xref: /linux/drivers/gpu/nova-core/regs.rs (revision eaf0989c77e434ce491b2ed70ef505d8cf1d1d4b)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 // Required to retain the original register names used by OpenRM, which are all capital snake case
4 // but are mapped to types.
5 #![allow(non_camel_case_types)]
6 
7 #[macro_use]
8 pub(crate) mod macros;
9 
10 use kernel::prelude::*;
11 
12 use crate::{
13     falcon::{
14         DmaTrfCmdSize,
15         FalconCoreRev,
16         FalconCoreRevSubversion,
17         FalconFbifMemType,
18         FalconFbifTarget,
19         FalconModSelAlgo,
20         FalconSecurityModel,
21         PFalcon2Base,
22         PFalconBase,
23         PeregrineCoreSelect, //
24     },
25     gpu::{
26         Architecture,
27         Chipset, //
28     },
29     num::FromSafeCast,
30 };
31 
32 // PMC
33 
34 register!(NV_PMC_BOOT_0 @ 0x00000000, "Basic revision information about the GPU" {
35     3:0     minor_revision as u8, "Minor revision of the chip";
36     7:4     major_revision as u8, "Major revision of the chip";
37     8:8     architecture_1 as u8, "MSB of the architecture";
38     23:20   implementation as u8, "Implementation version of the architecture";
39     28:24   architecture_0 as u8, "Lower bits of the architecture";
40 });
41 
42 impl NV_PMC_BOOT_0 {
43     /// Combines `architecture_0` and `architecture_1` to obtain the architecture of the chip.
44     pub(crate) fn architecture(self) -> Result<Architecture> {
45         Architecture::try_from(
46             self.architecture_0() | (self.architecture_1() << Self::ARCHITECTURE_0_RANGE.len()),
47         )
48     }
49 
50     /// Combines `architecture` and `implementation` to obtain a code unique to the chipset.
51     pub(crate) fn chipset(self) -> Result<Chipset> {
52         self.architecture()
53             .map(|arch| {
54                 ((arch as u32) << Self::IMPLEMENTATION_RANGE.len())
55                     | u32::from(self.implementation())
56             })
57             .and_then(Chipset::try_from)
58     }
59 }
60 
61 // PBUS
62 
63 register!(NV_PBUS_SW_SCRATCH @ 0x00001400[64]  {});
64 
65 register!(NV_PBUS_SW_SCRATCH_0E_FRTS_ERR => NV_PBUS_SW_SCRATCH[0xe],
66     "scratch register 0xe used as FRTS firmware error code" {
67     31:16   frts_err_code as u16;
68 });
69 
70 // PFB
71 
72 // The following two registers together hold the physical system memory address that is used by the
73 // GPU to perform sysmembar operations (see `fb::SysmemFlush`).
74 
75 register!(NV_PFB_NISO_FLUSH_SYSMEM_ADDR @ 0x00100c10 {
76     31:0    adr_39_08 as u32;
77 });
78 
79 register!(NV_PFB_NISO_FLUSH_SYSMEM_ADDR_HI @ 0x00100c40 {
80     23:0    adr_63_40 as u32;
81 });
82 
83 register!(NV_PFB_PRI_MMU_LOCAL_MEMORY_RANGE @ 0x00100ce0 {
84     3:0     lower_scale as u8;
85     9:4     lower_mag as u8;
86     30:30   ecc_mode_enabled as bool;
87 });
88 
89 register!(NV_PGSP_QUEUE_HEAD @ 0x00110c00 {
90     31:0    address as u32;
91 });
92 
93 impl NV_PFB_PRI_MMU_LOCAL_MEMORY_RANGE {
94     /// Returns the usable framebuffer size, in bytes.
95     pub(crate) fn usable_fb_size(self) -> u64 {
96         let size = (u64::from(self.lower_mag()) << u64::from(self.lower_scale()))
97             * u64::from_safe_cast(kernel::sizes::SZ_1M);
98 
99         if self.ecc_mode_enabled() {
100             // Remove the amount of memory reserved for ECC (one per 16 units).
101             size / 16 * 15
102         } else {
103             size
104         }
105     }
106 }
107 
108 register!(NV_PFB_PRI_MMU_WPR2_ADDR_LO@0x001fa824  {
109     31:4    lo_val as u32, "Bits 12..40 of the lower (inclusive) bound of the WPR2 region";
110 });
111 
112 impl NV_PFB_PRI_MMU_WPR2_ADDR_LO {
113     /// Returns the lower (inclusive) bound of the WPR2 region.
114     pub(crate) fn lower_bound(self) -> u64 {
115         u64::from(self.lo_val()) << 12
116     }
117 }
118 
119 register!(NV_PFB_PRI_MMU_WPR2_ADDR_HI@0x001fa828  {
120     31:4    hi_val as u32, "Bits 12..40 of the higher (exclusive) bound of the WPR2 region";
121 });
122 
123 impl NV_PFB_PRI_MMU_WPR2_ADDR_HI {
124     /// Returns the higher (exclusive) bound of the WPR2 region.
125     ///
126     /// A value of zero means the WPR2 region is not set.
127     pub(crate) fn higher_bound(self) -> u64 {
128         u64::from(self.hi_val()) << 12
129     }
130 }
131 
132 // PGC6 register space.
133 //
134 // `GC6` is a GPU low-power state where VRAM is in self-refresh and the GPU is powered down (except
135 // for power rails needed to keep self-refresh working and important registers and hardware
136 // blocks).
137 //
138 // These scratch registers remain powered on even in a low-power state and have a designated group
139 // number.
140 
141 // Boot Sequence Interface (BSI) register used to determine
142 // if GSP reload/resume has completed during the boot process.
143 register!(NV_PGC6_BSI_SECURE_SCRATCH_14 @ 0x001180f8 {
144     26:26   boot_stage_3_handoff as bool;
145 });
146 
147 // Privilege level mask register. It dictates whether the host CPU has privilege to access the
148 // `PGC6_AON_SECURE_SCRATCH_GROUP_05` register (which it needs to read GFW_BOOT).
149 register!(NV_PGC6_AON_SECURE_SCRATCH_GROUP_05_PRIV_LEVEL_MASK @ 0x00118128,
150           "Privilege level mask register" {
151     0:0     read_protection_level0 as bool, "Set after FWSEC lowers its protection level";
152 });
153 
154 // OpenRM defines this as a register array, but doesn't specify its size and only uses its first
155 // element. Be conservative until we know the actual size or need to use more registers.
156 register!(NV_PGC6_AON_SECURE_SCRATCH_GROUP_05 @ 0x00118234[1] {});
157 
158 register!(
159     NV_PGC6_AON_SECURE_SCRATCH_GROUP_05_0_GFW_BOOT => NV_PGC6_AON_SECURE_SCRATCH_GROUP_05[0],
160     "Scratch group 05 register 0 used as GFW boot progress indicator" {
161         7:0    progress as u8, "Progress of GFW boot (0xff means completed)";
162     }
163 );
164 
165 impl NV_PGC6_AON_SECURE_SCRATCH_GROUP_05_0_GFW_BOOT {
166     /// Returns `true` if GFW boot is completed.
167     pub(crate) fn completed(self) -> bool {
168         self.progress() == 0xff
169     }
170 }
171 
172 register!(NV_PGC6_AON_SECURE_SCRATCH_GROUP_42 @ 0x001183a4 {
173     31:0    value as u32;
174 });
175 
176 register!(
177     NV_USABLE_FB_SIZE_IN_MB => NV_PGC6_AON_SECURE_SCRATCH_GROUP_42,
178     "Scratch group 42 register used as framebuffer size" {
179         31:0    value as u32, "Usable framebuffer size, in megabytes";
180     }
181 );
182 
183 impl NV_USABLE_FB_SIZE_IN_MB {
184     /// Returns the usable framebuffer size, in bytes.
185     pub(crate) fn usable_fb_size(self) -> u64 {
186         u64::from(self.value()) * u64::from_safe_cast(kernel::sizes::SZ_1M)
187     }
188 }
189 
190 // PDISP
191 
192 register!(NV_PDISP_VGA_WORKSPACE_BASE @ 0x00625f04 {
193     3:3     status_valid as bool, "Set if the `addr` field is valid";
194     31:8    addr as u32, "VGA workspace base address divided by 0x10000";
195 });
196 
197 impl NV_PDISP_VGA_WORKSPACE_BASE {
198     /// Returns the base address of the VGA workspace, or `None` if none exists.
199     pub(crate) fn vga_workspace_addr(self) -> Option<u64> {
200         if self.status_valid() {
201             Some(u64::from(self.addr()) << 16)
202         } else {
203             None
204         }
205     }
206 }
207 
208 // FUSE
209 
210 pub(crate) const NV_FUSE_OPT_FPF_SIZE: usize = 16;
211 
212 register!(NV_FUSE_OPT_FPF_NVDEC_UCODE1_VERSION @ 0x00824100[NV_FUSE_OPT_FPF_SIZE] {
213     15:0    data as u16;
214 });
215 
216 register!(NV_FUSE_OPT_FPF_SEC2_UCODE1_VERSION @ 0x00824140[NV_FUSE_OPT_FPF_SIZE] {
217     15:0    data as u16;
218 });
219 
220 register!(NV_FUSE_OPT_FPF_GSP_UCODE1_VERSION @ 0x008241c0[NV_FUSE_OPT_FPF_SIZE] {
221     15:0    data as u16;
222 });
223 
224 // PFALCON
225 
226 register!(NV_PFALCON_FALCON_IRQSCLR @ PFalconBase[0x00000004] {
227     4:4     halt as bool;
228     6:6     swgen0 as bool;
229 });
230 
231 register!(NV_PFALCON_FALCON_MAILBOX0 @ PFalconBase[0x00000040] {
232     31:0    value as u32;
233 });
234 
235 register!(NV_PFALCON_FALCON_MAILBOX1 @ PFalconBase[0x00000044] {
236     31:0    value as u32;
237 });
238 
239 // Used to store version information about the firmware running
240 // on the Falcon processor.
241 register!(NV_PFALCON_FALCON_OS @ PFalconBase[0x00000080] {
242     31:0    value as u32;
243 });
244 
245 register!(NV_PFALCON_FALCON_RM @ PFalconBase[0x00000084] {
246     31:0    value as u32;
247 });
248 
249 register!(NV_PFALCON_FALCON_HWCFG2 @ PFalconBase[0x000000f4] {
250     10:10   riscv as bool;
251     12:12   mem_scrubbing as bool, "Set to 0 after memory scrubbing is completed";
252     31:31   reset_ready as bool, "Signal indicating that reset is completed (GA102+)";
253 });
254 
255 impl NV_PFALCON_FALCON_HWCFG2 {
256     /// Returns `true` if memory scrubbing is completed.
257     pub(crate) fn mem_scrubbing_done(self) -> bool {
258         !self.mem_scrubbing()
259     }
260 }
261 
262 register!(NV_PFALCON_FALCON_CPUCTL @ PFalconBase[0x00000100] {
263     1:1     startcpu as bool;
264     4:4     halted as bool;
265     6:6     alias_en as bool;
266 });
267 
268 register!(NV_PFALCON_FALCON_BOOTVEC @ PFalconBase[0x00000104] {
269     31:0    value as u32;
270 });
271 
272 register!(NV_PFALCON_FALCON_DMACTL @ PFalconBase[0x0000010c] {
273     0:0     require_ctx as bool;
274     1:1     dmem_scrubbing as bool;
275     2:2     imem_scrubbing as bool;
276     6:3     dmaq_num as u8;
277     7:7     secure_stat as bool;
278 });
279 
280 register!(NV_PFALCON_FALCON_DMATRFBASE @ PFalconBase[0x00000110] {
281     31:0    base as u32;
282 });
283 
284 register!(NV_PFALCON_FALCON_DMATRFMOFFS @ PFalconBase[0x00000114] {
285     23:0    offs as u32;
286 });
287 
288 register!(NV_PFALCON_FALCON_DMATRFCMD @ PFalconBase[0x00000118] {
289     0:0     full as bool;
290     1:1     idle as bool;
291     3:2     sec as u8;
292     4:4     imem as bool;
293     5:5     is_write as bool;
294     10:8    size as u8 ?=> DmaTrfCmdSize;
295     14:12   ctxdma as u8;
296     16:16   set_dmtag as u8;
297 });
298 
299 register!(NV_PFALCON_FALCON_DMATRFFBOFFS @ PFalconBase[0x0000011c] {
300     31:0    offs as u32;
301 });
302 
303 register!(NV_PFALCON_FALCON_DMATRFBASE1 @ PFalconBase[0x00000128] {
304     8:0     base as u16;
305 });
306 
307 register!(NV_PFALCON_FALCON_HWCFG1 @ PFalconBase[0x0000012c] {
308     3:0     core_rev as u8 ?=> FalconCoreRev, "Core revision";
309     5:4     security_model as u8 ?=> FalconSecurityModel, "Security model";
310     7:6     core_rev_subversion as u8 ?=> FalconCoreRevSubversion, "Core revision subversion";
311 });
312 
313 register!(NV_PFALCON_FALCON_CPUCTL_ALIAS @ PFalconBase[0x00000130] {
314     1:1     startcpu as bool;
315 });
316 
317 // Actually known as `NV_PSEC_FALCON_ENGINE` and `NV_PGSP_FALCON_ENGINE` depending on the falcon
318 // instance.
319 register!(NV_PFALCON_FALCON_ENGINE @ PFalconBase[0x000003c0] {
320     0:0     reset as bool;
321 });
322 
323 register!(NV_PFALCON_FBIF_TRANSCFG @ PFalconBase[0x00000600[8]] {
324     1:0     target as u8 ?=> FalconFbifTarget;
325     2:2     mem_type as bool => FalconFbifMemType;
326 });
327 
328 register!(NV_PFALCON_FBIF_CTL @ PFalconBase[0x00000624] {
329     7:7     allow_phys_no_ctx as bool;
330 });
331 
332 /* PFALCON2 */
333 
334 register!(NV_PFALCON2_FALCON_MOD_SEL @ PFalcon2Base[0x00000180] {
335     7:0     algo as u8 ?=> FalconModSelAlgo;
336 });
337 
338 register!(NV_PFALCON2_FALCON_BROM_CURR_UCODE_ID @ PFalcon2Base[0x00000198] {
339     7:0    ucode_id as u8;
340 });
341 
342 register!(NV_PFALCON2_FALCON_BROM_ENGIDMASK @ PFalcon2Base[0x0000019c] {
343     31:0    value as u32;
344 });
345 
346 // OpenRM defines this as a register array, but doesn't specify its size and only uses its first
347 // element. Be conservative until we know the actual size or need to use more registers.
348 register!(NV_PFALCON2_FALCON_BROM_PARAADDR @ PFalcon2Base[0x00000210[1]] {
349     31:0    value as u32;
350 });
351 
352 // PRISCV
353 
354 register!(NV_PRISCV_RISCV_CPUCTL @ PFalcon2Base[0x00000388] {
355     0:0     halted as bool;
356     7:7     active_stat as bool;
357 });
358 
359 register!(NV_PRISCV_RISCV_BCR_CTRL @ PFalcon2Base[0x00000668] {
360     0:0     valid as bool;
361     4:4     core_select as bool => PeregrineCoreSelect;
362     8:8     br_fetch as bool;
363 });
364 
365 // The modules below provide registers that are not identical on all supported chips. They should
366 // only be used in HAL modules.
367 
368 pub(crate) mod gm107 {
369     // FUSE
370 
371     register!(NV_FUSE_STATUS_OPT_DISPLAY @ 0x00021c04 {
372         0:0     display_disabled as bool;
373     });
374 }
375 
376 pub(crate) mod ga100 {
377     // FUSE
378 
379     register!(NV_FUSE_STATUS_OPT_DISPLAY @ 0x00820c04 {
380         0:0     display_disabled as bool;
381     });
382 }
383