xref: /linux/drivers/gpu/drm/xe/xe_guc.c (revision 90d32e92011eaae8e70a9169b4e7acf4ca8f9d3a)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_guc.h"
7 
8 #include <drm/drm_managed.h>
9 
10 #include <generated/xe_wa_oob.h>
11 
12 #include "abi/guc_actions_abi.h"
13 #include "abi/guc_errors_abi.h"
14 #include "regs/xe_gt_regs.h"
15 #include "regs/xe_gtt_defs.h"
16 #include "regs/xe_guc_regs.h"
17 #include "xe_bo.h"
18 #include "xe_device.h"
19 #include "xe_force_wake.h"
20 #include "xe_gt.h"
21 #include "xe_gt_printk.h"
22 #include "xe_guc_ads.h"
23 #include "xe_guc_ct.h"
24 #include "xe_guc_hwconfig.h"
25 #include "xe_guc_log.h"
26 #include "xe_guc_pc.h"
27 #include "xe_guc_relay.h"
28 #include "xe_guc_submit.h"
29 #include "xe_memirq.h"
30 #include "xe_mmio.h"
31 #include "xe_platform_types.h"
32 #include "xe_sriov.h"
33 #include "xe_uc.h"
34 #include "xe_uc_fw.h"
35 #include "xe_wa.h"
36 #include "xe_wopcm.h"
37 
38 static u32 guc_bo_ggtt_addr(struct xe_guc *guc,
39 			    struct xe_bo *bo)
40 {
41 	struct xe_device *xe = guc_to_xe(guc);
42 	u32 addr = xe_bo_ggtt_addr(bo);
43 
44 	/* GuC addresses above GUC_GGTT_TOP don't map through the GTT */
45 	xe_assert(xe, addr >= xe_wopcm_size(guc_to_xe(guc)));
46 	xe_assert(xe, addr < GUC_GGTT_TOP);
47 	xe_assert(xe, bo->size <= GUC_GGTT_TOP - addr);
48 
49 	return addr;
50 }
51 
52 static u32 guc_ctl_debug_flags(struct xe_guc *guc)
53 {
54 	u32 level = xe_guc_log_get_level(&guc->log);
55 	u32 flags = 0;
56 
57 	if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
58 		flags |= GUC_LOG_DISABLED;
59 	else
60 		flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
61 			 GUC_LOG_VERBOSITY_SHIFT;
62 
63 	return flags;
64 }
65 
66 static u32 guc_ctl_feature_flags(struct xe_guc *guc)
67 {
68 	u32 flags = 0;
69 
70 	if (!guc_to_xe(guc)->info.skip_guc_pc)
71 		flags |= GUC_CTL_ENABLE_SLPC;
72 
73 	return flags;
74 }
75 
76 static u32 guc_ctl_log_params_flags(struct xe_guc *guc)
77 {
78 	u32 offset = guc_bo_ggtt_addr(guc, guc->log.bo) >> PAGE_SHIFT;
79 	u32 flags;
80 
81 	#if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
82 	#define LOG_UNIT SZ_1M
83 	#define LOG_FLAG GUC_LOG_LOG_ALLOC_UNITS
84 	#else
85 	#define LOG_UNIT SZ_4K
86 	#define LOG_FLAG 0
87 	#endif
88 
89 	#if (((CAPTURE_BUFFER_SIZE) % SZ_1M) == 0)
90 	#define CAPTURE_UNIT SZ_1M
91 	#define CAPTURE_FLAG GUC_LOG_CAPTURE_ALLOC_UNITS
92 	#else
93 	#define CAPTURE_UNIT SZ_4K
94 	#define CAPTURE_FLAG 0
95 	#endif
96 
97 	BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
98 	BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, LOG_UNIT));
99 	BUILD_BUG_ON(!DEBUG_BUFFER_SIZE);
100 	BUILD_BUG_ON(!IS_ALIGNED(DEBUG_BUFFER_SIZE, LOG_UNIT));
101 	BUILD_BUG_ON(!CAPTURE_BUFFER_SIZE);
102 	BUILD_BUG_ON(!IS_ALIGNED(CAPTURE_BUFFER_SIZE, CAPTURE_UNIT));
103 
104 	BUILD_BUG_ON((CRASH_BUFFER_SIZE / LOG_UNIT - 1) >
105 			(GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
106 	BUILD_BUG_ON((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) >
107 			(GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT));
108 	BUILD_BUG_ON((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) >
109 			(GUC_LOG_CAPTURE_MASK >> GUC_LOG_CAPTURE_SHIFT));
110 
111 	flags = GUC_LOG_VALID |
112 		GUC_LOG_NOTIFY_ON_HALF_FULL |
113 		CAPTURE_FLAG |
114 		LOG_FLAG |
115 		((CRASH_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
116 		((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_DEBUG_SHIFT) |
117 		((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) <<
118 		 GUC_LOG_CAPTURE_SHIFT) |
119 		(offset << GUC_LOG_BUF_ADDR_SHIFT);
120 
121 	#undef LOG_UNIT
122 	#undef LOG_FLAG
123 	#undef CAPTURE_UNIT
124 	#undef CAPTURE_FLAG
125 
126 	return flags;
127 }
128 
129 static u32 guc_ctl_ads_flags(struct xe_guc *guc)
130 {
131 	u32 ads = guc_bo_ggtt_addr(guc, guc->ads.bo) >> PAGE_SHIFT;
132 	u32 flags = ads << GUC_ADS_ADDR_SHIFT;
133 
134 	return flags;
135 }
136 
137 static u32 guc_ctl_wa_flags(struct xe_guc *guc)
138 {
139 	struct xe_device *xe = guc_to_xe(guc);
140 	struct xe_gt *gt = guc_to_gt(guc);
141 	u32 flags = 0;
142 
143 	if (XE_WA(gt, 22012773006))
144 		flags |= GUC_WA_POLLCS;
145 
146 	if (XE_WA(gt, 14014475959))
147 		flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
148 
149 	if (XE_WA(gt, 22011391025))
150 		flags |= GUC_WA_DUAL_QUEUE;
151 
152 	/*
153 	 * Wa_22011802037: FIXME - there's more to be done than simply setting
154 	 * this flag: make sure each CS is stopped when preparing for GT reset
155 	 * and wait for pending MI_FW.
156 	 */
157 	if (GRAPHICS_VERx100(xe) < 1270)
158 		flags |= GUC_WA_PRE_PARSER;
159 
160 	if (XE_WA(gt, 22012727170) || XE_WA(gt, 22012727685))
161 		flags |= GUC_WA_CONTEXT_ISOLATION;
162 
163 	if (XE_WA(gt, 18020744125) &&
164 	    !xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_RENDER))
165 		flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST;
166 
167 	if (XE_WA(gt, 1509372804))
168 		flags |= GUC_WA_RENDER_RST_RC6_EXIT;
169 
170 	if (XE_WA(gt, 14018913170))
171 		flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6;
172 
173 	return flags;
174 }
175 
176 static u32 guc_ctl_devid(struct xe_guc *guc)
177 {
178 	struct xe_device *xe = guc_to_xe(guc);
179 
180 	return (((u32)xe->info.devid) << 16) | xe->info.revid;
181 }
182 
183 static void guc_print_params(struct xe_guc *guc)
184 {
185 	struct xe_gt *gt = guc_to_gt(guc);
186 	u32 *params = guc->params;
187 	int i;
188 
189 	BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
190 	BUILD_BUG_ON(GUC_CTL_MAX_DWORDS + 2 != SOFT_SCRATCH_COUNT);
191 
192 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
193 		xe_gt_dbg(gt, "GuC param[%2d] = 0x%08x\n", i, params[i]);
194 }
195 
196 static void guc_init_params(struct xe_guc *guc)
197 {
198 	u32 *params = guc->params;
199 
200 	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
201 	params[GUC_CTL_FEATURE] = 0;
202 	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
203 	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
204 	params[GUC_CTL_WA] = 0;
205 	params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
206 
207 	guc_print_params(guc);
208 }
209 
210 static void guc_init_params_post_hwconfig(struct xe_guc *guc)
211 {
212 	u32 *params = guc->params;
213 
214 	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
215 	params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
216 	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
217 	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
218 	params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
219 	params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
220 
221 	guc_print_params(guc);
222 }
223 
224 /*
225  * Initialize the GuC parameter block before starting the firmware
226  * transfer. These parameters are read by the firmware on startup
227  * and cannot be changed thereafter.
228  */
229 static void guc_write_params(struct xe_guc *guc)
230 {
231 	struct xe_gt *gt = guc_to_gt(guc);
232 	int i;
233 
234 	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
235 
236 	xe_mmio_write32(gt, SOFT_SCRATCH(0), 0);
237 
238 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
239 		xe_mmio_write32(gt, SOFT_SCRATCH(1 + i), guc->params[i]);
240 }
241 
242 static void guc_fini(struct drm_device *drm, void *arg)
243 {
244 	struct xe_guc *guc = arg;
245 	struct xe_gt *gt = guc_to_gt(guc);
246 
247 	xe_gt_WARN_ON(gt, xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL));
248 	xe_uc_fini_hw(&guc_to_gt(guc)->uc);
249 	xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL);
250 }
251 
252 /**
253  * xe_guc_comm_init_early - early initialization of GuC communication
254  * @guc: the &xe_guc to initialize
255  *
256  * Must be called prior to first MMIO communication with GuC firmware.
257  */
258 void xe_guc_comm_init_early(struct xe_guc *guc)
259 {
260 	struct xe_gt *gt = guc_to_gt(guc);
261 
262 	if (xe_gt_is_media_type(gt))
263 		guc->notify_reg = MED_GUC_HOST_INTERRUPT;
264 	else
265 		guc->notify_reg = GUC_HOST_INTERRUPT;
266 }
267 
268 static int xe_guc_realloc_post_hwconfig(struct xe_guc *guc)
269 {
270 	struct xe_tile *tile = gt_to_tile(guc_to_gt(guc));
271 	struct xe_device *xe = guc_to_xe(guc);
272 	int ret;
273 
274 	if (!IS_DGFX(guc_to_xe(guc)))
275 		return 0;
276 
277 	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->fw.bo);
278 	if (ret)
279 		return ret;
280 
281 	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->log.bo);
282 	if (ret)
283 		return ret;
284 
285 	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ads.bo);
286 	if (ret)
287 		return ret;
288 
289 	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ct.bo);
290 	if (ret)
291 		return ret;
292 
293 	return 0;
294 }
295 
296 int xe_guc_init(struct xe_guc *guc)
297 {
298 	struct xe_device *xe = guc_to_xe(guc);
299 	struct xe_gt *gt = guc_to_gt(guc);
300 	int ret;
301 
302 	guc->fw.type = XE_UC_FW_TYPE_GUC;
303 	ret = xe_uc_fw_init(&guc->fw);
304 	if (ret)
305 		goto out;
306 
307 	if (!xe_uc_fw_is_enabled(&guc->fw))
308 		return 0;
309 
310 	ret = xe_guc_log_init(&guc->log);
311 	if (ret)
312 		goto out;
313 
314 	ret = xe_guc_ads_init(&guc->ads);
315 	if (ret)
316 		goto out;
317 
318 	ret = xe_guc_ct_init(&guc->ct);
319 	if (ret)
320 		goto out;
321 
322 	ret = xe_guc_relay_init(&guc->relay);
323 	if (ret)
324 		goto out;
325 
326 	ret = drmm_add_action_or_reset(&xe->drm, guc_fini, guc);
327 	if (ret)
328 		goto out;
329 
330 	guc_init_params(guc);
331 
332 	xe_guc_comm_init_early(guc);
333 
334 	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOADABLE);
335 
336 	return 0;
337 
338 out:
339 	xe_gt_err(gt, "GuC init failed with %pe\n", ERR_PTR(ret));
340 	return ret;
341 }
342 
343 /**
344  * xe_guc_init_post_hwconfig - initialize GuC post hwconfig load
345  * @guc: The GuC object
346  *
347  * Return: 0 on success, negative error code on error.
348  */
349 int xe_guc_init_post_hwconfig(struct xe_guc *guc)
350 {
351 	int ret;
352 
353 	ret = xe_guc_realloc_post_hwconfig(guc);
354 	if (ret)
355 		return ret;
356 
357 	guc_init_params_post_hwconfig(guc);
358 
359 	ret = xe_guc_pc_init(&guc->pc);
360 	if (ret)
361 		return ret;
362 
363 	return xe_guc_ads_init_post_hwconfig(&guc->ads);
364 }
365 
366 int xe_guc_post_load_init(struct xe_guc *guc)
367 {
368 	xe_guc_ads_populate_post_load(&guc->ads);
369 	guc->submission_state.enabled = true;
370 
371 	return 0;
372 }
373 
374 int xe_guc_reset(struct xe_guc *guc)
375 {
376 	struct xe_gt *gt = guc_to_gt(guc);
377 	u32 guc_status, gdrst;
378 	int ret;
379 
380 	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
381 
382 	xe_mmio_write32(gt, GDRST, GRDOM_GUC);
383 
384 	ret = xe_mmio_wait32(gt, GDRST, GRDOM_GUC, 0, 5000, &gdrst, false);
385 	if (ret) {
386 		xe_gt_err(gt, "GuC reset timed out, GDRST=%#x\n", gdrst);
387 		goto err_out;
388 	}
389 
390 	guc_status = xe_mmio_read32(gt, GUC_STATUS);
391 	if (!(guc_status & GS_MIA_IN_RESET)) {
392 		xe_gt_err(gt, "GuC status: %#x, MIA core expected to be in reset\n",
393 			  guc_status);
394 		ret = -EIO;
395 		goto err_out;
396 	}
397 
398 	return 0;
399 
400 err_out:
401 
402 	return ret;
403 }
404 
405 static void guc_prepare_xfer(struct xe_guc *guc)
406 {
407 	struct xe_gt *gt = guc_to_gt(guc);
408 	struct xe_device *xe =  guc_to_xe(guc);
409 	u32 shim_flags = GUC_ENABLE_READ_CACHE_LOGIC |
410 		GUC_ENABLE_READ_CACHE_FOR_SRAM_DATA |
411 		GUC_ENABLE_READ_CACHE_FOR_WOPCM_DATA |
412 		GUC_ENABLE_MIA_CLOCK_GATING;
413 
414 	if (GRAPHICS_VERx100(xe) < 1250)
415 		shim_flags |= GUC_DISABLE_SRAM_INIT_TO_ZEROES |
416 				GUC_ENABLE_MIA_CACHING;
417 
418 	if (GRAPHICS_VER(xe) >= 20 || xe->info.platform == XE_PVC)
419 		shim_flags |= REG_FIELD_PREP(GUC_MOCS_INDEX_MASK, gt->mocs.uc_index);
420 
421 	/* Must program this register before loading the ucode with DMA */
422 	xe_mmio_write32(gt, GUC_SHIM_CONTROL, shim_flags);
423 
424 	xe_mmio_write32(gt, GT_PM_CONFIG, GT_DOORBELL_ENABLE);
425 }
426 
427 /*
428  * Supporting MMIO & in memory RSA
429  */
430 static int guc_xfer_rsa(struct xe_guc *guc)
431 {
432 	struct xe_gt *gt = guc_to_gt(guc);
433 	u32 rsa[UOS_RSA_SCRATCH_COUNT];
434 	size_t copied;
435 	int i;
436 
437 	if (guc->fw.rsa_size > 256) {
438 		u32 rsa_ggtt_addr = xe_bo_ggtt_addr(guc->fw.bo) +
439 				    xe_uc_fw_rsa_offset(&guc->fw);
440 		xe_mmio_write32(gt, UOS_RSA_SCRATCH(0), rsa_ggtt_addr);
441 		return 0;
442 	}
443 
444 	copied = xe_uc_fw_copy_rsa(&guc->fw, rsa, sizeof(rsa));
445 	if (copied < sizeof(rsa))
446 		return -ENOMEM;
447 
448 	for (i = 0; i < UOS_RSA_SCRATCH_COUNT; i++)
449 		xe_mmio_write32(gt, UOS_RSA_SCRATCH(i), rsa[i]);
450 
451 	return 0;
452 }
453 
454 static int guc_wait_ucode(struct xe_guc *guc)
455 {
456 	struct xe_gt *gt = guc_to_gt(guc);
457 	u32 status;
458 	int ret;
459 
460 	/*
461 	 * Wait for the GuC to start up.
462 	 * NB: Docs recommend not using the interrupt for completion.
463 	 * Measurements indicate this should take no more than 20ms
464 	 * (assuming the GT clock is at maximum frequency). So, a
465 	 * timeout here indicates that the GuC has failed and is unusable.
466 	 * (Higher levels of the driver may decide to reset the GuC and
467 	 * attempt the ucode load again if this happens.)
468 	 *
469 	 * FIXME: There is a known (but exceedingly unlikely) race condition
470 	 * where the asynchronous frequency management code could reduce
471 	 * the GT clock while a GuC reload is in progress (during a full
472 	 * GT reset). A fix is in progress but there are complex locking
473 	 * issues to be resolved. In the meantime bump the timeout to
474 	 * 200ms. Even at slowest clock, this should be sufficient. And
475 	 * in the working case, a larger timeout makes no difference.
476 	 */
477 	ret = xe_mmio_wait32(gt, GUC_STATUS, GS_UKERNEL_MASK,
478 			     FIELD_PREP(GS_UKERNEL_MASK, XE_GUC_LOAD_STATUS_READY),
479 			     200000, &status, false);
480 
481 	if (ret) {
482 		xe_gt_info(gt, "GuC load failed: status = 0x%08X\n", status);
483 		xe_gt_info(gt, "GuC status: Reset = %u, BootROM = %#X, UKernel = %#X, MIA = %#X, Auth = %#X\n",
484 			   REG_FIELD_GET(GS_MIA_IN_RESET, status),
485 			   REG_FIELD_GET(GS_BOOTROM_MASK, status),
486 			   REG_FIELD_GET(GS_UKERNEL_MASK, status),
487 			   REG_FIELD_GET(GS_MIA_MASK, status),
488 			   REG_FIELD_GET(GS_AUTH_STATUS_MASK, status));
489 
490 		if ((status & GS_BOOTROM_MASK) == GS_BOOTROM_RSA_FAILED) {
491 			xe_gt_info(gt, "GuC firmware signature verification failed\n");
492 			ret = -ENOEXEC;
493 		}
494 
495 		if (REG_FIELD_GET(GS_UKERNEL_MASK, status) ==
496 		    XE_GUC_LOAD_STATUS_EXCEPTION) {
497 			xe_gt_info(gt, "GuC firmware exception. EIP: %#x\n",
498 				   xe_mmio_read32(gt, SOFT_SCRATCH(13)));
499 			ret = -ENXIO;
500 		}
501 	} else {
502 		xe_gt_dbg(gt, "GuC successfully loaded\n");
503 	}
504 
505 	return ret;
506 }
507 
508 static int __xe_guc_upload(struct xe_guc *guc)
509 {
510 	int ret;
511 
512 	guc_write_params(guc);
513 	guc_prepare_xfer(guc);
514 
515 	/*
516 	 * Note that GuC needs the CSS header plus uKernel code to be copied
517 	 * by the DMA engine in one operation, whereas the RSA signature is
518 	 * loaded separately, either by copying it to the UOS_RSA_SCRATCH
519 	 * register (if key size <= 256) or through a ggtt-pinned vma (if key
520 	 * size > 256). The RSA size and therefore the way we provide it to the
521 	 * HW is fixed for each platform and hard-coded in the bootrom.
522 	 */
523 	ret = guc_xfer_rsa(guc);
524 	if (ret)
525 		goto out;
526 	/*
527 	 * Current uCode expects the code to be loaded at 8k; locations below
528 	 * this are used for the stack.
529 	 */
530 	ret = xe_uc_fw_upload(&guc->fw, 0x2000, UOS_MOVE);
531 	if (ret)
532 		goto out;
533 
534 	/* Wait for authentication */
535 	ret = guc_wait_ucode(guc);
536 	if (ret)
537 		goto out;
538 
539 	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_RUNNING);
540 	return 0;
541 
542 out:
543 	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOAD_FAIL);
544 	return 0	/* FIXME: ret, don't want to stop load currently */;
545 }
546 
547 /**
548  * xe_guc_min_load_for_hwconfig - load minimal GuC and read hwconfig table
549  * @guc: The GuC object
550  *
551  * This function uploads a minimal GuC that does not support submissions but
552  * in a state where the hwconfig table can be read. Next, it reads and parses
553  * the hwconfig table so it can be used for subsequent steps in the driver load.
554  * Lastly, it enables CT communication (XXX: this is needed for PFs/VFs only).
555  *
556  * Return: 0 on success, negative error code on error.
557  */
558 int xe_guc_min_load_for_hwconfig(struct xe_guc *guc)
559 {
560 	int ret;
561 
562 	xe_guc_ads_populate_minimal(&guc->ads);
563 
564 	/* Raise GT freq to speed up HuC/GuC load */
565 	xe_guc_pc_init_early(&guc->pc);
566 
567 	ret = __xe_guc_upload(guc);
568 	if (ret)
569 		return ret;
570 
571 	ret = xe_guc_hwconfig_init(guc);
572 	if (ret)
573 		return ret;
574 
575 	ret = xe_guc_enable_communication(guc);
576 	if (ret)
577 		return ret;
578 
579 	return 0;
580 }
581 
582 int xe_guc_upload(struct xe_guc *guc)
583 {
584 	xe_guc_ads_populate(&guc->ads);
585 
586 	return __xe_guc_upload(guc);
587 }
588 
589 static void guc_handle_mmio_msg(struct xe_guc *guc)
590 {
591 	struct xe_gt *gt = guc_to_gt(guc);
592 	u32 msg;
593 
594 	if (IS_SRIOV_VF(guc_to_xe(guc)))
595 		return;
596 
597 	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
598 
599 	msg = xe_mmio_read32(gt, SOFT_SCRATCH(15));
600 	msg &= XE_GUC_RECV_MSG_EXCEPTION |
601 		XE_GUC_RECV_MSG_CRASH_DUMP_POSTED;
602 	xe_mmio_write32(gt, SOFT_SCRATCH(15), 0);
603 
604 	if (msg & XE_GUC_RECV_MSG_CRASH_DUMP_POSTED)
605 		xe_gt_err(gt, "Received early GuC crash dump notification!\n");
606 
607 	if (msg & XE_GUC_RECV_MSG_EXCEPTION)
608 		xe_gt_err(gt, "Received early GuC exception notification!\n");
609 }
610 
611 static void guc_enable_irq(struct xe_guc *guc)
612 {
613 	struct xe_gt *gt = guc_to_gt(guc);
614 	u32 events = xe_gt_is_media_type(gt) ?
615 		REG_FIELD_PREP(ENGINE0_MASK, GUC_INTR_GUC2HOST)  :
616 		REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
617 
618 	/* Primary GuC and media GuC share a single enable bit */
619 	xe_mmio_write32(gt, GUC_SG_INTR_ENABLE,
620 			REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST));
621 
622 	/*
623 	 * There are separate mask bits for primary and media GuCs, so use
624 	 * a RMW operation to avoid clobbering the other GuC's setting.
625 	 */
626 	xe_mmio_rmw32(gt, GUC_SG_INTR_MASK, events, 0);
627 }
628 
629 int xe_guc_enable_communication(struct xe_guc *guc)
630 {
631 	struct xe_device *xe = guc_to_xe(guc);
632 	int err;
633 
634 	guc_enable_irq(guc);
635 
636 	if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe)) {
637 		struct xe_gt *gt = guc_to_gt(guc);
638 		struct xe_tile *tile = gt_to_tile(gt);
639 
640 		err = xe_memirq_init_guc(&tile->sriov.vf.memirq, guc);
641 		if (err)
642 			return err;
643 	}
644 
645 	xe_mmio_rmw32(guc_to_gt(guc), PMINTRMSK,
646 		      ARAT_EXPIRED_INTRMSK, 0);
647 
648 	err = xe_guc_ct_enable(&guc->ct);
649 	if (err)
650 		return err;
651 
652 	guc_handle_mmio_msg(guc);
653 
654 	return 0;
655 }
656 
657 int xe_guc_suspend(struct xe_guc *guc)
658 {
659 	struct xe_gt *gt = guc_to_gt(guc);
660 	u32 action[] = {
661 		XE_GUC_ACTION_CLIENT_SOFT_RESET,
662 	};
663 	int ret;
664 
665 	ret = xe_guc_mmio_send(guc, action, ARRAY_SIZE(action));
666 	if (ret) {
667 		xe_gt_err(gt, "GuC suspend failed: %pe\n", ERR_PTR(ret));
668 		return ret;
669 	}
670 
671 	xe_guc_sanitize(guc);
672 	return 0;
673 }
674 
675 void xe_guc_notify(struct xe_guc *guc)
676 {
677 	struct xe_gt *gt = guc_to_gt(guc);
678 	const u32 default_notify_data = 0;
679 
680 	/*
681 	 * Both GUC_HOST_INTERRUPT and MED_GUC_HOST_INTERRUPT can pass
682 	 * additional payload data to the GuC but this capability is not
683 	 * used by the firmware yet. Use default value in the meantime.
684 	 */
685 	xe_mmio_write32(gt, guc->notify_reg, default_notify_data);
686 }
687 
688 int xe_guc_auth_huc(struct xe_guc *guc, u32 rsa_addr)
689 {
690 	u32 action[] = {
691 		XE_GUC_ACTION_AUTHENTICATE_HUC,
692 		rsa_addr
693 	};
694 
695 	return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
696 }
697 
698 int xe_guc_mmio_send_recv(struct xe_guc *guc, const u32 *request,
699 			  u32 len, u32 *response_buf)
700 {
701 	struct xe_device *xe = guc_to_xe(guc);
702 	struct xe_gt *gt = guc_to_gt(guc);
703 	u32 header, reply;
704 	struct xe_reg reply_reg = xe_gt_is_media_type(gt) ?
705 		MED_VF_SW_FLAG(0) : VF_SW_FLAG(0);
706 	const u32 LAST_INDEX = VF_SW_FLAG_COUNT - 1;
707 	int ret;
708 	int i;
709 
710 	BUILD_BUG_ON(VF_SW_FLAG_COUNT != MED_VF_SW_FLAG_COUNT);
711 
712 	xe_assert(xe, !xe_guc_ct_enabled(&guc->ct));
713 	xe_assert(xe, len);
714 	xe_assert(xe, len <= VF_SW_FLAG_COUNT);
715 	xe_assert(xe, len <= MED_VF_SW_FLAG_COUNT);
716 	xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) ==
717 		  GUC_HXG_ORIGIN_HOST);
718 	xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) ==
719 		  GUC_HXG_TYPE_REQUEST);
720 
721 retry:
722 	/* Not in critical data-path, just do if else for GT type */
723 	if (xe_gt_is_media_type(gt)) {
724 		for (i = 0; i < len; ++i)
725 			xe_mmio_write32(gt, MED_VF_SW_FLAG(i),
726 					request[i]);
727 		xe_mmio_read32(gt, MED_VF_SW_FLAG(LAST_INDEX));
728 	} else {
729 		for (i = 0; i < len; ++i)
730 			xe_mmio_write32(gt, VF_SW_FLAG(i),
731 					request[i]);
732 		xe_mmio_read32(gt, VF_SW_FLAG(LAST_INDEX));
733 	}
734 
735 	xe_guc_notify(guc);
736 
737 	ret = xe_mmio_wait32(gt, reply_reg, GUC_HXG_MSG_0_ORIGIN,
738 			     FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_GUC),
739 			     50000, &reply, false);
740 	if (ret) {
741 timeout:
742 		xe_gt_err(gt, "GuC mmio request %#x: no reply %#x\n",
743 			  request[0], reply);
744 		return ret;
745 	}
746 
747 	header = xe_mmio_read32(gt, reply_reg);
748 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
749 	    GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
750 		/*
751 		 * Once we got a BUSY reply we must wait again for the final
752 		 * response but this time we can't use ORIGIN mask anymore.
753 		 * To spot a right change in the reply, we take advantage that
754 		 * response SUCCESS and FAILURE differ only by the single bit
755 		 * and all other bits are set and can be used as a new mask.
756 		 */
757 		u32 resp_bits = GUC_HXG_TYPE_RESPONSE_SUCCESS & GUC_HXG_TYPE_RESPONSE_FAILURE;
758 		u32 resp_mask = FIELD_PREP(GUC_HXG_MSG_0_TYPE, resp_bits);
759 
760 		BUILD_BUG_ON(FIELD_MAX(GUC_HXG_MSG_0_TYPE) != GUC_HXG_TYPE_RESPONSE_SUCCESS);
761 		BUILD_BUG_ON((GUC_HXG_TYPE_RESPONSE_SUCCESS ^ GUC_HXG_TYPE_RESPONSE_FAILURE) != 1);
762 
763 		ret = xe_mmio_wait32(gt, reply_reg,  resp_mask, resp_mask,
764 				     1000000, &header, false);
765 
766 		if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
767 			     GUC_HXG_ORIGIN_GUC))
768 			goto proto;
769 		if (unlikely(ret)) {
770 			if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
771 			    GUC_HXG_TYPE_NO_RESPONSE_BUSY)
772 				goto proto;
773 			goto timeout;
774 		}
775 	}
776 
777 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
778 	    GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
779 		u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
780 
781 		xe_gt_dbg(gt, "GuC mmio request %#x: retrying, reason %#x\n",
782 			  request[0], reason);
783 		goto retry;
784 	}
785 
786 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
787 	    GUC_HXG_TYPE_RESPONSE_FAILURE) {
788 		u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
789 		u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
790 
791 		xe_gt_err(gt, "GuC mmio request %#x: failure %#x hint %#x\n",
792 			  request[0], error, hint);
793 		return -ENXIO;
794 	}
795 
796 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
797 	    GUC_HXG_TYPE_RESPONSE_SUCCESS) {
798 proto:
799 		xe_gt_err(gt, "GuC mmio request %#x: unexpected reply %#x\n",
800 			  request[0], header);
801 		return -EPROTO;
802 	}
803 
804 	/* Just copy entire possible message response */
805 	if (response_buf) {
806 		response_buf[0] = header;
807 
808 		for (i = 1; i < VF_SW_FLAG_COUNT; i++) {
809 			reply_reg.addr += sizeof(u32);
810 			response_buf[i] = xe_mmio_read32(gt, reply_reg);
811 		}
812 	}
813 
814 	/* Use data from the GuC response as our return value */
815 	return FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
816 }
817 
818 int xe_guc_mmio_send(struct xe_guc *guc, const u32 *request, u32 len)
819 {
820 	return xe_guc_mmio_send_recv(guc, request, len, NULL);
821 }
822 
823 static int guc_self_cfg(struct xe_guc *guc, u16 key, u16 len, u64 val)
824 {
825 	struct xe_device *xe = guc_to_xe(guc);
826 	u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
827 		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
828 		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
829 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
830 			   GUC_ACTION_HOST2GUC_SELF_CFG),
831 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
832 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
833 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32,
834 			   lower_32_bits(val)),
835 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64,
836 			   upper_32_bits(val)),
837 	};
838 	int ret;
839 
840 	xe_assert(xe, len <= 2);
841 	xe_assert(xe, len != 1 || !upper_32_bits(val));
842 
843 	/* Self config must go over MMIO */
844 	ret = xe_guc_mmio_send(guc, request, ARRAY_SIZE(request));
845 
846 	if (unlikely(ret < 0))
847 		return ret;
848 	if (unlikely(ret > 1))
849 		return -EPROTO;
850 	if (unlikely(!ret))
851 		return -ENOKEY;
852 
853 	return 0;
854 }
855 
856 int xe_guc_self_cfg32(struct xe_guc *guc, u16 key, u32 val)
857 {
858 	return guc_self_cfg(guc, key, 1, val);
859 }
860 
861 int xe_guc_self_cfg64(struct xe_guc *guc, u16 key, u64 val)
862 {
863 	return guc_self_cfg(guc, key, 2, val);
864 }
865 
866 void xe_guc_irq_handler(struct xe_guc *guc, const u16 iir)
867 {
868 	if (iir & GUC_INTR_GUC2HOST)
869 		xe_guc_ct_irq_handler(&guc->ct);
870 }
871 
872 void xe_guc_sanitize(struct xe_guc *guc)
873 {
874 	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOADABLE);
875 	xe_guc_ct_disable(&guc->ct);
876 	guc->submission_state.enabled = false;
877 }
878 
879 int xe_guc_reset_prepare(struct xe_guc *guc)
880 {
881 	return xe_guc_submit_reset_prepare(guc);
882 }
883 
884 void xe_guc_reset_wait(struct xe_guc *guc)
885 {
886 	xe_guc_submit_reset_wait(guc);
887 }
888 
889 void xe_guc_stop_prepare(struct xe_guc *guc)
890 {
891 	XE_WARN_ON(xe_guc_pc_stop(&guc->pc));
892 }
893 
894 int xe_guc_stop(struct xe_guc *guc)
895 {
896 	int ret;
897 
898 	xe_guc_ct_stop(&guc->ct);
899 
900 	ret = xe_guc_submit_stop(guc);
901 	if (ret)
902 		return ret;
903 
904 	return 0;
905 }
906 
907 int xe_guc_start(struct xe_guc *guc)
908 {
909 	int ret;
910 
911 	ret = xe_guc_pc_start(&guc->pc);
912 	XE_WARN_ON(ret);
913 
914 	return xe_guc_submit_start(guc);
915 }
916 
917 void xe_guc_print_info(struct xe_guc *guc, struct drm_printer *p)
918 {
919 	struct xe_gt *gt = guc_to_gt(guc);
920 	u32 status;
921 	int err;
922 	int i;
923 
924 	xe_uc_fw_print(&guc->fw, p);
925 
926 	err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
927 	if (err)
928 		return;
929 
930 	status = xe_mmio_read32(gt, GUC_STATUS);
931 
932 	drm_printf(p, "\nGuC status 0x%08x:\n", status);
933 	drm_printf(p, "\tBootrom status = 0x%x\n",
934 		   REG_FIELD_GET(GS_BOOTROM_MASK, status));
935 	drm_printf(p, "\tuKernel status = 0x%x\n",
936 		   REG_FIELD_GET(GS_UKERNEL_MASK, status));
937 	drm_printf(p, "\tMIA Core status = 0x%x\n",
938 		   REG_FIELD_GET(GS_MIA_MASK, status));
939 	drm_printf(p, "\tLog level = %d\n",
940 		   xe_guc_log_get_level(&guc->log));
941 
942 	drm_puts(p, "\nScratch registers:\n");
943 	for (i = 0; i < SOFT_SCRATCH_COUNT; i++) {
944 		drm_printf(p, "\t%2d: \t0x%x\n",
945 			   i, xe_mmio_read32(gt, SOFT_SCRATCH(i)));
946 	}
947 
948 	xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
949 
950 	xe_guc_ct_print(&guc->ct, p, false);
951 	xe_guc_submit_print(guc, p);
952 }
953 
954 /**
955  * xe_guc_in_reset() - Detect if GuC MIA is in reset.
956  * @guc: The GuC object
957  *
958  * This function detects runtime resume from d3cold by leveraging
959  * GUC_STATUS, GUC doesn't get reset during d3hot,
960  * it strictly to be called from RPM resume handler.
961  *
962  * Return: true if failed to get forcewake or GuC MIA is in Reset,
963  * otherwise false.
964  */
965 bool xe_guc_in_reset(struct xe_guc *guc)
966 {
967 	struct xe_gt *gt = guc_to_gt(guc);
968 	u32 status;
969 	int err;
970 
971 	err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
972 	if (err)
973 		return true;
974 
975 	status = xe_mmio_read32(gt, GUC_STATUS);
976 	xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
977 
978 	return  status & GS_MIA_IN_RESET;
979 }
980