1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2020 Invensense, Inc. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/device.h> 8 #include <linux/mutex.h> 9 #include <linux/pm_runtime.h> 10 #include <linux/regmap.h> 11 #include <linux/delay.h> 12 #include <linux/math64.h> 13 14 #include <linux/iio/buffer.h> 15 #include <linux/iio/common/inv_sensors_timestamp.h> 16 #include <linux/iio/iio.h> 17 #include <linux/iio/kfifo_buf.h> 18 19 #include "inv_icm42600.h" 20 #include "inv_icm42600_temp.h" 21 #include "inv_icm42600_buffer.h" 22 23 #define INV_ICM42600_GYRO_CHAN(_modifier, _index, _ext_info) \ 24 { \ 25 .type = IIO_ANGL_VEL, \ 26 .modified = 1, \ 27 .channel2 = _modifier, \ 28 .info_mask_separate = \ 29 BIT(IIO_CHAN_INFO_RAW) | \ 30 BIT(IIO_CHAN_INFO_CALIBBIAS), \ 31 .info_mask_shared_by_type = \ 32 BIT(IIO_CHAN_INFO_SCALE), \ 33 .info_mask_shared_by_type_available = \ 34 BIT(IIO_CHAN_INFO_SCALE) | \ 35 BIT(IIO_CHAN_INFO_CALIBBIAS), \ 36 .info_mask_shared_by_all = \ 37 BIT(IIO_CHAN_INFO_SAMP_FREQ), \ 38 .info_mask_shared_by_all_available = \ 39 BIT(IIO_CHAN_INFO_SAMP_FREQ), \ 40 .scan_index = _index, \ 41 .scan_type = { \ 42 .sign = 's', \ 43 .realbits = 16, \ 44 .storagebits = 16, \ 45 .endianness = IIO_BE, \ 46 }, \ 47 .ext_info = _ext_info, \ 48 } 49 50 enum inv_icm42600_gyro_scan { 51 INV_ICM42600_GYRO_SCAN_X, 52 INV_ICM42600_GYRO_SCAN_Y, 53 INV_ICM42600_GYRO_SCAN_Z, 54 INV_ICM42600_GYRO_SCAN_TEMP, 55 INV_ICM42600_GYRO_SCAN_TIMESTAMP, 56 }; 57 58 static const struct iio_chan_spec_ext_info inv_icm42600_gyro_ext_infos[] = { 59 IIO_MOUNT_MATRIX(IIO_SHARED_BY_ALL, inv_icm42600_get_mount_matrix), 60 {}, 61 }; 62 63 static const struct iio_chan_spec inv_icm42600_gyro_channels[] = { 64 INV_ICM42600_GYRO_CHAN(IIO_MOD_X, INV_ICM42600_GYRO_SCAN_X, 65 inv_icm42600_gyro_ext_infos), 66 INV_ICM42600_GYRO_CHAN(IIO_MOD_Y, INV_ICM42600_GYRO_SCAN_Y, 67 inv_icm42600_gyro_ext_infos), 68 INV_ICM42600_GYRO_CHAN(IIO_MOD_Z, INV_ICM42600_GYRO_SCAN_Z, 69 inv_icm42600_gyro_ext_infos), 70 INV_ICM42600_TEMP_CHAN(INV_ICM42600_GYRO_SCAN_TEMP), 71 IIO_CHAN_SOFT_TIMESTAMP(INV_ICM42600_GYRO_SCAN_TIMESTAMP), 72 }; 73 74 /* 75 * IIO buffer data: size must be a power of 2 and timestamp aligned 76 * 16 bytes: 6 bytes angular velocity, 2 bytes temperature, 8 bytes timestamp 77 */ 78 struct inv_icm42600_gyro_buffer { 79 struct inv_icm42600_fifo_sensor_data gyro; 80 int16_t temp; 81 int64_t timestamp __aligned(8); 82 }; 83 84 #define INV_ICM42600_SCAN_MASK_GYRO_3AXIS \ 85 (BIT(INV_ICM42600_GYRO_SCAN_X) | \ 86 BIT(INV_ICM42600_GYRO_SCAN_Y) | \ 87 BIT(INV_ICM42600_GYRO_SCAN_Z)) 88 89 #define INV_ICM42600_SCAN_MASK_TEMP BIT(INV_ICM42600_GYRO_SCAN_TEMP) 90 91 static const unsigned long inv_icm42600_gyro_scan_masks[] = { 92 /* 3-axis gyro + temperature */ 93 INV_ICM42600_SCAN_MASK_GYRO_3AXIS | INV_ICM42600_SCAN_MASK_TEMP, 94 0, 95 }; 96 97 /* enable gyroscope sensor and FIFO write */ 98 static int inv_icm42600_gyro_update_scan_mode(struct iio_dev *indio_dev, 99 const unsigned long *scan_mask) 100 { 101 struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev); 102 struct inv_icm42600_sensor_state *gyro_st = iio_priv(indio_dev); 103 struct inv_sensors_timestamp *ts = &gyro_st->ts; 104 struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT; 105 unsigned int fifo_en = 0; 106 unsigned int sleep_gyro = 0; 107 unsigned int sleep_temp = 0; 108 unsigned int sleep; 109 int ret; 110 111 mutex_lock(&st->lock); 112 113 if (*scan_mask & INV_ICM42600_SCAN_MASK_TEMP) { 114 /* enable temp sensor */ 115 ret = inv_icm42600_set_temp_conf(st, true, &sleep_temp); 116 if (ret) 117 goto out_unlock; 118 fifo_en |= INV_ICM42600_SENSOR_TEMP; 119 } 120 121 if (*scan_mask & INV_ICM42600_SCAN_MASK_GYRO_3AXIS) { 122 /* enable gyro sensor */ 123 conf.mode = INV_ICM42600_SENSOR_MODE_LOW_NOISE; 124 ret = inv_icm42600_set_gyro_conf(st, &conf, &sleep_gyro); 125 if (ret) 126 goto out_unlock; 127 fifo_en |= INV_ICM42600_SENSOR_GYRO; 128 } 129 130 /* update data FIFO write */ 131 inv_sensors_timestamp_apply_odr(ts, 0, 0, 0); 132 ret = inv_icm42600_buffer_set_fifo_en(st, fifo_en | st->fifo.en); 133 134 out_unlock: 135 mutex_unlock(&st->lock); 136 /* sleep maximum required time */ 137 sleep = max(sleep_gyro, sleep_temp); 138 if (sleep) 139 msleep(sleep); 140 return ret; 141 } 142 143 static int inv_icm42600_gyro_read_sensor(struct inv_icm42600_state *st, 144 struct iio_chan_spec const *chan, 145 int16_t *val) 146 { 147 struct device *dev = regmap_get_device(st->map); 148 struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT; 149 unsigned int reg; 150 __be16 *data; 151 int ret; 152 153 if (chan->type != IIO_ANGL_VEL) 154 return -EINVAL; 155 156 switch (chan->channel2) { 157 case IIO_MOD_X: 158 reg = INV_ICM42600_REG_GYRO_DATA_X; 159 break; 160 case IIO_MOD_Y: 161 reg = INV_ICM42600_REG_GYRO_DATA_Y; 162 break; 163 case IIO_MOD_Z: 164 reg = INV_ICM42600_REG_GYRO_DATA_Z; 165 break; 166 default: 167 return -EINVAL; 168 } 169 170 pm_runtime_get_sync(dev); 171 mutex_lock(&st->lock); 172 173 /* enable gyro sensor */ 174 conf.mode = INV_ICM42600_SENSOR_MODE_LOW_NOISE; 175 ret = inv_icm42600_set_gyro_conf(st, &conf, NULL); 176 if (ret) 177 goto exit; 178 179 /* read gyro register data */ 180 data = (__be16 *)&st->buffer[0]; 181 ret = regmap_bulk_read(st->map, reg, data, sizeof(*data)); 182 if (ret) 183 goto exit; 184 185 *val = (int16_t)be16_to_cpup(data); 186 if (*val == INV_ICM42600_DATA_INVALID) 187 ret = -EINVAL; 188 exit: 189 mutex_unlock(&st->lock); 190 pm_runtime_mark_last_busy(dev); 191 pm_runtime_put_autosuspend(dev); 192 return ret; 193 } 194 195 /* IIO format int + nano */ 196 static const int inv_icm42600_gyro_scale[] = { 197 /* +/- 2000dps => 0.001065264 rad/s */ 198 [2 * INV_ICM42600_GYRO_FS_2000DPS] = 0, 199 [2 * INV_ICM42600_GYRO_FS_2000DPS + 1] = 1065264, 200 /* +/- 1000dps => 0.000532632 rad/s */ 201 [2 * INV_ICM42600_GYRO_FS_1000DPS] = 0, 202 [2 * INV_ICM42600_GYRO_FS_1000DPS + 1] = 532632, 203 /* +/- 500dps => 0.000266316 rad/s */ 204 [2 * INV_ICM42600_GYRO_FS_500DPS] = 0, 205 [2 * INV_ICM42600_GYRO_FS_500DPS + 1] = 266316, 206 /* +/- 250dps => 0.000133158 rad/s */ 207 [2 * INV_ICM42600_GYRO_FS_250DPS] = 0, 208 [2 * INV_ICM42600_GYRO_FS_250DPS + 1] = 133158, 209 /* +/- 125dps => 0.000066579 rad/s */ 210 [2 * INV_ICM42600_GYRO_FS_125DPS] = 0, 211 [2 * INV_ICM42600_GYRO_FS_125DPS + 1] = 66579, 212 /* +/- 62.5dps => 0.000033290 rad/s */ 213 [2 * INV_ICM42600_GYRO_FS_62_5DPS] = 0, 214 [2 * INV_ICM42600_GYRO_FS_62_5DPS + 1] = 33290, 215 /* +/- 31.25dps => 0.000016645 rad/s */ 216 [2 * INV_ICM42600_GYRO_FS_31_25DPS] = 0, 217 [2 * INV_ICM42600_GYRO_FS_31_25DPS + 1] = 16645, 218 /* +/- 15.625dps => 0.000008322 rad/s */ 219 [2 * INV_ICM42600_GYRO_FS_15_625DPS] = 0, 220 [2 * INV_ICM42600_GYRO_FS_15_625DPS + 1] = 8322, 221 }; 222 static const int inv_icm42686_gyro_scale[] = { 223 /* +/- 4000dps => 0.002130529 rad/s */ 224 [2 * INV_ICM42686_GYRO_FS_4000DPS] = 0, 225 [2 * INV_ICM42686_GYRO_FS_4000DPS + 1] = 2130529, 226 /* +/- 2000dps => 0.001065264 rad/s */ 227 [2 * INV_ICM42686_GYRO_FS_2000DPS] = 0, 228 [2 * INV_ICM42686_GYRO_FS_2000DPS + 1] = 1065264, 229 /* +/- 1000dps => 0.000532632 rad/s */ 230 [2 * INV_ICM42686_GYRO_FS_1000DPS] = 0, 231 [2 * INV_ICM42686_GYRO_FS_1000DPS + 1] = 532632, 232 /* +/- 500dps => 0.000266316 rad/s */ 233 [2 * INV_ICM42686_GYRO_FS_500DPS] = 0, 234 [2 * INV_ICM42686_GYRO_FS_500DPS + 1] = 266316, 235 /* +/- 250dps => 0.000133158 rad/s */ 236 [2 * INV_ICM42686_GYRO_FS_250DPS] = 0, 237 [2 * INV_ICM42686_GYRO_FS_250DPS + 1] = 133158, 238 /* +/- 125dps => 0.000066579 rad/s */ 239 [2 * INV_ICM42686_GYRO_FS_125DPS] = 0, 240 [2 * INV_ICM42686_GYRO_FS_125DPS + 1] = 66579, 241 /* +/- 62.5dps => 0.000033290 rad/s */ 242 [2 * INV_ICM42686_GYRO_FS_62_5DPS] = 0, 243 [2 * INV_ICM42686_GYRO_FS_62_5DPS + 1] = 33290, 244 /* +/- 31.25dps => 0.000016645 rad/s */ 245 [2 * INV_ICM42686_GYRO_FS_31_25DPS] = 0, 246 [2 * INV_ICM42686_GYRO_FS_31_25DPS + 1] = 16645, 247 }; 248 249 static int inv_icm42600_gyro_read_scale(struct iio_dev *indio_dev, 250 int *val, int *val2) 251 { 252 struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev); 253 struct inv_icm42600_sensor_state *gyro_st = iio_priv(indio_dev); 254 unsigned int idx; 255 256 idx = st->conf.gyro.fs; 257 258 *val = gyro_st->scales[2 * idx]; 259 *val2 = gyro_st->scales[2 * idx + 1]; 260 return IIO_VAL_INT_PLUS_NANO; 261 } 262 263 static int inv_icm42600_gyro_write_scale(struct iio_dev *indio_dev, 264 int val, int val2) 265 { 266 struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev); 267 struct inv_icm42600_sensor_state *gyro_st = iio_priv(indio_dev); 268 struct device *dev = regmap_get_device(st->map); 269 unsigned int idx; 270 struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT; 271 int ret; 272 273 for (idx = 0; idx < gyro_st->scales_len; idx += 2) { 274 if (val == gyro_st->scales[idx] && 275 val2 == gyro_st->scales[idx + 1]) 276 break; 277 } 278 if (idx >= gyro_st->scales_len) 279 return -EINVAL; 280 281 conf.fs = idx / 2; 282 283 pm_runtime_get_sync(dev); 284 mutex_lock(&st->lock); 285 286 ret = inv_icm42600_set_gyro_conf(st, &conf, NULL); 287 288 mutex_unlock(&st->lock); 289 pm_runtime_mark_last_busy(dev); 290 pm_runtime_put_autosuspend(dev); 291 292 return ret; 293 } 294 295 /* IIO format int + micro */ 296 static const int inv_icm42600_gyro_odr[] = { 297 /* 12.5Hz */ 298 12, 500000, 299 /* 25Hz */ 300 25, 0, 301 /* 50Hz */ 302 50, 0, 303 /* 100Hz */ 304 100, 0, 305 /* 200Hz */ 306 200, 0, 307 /* 1kHz */ 308 1000, 0, 309 /* 2kHz */ 310 2000, 0, 311 /* 4kHz */ 312 4000, 0, 313 }; 314 315 static const int inv_icm42600_gyro_odr_conv[] = { 316 INV_ICM42600_ODR_12_5HZ, 317 INV_ICM42600_ODR_25HZ, 318 INV_ICM42600_ODR_50HZ, 319 INV_ICM42600_ODR_100HZ, 320 INV_ICM42600_ODR_200HZ, 321 INV_ICM42600_ODR_1KHZ_LN, 322 INV_ICM42600_ODR_2KHZ_LN, 323 INV_ICM42600_ODR_4KHZ_LN, 324 }; 325 326 static int inv_icm42600_gyro_read_odr(struct inv_icm42600_state *st, 327 int *val, int *val2) 328 { 329 unsigned int odr; 330 unsigned int i; 331 332 odr = st->conf.gyro.odr; 333 334 for (i = 0; i < ARRAY_SIZE(inv_icm42600_gyro_odr_conv); ++i) { 335 if (inv_icm42600_gyro_odr_conv[i] == odr) 336 break; 337 } 338 if (i >= ARRAY_SIZE(inv_icm42600_gyro_odr_conv)) 339 return -EINVAL; 340 341 *val = inv_icm42600_gyro_odr[2 * i]; 342 *val2 = inv_icm42600_gyro_odr[2 * i + 1]; 343 344 return IIO_VAL_INT_PLUS_MICRO; 345 } 346 347 static int inv_icm42600_gyro_write_odr(struct iio_dev *indio_dev, 348 int val, int val2) 349 { 350 struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev); 351 struct inv_icm42600_sensor_state *gyro_st = iio_priv(indio_dev); 352 struct inv_sensors_timestamp *ts = &gyro_st->ts; 353 struct device *dev = regmap_get_device(st->map); 354 unsigned int idx; 355 struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT; 356 int ret; 357 358 for (idx = 0; idx < ARRAY_SIZE(inv_icm42600_gyro_odr); idx += 2) { 359 if (val == inv_icm42600_gyro_odr[idx] && 360 val2 == inv_icm42600_gyro_odr[idx + 1]) 361 break; 362 } 363 if (idx >= ARRAY_SIZE(inv_icm42600_gyro_odr)) 364 return -EINVAL; 365 366 conf.odr = inv_icm42600_gyro_odr_conv[idx / 2]; 367 368 pm_runtime_get_sync(dev); 369 mutex_lock(&st->lock); 370 371 ret = inv_sensors_timestamp_update_odr(ts, inv_icm42600_odr_to_period(conf.odr), 372 iio_buffer_enabled(indio_dev)); 373 if (ret) 374 goto out_unlock; 375 376 ret = inv_icm42600_set_gyro_conf(st, &conf, NULL); 377 if (ret) 378 goto out_unlock; 379 inv_icm42600_buffer_update_fifo_period(st); 380 inv_icm42600_buffer_update_watermark(st); 381 382 out_unlock: 383 mutex_unlock(&st->lock); 384 pm_runtime_mark_last_busy(dev); 385 pm_runtime_put_autosuspend(dev); 386 387 return ret; 388 } 389 390 /* 391 * Calibration bias values, IIO range format int + nano. 392 * Value is limited to +/-64dps coded on 12 bits signed. Step is 1/32 dps. 393 */ 394 static int inv_icm42600_gyro_calibbias[] = { 395 -1, 117010721, /* min: -1.117010721 rad/s */ 396 0, 545415, /* step: 0.000545415 rad/s */ 397 1, 116465306, /* max: 1.116465306 rad/s */ 398 }; 399 400 static int inv_icm42600_gyro_read_offset(struct inv_icm42600_state *st, 401 struct iio_chan_spec const *chan, 402 int *val, int *val2) 403 { 404 struct device *dev = regmap_get_device(st->map); 405 int64_t val64; 406 int32_t bias; 407 unsigned int reg; 408 int16_t offset; 409 uint8_t data[2]; 410 int ret; 411 412 if (chan->type != IIO_ANGL_VEL) 413 return -EINVAL; 414 415 switch (chan->channel2) { 416 case IIO_MOD_X: 417 reg = INV_ICM42600_REG_OFFSET_USER0; 418 break; 419 case IIO_MOD_Y: 420 reg = INV_ICM42600_REG_OFFSET_USER1; 421 break; 422 case IIO_MOD_Z: 423 reg = INV_ICM42600_REG_OFFSET_USER3; 424 break; 425 default: 426 return -EINVAL; 427 } 428 429 pm_runtime_get_sync(dev); 430 mutex_lock(&st->lock); 431 432 ret = regmap_bulk_read(st->map, reg, st->buffer, sizeof(data)); 433 memcpy(data, st->buffer, sizeof(data)); 434 435 mutex_unlock(&st->lock); 436 pm_runtime_mark_last_busy(dev); 437 pm_runtime_put_autosuspend(dev); 438 if (ret) 439 return ret; 440 441 /* 12 bits signed value */ 442 switch (chan->channel2) { 443 case IIO_MOD_X: 444 offset = sign_extend32(((data[1] & 0x0F) << 8) | data[0], 11); 445 break; 446 case IIO_MOD_Y: 447 offset = sign_extend32(((data[0] & 0xF0) << 4) | data[1], 11); 448 break; 449 case IIO_MOD_Z: 450 offset = sign_extend32(((data[1] & 0x0F) << 8) | data[0], 11); 451 break; 452 default: 453 return -EINVAL; 454 } 455 456 /* 457 * convert raw offset to dps then to rad/s 458 * 12 bits signed raw max 64 to dps: 64 / 2048 459 * dps to rad: Pi / 180 460 * result in nano (1000000000) 461 * (offset * 64 * Pi * 1000000000) / (2048 * 180) 462 */ 463 val64 = (int64_t)offset * 64LL * 3141592653LL; 464 /* for rounding, add + or - divisor (2048 * 180) divided by 2 */ 465 if (val64 >= 0) 466 val64 += 2048 * 180 / 2; 467 else 468 val64 -= 2048 * 180 / 2; 469 bias = div_s64(val64, 2048 * 180); 470 *val = bias / 1000000000L; 471 *val2 = bias % 1000000000L; 472 473 return IIO_VAL_INT_PLUS_NANO; 474 } 475 476 static int inv_icm42600_gyro_write_offset(struct inv_icm42600_state *st, 477 struct iio_chan_spec const *chan, 478 int val, int val2) 479 { 480 struct device *dev = regmap_get_device(st->map); 481 int64_t val64, min, max; 482 unsigned int reg, regval; 483 int16_t offset; 484 int ret; 485 486 if (chan->type != IIO_ANGL_VEL) 487 return -EINVAL; 488 489 switch (chan->channel2) { 490 case IIO_MOD_X: 491 reg = INV_ICM42600_REG_OFFSET_USER0; 492 break; 493 case IIO_MOD_Y: 494 reg = INV_ICM42600_REG_OFFSET_USER1; 495 break; 496 case IIO_MOD_Z: 497 reg = INV_ICM42600_REG_OFFSET_USER3; 498 break; 499 default: 500 return -EINVAL; 501 } 502 503 /* inv_icm42600_gyro_calibbias: min - step - max in nano */ 504 min = (int64_t)inv_icm42600_gyro_calibbias[0] * 1000000000LL + 505 (int64_t)inv_icm42600_gyro_calibbias[1]; 506 max = (int64_t)inv_icm42600_gyro_calibbias[4] * 1000000000LL + 507 (int64_t)inv_icm42600_gyro_calibbias[5]; 508 val64 = (int64_t)val * 1000000000LL + (int64_t)val2; 509 if (val64 < min || val64 > max) 510 return -EINVAL; 511 512 /* 513 * convert rad/s to dps then to raw value 514 * rad to dps: 180 / Pi 515 * dps to raw 12 bits signed, max 64: 2048 / 64 516 * val in nano (1000000000) 517 * val * 180 * 2048 / (Pi * 1000000000 * 64) 518 */ 519 val64 = val64 * 180LL * 2048LL; 520 /* for rounding, add + or - divisor (3141592653 * 64) divided by 2 */ 521 if (val64 >= 0) 522 val64 += 3141592653LL * 64LL / 2LL; 523 else 524 val64 -= 3141592653LL * 64LL / 2LL; 525 offset = div64_s64(val64, 3141592653LL * 64LL); 526 527 /* clamp value limited to 12 bits signed */ 528 if (offset < -2048) 529 offset = -2048; 530 else if (offset > 2047) 531 offset = 2047; 532 533 pm_runtime_get_sync(dev); 534 mutex_lock(&st->lock); 535 536 switch (chan->channel2) { 537 case IIO_MOD_X: 538 /* OFFSET_USER1 register is shared */ 539 ret = regmap_read(st->map, INV_ICM42600_REG_OFFSET_USER1, 540 ®val); 541 if (ret) 542 goto out_unlock; 543 st->buffer[0] = offset & 0xFF; 544 st->buffer[1] = (regval & 0xF0) | ((offset & 0xF00) >> 8); 545 break; 546 case IIO_MOD_Y: 547 /* OFFSET_USER1 register is shared */ 548 ret = regmap_read(st->map, INV_ICM42600_REG_OFFSET_USER1, 549 ®val); 550 if (ret) 551 goto out_unlock; 552 st->buffer[0] = ((offset & 0xF00) >> 4) | (regval & 0x0F); 553 st->buffer[1] = offset & 0xFF; 554 break; 555 case IIO_MOD_Z: 556 /* OFFSET_USER4 register is shared */ 557 ret = regmap_read(st->map, INV_ICM42600_REG_OFFSET_USER4, 558 ®val); 559 if (ret) 560 goto out_unlock; 561 st->buffer[0] = offset & 0xFF; 562 st->buffer[1] = (regval & 0xF0) | ((offset & 0xF00) >> 8); 563 break; 564 default: 565 ret = -EINVAL; 566 goto out_unlock; 567 } 568 569 ret = regmap_bulk_write(st->map, reg, st->buffer, 2); 570 571 out_unlock: 572 mutex_unlock(&st->lock); 573 pm_runtime_mark_last_busy(dev); 574 pm_runtime_put_autosuspend(dev); 575 return ret; 576 } 577 578 static int inv_icm42600_gyro_read_raw(struct iio_dev *indio_dev, 579 struct iio_chan_spec const *chan, 580 int *val, int *val2, long mask) 581 { 582 struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev); 583 int16_t data; 584 int ret; 585 586 switch (chan->type) { 587 case IIO_ANGL_VEL: 588 break; 589 case IIO_TEMP: 590 return inv_icm42600_temp_read_raw(indio_dev, chan, val, val2, mask); 591 default: 592 return -EINVAL; 593 } 594 595 switch (mask) { 596 case IIO_CHAN_INFO_RAW: 597 ret = iio_device_claim_direct_mode(indio_dev); 598 if (ret) 599 return ret; 600 ret = inv_icm42600_gyro_read_sensor(st, chan, &data); 601 iio_device_release_direct_mode(indio_dev); 602 if (ret) 603 return ret; 604 *val = data; 605 return IIO_VAL_INT; 606 case IIO_CHAN_INFO_SCALE: 607 return inv_icm42600_gyro_read_scale(indio_dev, val, val2); 608 case IIO_CHAN_INFO_SAMP_FREQ: 609 return inv_icm42600_gyro_read_odr(st, val, val2); 610 case IIO_CHAN_INFO_CALIBBIAS: 611 return inv_icm42600_gyro_read_offset(st, chan, val, val2); 612 default: 613 return -EINVAL; 614 } 615 } 616 617 static int inv_icm42600_gyro_read_avail(struct iio_dev *indio_dev, 618 struct iio_chan_spec const *chan, 619 const int **vals, 620 int *type, int *length, long mask) 621 { 622 struct inv_icm42600_sensor_state *gyro_st = iio_priv(indio_dev); 623 624 if (chan->type != IIO_ANGL_VEL) 625 return -EINVAL; 626 627 switch (mask) { 628 case IIO_CHAN_INFO_SCALE: 629 *vals = gyro_st->scales; 630 *type = IIO_VAL_INT_PLUS_NANO; 631 *length = gyro_st->scales_len; 632 return IIO_AVAIL_LIST; 633 case IIO_CHAN_INFO_SAMP_FREQ: 634 *vals = inv_icm42600_gyro_odr; 635 *type = IIO_VAL_INT_PLUS_MICRO; 636 *length = ARRAY_SIZE(inv_icm42600_gyro_odr); 637 return IIO_AVAIL_LIST; 638 case IIO_CHAN_INFO_CALIBBIAS: 639 *vals = inv_icm42600_gyro_calibbias; 640 *type = IIO_VAL_INT_PLUS_NANO; 641 return IIO_AVAIL_RANGE; 642 default: 643 return -EINVAL; 644 } 645 } 646 647 static int inv_icm42600_gyro_write_raw(struct iio_dev *indio_dev, 648 struct iio_chan_spec const *chan, 649 int val, int val2, long mask) 650 { 651 struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev); 652 int ret; 653 654 if (chan->type != IIO_ANGL_VEL) 655 return -EINVAL; 656 657 switch (mask) { 658 case IIO_CHAN_INFO_SCALE: 659 ret = iio_device_claim_direct_mode(indio_dev); 660 if (ret) 661 return ret; 662 ret = inv_icm42600_gyro_write_scale(indio_dev, val, val2); 663 iio_device_release_direct_mode(indio_dev); 664 return ret; 665 case IIO_CHAN_INFO_SAMP_FREQ: 666 return inv_icm42600_gyro_write_odr(indio_dev, val, val2); 667 case IIO_CHAN_INFO_CALIBBIAS: 668 ret = iio_device_claim_direct_mode(indio_dev); 669 if (ret) 670 return ret; 671 ret = inv_icm42600_gyro_write_offset(st, chan, val, val2); 672 iio_device_release_direct_mode(indio_dev); 673 return ret; 674 default: 675 return -EINVAL; 676 } 677 } 678 679 static int inv_icm42600_gyro_write_raw_get_fmt(struct iio_dev *indio_dev, 680 struct iio_chan_spec const *chan, 681 long mask) 682 { 683 if (chan->type != IIO_ANGL_VEL) 684 return -EINVAL; 685 686 switch (mask) { 687 case IIO_CHAN_INFO_SCALE: 688 return IIO_VAL_INT_PLUS_NANO; 689 case IIO_CHAN_INFO_SAMP_FREQ: 690 return IIO_VAL_INT_PLUS_MICRO; 691 case IIO_CHAN_INFO_CALIBBIAS: 692 return IIO_VAL_INT_PLUS_NANO; 693 default: 694 return -EINVAL; 695 } 696 } 697 698 static int inv_icm42600_gyro_hwfifo_set_watermark(struct iio_dev *indio_dev, 699 unsigned int val) 700 { 701 struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev); 702 int ret; 703 704 mutex_lock(&st->lock); 705 706 st->fifo.watermark.gyro = val; 707 ret = inv_icm42600_buffer_update_watermark(st); 708 709 mutex_unlock(&st->lock); 710 711 return ret; 712 } 713 714 static int inv_icm42600_gyro_hwfifo_flush(struct iio_dev *indio_dev, 715 unsigned int count) 716 { 717 struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev); 718 int ret; 719 720 if (count == 0) 721 return 0; 722 723 mutex_lock(&st->lock); 724 725 ret = inv_icm42600_buffer_hwfifo_flush(st, count); 726 if (!ret) 727 ret = st->fifo.nb.gyro; 728 729 mutex_unlock(&st->lock); 730 731 return ret; 732 } 733 734 static const struct iio_info inv_icm42600_gyro_info = { 735 .read_raw = inv_icm42600_gyro_read_raw, 736 .read_avail = inv_icm42600_gyro_read_avail, 737 .write_raw = inv_icm42600_gyro_write_raw, 738 .write_raw_get_fmt = inv_icm42600_gyro_write_raw_get_fmt, 739 .debugfs_reg_access = inv_icm42600_debugfs_reg, 740 .update_scan_mode = inv_icm42600_gyro_update_scan_mode, 741 .hwfifo_set_watermark = inv_icm42600_gyro_hwfifo_set_watermark, 742 .hwfifo_flush_to_buffer = inv_icm42600_gyro_hwfifo_flush, 743 }; 744 745 struct iio_dev *inv_icm42600_gyro_init(struct inv_icm42600_state *st) 746 { 747 struct device *dev = regmap_get_device(st->map); 748 const char *name; 749 struct inv_icm42600_sensor_state *gyro_st; 750 struct inv_sensors_timestamp_chip ts_chip; 751 struct iio_dev *indio_dev; 752 int ret; 753 754 name = devm_kasprintf(dev, GFP_KERNEL, "%s-gyro", st->name); 755 if (!name) 756 return ERR_PTR(-ENOMEM); 757 758 indio_dev = devm_iio_device_alloc(dev, sizeof(*gyro_st)); 759 if (!indio_dev) 760 return ERR_PTR(-ENOMEM); 761 gyro_st = iio_priv(indio_dev); 762 763 switch (st->chip) { 764 case INV_CHIP_ICM42686: 765 gyro_st->scales = inv_icm42686_gyro_scale; 766 gyro_st->scales_len = ARRAY_SIZE(inv_icm42686_gyro_scale); 767 break; 768 default: 769 gyro_st->scales = inv_icm42600_gyro_scale; 770 gyro_st->scales_len = ARRAY_SIZE(inv_icm42600_gyro_scale); 771 break; 772 } 773 774 /* 775 * clock period is 32kHz (31250ns) 776 * jitter is +/- 2% (20 per mille) 777 */ 778 ts_chip.clock_period = 31250; 779 ts_chip.jitter = 20; 780 ts_chip.init_period = inv_icm42600_odr_to_period(st->conf.accel.odr); 781 inv_sensors_timestamp_init(&gyro_st->ts, &ts_chip); 782 783 iio_device_set_drvdata(indio_dev, st); 784 indio_dev->name = name; 785 indio_dev->info = &inv_icm42600_gyro_info; 786 indio_dev->modes = INDIO_DIRECT_MODE; 787 indio_dev->channels = inv_icm42600_gyro_channels; 788 indio_dev->num_channels = ARRAY_SIZE(inv_icm42600_gyro_channels); 789 indio_dev->available_scan_masks = inv_icm42600_gyro_scan_masks; 790 indio_dev->setup_ops = &inv_icm42600_buffer_ops; 791 792 ret = devm_iio_kfifo_buffer_setup(dev, indio_dev, 793 &inv_icm42600_buffer_ops); 794 if (ret) 795 return ERR_PTR(ret); 796 797 ret = devm_iio_device_register(dev, indio_dev); 798 if (ret) 799 return ERR_PTR(ret); 800 801 return indio_dev; 802 } 803 804 int inv_icm42600_gyro_parse_fifo(struct iio_dev *indio_dev) 805 { 806 struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev); 807 struct inv_icm42600_sensor_state *gyro_st = iio_priv(indio_dev); 808 struct inv_sensors_timestamp *ts = &gyro_st->ts; 809 ssize_t i, size; 810 unsigned int no; 811 const void *accel, *gyro, *timestamp; 812 const int8_t *temp; 813 unsigned int odr; 814 int64_t ts_val; 815 struct inv_icm42600_gyro_buffer buffer; 816 817 /* parse all fifo packets */ 818 for (i = 0, no = 0; i < st->fifo.count; i += size, ++no) { 819 size = inv_icm42600_fifo_decode_packet(&st->fifo.data[i], 820 &accel, &gyro, &temp, ×tamp, &odr); 821 /* quit if error or FIFO is empty */ 822 if (size <= 0) 823 return size; 824 825 /* skip packet if no gyro data or data is invalid */ 826 if (gyro == NULL || !inv_icm42600_fifo_is_data_valid(gyro)) 827 continue; 828 829 /* update odr */ 830 if (odr & INV_ICM42600_SENSOR_GYRO) 831 inv_sensors_timestamp_apply_odr(ts, st->fifo.period, 832 st->fifo.nb.total, no); 833 834 /* buffer is copied to userspace, zeroing it to avoid any data leak */ 835 memset(&buffer, 0, sizeof(buffer)); 836 memcpy(&buffer.gyro, gyro, sizeof(buffer.gyro)); 837 /* convert 8 bits FIFO temperature in high resolution format */ 838 buffer.temp = temp ? (*temp * 64) : 0; 839 ts_val = inv_sensors_timestamp_pop(ts); 840 iio_push_to_buffers_with_timestamp(indio_dev, &buffer, ts_val); 841 } 842 843 return 0; 844 } 845