1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2022 Intel Corporation
4 */
5
6 #include "xe_guc.h"
7
8 #include <drm/drm_managed.h>
9
10 #include <generated/xe_wa_oob.h>
11
12 #include "abi/guc_actions_abi.h"
13 #include "abi/guc_errors_abi.h"
14 #include "regs/xe_gt_regs.h"
15 #include "regs/xe_gtt_defs.h"
16 #include "regs/xe_guc_regs.h"
17 #include "xe_bo.h"
18 #include "xe_device.h"
19 #include "xe_force_wake.h"
20 #include "xe_gt.h"
21 #include "xe_gt_printk.h"
22 #include "xe_gt_sriov_vf.h"
23 #include "xe_gt_throttle.h"
24 #include "xe_guc_ads.h"
25 #include "xe_guc_ct.h"
26 #include "xe_guc_db_mgr.h"
27 #include "xe_guc_hwconfig.h"
28 #include "xe_guc_log.h"
29 #include "xe_guc_pc.h"
30 #include "xe_guc_relay.h"
31 #include "xe_guc_submit.h"
32 #include "xe_memirq.h"
33 #include "xe_mmio.h"
34 #include "xe_platform_types.h"
35 #include "xe_sriov.h"
36 #include "xe_uc.h"
37 #include "xe_uc_fw.h"
38 #include "xe_wa.h"
39 #include "xe_wopcm.h"
40
guc_bo_ggtt_addr(struct xe_guc * guc,struct xe_bo * bo)41 static u32 guc_bo_ggtt_addr(struct xe_guc *guc,
42 struct xe_bo *bo)
43 {
44 struct xe_device *xe = guc_to_xe(guc);
45 u32 addr = xe_bo_ggtt_addr(bo);
46
47 /* GuC addresses above GUC_GGTT_TOP don't map through the GTT */
48 xe_assert(xe, addr >= xe_wopcm_size(guc_to_xe(guc)));
49 xe_assert(xe, addr < GUC_GGTT_TOP);
50 xe_assert(xe, bo->size <= GUC_GGTT_TOP - addr);
51
52 return addr;
53 }
54
guc_ctl_debug_flags(struct xe_guc * guc)55 static u32 guc_ctl_debug_flags(struct xe_guc *guc)
56 {
57 u32 level = xe_guc_log_get_level(&guc->log);
58 u32 flags = 0;
59
60 if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
61 flags |= GUC_LOG_DISABLED;
62 else
63 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
64 GUC_LOG_VERBOSITY_SHIFT;
65
66 return flags;
67 }
68
guc_ctl_feature_flags(struct xe_guc * guc)69 static u32 guc_ctl_feature_flags(struct xe_guc *guc)
70 {
71 u32 flags = 0;
72
73 if (!guc_to_xe(guc)->info.skip_guc_pc)
74 flags |= GUC_CTL_ENABLE_SLPC;
75
76 return flags;
77 }
78
guc_ctl_log_params_flags(struct xe_guc * guc)79 static u32 guc_ctl_log_params_flags(struct xe_guc *guc)
80 {
81 u32 offset = guc_bo_ggtt_addr(guc, guc->log.bo) >> PAGE_SHIFT;
82 u32 flags;
83
84 #if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
85 #define LOG_UNIT SZ_1M
86 #define LOG_FLAG GUC_LOG_LOG_ALLOC_UNITS
87 #else
88 #define LOG_UNIT SZ_4K
89 #define LOG_FLAG 0
90 #endif
91
92 #if (((CAPTURE_BUFFER_SIZE) % SZ_1M) == 0)
93 #define CAPTURE_UNIT SZ_1M
94 #define CAPTURE_FLAG GUC_LOG_CAPTURE_ALLOC_UNITS
95 #else
96 #define CAPTURE_UNIT SZ_4K
97 #define CAPTURE_FLAG 0
98 #endif
99
100 BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
101 BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, LOG_UNIT));
102 BUILD_BUG_ON(!DEBUG_BUFFER_SIZE);
103 BUILD_BUG_ON(!IS_ALIGNED(DEBUG_BUFFER_SIZE, LOG_UNIT));
104 BUILD_BUG_ON(!CAPTURE_BUFFER_SIZE);
105 BUILD_BUG_ON(!IS_ALIGNED(CAPTURE_BUFFER_SIZE, CAPTURE_UNIT));
106
107 BUILD_BUG_ON((CRASH_BUFFER_SIZE / LOG_UNIT - 1) >
108 (GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
109 BUILD_BUG_ON((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) >
110 (GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT));
111 BUILD_BUG_ON((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) >
112 (GUC_LOG_CAPTURE_MASK >> GUC_LOG_CAPTURE_SHIFT));
113
114 flags = GUC_LOG_VALID |
115 GUC_LOG_NOTIFY_ON_HALF_FULL |
116 CAPTURE_FLAG |
117 LOG_FLAG |
118 ((CRASH_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
119 ((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_DEBUG_SHIFT) |
120 ((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) <<
121 GUC_LOG_CAPTURE_SHIFT) |
122 (offset << GUC_LOG_BUF_ADDR_SHIFT);
123
124 #undef LOG_UNIT
125 #undef LOG_FLAG
126 #undef CAPTURE_UNIT
127 #undef CAPTURE_FLAG
128
129 return flags;
130 }
131
guc_ctl_ads_flags(struct xe_guc * guc)132 static u32 guc_ctl_ads_flags(struct xe_guc *guc)
133 {
134 u32 ads = guc_bo_ggtt_addr(guc, guc->ads.bo) >> PAGE_SHIFT;
135 u32 flags = ads << GUC_ADS_ADDR_SHIFT;
136
137 return flags;
138 }
139
guc_ctl_wa_flags(struct xe_guc * guc)140 static u32 guc_ctl_wa_flags(struct xe_guc *guc)
141 {
142 struct xe_device *xe = guc_to_xe(guc);
143 struct xe_gt *gt = guc_to_gt(guc);
144 u32 flags = 0;
145
146 if (XE_WA(gt, 22012773006))
147 flags |= GUC_WA_POLLCS;
148
149 if (XE_WA(gt, 14014475959))
150 flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
151
152 if (XE_WA(gt, 22011391025))
153 flags |= GUC_WA_DUAL_QUEUE;
154
155 /*
156 * Wa_22011802037: FIXME - there's more to be done than simply setting
157 * this flag: make sure each CS is stopped when preparing for GT reset
158 * and wait for pending MI_FW.
159 */
160 if (GRAPHICS_VERx100(xe) < 1270)
161 flags |= GUC_WA_PRE_PARSER;
162
163 if (XE_WA(gt, 22012727170) || XE_WA(gt, 22012727685))
164 flags |= GUC_WA_CONTEXT_ISOLATION;
165
166 if (XE_WA(gt, 18020744125) &&
167 !xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_RENDER))
168 flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST;
169
170 if (XE_WA(gt, 1509372804))
171 flags |= GUC_WA_RENDER_RST_RC6_EXIT;
172
173 if (XE_WA(gt, 14018913170))
174 flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6;
175
176 return flags;
177 }
178
guc_ctl_devid(struct xe_guc * guc)179 static u32 guc_ctl_devid(struct xe_guc *guc)
180 {
181 struct xe_device *xe = guc_to_xe(guc);
182
183 return (((u32)xe->info.devid) << 16) | xe->info.revid;
184 }
185
guc_print_params(struct xe_guc * guc)186 static void guc_print_params(struct xe_guc *guc)
187 {
188 struct xe_gt *gt = guc_to_gt(guc);
189 u32 *params = guc->params;
190 int i;
191
192 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
193 BUILD_BUG_ON(GUC_CTL_MAX_DWORDS + 2 != SOFT_SCRATCH_COUNT);
194
195 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
196 xe_gt_dbg(gt, "GuC param[%2d] = 0x%08x\n", i, params[i]);
197 }
198
guc_init_params(struct xe_guc * guc)199 static void guc_init_params(struct xe_guc *guc)
200 {
201 u32 *params = guc->params;
202
203 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
204 params[GUC_CTL_FEATURE] = 0;
205 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
206 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
207 params[GUC_CTL_WA] = 0;
208 params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
209
210 guc_print_params(guc);
211 }
212
guc_init_params_post_hwconfig(struct xe_guc * guc)213 static void guc_init_params_post_hwconfig(struct xe_guc *guc)
214 {
215 u32 *params = guc->params;
216
217 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
218 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
219 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
220 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
221 params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
222 params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
223
224 guc_print_params(guc);
225 }
226
227 /*
228 * Initialize the GuC parameter block before starting the firmware
229 * transfer. These parameters are read by the firmware on startup
230 * and cannot be changed thereafter.
231 */
guc_write_params(struct xe_guc * guc)232 static void guc_write_params(struct xe_guc *guc)
233 {
234 struct xe_gt *gt = guc_to_gt(guc);
235 int i;
236
237 xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
238
239 xe_mmio_write32(gt, SOFT_SCRATCH(0), 0);
240
241 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
242 xe_mmio_write32(gt, SOFT_SCRATCH(1 + i), guc->params[i]);
243 }
244
guc_fini_hw(void * arg)245 static void guc_fini_hw(void *arg)
246 {
247 struct xe_guc *guc = arg;
248 struct xe_gt *gt = guc_to_gt(guc);
249
250 xe_gt_WARN_ON(gt, xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL));
251 xe_uc_fini_hw(&guc_to_gt(guc)->uc);
252 xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL);
253 }
254
255 /**
256 * xe_guc_comm_init_early - early initialization of GuC communication
257 * @guc: the &xe_guc to initialize
258 *
259 * Must be called prior to first MMIO communication with GuC firmware.
260 */
xe_guc_comm_init_early(struct xe_guc * guc)261 void xe_guc_comm_init_early(struct xe_guc *guc)
262 {
263 struct xe_gt *gt = guc_to_gt(guc);
264
265 if (xe_gt_is_media_type(gt))
266 guc->notify_reg = MED_GUC_HOST_INTERRUPT;
267 else
268 guc->notify_reg = GUC_HOST_INTERRUPT;
269 }
270
xe_guc_realloc_post_hwconfig(struct xe_guc * guc)271 static int xe_guc_realloc_post_hwconfig(struct xe_guc *guc)
272 {
273 struct xe_tile *tile = gt_to_tile(guc_to_gt(guc));
274 struct xe_device *xe = guc_to_xe(guc);
275 int ret;
276
277 if (!IS_DGFX(guc_to_xe(guc)))
278 return 0;
279
280 ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->fw.bo);
281 if (ret)
282 return ret;
283
284 ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->log.bo);
285 if (ret)
286 return ret;
287
288 ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ads.bo);
289 if (ret)
290 return ret;
291
292 ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ct.bo);
293 if (ret)
294 return ret;
295
296 return 0;
297 }
298
vf_guc_init(struct xe_guc * guc)299 static int vf_guc_init(struct xe_guc *guc)
300 {
301 int err;
302
303 xe_guc_comm_init_early(guc);
304
305 err = xe_guc_ct_init(&guc->ct);
306 if (err)
307 return err;
308
309 err = xe_guc_relay_init(&guc->relay);
310 if (err)
311 return err;
312
313 return 0;
314 }
315
xe_guc_init(struct xe_guc * guc)316 int xe_guc_init(struct xe_guc *guc)
317 {
318 struct xe_device *xe = guc_to_xe(guc);
319 struct xe_gt *gt = guc_to_gt(guc);
320 int ret;
321
322 guc->fw.type = XE_UC_FW_TYPE_GUC;
323 ret = xe_uc_fw_init(&guc->fw);
324 if (ret)
325 goto out;
326
327 if (!xe_uc_fw_is_enabled(&guc->fw))
328 return 0;
329
330 if (IS_SRIOV_VF(xe)) {
331 ret = vf_guc_init(guc);
332 if (ret)
333 goto out;
334 return 0;
335 }
336
337 ret = xe_guc_log_init(&guc->log);
338 if (ret)
339 goto out;
340
341 ret = xe_guc_ads_init(&guc->ads);
342 if (ret)
343 goto out;
344
345 ret = xe_guc_ct_init(&guc->ct);
346 if (ret)
347 goto out;
348
349 ret = xe_guc_relay_init(&guc->relay);
350 if (ret)
351 goto out;
352
353 xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOADABLE);
354
355 ret = devm_add_action_or_reset(xe->drm.dev, guc_fini_hw, guc);
356 if (ret)
357 goto out;
358
359 guc_init_params(guc);
360
361 xe_guc_comm_init_early(guc);
362
363 return 0;
364
365 out:
366 xe_gt_err(gt, "GuC init failed with %pe\n", ERR_PTR(ret));
367 return ret;
368 }
369
vf_guc_init_post_hwconfig(struct xe_guc * guc)370 static int vf_guc_init_post_hwconfig(struct xe_guc *guc)
371 {
372 int err;
373
374 err = xe_guc_submit_init(guc, xe_gt_sriov_vf_guc_ids(guc_to_gt(guc)));
375 if (err)
376 return err;
377
378 /* XXX xe_guc_db_mgr_init not needed for now */
379
380 return 0;
381 }
382
383 /**
384 * xe_guc_init_post_hwconfig - initialize GuC post hwconfig load
385 * @guc: The GuC object
386 *
387 * Return: 0 on success, negative error code on error.
388 */
xe_guc_init_post_hwconfig(struct xe_guc * guc)389 int xe_guc_init_post_hwconfig(struct xe_guc *guc)
390 {
391 int ret;
392
393 if (IS_SRIOV_VF(guc_to_xe(guc)))
394 return vf_guc_init_post_hwconfig(guc);
395
396 ret = xe_guc_realloc_post_hwconfig(guc);
397 if (ret)
398 return ret;
399
400 guc_init_params_post_hwconfig(guc);
401
402 ret = xe_guc_submit_init(guc, ~0);
403 if (ret)
404 return ret;
405
406 ret = xe_guc_db_mgr_init(&guc->dbm, ~0);
407 if (ret)
408 return ret;
409
410 ret = xe_guc_pc_init(&guc->pc);
411 if (ret)
412 return ret;
413
414 return xe_guc_ads_init_post_hwconfig(&guc->ads);
415 }
416
xe_guc_post_load_init(struct xe_guc * guc)417 int xe_guc_post_load_init(struct xe_guc *guc)
418 {
419 xe_guc_ads_populate_post_load(&guc->ads);
420 guc->submission_state.enabled = true;
421
422 return 0;
423 }
424
xe_guc_reset(struct xe_guc * guc)425 int xe_guc_reset(struct xe_guc *guc)
426 {
427 struct xe_gt *gt = guc_to_gt(guc);
428 u32 guc_status, gdrst;
429 int ret;
430
431 xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
432
433 if (IS_SRIOV_VF(gt_to_xe(gt)))
434 return xe_gt_sriov_vf_bootstrap(gt);
435
436 xe_mmio_write32(gt, GDRST, GRDOM_GUC);
437
438 ret = xe_mmio_wait32(gt, GDRST, GRDOM_GUC, 0, 5000, &gdrst, false);
439 if (ret) {
440 xe_gt_err(gt, "GuC reset timed out, GDRST=%#x\n", gdrst);
441 goto err_out;
442 }
443
444 guc_status = xe_mmio_read32(gt, GUC_STATUS);
445 if (!(guc_status & GS_MIA_IN_RESET)) {
446 xe_gt_err(gt, "GuC status: %#x, MIA core expected to be in reset\n",
447 guc_status);
448 ret = -EIO;
449 goto err_out;
450 }
451
452 return 0;
453
454 err_out:
455
456 return ret;
457 }
458
guc_prepare_xfer(struct xe_guc * guc)459 static void guc_prepare_xfer(struct xe_guc *guc)
460 {
461 struct xe_gt *gt = guc_to_gt(guc);
462 struct xe_device *xe = guc_to_xe(guc);
463 u32 shim_flags = GUC_ENABLE_READ_CACHE_LOGIC |
464 GUC_ENABLE_READ_CACHE_FOR_SRAM_DATA |
465 GUC_ENABLE_READ_CACHE_FOR_WOPCM_DATA |
466 GUC_ENABLE_MIA_CLOCK_GATING;
467
468 if (GRAPHICS_VERx100(xe) < 1250)
469 shim_flags |= GUC_DISABLE_SRAM_INIT_TO_ZEROES |
470 GUC_ENABLE_MIA_CACHING;
471
472 if (GRAPHICS_VER(xe) >= 20 || xe->info.platform == XE_PVC)
473 shim_flags |= REG_FIELD_PREP(GUC_MOCS_INDEX_MASK, gt->mocs.uc_index);
474
475 /* Must program this register before loading the ucode with DMA */
476 xe_mmio_write32(gt, GUC_SHIM_CONTROL, shim_flags);
477
478 xe_mmio_write32(gt, GT_PM_CONFIG, GT_DOORBELL_ENABLE);
479
480 /* Make sure GuC receives ARAT interrupts */
481 xe_mmio_rmw32(gt, PMINTRMSK, ARAT_EXPIRED_INTRMSK, 0);
482 }
483
484 /*
485 * Supporting MMIO & in memory RSA
486 */
guc_xfer_rsa(struct xe_guc * guc)487 static int guc_xfer_rsa(struct xe_guc *guc)
488 {
489 struct xe_gt *gt = guc_to_gt(guc);
490 u32 rsa[UOS_RSA_SCRATCH_COUNT];
491 size_t copied;
492 int i;
493
494 if (guc->fw.rsa_size > 256) {
495 u32 rsa_ggtt_addr = xe_bo_ggtt_addr(guc->fw.bo) +
496 xe_uc_fw_rsa_offset(&guc->fw);
497 xe_mmio_write32(gt, UOS_RSA_SCRATCH(0), rsa_ggtt_addr);
498 return 0;
499 }
500
501 copied = xe_uc_fw_copy_rsa(&guc->fw, rsa, sizeof(rsa));
502 if (copied < sizeof(rsa))
503 return -ENOMEM;
504
505 for (i = 0; i < UOS_RSA_SCRATCH_COUNT; i++)
506 xe_mmio_write32(gt, UOS_RSA_SCRATCH(i), rsa[i]);
507
508 return 0;
509 }
510
511 /*
512 * Check a previously read GuC status register (GUC_STATUS) looking for
513 * known terminal states (either completion or failure) of either the
514 * microkernel status field or the boot ROM status field. Returns +1 for
515 * successful completion, -1 for failure and 0 for any intermediate state.
516 */
guc_load_done(u32 status)517 static int guc_load_done(u32 status)
518 {
519 u32 uk_val = REG_FIELD_GET(GS_UKERNEL_MASK, status);
520 u32 br_val = REG_FIELD_GET(GS_BOOTROM_MASK, status);
521
522 switch (uk_val) {
523 case XE_GUC_LOAD_STATUS_READY:
524 return 1;
525
526 case XE_GUC_LOAD_STATUS_ERROR_DEVID_BUILD_MISMATCH:
527 case XE_GUC_LOAD_STATUS_GUC_PREPROD_BUILD_MISMATCH:
528 case XE_GUC_LOAD_STATUS_ERROR_DEVID_INVALID_GUCTYPE:
529 case XE_GUC_LOAD_STATUS_HWCONFIG_ERROR:
530 case XE_GUC_LOAD_STATUS_DPC_ERROR:
531 case XE_GUC_LOAD_STATUS_EXCEPTION:
532 case XE_GUC_LOAD_STATUS_INIT_DATA_INVALID:
533 case XE_GUC_LOAD_STATUS_MPU_DATA_INVALID:
534 case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
535 return -1;
536 }
537
538 switch (br_val) {
539 case XE_BOOTROM_STATUS_NO_KEY_FOUND:
540 case XE_BOOTROM_STATUS_RSA_FAILED:
541 case XE_BOOTROM_STATUS_PAVPC_FAILED:
542 case XE_BOOTROM_STATUS_WOPCM_FAILED:
543 case XE_BOOTROM_STATUS_LOADLOC_FAILED:
544 case XE_BOOTROM_STATUS_JUMP_FAILED:
545 case XE_BOOTROM_STATUS_RC6CTXCONFIG_FAILED:
546 case XE_BOOTROM_STATUS_MPUMAP_INCORRECT:
547 case XE_BOOTROM_STATUS_EXCEPTION:
548 case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
549 return -1;
550 }
551
552 return 0;
553 }
554
guc_pc_get_cur_freq(struct xe_guc_pc * guc_pc)555 static s32 guc_pc_get_cur_freq(struct xe_guc_pc *guc_pc)
556 {
557 u32 freq;
558 int ret = xe_guc_pc_get_cur_freq(guc_pc, &freq);
559
560 return ret ? ret : freq;
561 }
562
563 /*
564 * Wait for the GuC to start up.
565 *
566 * Measurements indicate this should take no more than 20ms (assuming the GT
567 * clock is at maximum frequency). However, thermal throttling and other issues
568 * can prevent the clock hitting max and thus making the load take significantly
569 * longer. Allow up to 200ms as a safety margin for real world worst case situations.
570 *
571 * However, bugs anywhere from KMD to GuC to PCODE to fan failure in a CI farm can
572 * lead to even longer times. E.g. if the GT is clamped to minimum frequency then
573 * the load times can be in the seconds range. So the timeout is increased for debug
574 * builds to ensure that problems can be correctly analysed. For release builds, the
575 * timeout is kept short so that users don't wait forever to find out that there is a
576 * problem. In either case, if the load took longer than is reasonable even with some
577 * 'sensible' throttling, then flag a warning because something is not right.
578 *
579 * Note that there is a limit on how long an individual usleep_range() can wait for,
580 * hence longer waits require wrapping a shorter wait in a loop.
581 *
582 * Note that the only reason an end user should hit the shorter timeout is in case of
583 * extreme thermal throttling. And a system that is that hot during boot is probably
584 * dead anyway!
585 */
586 #if defined(CONFIG_DRM_XE_DEBUG)
587 #define GUC_LOAD_RETRY_LIMIT 20
588 #else
589 #define GUC_LOAD_RETRY_LIMIT 3
590 #endif
591 #define GUC_LOAD_TIME_WARN_MS 200
592
guc_wait_ucode(struct xe_guc * guc)593 static void guc_wait_ucode(struct xe_guc *guc)
594 {
595 struct xe_gt *gt = guc_to_gt(guc);
596 struct xe_guc_pc *guc_pc = >->uc.guc.pc;
597 ktime_t before, after, delta;
598 int load_done;
599 u32 status = 0;
600 int count = 0;
601 u64 delta_ms;
602 u32 before_freq;
603
604 before_freq = xe_guc_pc_get_act_freq(guc_pc);
605 before = ktime_get();
606 /*
607 * Note, can't use any kind of timing information from the call to xe_mmio_wait.
608 * It could return a thousand intermediate stages at random times. Instead, must
609 * manually track the total time taken and locally implement the timeout.
610 */
611 do {
612 u32 last_status = status & (GS_UKERNEL_MASK | GS_BOOTROM_MASK);
613 int ret;
614
615 /*
616 * Wait for any change (intermediate or terminal) in the status register.
617 * Note, the return value is a don't care. The only failure code is timeout
618 * but the timeouts need to be accumulated over all the intermediate partial
619 * timeouts rather than allowing a huge timeout each time. So basically, need
620 * to treat a timeout no different to a value change.
621 */
622 ret = xe_mmio_wait32_not(gt, GUC_STATUS, GS_UKERNEL_MASK | GS_BOOTROM_MASK,
623 last_status, 1000 * 1000, &status, false);
624 if (ret < 0)
625 count++;
626 after = ktime_get();
627 delta = ktime_sub(after, before);
628 delta_ms = ktime_to_ms(delta);
629
630 load_done = guc_load_done(status);
631 if (load_done != 0)
632 break;
633
634 if (delta_ms >= (GUC_LOAD_RETRY_LIMIT * 1000))
635 break;
636
637 xe_gt_dbg(gt, "load still in progress, timeouts = %d, freq = %dMHz (req %dMHz), status = 0x%08X [0x%02X/%02X]\n",
638 count, xe_guc_pc_get_act_freq(guc_pc),
639 guc_pc_get_cur_freq(guc_pc), status,
640 REG_FIELD_GET(GS_BOOTROM_MASK, status),
641 REG_FIELD_GET(GS_UKERNEL_MASK, status));
642 } while (1);
643
644 if (load_done != 1) {
645 u32 ukernel = REG_FIELD_GET(GS_UKERNEL_MASK, status);
646 u32 bootrom = REG_FIELD_GET(GS_BOOTROM_MASK, status);
647
648 xe_gt_err(gt, "load failed: status = 0x%08X, time = %lldms, freq = %dMHz (req %dMHz), done = %d\n",
649 status, delta_ms, xe_guc_pc_get_act_freq(guc_pc),
650 guc_pc_get_cur_freq(guc_pc), load_done);
651 xe_gt_err(gt, "load failed: status: Reset = %d, BootROM = 0x%02X, UKernel = 0x%02X, MIA = 0x%02X, Auth = 0x%02X\n",
652 REG_FIELD_GET(GS_MIA_IN_RESET, status),
653 bootrom, ukernel,
654 REG_FIELD_GET(GS_MIA_MASK, status),
655 REG_FIELD_GET(GS_AUTH_STATUS_MASK, status));
656
657 switch (bootrom) {
658 case XE_BOOTROM_STATUS_NO_KEY_FOUND:
659 xe_gt_err(gt, "invalid key requested, header = 0x%08X\n",
660 xe_mmio_read32(gt, GUC_HEADER_INFO));
661 break;
662
663 case XE_BOOTROM_STATUS_RSA_FAILED:
664 xe_gt_err(gt, "firmware signature verification failed\n");
665 break;
666
667 case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
668 xe_gt_err(gt, "firmware production part check failure\n");
669 break;
670 }
671
672 switch (ukernel) {
673 case XE_GUC_LOAD_STATUS_EXCEPTION:
674 xe_gt_err(gt, "firmware exception. EIP: %#x\n",
675 xe_mmio_read32(gt, SOFT_SCRATCH(13)));
676 break;
677
678 case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
679 xe_gt_err(gt, "illegal register in save/restore workaround list\n");
680 break;
681
682 case XE_GUC_LOAD_STATUS_HWCONFIG_START:
683 xe_gt_err(gt, "still extracting hwconfig table.\n");
684 break;
685 }
686
687 xe_device_declare_wedged(gt_to_xe(gt));
688 } else if (delta_ms > GUC_LOAD_TIME_WARN_MS) {
689 xe_gt_warn(gt, "excessive init time: %lldms! [status = 0x%08X, timeouts = %d]\n",
690 delta_ms, status, count);
691 xe_gt_warn(gt, "excessive init time: [freq = %dMHz (req = %dMHz), before = %dMHz, perf_limit_reasons = 0x%08X]\n",
692 xe_guc_pc_get_act_freq(guc_pc), guc_pc_get_cur_freq(guc_pc),
693 before_freq, xe_gt_throttle_get_limit_reasons(gt));
694 } else {
695 xe_gt_dbg(gt, "init took %lldms, freq = %dMHz (req = %dMHz), before = %dMHz, status = 0x%08X, timeouts = %d\n",
696 delta_ms, xe_guc_pc_get_act_freq(guc_pc), guc_pc_get_cur_freq(guc_pc),
697 before_freq, status, count);
698 }
699 }
700
__xe_guc_upload(struct xe_guc * guc)701 static int __xe_guc_upload(struct xe_guc *guc)
702 {
703 int ret;
704
705 /* Raise GT freq to speed up HuC/GuC load */
706 xe_guc_pc_raise_unslice(&guc->pc);
707
708 guc_write_params(guc);
709 guc_prepare_xfer(guc);
710
711 /*
712 * Note that GuC needs the CSS header plus uKernel code to be copied
713 * by the DMA engine in one operation, whereas the RSA signature is
714 * loaded separately, either by copying it to the UOS_RSA_SCRATCH
715 * register (if key size <= 256) or through a ggtt-pinned vma (if key
716 * size > 256). The RSA size and therefore the way we provide it to the
717 * HW is fixed for each platform and hard-coded in the bootrom.
718 */
719 ret = guc_xfer_rsa(guc);
720 if (ret)
721 goto out;
722 /*
723 * Current uCode expects the code to be loaded at 8k; locations below
724 * this are used for the stack.
725 */
726 ret = xe_uc_fw_upload(&guc->fw, 0x2000, UOS_MOVE);
727 if (ret)
728 goto out;
729
730 /* Wait for authentication */
731 guc_wait_ucode(guc);
732
733 xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_RUNNING);
734 return 0;
735
736 out:
737 xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOAD_FAIL);
738 return 0 /* FIXME: ret, don't want to stop load currently */;
739 }
740
vf_guc_min_load_for_hwconfig(struct xe_guc * guc)741 static int vf_guc_min_load_for_hwconfig(struct xe_guc *guc)
742 {
743 struct xe_gt *gt = guc_to_gt(guc);
744 int ret;
745
746 ret = xe_gt_sriov_vf_bootstrap(gt);
747 if (ret)
748 return ret;
749
750 ret = xe_gt_sriov_vf_query_config(gt);
751 if (ret)
752 return ret;
753
754 ret = xe_guc_hwconfig_init(guc);
755 if (ret)
756 return ret;
757
758 ret = xe_guc_enable_communication(guc);
759 if (ret)
760 return ret;
761
762 ret = xe_gt_sriov_vf_connect(gt);
763 if (ret)
764 return ret;
765
766 ret = xe_gt_sriov_vf_query_runtime(gt);
767 if (ret)
768 return ret;
769
770 return 0;
771 }
772
773 /**
774 * xe_guc_min_load_for_hwconfig - load minimal GuC and read hwconfig table
775 * @guc: The GuC object
776 *
777 * This function uploads a minimal GuC that does not support submissions but
778 * in a state where the hwconfig table can be read. Next, it reads and parses
779 * the hwconfig table so it can be used for subsequent steps in the driver load.
780 * Lastly, it enables CT communication (XXX: this is needed for PFs/VFs only).
781 *
782 * Return: 0 on success, negative error code on error.
783 */
xe_guc_min_load_for_hwconfig(struct xe_guc * guc)784 int xe_guc_min_load_for_hwconfig(struct xe_guc *guc)
785 {
786 int ret;
787
788 if (IS_SRIOV_VF(guc_to_xe(guc)))
789 return vf_guc_min_load_for_hwconfig(guc);
790
791 xe_guc_ads_populate_minimal(&guc->ads);
792
793 xe_guc_pc_init_early(&guc->pc);
794
795 ret = __xe_guc_upload(guc);
796 if (ret)
797 return ret;
798
799 ret = xe_guc_hwconfig_init(guc);
800 if (ret)
801 return ret;
802
803 ret = xe_guc_enable_communication(guc);
804 if (ret)
805 return ret;
806
807 return 0;
808 }
809
xe_guc_upload(struct xe_guc * guc)810 int xe_guc_upload(struct xe_guc *guc)
811 {
812 xe_guc_ads_populate(&guc->ads);
813
814 return __xe_guc_upload(guc);
815 }
816
guc_handle_mmio_msg(struct xe_guc * guc)817 static void guc_handle_mmio_msg(struct xe_guc *guc)
818 {
819 struct xe_gt *gt = guc_to_gt(guc);
820 u32 msg;
821
822 if (IS_SRIOV_VF(guc_to_xe(guc)))
823 return;
824
825 xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
826
827 msg = xe_mmio_read32(gt, SOFT_SCRATCH(15));
828 msg &= XE_GUC_RECV_MSG_EXCEPTION |
829 XE_GUC_RECV_MSG_CRASH_DUMP_POSTED;
830 xe_mmio_write32(gt, SOFT_SCRATCH(15), 0);
831
832 if (msg & XE_GUC_RECV_MSG_CRASH_DUMP_POSTED)
833 xe_gt_err(gt, "Received early GuC crash dump notification!\n");
834
835 if (msg & XE_GUC_RECV_MSG_EXCEPTION)
836 xe_gt_err(gt, "Received early GuC exception notification!\n");
837 }
838
guc_enable_irq(struct xe_guc * guc)839 static void guc_enable_irq(struct xe_guc *guc)
840 {
841 struct xe_gt *gt = guc_to_gt(guc);
842 u32 events = xe_gt_is_media_type(gt) ?
843 REG_FIELD_PREP(ENGINE0_MASK, GUC_INTR_GUC2HOST) :
844 REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
845
846 /* Primary GuC and media GuC share a single enable bit */
847 xe_mmio_write32(gt, GUC_SG_INTR_ENABLE,
848 REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST));
849
850 /*
851 * There are separate mask bits for primary and media GuCs, so use
852 * a RMW operation to avoid clobbering the other GuC's setting.
853 */
854 xe_mmio_rmw32(gt, GUC_SG_INTR_MASK, events, 0);
855 }
856
xe_guc_enable_communication(struct xe_guc * guc)857 int xe_guc_enable_communication(struct xe_guc *guc)
858 {
859 struct xe_device *xe = guc_to_xe(guc);
860 int err;
861
862 if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe)) {
863 struct xe_gt *gt = guc_to_gt(guc);
864 struct xe_tile *tile = gt_to_tile(gt);
865
866 err = xe_memirq_init_guc(&tile->sriov.vf.memirq, guc);
867 if (err)
868 return err;
869 } else {
870 guc_enable_irq(guc);
871 }
872
873 err = xe_guc_ct_enable(&guc->ct);
874 if (err)
875 return err;
876
877 guc_handle_mmio_msg(guc);
878
879 return 0;
880 }
881
xe_guc_suspend(struct xe_guc * guc)882 int xe_guc_suspend(struct xe_guc *guc)
883 {
884 struct xe_gt *gt = guc_to_gt(guc);
885 u32 action[] = {
886 XE_GUC_ACTION_CLIENT_SOFT_RESET,
887 };
888 int ret;
889
890 ret = xe_guc_mmio_send(guc, action, ARRAY_SIZE(action));
891 if (ret) {
892 xe_gt_err(gt, "GuC suspend failed: %pe\n", ERR_PTR(ret));
893 return ret;
894 }
895
896 xe_guc_sanitize(guc);
897 return 0;
898 }
899
xe_guc_notify(struct xe_guc * guc)900 void xe_guc_notify(struct xe_guc *guc)
901 {
902 struct xe_gt *gt = guc_to_gt(guc);
903 const u32 default_notify_data = 0;
904
905 /*
906 * Both GUC_HOST_INTERRUPT and MED_GUC_HOST_INTERRUPT can pass
907 * additional payload data to the GuC but this capability is not
908 * used by the firmware yet. Use default value in the meantime.
909 */
910 xe_mmio_write32(gt, guc->notify_reg, default_notify_data);
911 }
912
xe_guc_auth_huc(struct xe_guc * guc,u32 rsa_addr)913 int xe_guc_auth_huc(struct xe_guc *guc, u32 rsa_addr)
914 {
915 u32 action[] = {
916 XE_GUC_ACTION_AUTHENTICATE_HUC,
917 rsa_addr
918 };
919
920 return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
921 }
922
xe_guc_mmio_send_recv(struct xe_guc * guc,const u32 * request,u32 len,u32 * response_buf)923 int xe_guc_mmio_send_recv(struct xe_guc *guc, const u32 *request,
924 u32 len, u32 *response_buf)
925 {
926 struct xe_device *xe = guc_to_xe(guc);
927 struct xe_gt *gt = guc_to_gt(guc);
928 u32 header, reply;
929 struct xe_reg reply_reg = xe_gt_is_media_type(gt) ?
930 MED_VF_SW_FLAG(0) : VF_SW_FLAG(0);
931 const u32 LAST_INDEX = VF_SW_FLAG_COUNT - 1;
932 int ret;
933 int i;
934
935 BUILD_BUG_ON(VF_SW_FLAG_COUNT != MED_VF_SW_FLAG_COUNT);
936
937 xe_assert(xe, !xe_guc_ct_enabled(&guc->ct));
938 xe_assert(xe, len);
939 xe_assert(xe, len <= VF_SW_FLAG_COUNT);
940 xe_assert(xe, len <= MED_VF_SW_FLAG_COUNT);
941 xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) ==
942 GUC_HXG_ORIGIN_HOST);
943 xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) ==
944 GUC_HXG_TYPE_REQUEST);
945
946 retry:
947 /* Not in critical data-path, just do if else for GT type */
948 if (xe_gt_is_media_type(gt)) {
949 for (i = 0; i < len; ++i)
950 xe_mmio_write32(gt, MED_VF_SW_FLAG(i),
951 request[i]);
952 xe_mmio_read32(gt, MED_VF_SW_FLAG(LAST_INDEX));
953 } else {
954 for (i = 0; i < len; ++i)
955 xe_mmio_write32(gt, VF_SW_FLAG(i),
956 request[i]);
957 xe_mmio_read32(gt, VF_SW_FLAG(LAST_INDEX));
958 }
959
960 xe_guc_notify(guc);
961
962 ret = xe_mmio_wait32(gt, reply_reg, GUC_HXG_MSG_0_ORIGIN,
963 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_GUC),
964 50000, &reply, false);
965 if (ret) {
966 timeout:
967 xe_gt_err(gt, "GuC mmio request %#x: no reply %#x\n",
968 request[0], reply);
969 return ret;
970 }
971
972 header = xe_mmio_read32(gt, reply_reg);
973 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
974 GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
975 /*
976 * Once we got a BUSY reply we must wait again for the final
977 * response but this time we can't use ORIGIN mask anymore.
978 * To spot a right change in the reply, we take advantage that
979 * response SUCCESS and FAILURE differ only by the single bit
980 * and all other bits are set and can be used as a new mask.
981 */
982 u32 resp_bits = GUC_HXG_TYPE_RESPONSE_SUCCESS & GUC_HXG_TYPE_RESPONSE_FAILURE;
983 u32 resp_mask = FIELD_PREP(GUC_HXG_MSG_0_TYPE, resp_bits);
984
985 BUILD_BUG_ON(FIELD_MAX(GUC_HXG_MSG_0_TYPE) != GUC_HXG_TYPE_RESPONSE_SUCCESS);
986 BUILD_BUG_ON((GUC_HXG_TYPE_RESPONSE_SUCCESS ^ GUC_HXG_TYPE_RESPONSE_FAILURE) != 1);
987
988 ret = xe_mmio_wait32(gt, reply_reg, resp_mask, resp_mask,
989 1000000, &header, false);
990
991 if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
992 GUC_HXG_ORIGIN_GUC))
993 goto proto;
994 if (unlikely(ret)) {
995 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
996 GUC_HXG_TYPE_NO_RESPONSE_BUSY)
997 goto proto;
998 goto timeout;
999 }
1000 }
1001
1002 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
1003 GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
1004 u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
1005
1006 xe_gt_dbg(gt, "GuC mmio request %#x: retrying, reason %#x\n",
1007 request[0], reason);
1008 goto retry;
1009 }
1010
1011 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
1012 GUC_HXG_TYPE_RESPONSE_FAILURE) {
1013 u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
1014 u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
1015
1016 xe_gt_err(gt, "GuC mmio request %#x: failure %#x hint %#x\n",
1017 request[0], error, hint);
1018 return -ENXIO;
1019 }
1020
1021 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
1022 GUC_HXG_TYPE_RESPONSE_SUCCESS) {
1023 proto:
1024 xe_gt_err(gt, "GuC mmio request %#x: unexpected reply %#x\n",
1025 request[0], header);
1026 return -EPROTO;
1027 }
1028
1029 /* Just copy entire possible message response */
1030 if (response_buf) {
1031 response_buf[0] = header;
1032
1033 for (i = 1; i < VF_SW_FLAG_COUNT; i++) {
1034 reply_reg.addr += sizeof(u32);
1035 response_buf[i] = xe_mmio_read32(gt, reply_reg);
1036 }
1037 }
1038
1039 /* Use data from the GuC response as our return value */
1040 return FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
1041 }
1042
xe_guc_mmio_send(struct xe_guc * guc,const u32 * request,u32 len)1043 int xe_guc_mmio_send(struct xe_guc *guc, const u32 *request, u32 len)
1044 {
1045 return xe_guc_mmio_send_recv(guc, request, len, NULL);
1046 }
1047
guc_self_cfg(struct xe_guc * guc,u16 key,u16 len,u64 val)1048 static int guc_self_cfg(struct xe_guc *guc, u16 key, u16 len, u64 val)
1049 {
1050 struct xe_device *xe = guc_to_xe(guc);
1051 u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
1052 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
1053 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
1054 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
1055 GUC_ACTION_HOST2GUC_SELF_CFG),
1056 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
1057 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
1058 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32,
1059 lower_32_bits(val)),
1060 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64,
1061 upper_32_bits(val)),
1062 };
1063 int ret;
1064
1065 xe_assert(xe, len <= 2);
1066 xe_assert(xe, len != 1 || !upper_32_bits(val));
1067
1068 /* Self config must go over MMIO */
1069 ret = xe_guc_mmio_send(guc, request, ARRAY_SIZE(request));
1070
1071 if (unlikely(ret < 0))
1072 return ret;
1073 if (unlikely(ret > 1))
1074 return -EPROTO;
1075 if (unlikely(!ret))
1076 return -ENOKEY;
1077
1078 return 0;
1079 }
1080
xe_guc_self_cfg32(struct xe_guc * guc,u16 key,u32 val)1081 int xe_guc_self_cfg32(struct xe_guc *guc, u16 key, u32 val)
1082 {
1083 return guc_self_cfg(guc, key, 1, val);
1084 }
1085
xe_guc_self_cfg64(struct xe_guc * guc,u16 key,u64 val)1086 int xe_guc_self_cfg64(struct xe_guc *guc, u16 key, u64 val)
1087 {
1088 return guc_self_cfg(guc, key, 2, val);
1089 }
1090
xe_guc_irq_handler(struct xe_guc * guc,const u16 iir)1091 void xe_guc_irq_handler(struct xe_guc *guc, const u16 iir)
1092 {
1093 if (iir & GUC_INTR_GUC2HOST)
1094 xe_guc_ct_irq_handler(&guc->ct);
1095 }
1096
xe_guc_sanitize(struct xe_guc * guc)1097 void xe_guc_sanitize(struct xe_guc *guc)
1098 {
1099 xe_uc_fw_sanitize(&guc->fw);
1100 xe_guc_ct_disable(&guc->ct);
1101 guc->submission_state.enabled = false;
1102 }
1103
xe_guc_reset_prepare(struct xe_guc * guc)1104 int xe_guc_reset_prepare(struct xe_guc *guc)
1105 {
1106 return xe_guc_submit_reset_prepare(guc);
1107 }
1108
xe_guc_reset_wait(struct xe_guc * guc)1109 void xe_guc_reset_wait(struct xe_guc *guc)
1110 {
1111 xe_guc_submit_reset_wait(guc);
1112 }
1113
xe_guc_stop_prepare(struct xe_guc * guc)1114 void xe_guc_stop_prepare(struct xe_guc *guc)
1115 {
1116 if (!IS_SRIOV_VF(guc_to_xe(guc))) {
1117 int err;
1118
1119 err = xe_guc_pc_stop(&guc->pc);
1120 xe_gt_WARN(guc_to_gt(guc), err, "Failed to stop GuC PC: %pe\n",
1121 ERR_PTR(err));
1122 }
1123 }
1124
xe_guc_stop(struct xe_guc * guc)1125 void xe_guc_stop(struct xe_guc *guc)
1126 {
1127 xe_guc_ct_stop(&guc->ct);
1128
1129 xe_guc_submit_stop(guc);
1130 }
1131
xe_guc_start(struct xe_guc * guc)1132 int xe_guc_start(struct xe_guc *guc)
1133 {
1134 if (!IS_SRIOV_VF(guc_to_xe(guc))) {
1135 int err;
1136
1137 err = xe_guc_pc_start(&guc->pc);
1138 xe_gt_WARN(guc_to_gt(guc), err, "Failed to start GuC PC: %pe\n",
1139 ERR_PTR(err));
1140 }
1141
1142 return xe_guc_submit_start(guc);
1143 }
1144
xe_guc_print_info(struct xe_guc * guc,struct drm_printer * p)1145 void xe_guc_print_info(struct xe_guc *guc, struct drm_printer *p)
1146 {
1147 struct xe_gt *gt = guc_to_gt(guc);
1148 u32 status;
1149 int err;
1150 int i;
1151
1152 xe_uc_fw_print(&guc->fw, p);
1153
1154 err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1155 if (err)
1156 return;
1157
1158 status = xe_mmio_read32(gt, GUC_STATUS);
1159
1160 drm_printf(p, "\nGuC status 0x%08x:\n", status);
1161 drm_printf(p, "\tBootrom status = 0x%x\n",
1162 REG_FIELD_GET(GS_BOOTROM_MASK, status));
1163 drm_printf(p, "\tuKernel status = 0x%x\n",
1164 REG_FIELD_GET(GS_UKERNEL_MASK, status));
1165 drm_printf(p, "\tMIA Core status = 0x%x\n",
1166 REG_FIELD_GET(GS_MIA_MASK, status));
1167 drm_printf(p, "\tLog level = %d\n",
1168 xe_guc_log_get_level(&guc->log));
1169
1170 drm_puts(p, "\nScratch registers:\n");
1171 for (i = 0; i < SOFT_SCRATCH_COUNT; i++) {
1172 drm_printf(p, "\t%2d: \t0x%x\n",
1173 i, xe_mmio_read32(gt, SOFT_SCRATCH(i)));
1174 }
1175
1176 xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
1177
1178 xe_guc_ct_print(&guc->ct, p, false);
1179 xe_guc_submit_print(guc, p);
1180 }
1181
1182 /**
1183 * xe_guc_declare_wedged() - Declare GuC wedged
1184 * @guc: the GuC object
1185 *
1186 * Wedge the GuC which stops all submission, saves desired debug state, and
1187 * cleans up anything which could timeout.
1188 */
xe_guc_declare_wedged(struct xe_guc * guc)1189 void xe_guc_declare_wedged(struct xe_guc *guc)
1190 {
1191 xe_gt_assert(guc_to_gt(guc), guc_to_xe(guc)->wedged.mode);
1192
1193 xe_guc_reset_prepare(guc);
1194 xe_guc_ct_stop(&guc->ct);
1195 xe_guc_submit_wedge(guc);
1196 }
1197