(struct tmag5273_data *data, int scale_micro)
230 {
231 u32 value;
232 int i;
233
234 for (i = 0; i < ARRAY_SIZE(tmag5273_scale[0]); i++) {
235 if (tmag5273_scale[data->version][i].micro == scale_micro)
236 break;
237 }
238 if (i == ARRAY_SIZE(tmag5273_scale[0]))
239 return -EINVAL;
240 data->scale_index = i;
241
242 if (data->scale_index == MAGN_RANGE_LOW)
243 value = 0;
244 else
245 value = TMAG5273_Z_RANGE_MASK | TMAG5273_X_Y_RANGE_MASK;
246
247 return regmap_update_bits(data->map, TMAG5273_SENSOR_CONFIG_2,
248 TMAG5273_Z_RANGE_MASK | TMAG5273_X_Y_RANGE_MASK, value);
249 }
250
tmag5273_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long mask)251 static int tmag5273_read_avail(struct iio_dev *indio_dev,
252 struct iio_chan_spec const *chan,
253 const int **vals, int *type, int *length,
254 long mask)
255 {
256 struct tmag5273_data *data = iio_priv(indio_dev);
257
258 switch (mask) {
259 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
260 *vals = tmag5273_avg_table;
261 *type = IIO_VAL_INT;
262 *length = ARRAY_SIZE(tmag5273_avg_table);
263 return IIO_AVAIL_LIST;
264 case IIO_CHAN_INFO_SCALE:
265 switch (chan->type) {
266 case IIO_MAGN:
267 *type = IIO_VAL_INT_PLUS_MICRO;
268 *vals = (int *)tmag5273_scale[data->version];
269 *length = ARRAY_SIZE(tmag5273_scale[data->version]) *
270 MAGN_RANGE_NUM;
271 return IIO_AVAIL_LIST;
272 default:
273 return -EINVAL;
274 }
275 default:
276 return -EINVAL;
277 }
278 }
279
tmag5273_read_raw(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,int * val,int * val2,long mask)280 static int tmag5273_read_raw(struct iio_dev *indio_dev,
281 const struct iio_chan_spec *chan, int *val,
282 int *val2, long mask)
283 {
284 struct tmag5273_data *data = iio_priv(indio_dev);
285 s16 t, x, y, z;
286 u16 angle, magnitude;
287 int ret;
288
289 switch (mask) {
290 case IIO_CHAN_INFO_PROCESSED:
291 case IIO_CHAN_INFO_RAW:
292 ret = pm_runtime_resume_and_get(data->dev);
293 if (ret < 0)
294 return ret;
295
296 ret = tmag5273_get_measure(data, &t, &x, &y, &z, &angle, &magnitude);
297
298 pm_runtime_mark_last_busy(data->dev);
299 pm_runtime_put_autosuspend(data->dev);
300
301 if (ret)
302 return ret;
303
304 switch (chan->address) {
305 case TEMPERATURE:
306 *val = t;
307 return IIO_VAL_INT;
308 case AXIS_X:
309 *val = x;
310 return IIO_VAL_INT;
311 case AXIS_Y:
312 *val = y;
313 return IIO_VAL_INT;
314 case AXIS_Z:
315 *val = z;
316 return IIO_VAL_INT;
317 case ANGLE:
318 *val = angle;
319 return IIO_VAL_INT;
320 case MAGNITUDE:
321 *val = magnitude;
322 return IIO_VAL_INT;
323 default:
324 return -EINVAL;
325 }
326 case IIO_CHAN_INFO_SCALE:
327 switch (chan->type) {
328 case IIO_TEMP:
329 /*
330 * Convert device specific value to millicelsius.
331 * Resolution from the sensor is 60.1 LSB/celsius and
332 * the reference value at 25 celsius is 17508 LSBs.
333 */
334 *val = 10000;
335 *val2 = 601;
336 return IIO_VAL_FRACTIONAL;
337 case IIO_MAGN:
338 /* Magnetic resolution in uT */
339 *val = 0;
340 *val2 = tmag5273_scale[data->version]
341 [data->scale_index].micro;
342 return IIO_VAL_INT_PLUS_MICRO;
343 case IIO_ANGL:
344 /*
345 * Angle is in degrees and has four fractional bits,
346 * therefore use 1/16 * pi/180 to convert to radians.
347 */
348 *val = 1000;
349 *val2 = 916732;
350 return IIO_VAL_FRACTIONAL;
351 default:
352 return -EINVAL;
353 }
354 case IIO_CHAN_INFO_OFFSET:
355 switch (chan->type) {
356 case IIO_TEMP:
357 *val = -16005;
358 return IIO_VAL_INT;
359 default:
360 return -EINVAL;
361 }
362 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
363 *val = data->conv_avg;
364 return IIO_VAL_INT;
365
366 default:
367 return -EINVAL;
368 }
369 }
370
tmag5273_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)371 static int tmag5273_write_raw(struct iio_dev *indio_dev,
372 struct iio_chan_spec const *chan, int val,
373 int val2, long mask)
374 {
375 struct tmag5273_data *data = iio_priv(indio_dev);
376
377 switch (mask) {
378 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
379 return tmag5273_write_osr(data, val);
380 case IIO_CHAN_INFO_SCALE:
381 switch (chan->type) {
382 case IIO_MAGN:
383 if (val)
384 return -EINVAL;
385 return tmag5273_write_scale(data, val2);
386 default:
387 return -EINVAL;
388 }
389 default:
390 return -EINVAL;
391 }
392 }
393
394 #define TMAG5273_AXIS_CHANNEL(axis, index) \
395 { \
396 .type = IIO_MAGN, \
397 .modified = 1, \
398 .channel2 = IIO_MOD_##axis, \
399 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
400 BIT(IIO_CHAN_INFO_SCALE), \
401 .info_mask_shared_by_type_available = \
402 BIT(IIO_CHAN_INFO_SCALE), \
403 .info_mask_shared_by_all = \
404 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
405 .info_mask_shared_by_all_available = \
406 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
407 .address = index, \
408 .scan_index = index, \
409 .scan_type = { \
410 .sign = 's', \
411 .realbits = 16, \
412 .storagebits = 16, \
413 .endianness = IIO_CPU, \
414 }, \
415 }
416
417 static const struct iio_chan_spec tmag5273_channels[] = {
418 {
419 .type = IIO_TEMP,
420 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
421 BIT(IIO_CHAN_INFO_SCALE) |
422 BIT(IIO_CHAN_INFO_OFFSET),
423 .address = TEMPERATURE,
424 .scan_index = TEMPERATURE,
425 .scan_type = {
426 .sign = 'u',
427 .realbits = 16,
428 .storagebits = 16,
429 .endianness = IIO_CPU,
430 },
431 },
432 TMAG5273_AXIS_CHANNEL(X, AXIS_X),
433 TMAG5273_AXIS_CHANNEL(Y, AXIS_Y),
434 TMAG5273_AXIS_CHANNEL(Z, AXIS_Z),
435 {
436 .type = IIO_ANGL,
437 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
438 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),
439 .info_mask_shared_by_all =
440 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
441 .info_mask_shared_by_all_available =
442 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
443 .address = ANGLE,
444 .scan_index = ANGLE,
445 .scan_type = {
446 .sign = 'u',
447 .realbits = 16,
448 .storagebits = 16,
449 .endianness = IIO_CPU,
450 },
451 },
452 {
453 .type = IIO_DISTANCE,
454 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
455 .info_mask_shared_by_all =
456 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
457 .info_mask_shared_by_all_available =
458 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
459 .address = MAGNITUDE,
460 .scan_index = MAGNITUDE,
461 .scan_type = {
462 .sign = 'u',
463 .realbits = 16,
464 .storagebits = 16,
465 .endianness = IIO_CPU,
466 },
467 },
468 IIO_CHAN_SOFT_TIMESTAMP(6),
469 };
470
471 static const struct iio_info tmag5273_info = {
472 .read_avail = tmag5273_read_avail,
473 .read_raw = tmag5273_read_raw,
474 .write_raw = tmag5273_write_raw,
475 };
476
tmag5273_volatile_reg(struct device * dev,unsigned int reg)477 static bool tmag5273_volatile_reg(struct device *dev, unsigned int reg)
478 {
479 return reg >= TMAG5273_T_MSB_RESULT && reg <= TMAG5273_MAGNITUDE_RESULT;
480 }
481
482 static const struct regmap_config tmag5273_regmap_config = {
483 .reg_bits = 8,
484 .val_bits = 8,
485 .max_register = TMAG5273_MAX_REG,
486 .volatile_reg = tmag5273_volatile_reg,
487 };
488
tmag5273_set_operating_mode(struct tmag5273_data * data,unsigned int val)489 static int tmag5273_set_operating_mode(struct tmag5273_data *data,
490 unsigned int val)
491 {
492 return regmap_write(data->map, TMAG5273_DEVICE_CONFIG_2, val);
493 }
494
tmag5273_read_device_property(struct tmag5273_data * data)495 static void tmag5273_read_device_property(struct tmag5273_data *data)
496 {
497 struct device *dev = data->dev;
498 int ret;
499
500 data->angle_measurement = TMAG5273_ANGLE_EN_X_Y;
501
502 ret = device_property_match_property_string(dev, "ti,angle-measurement",
503 tmag5273_angle_names,
504 ARRAY_SIZE(tmag5273_angle_names));
505 if (ret >= 0)
506 data->angle_measurement = ret;
507 }
508
tmag5273_wake_up(struct tmag5273_data * data)509 static void tmag5273_wake_up(struct tmag5273_data *data)
510 {
511 int val;
512
513 /* Wake up the chip by sending a dummy I2C command */
514 regmap_read(data->map, TMAG5273_DEVICE_ID, &val);
515 /*
516 * Time to go to stand-by mode from sleep mode is 50us
517 * typically, during this time no I2C access is possible.
518 */
519 usleep_range(80, 200);
520 }
521
tmag5273_chip_init(struct tmag5273_data * data)522 static int tmag5273_chip_init(struct tmag5273_data *data)
523 {
524 int ret;
525
526 ret = regmap_write(data->map, TMAG5273_DEVICE_CONFIG_1,
527 TMAG5273_AVG_32_MODE);
528 if (ret)
529 return ret;
530 data->conv_avg = 32;
531
532 ret = regmap_write(data->map, TMAG5273_DEVICE_CONFIG_2,
533 TMAG5273_OP_MODE_CONT);
534 if (ret)
535 return ret;
536
537 ret = regmap_write(data->map, TMAG5273_SENSOR_CONFIG_1,
538 FIELD_PREP(TMAG5273_MAG_CH_EN_MASK,
539 TMAG5273_MAG_CH_EN_X_Y_Z));
540 if (ret)
541 return ret;
542
543 ret = regmap_write(data->map, TMAG5273_SENSOR_CONFIG_2,
544 FIELD_PREP(TMAG5273_ANGLE_EN_MASK,
545 data->angle_measurement));
546 if (ret)
547 return ret;
548 data->scale_index = MAGN_RANGE_LOW;
549
550 return regmap_write(data->map, TMAG5273_T_CONFIG, TMAG5273_T_CH_EN);
551 }
552
tmag5273_check_device_id(struct tmag5273_data * data)553 static int tmag5273_check_device_id(struct tmag5273_data *data)
554 {
555 __le16 devid;
556 int val, ret;
557
558 ret = regmap_read(data->map, TMAG5273_DEVICE_ID, &val);
559 if (ret)
560 return dev_err_probe(data->dev, ret, "failed to power on device\n");
561 data->version = FIELD_PREP(TMAG5273_VERSION_MASK, val);
562
563 ret = regmap_bulk_read(data->map, TMAG5273_MANUFACTURER_ID_LSB, &devid,
564 sizeof(devid));
565 if (ret)
566 return dev_err_probe(data->dev, ret, "failed to read device ID\n");
567 data->devid = le16_to_cpu(devid);
568
569 switch (data->devid) {
570 case TMAG5273_MANUFACTURER_ID:
571 /*
572 * The device name matches the orderable part number. 'x' stands
573 * for A, B, C or D devices, which have different I2C addresses.
574 * Versions 1 or 2 (0 and 3 is reserved) stands for different
575 * magnetic strengths.
576 */
577 snprintf(data->name, sizeof(data->name), "tmag5273x%1u", data->version);
578 if (data->version < 1 || data->version > 2)
579 dev_warn(data->dev, "Unsupported device %s\n", data->name);
580 return 0;
581 default:
582 /*
583 * Only print warning in case of unknown device ID to allow
584 * fallback compatible in device tree.
585 */
586 dev_warn(data->dev, "Unknown device ID 0x%x\n", data->devid);
587 return 0;
588 }
589 }
590
tmag5273_power_down(void * data)591 static void tmag5273_power_down(void *data)
592 {
593 tmag5273_set_operating_mode(data, TMAG5273_OP_MODE_SLEEP);
594 }
595
tmag5273_probe(struct i2c_client * i2c)596 static int tmag5273_probe(struct i2c_client *i2c)
597 {
598 struct device *dev = &i2c->dev;
599 struct tmag5273_data *data;
600 struct iio_dev *indio_dev;
601 int ret;
602
603 indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
604 if (!indio_dev)
605 return -ENOMEM;
606
607 data = iio_priv(indio_dev);
608 data->dev = dev;
609 i2c_set_clientdata(i2c, indio_dev);
610
611 data->map = devm_regmap_init_i2c(i2c, &tmag5273_regmap_config);
612 if (IS_ERR(data->map))
613 return dev_err_probe(dev, PTR_ERR(data->map),
614 "failed to allocate register map\n");
615
616 mutex_init(&data->lock);
617
618 ret = devm_regulator_get_enable(dev, "vcc");
619 if (ret)
620 return dev_err_probe(dev, ret, "failed to enable regulator\n");
621
622 tmag5273_wake_up(data);
623
624 ret = tmag5273_check_device_id(data);
625 if (ret)
626 return ret;
627
628 ret = tmag5273_set_operating_mode(data, TMAG5273_OP_MODE_CONT);
629 if (ret)
630 return dev_err_probe(dev, ret, "failed to power on device\n");
631
632 /*
633 * Register powerdown deferred callback which suspends the chip
634 * after module unloaded.
635 *
636 * TMAG5273 should be in SUSPEND mode in the two cases:
637 * 1) When driver is loaded, but we do not have any data or
638 * configuration requests to it (we are solving it using
639 * autosuspend feature).
640 * 2) When driver is unloaded and device is not used (devm action is
641 * used in this case).
642 */
643 ret = devm_add_action_or_reset(dev, tmag5273_power_down, data);
644 if (ret)
645 return dev_err_probe(dev, ret, "failed to add powerdown action\n");
646
647 ret = pm_runtime_set_active(dev);
648 if (ret < 0)
649 return ret;
650
651 ret = devm_pm_runtime_enable(dev);
652 if (ret)
653 return ret;
654
655 pm_runtime_get_noresume(dev);
656 pm_runtime_set_autosuspend_delay(dev, TMAG5273_AUTOSLEEP_DELAY_MS);
657 pm_runtime_use_autosuspend(dev);
658
659 tmag5273_read_device_property(data);
660
661 ret = tmag5273_chip_init(data);
662 if (ret)
663 return dev_err_probe(dev, ret, "failed to init device\n");
664
665 indio_dev->info = &tmag5273_info;
666 indio_dev->modes = INDIO_DIRECT_MODE;
667 indio_dev->name = data->name;
668 indio_dev->channels = tmag5273_channels;
669 indio_dev->num_channels = ARRAY_SIZE(tmag5273_channels);
670
671 pm_runtime_mark_last_busy(dev);
672 pm_runtime_put_autosuspend(dev);
673
674 ret = devm_iio_device_register(dev, indio_dev);
675 if (ret)
676 return dev_err_probe(dev, ret, "device register failed\n");
677
678 return 0;
679 }
680
tmag5273_runtime_suspend(struct device * dev)681 static int tmag5273_runtime_suspend(struct device *dev)
682 {
683 struct iio_dev *indio_dev = dev_get_drvdata(dev);
684 struct tmag5273_data *data = iio_priv(indio_dev);
685 int ret;
686
687 ret = tmag5273_set_operating_mode(data, TMAG5273_OP_MODE_SLEEP);
688 if (ret)
689 dev_err(dev, "failed to power off device (%pe)\n", ERR_PTR(ret));
690
691 return ret;
692 }
693
tmag5273_runtime_resume(struct device * dev)694 static int tmag5273_runtime_resume(struct device *dev)
695 {
696 struct iio_dev *indio_dev = dev_get_drvdata(dev);
697 struct tmag5273_data *data = iio_priv(indio_dev);
698 int ret;
699
700 tmag5273_wake_up(data);
701
702 ret = tmag5273_set_operating_mode(data, TMAG5273_OP_MODE_CONT);
703 if (ret)
704 dev_err(dev, "failed to power on device (%pe)\n", ERR_PTR(ret));
705
706 return ret;
707 }
708
709 static DEFINE_RUNTIME_DEV_PM_OPS(tmag5273_pm_ops,
710 tmag5273_runtime_suspend, tmag5273_runtime_resume,
711 NULL);
712
713 static const struct i2c_device_id tmag5273_id[] = {
714 { "tmag5273" },
715 { /* sentinel */ }
716 };
717 MODULE_DEVICE_TABLE(i2c, tmag5273_id);
718
719 static const struct of_device_id tmag5273_of_match[] = {
720 { .compatible = "ti,tmag5273" },
721 { /* sentinel */ }
722 };
723 MODULE_DEVICE_TABLE(of, tmag5273_of_match);
724
725 static struct i2c_driver tmag5273_driver = {
726 .driver = {
727 .name = "tmag5273",
728 .of_match_table = tmag5273_of_match,
729 .pm = pm_ptr(&tmag5273_pm_ops),
730 },
731 .probe = tmag5273_probe,
732 .id_table = tmag5273_id,
733 };
734 module_i2c_driver(tmag5273_driver);
735
736 MODULE_DESCRIPTION("TI TMAG5273 Low-Power Linear 3D Hall-Effect Sensor driver");
737 MODULE_AUTHOR("Gerald Loacker <gerald.loacker@wolfvision.net>");
738 MODULE_LICENSE("GPL");
739