xref: /linux/drivers/gpu/drm/xe/xe_guc.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_guc.h"
7 
8 #include <drm/drm_managed.h>
9 
10 #include <generated/xe_wa_oob.h>
11 
12 #include "abi/guc_actions_abi.h"
13 #include "abi/guc_errors_abi.h"
14 #include "regs/xe_gt_regs.h"
15 #include "regs/xe_gtt_defs.h"
16 #include "regs/xe_guc_regs.h"
17 #include "regs/xe_irq_regs.h"
18 #include "xe_bo.h"
19 #include "xe_device.h"
20 #include "xe_force_wake.h"
21 #include "xe_gt.h"
22 #include "xe_gt_printk.h"
23 #include "xe_gt_sriov_vf.h"
24 #include "xe_gt_throttle.h"
25 #include "xe_guc_ads.h"
26 #include "xe_guc_capture.h"
27 #include "xe_guc_ct.h"
28 #include "xe_guc_db_mgr.h"
29 #include "xe_guc_hwconfig.h"
30 #include "xe_guc_log.h"
31 #include "xe_guc_pc.h"
32 #include "xe_guc_relay.h"
33 #include "xe_guc_submit.h"
34 #include "xe_memirq.h"
35 #include "xe_mmio.h"
36 #include "xe_platform_types.h"
37 #include "xe_sriov.h"
38 #include "xe_uc.h"
39 #include "xe_uc_fw.h"
40 #include "xe_wa.h"
41 #include "xe_wopcm.h"
42 
43 static u32 guc_bo_ggtt_addr(struct xe_guc *guc,
44 			    struct xe_bo *bo)
45 {
46 	struct xe_device *xe = guc_to_xe(guc);
47 	u32 addr = xe_bo_ggtt_addr(bo);
48 
49 	/* GuC addresses above GUC_GGTT_TOP don't map through the GTT */
50 	xe_assert(xe, addr >= xe_wopcm_size(guc_to_xe(guc)));
51 	xe_assert(xe, addr < GUC_GGTT_TOP);
52 	xe_assert(xe, bo->size <= GUC_GGTT_TOP - addr);
53 
54 	return addr;
55 }
56 
57 static u32 guc_ctl_debug_flags(struct xe_guc *guc)
58 {
59 	u32 level = xe_guc_log_get_level(&guc->log);
60 	u32 flags = 0;
61 
62 	if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
63 		flags |= GUC_LOG_DISABLED;
64 	else
65 		flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
66 			 GUC_LOG_VERBOSITY_SHIFT;
67 
68 	return flags;
69 }
70 
71 static u32 guc_ctl_feature_flags(struct xe_guc *guc)
72 {
73 	u32 flags = GUC_CTL_ENABLE_LITE_RESTORE;
74 
75 	if (!guc_to_xe(guc)->info.skip_guc_pc)
76 		flags |= GUC_CTL_ENABLE_SLPC;
77 
78 	return flags;
79 }
80 
81 static u32 guc_ctl_log_params_flags(struct xe_guc *guc)
82 {
83 	u32 offset = guc_bo_ggtt_addr(guc, guc->log.bo) >> PAGE_SHIFT;
84 	u32 flags;
85 
86 	#if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
87 	#define LOG_UNIT SZ_1M
88 	#define LOG_FLAG GUC_LOG_LOG_ALLOC_UNITS
89 	#else
90 	#define LOG_UNIT SZ_4K
91 	#define LOG_FLAG 0
92 	#endif
93 
94 	#if (((CAPTURE_BUFFER_SIZE) % SZ_1M) == 0)
95 	#define CAPTURE_UNIT SZ_1M
96 	#define CAPTURE_FLAG GUC_LOG_CAPTURE_ALLOC_UNITS
97 	#else
98 	#define CAPTURE_UNIT SZ_4K
99 	#define CAPTURE_FLAG 0
100 	#endif
101 
102 	BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
103 	BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, LOG_UNIT));
104 	BUILD_BUG_ON(!DEBUG_BUFFER_SIZE);
105 	BUILD_BUG_ON(!IS_ALIGNED(DEBUG_BUFFER_SIZE, LOG_UNIT));
106 	BUILD_BUG_ON(!CAPTURE_BUFFER_SIZE);
107 	BUILD_BUG_ON(!IS_ALIGNED(CAPTURE_BUFFER_SIZE, CAPTURE_UNIT));
108 
109 	BUILD_BUG_ON((CRASH_BUFFER_SIZE / LOG_UNIT - 1) >
110 			(GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
111 	BUILD_BUG_ON((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) >
112 			(GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT));
113 	BUILD_BUG_ON((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) >
114 			(GUC_LOG_CAPTURE_MASK >> GUC_LOG_CAPTURE_SHIFT));
115 
116 	flags = GUC_LOG_VALID |
117 		GUC_LOG_NOTIFY_ON_HALF_FULL |
118 		CAPTURE_FLAG |
119 		LOG_FLAG |
120 		((CRASH_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
121 		((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_DEBUG_SHIFT) |
122 		((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) <<
123 		 GUC_LOG_CAPTURE_SHIFT) |
124 		(offset << GUC_LOG_BUF_ADDR_SHIFT);
125 
126 	#undef LOG_UNIT
127 	#undef LOG_FLAG
128 	#undef CAPTURE_UNIT
129 	#undef CAPTURE_FLAG
130 
131 	return flags;
132 }
133 
134 static u32 guc_ctl_ads_flags(struct xe_guc *guc)
135 {
136 	u32 ads = guc_bo_ggtt_addr(guc, guc->ads.bo) >> PAGE_SHIFT;
137 	u32 flags = ads << GUC_ADS_ADDR_SHIFT;
138 
139 	return flags;
140 }
141 
142 static u32 guc_ctl_wa_flags(struct xe_guc *guc)
143 {
144 	struct xe_device *xe = guc_to_xe(guc);
145 	struct xe_gt *gt = guc_to_gt(guc);
146 	u32 flags = 0;
147 
148 	if (XE_WA(gt, 22012773006))
149 		flags |= GUC_WA_POLLCS;
150 
151 	if (XE_WA(gt, 14014475959))
152 		flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
153 
154 	if (XE_WA(gt, 22011391025))
155 		flags |= GUC_WA_DUAL_QUEUE;
156 
157 	/*
158 	 * Wa_22011802037: FIXME - there's more to be done than simply setting
159 	 * this flag: make sure each CS is stopped when preparing for GT reset
160 	 * and wait for pending MI_FW.
161 	 */
162 	if (GRAPHICS_VERx100(xe) < 1270)
163 		flags |= GUC_WA_PRE_PARSER;
164 
165 	if (XE_WA(gt, 22012727170) || XE_WA(gt, 22012727685))
166 		flags |= GUC_WA_CONTEXT_ISOLATION;
167 
168 	if (XE_WA(gt, 18020744125) &&
169 	    !xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_RENDER))
170 		flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST;
171 
172 	if (XE_WA(gt, 1509372804))
173 		flags |= GUC_WA_RENDER_RST_RC6_EXIT;
174 
175 	if (XE_WA(gt, 14018913170))
176 		flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6;
177 
178 	return flags;
179 }
180 
181 static u32 guc_ctl_devid(struct xe_guc *guc)
182 {
183 	struct xe_device *xe = guc_to_xe(guc);
184 
185 	return (((u32)xe->info.devid) << 16) | xe->info.revid;
186 }
187 
188 static void guc_print_params(struct xe_guc *guc)
189 {
190 	struct xe_gt *gt = guc_to_gt(guc);
191 	u32 *params = guc->params;
192 	int i;
193 
194 	BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
195 	BUILD_BUG_ON(GUC_CTL_MAX_DWORDS + 2 != SOFT_SCRATCH_COUNT);
196 
197 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
198 		xe_gt_dbg(gt, "GuC param[%2d] = 0x%08x\n", i, params[i]);
199 }
200 
201 static void guc_init_params(struct xe_guc *guc)
202 {
203 	u32 *params = guc->params;
204 
205 	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
206 	params[GUC_CTL_FEATURE] = 0;
207 	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
208 	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
209 	params[GUC_CTL_WA] = 0;
210 	params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
211 
212 	guc_print_params(guc);
213 }
214 
215 static void guc_init_params_post_hwconfig(struct xe_guc *guc)
216 {
217 	u32 *params = guc->params;
218 
219 	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
220 	params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
221 	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
222 	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
223 	params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
224 	params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
225 
226 	guc_print_params(guc);
227 }
228 
229 /*
230  * Initialize the GuC parameter block before starting the firmware
231  * transfer. These parameters are read by the firmware on startup
232  * and cannot be changed thereafter.
233  */
234 static void guc_write_params(struct xe_guc *guc)
235 {
236 	struct xe_gt *gt = guc_to_gt(guc);
237 	int i;
238 
239 	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
240 
241 	xe_mmio_write32(&gt->mmio, SOFT_SCRATCH(0), 0);
242 
243 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
244 		xe_mmio_write32(&gt->mmio, SOFT_SCRATCH(1 + i), guc->params[i]);
245 }
246 
247 static void guc_fini_hw(void *arg)
248 {
249 	struct xe_guc *guc = arg;
250 	struct xe_gt *gt = guc_to_gt(guc);
251 	unsigned int fw_ref;
252 
253 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
254 	xe_uc_fini_hw(&guc_to_gt(guc)->uc);
255 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
256 }
257 
258 /**
259  * xe_guc_comm_init_early - early initialization of GuC communication
260  * @guc: the &xe_guc to initialize
261  *
262  * Must be called prior to first MMIO communication with GuC firmware.
263  */
264 void xe_guc_comm_init_early(struct xe_guc *guc)
265 {
266 	struct xe_gt *gt = guc_to_gt(guc);
267 
268 	if (xe_gt_is_media_type(gt))
269 		guc->notify_reg = MED_GUC_HOST_INTERRUPT;
270 	else
271 		guc->notify_reg = GUC_HOST_INTERRUPT;
272 }
273 
274 static int xe_guc_realloc_post_hwconfig(struct xe_guc *guc)
275 {
276 	struct xe_tile *tile = gt_to_tile(guc_to_gt(guc));
277 	struct xe_device *xe = guc_to_xe(guc);
278 	int ret;
279 
280 	if (!IS_DGFX(guc_to_xe(guc)))
281 		return 0;
282 
283 	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->fw.bo);
284 	if (ret)
285 		return ret;
286 
287 	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->log.bo);
288 	if (ret)
289 		return ret;
290 
291 	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ads.bo);
292 	if (ret)
293 		return ret;
294 
295 	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ct.bo);
296 	if (ret)
297 		return ret;
298 
299 	return 0;
300 }
301 
302 static int vf_guc_init(struct xe_guc *guc)
303 {
304 	int err;
305 
306 	xe_guc_comm_init_early(guc);
307 
308 	err = xe_guc_ct_init(&guc->ct);
309 	if (err)
310 		return err;
311 
312 	err = xe_guc_relay_init(&guc->relay);
313 	if (err)
314 		return err;
315 
316 	return 0;
317 }
318 
319 int xe_guc_init(struct xe_guc *guc)
320 {
321 	struct xe_device *xe = guc_to_xe(guc);
322 	struct xe_gt *gt = guc_to_gt(guc);
323 	int ret;
324 
325 	guc->fw.type = XE_UC_FW_TYPE_GUC;
326 	ret = xe_uc_fw_init(&guc->fw);
327 	if (ret)
328 		goto out;
329 
330 	if (!xe_uc_fw_is_enabled(&guc->fw))
331 		return 0;
332 
333 	if (IS_SRIOV_VF(xe)) {
334 		ret = vf_guc_init(guc);
335 		if (ret)
336 			goto out;
337 		return 0;
338 	}
339 
340 	ret = xe_guc_log_init(&guc->log);
341 	if (ret)
342 		goto out;
343 
344 	ret = xe_guc_capture_init(guc);
345 	if (ret)
346 		goto out;
347 
348 	ret = xe_guc_ads_init(&guc->ads);
349 	if (ret)
350 		goto out;
351 
352 	ret = xe_guc_ct_init(&guc->ct);
353 	if (ret)
354 		goto out;
355 
356 	ret = xe_guc_relay_init(&guc->relay);
357 	if (ret)
358 		goto out;
359 
360 	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOADABLE);
361 
362 	ret = devm_add_action_or_reset(xe->drm.dev, guc_fini_hw, guc);
363 	if (ret)
364 		goto out;
365 
366 	guc_init_params(guc);
367 
368 	xe_guc_comm_init_early(guc);
369 
370 	return 0;
371 
372 out:
373 	xe_gt_err(gt, "GuC init failed with %pe\n", ERR_PTR(ret));
374 	return ret;
375 }
376 
377 static int vf_guc_init_post_hwconfig(struct xe_guc *guc)
378 {
379 	int err;
380 
381 	err = xe_guc_submit_init(guc, xe_gt_sriov_vf_guc_ids(guc_to_gt(guc)));
382 	if (err)
383 		return err;
384 
385 	/* XXX xe_guc_db_mgr_init not needed for now */
386 
387 	return 0;
388 }
389 
390 /**
391  * xe_guc_init_post_hwconfig - initialize GuC post hwconfig load
392  * @guc: The GuC object
393  *
394  * Return: 0 on success, negative error code on error.
395  */
396 int xe_guc_init_post_hwconfig(struct xe_guc *guc)
397 {
398 	int ret;
399 
400 	if (IS_SRIOV_VF(guc_to_xe(guc)))
401 		return vf_guc_init_post_hwconfig(guc);
402 
403 	ret = xe_guc_realloc_post_hwconfig(guc);
404 	if (ret)
405 		return ret;
406 
407 	guc_init_params_post_hwconfig(guc);
408 
409 	ret = xe_guc_submit_init(guc, ~0);
410 	if (ret)
411 		return ret;
412 
413 	ret = xe_guc_db_mgr_init(&guc->dbm, ~0);
414 	if (ret)
415 		return ret;
416 
417 	ret = xe_guc_pc_init(&guc->pc);
418 	if (ret)
419 		return ret;
420 
421 	return xe_guc_ads_init_post_hwconfig(&guc->ads);
422 }
423 
424 int xe_guc_post_load_init(struct xe_guc *guc)
425 {
426 	xe_guc_ads_populate_post_load(&guc->ads);
427 	guc->submission_state.enabled = true;
428 
429 	return 0;
430 }
431 
432 int xe_guc_reset(struct xe_guc *guc)
433 {
434 	struct xe_gt *gt = guc_to_gt(guc);
435 	struct xe_mmio *mmio = &gt->mmio;
436 	u32 guc_status, gdrst;
437 	int ret;
438 
439 	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
440 
441 	if (IS_SRIOV_VF(gt_to_xe(gt)))
442 		return xe_gt_sriov_vf_bootstrap(gt);
443 
444 	xe_mmio_write32(mmio, GDRST, GRDOM_GUC);
445 
446 	ret = xe_mmio_wait32(mmio, GDRST, GRDOM_GUC, 0, 5000, &gdrst, false);
447 	if (ret) {
448 		xe_gt_err(gt, "GuC reset timed out, GDRST=%#x\n", gdrst);
449 		goto err_out;
450 	}
451 
452 	guc_status = xe_mmio_read32(mmio, GUC_STATUS);
453 	if (!(guc_status & GS_MIA_IN_RESET)) {
454 		xe_gt_err(gt, "GuC status: %#x, MIA core expected to be in reset\n",
455 			  guc_status);
456 		ret = -EIO;
457 		goto err_out;
458 	}
459 
460 	return 0;
461 
462 err_out:
463 
464 	return ret;
465 }
466 
467 static void guc_prepare_xfer(struct xe_guc *guc)
468 {
469 	struct xe_gt *gt = guc_to_gt(guc);
470 	struct xe_mmio *mmio = &gt->mmio;
471 	struct xe_device *xe =  guc_to_xe(guc);
472 	u32 shim_flags = GUC_ENABLE_READ_CACHE_LOGIC |
473 		GUC_ENABLE_READ_CACHE_FOR_SRAM_DATA |
474 		GUC_ENABLE_READ_CACHE_FOR_WOPCM_DATA |
475 		GUC_ENABLE_MIA_CLOCK_GATING;
476 
477 	if (GRAPHICS_VERx100(xe) < 1250)
478 		shim_flags |= GUC_DISABLE_SRAM_INIT_TO_ZEROES |
479 				GUC_ENABLE_MIA_CACHING;
480 
481 	if (GRAPHICS_VER(xe) >= 20 || xe->info.platform == XE_PVC)
482 		shim_flags |= REG_FIELD_PREP(GUC_MOCS_INDEX_MASK, gt->mocs.uc_index);
483 
484 	/* Must program this register before loading the ucode with DMA */
485 	xe_mmio_write32(mmio, GUC_SHIM_CONTROL, shim_flags);
486 
487 	xe_mmio_write32(mmio, GT_PM_CONFIG, GT_DOORBELL_ENABLE);
488 
489 	/* Make sure GuC receives ARAT interrupts */
490 	xe_mmio_rmw32(mmio, PMINTRMSK, ARAT_EXPIRED_INTRMSK, 0);
491 }
492 
493 /*
494  * Supporting MMIO & in memory RSA
495  */
496 static int guc_xfer_rsa(struct xe_guc *guc)
497 {
498 	struct xe_gt *gt = guc_to_gt(guc);
499 	u32 rsa[UOS_RSA_SCRATCH_COUNT];
500 	size_t copied;
501 	int i;
502 
503 	if (guc->fw.rsa_size > 256) {
504 		u32 rsa_ggtt_addr = xe_bo_ggtt_addr(guc->fw.bo) +
505 				    xe_uc_fw_rsa_offset(&guc->fw);
506 		xe_mmio_write32(&gt->mmio, UOS_RSA_SCRATCH(0), rsa_ggtt_addr);
507 		return 0;
508 	}
509 
510 	copied = xe_uc_fw_copy_rsa(&guc->fw, rsa, sizeof(rsa));
511 	if (copied < sizeof(rsa))
512 		return -ENOMEM;
513 
514 	for (i = 0; i < UOS_RSA_SCRATCH_COUNT; i++)
515 		xe_mmio_write32(&gt->mmio, UOS_RSA_SCRATCH(i), rsa[i]);
516 
517 	return 0;
518 }
519 
520 /*
521  * Check a previously read GuC status register (GUC_STATUS) looking for
522  * known terminal states (either completion or failure) of either the
523  * microkernel status field or the boot ROM status field. Returns +1 for
524  * successful completion, -1 for failure and 0 for any intermediate state.
525  */
526 static int guc_load_done(u32 status)
527 {
528 	u32 uk_val = REG_FIELD_GET(GS_UKERNEL_MASK, status);
529 	u32 br_val = REG_FIELD_GET(GS_BOOTROM_MASK, status);
530 
531 	switch (uk_val) {
532 	case XE_GUC_LOAD_STATUS_READY:
533 		return 1;
534 
535 	case XE_GUC_LOAD_STATUS_ERROR_DEVID_BUILD_MISMATCH:
536 	case XE_GUC_LOAD_STATUS_GUC_PREPROD_BUILD_MISMATCH:
537 	case XE_GUC_LOAD_STATUS_ERROR_DEVID_INVALID_GUCTYPE:
538 	case XE_GUC_LOAD_STATUS_HWCONFIG_ERROR:
539 	case XE_GUC_LOAD_STATUS_DPC_ERROR:
540 	case XE_GUC_LOAD_STATUS_EXCEPTION:
541 	case XE_GUC_LOAD_STATUS_INIT_DATA_INVALID:
542 	case XE_GUC_LOAD_STATUS_MPU_DATA_INVALID:
543 	case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
544 		return -1;
545 	}
546 
547 	switch (br_val) {
548 	case XE_BOOTROM_STATUS_NO_KEY_FOUND:
549 	case XE_BOOTROM_STATUS_RSA_FAILED:
550 	case XE_BOOTROM_STATUS_PAVPC_FAILED:
551 	case XE_BOOTROM_STATUS_WOPCM_FAILED:
552 	case XE_BOOTROM_STATUS_LOADLOC_FAILED:
553 	case XE_BOOTROM_STATUS_JUMP_FAILED:
554 	case XE_BOOTROM_STATUS_RC6CTXCONFIG_FAILED:
555 	case XE_BOOTROM_STATUS_MPUMAP_INCORRECT:
556 	case XE_BOOTROM_STATUS_EXCEPTION:
557 	case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
558 		return -1;
559 	}
560 
561 	return 0;
562 }
563 
564 static s32 guc_pc_get_cur_freq(struct xe_guc_pc *guc_pc)
565 {
566 	u32 freq;
567 	int ret = xe_guc_pc_get_cur_freq(guc_pc, &freq);
568 
569 	return ret ? ret : freq;
570 }
571 
572 /*
573  * Wait for the GuC to start up.
574  *
575  * Measurements indicate this should take no more than 20ms (assuming the GT
576  * clock is at maximum frequency). However, thermal throttling and other issues
577  * can prevent the clock hitting max and thus making the load take significantly
578  * longer. Allow up to 200ms as a safety margin for real world worst case situations.
579  *
580  * However, bugs anywhere from KMD to GuC to PCODE to fan failure in a CI farm can
581  * lead to even longer times. E.g. if the GT is clamped to minimum frequency then
582  * the load times can be in the seconds range. So the timeout is increased for debug
583  * builds to ensure that problems can be correctly analysed. For release builds, the
584  * timeout is kept short so that users don't wait forever to find out that there is a
585  * problem. In either case, if the load took longer than is reasonable even with some
586  * 'sensible' throttling, then flag a warning because something is not right.
587  *
588  * Note that there is a limit on how long an individual usleep_range() can wait for,
589  * hence longer waits require wrapping a shorter wait in a loop.
590  *
591  * Note that the only reason an end user should hit the shorter timeout is in case of
592  * extreme thermal throttling. And a system that is that hot during boot is probably
593  * dead anyway!
594  */
595 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
596 #define GUC_LOAD_RETRY_LIMIT	20
597 #else
598 #define GUC_LOAD_RETRY_LIMIT	3
599 #endif
600 #define GUC_LOAD_TIME_WARN_MS      200
601 
602 static void guc_wait_ucode(struct xe_guc *guc)
603 {
604 	struct xe_gt *gt = guc_to_gt(guc);
605 	struct xe_mmio *mmio = &gt->mmio;
606 	struct xe_guc_pc *guc_pc = &gt->uc.guc.pc;
607 	ktime_t before, after, delta;
608 	int load_done;
609 	u32 status = 0;
610 	int count = 0;
611 	u64 delta_ms;
612 	u32 before_freq;
613 
614 	before_freq = xe_guc_pc_get_act_freq(guc_pc);
615 	before = ktime_get();
616 	/*
617 	 * Note, can't use any kind of timing information from the call to xe_mmio_wait.
618 	 * It could return a thousand intermediate stages at random times. Instead, must
619 	 * manually track the total time taken and locally implement the timeout.
620 	 */
621 	do {
622 		u32 last_status = status & (GS_UKERNEL_MASK | GS_BOOTROM_MASK);
623 		int ret;
624 
625 		/*
626 		 * Wait for any change (intermediate or terminal) in the status register.
627 		 * Note, the return value is a don't care. The only failure code is timeout
628 		 * but the timeouts need to be accumulated over all the intermediate partial
629 		 * timeouts rather than allowing a huge timeout each time. So basically, need
630 		 * to treat a timeout no different to a value change.
631 		 */
632 		ret = xe_mmio_wait32_not(mmio, GUC_STATUS, GS_UKERNEL_MASK | GS_BOOTROM_MASK,
633 					 last_status, 1000 * 1000, &status, false);
634 		if (ret < 0)
635 			count++;
636 		after = ktime_get();
637 		delta = ktime_sub(after, before);
638 		delta_ms = ktime_to_ms(delta);
639 
640 		load_done = guc_load_done(status);
641 		if (load_done != 0)
642 			break;
643 
644 		if (delta_ms >= (GUC_LOAD_RETRY_LIMIT * 1000))
645 			break;
646 
647 		xe_gt_dbg(gt, "load still in progress, timeouts = %d, freq = %dMHz (req %dMHz), status = 0x%08X [0x%02X/%02X]\n",
648 			  count, xe_guc_pc_get_act_freq(guc_pc),
649 			  guc_pc_get_cur_freq(guc_pc), status,
650 			  REG_FIELD_GET(GS_BOOTROM_MASK, status),
651 			  REG_FIELD_GET(GS_UKERNEL_MASK, status));
652 	} while (1);
653 
654 	if (load_done != 1) {
655 		u32 ukernel = REG_FIELD_GET(GS_UKERNEL_MASK, status);
656 		u32 bootrom = REG_FIELD_GET(GS_BOOTROM_MASK, status);
657 
658 		xe_gt_err(gt, "load failed: status = 0x%08X, time = %lldms, freq = %dMHz (req %dMHz), done = %d\n",
659 			  status, delta_ms, xe_guc_pc_get_act_freq(guc_pc),
660 			  guc_pc_get_cur_freq(guc_pc), load_done);
661 		xe_gt_err(gt, "load failed: status: Reset = %d, BootROM = 0x%02X, UKernel = 0x%02X, MIA = 0x%02X, Auth = 0x%02X\n",
662 			  REG_FIELD_GET(GS_MIA_IN_RESET, status),
663 			  bootrom, ukernel,
664 			  REG_FIELD_GET(GS_MIA_MASK, status),
665 			  REG_FIELD_GET(GS_AUTH_STATUS_MASK, status));
666 
667 		switch (bootrom) {
668 		case XE_BOOTROM_STATUS_NO_KEY_FOUND:
669 			xe_gt_err(gt, "invalid key requested, header = 0x%08X\n",
670 				  xe_mmio_read32(mmio, GUC_HEADER_INFO));
671 			break;
672 
673 		case XE_BOOTROM_STATUS_RSA_FAILED:
674 			xe_gt_err(gt, "firmware signature verification failed\n");
675 			break;
676 
677 		case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
678 			xe_gt_err(gt, "firmware production part check failure\n");
679 			break;
680 		}
681 
682 		switch (ukernel) {
683 		case XE_GUC_LOAD_STATUS_EXCEPTION:
684 			xe_gt_err(gt, "firmware exception. EIP: %#x\n",
685 				  xe_mmio_read32(mmio, SOFT_SCRATCH(13)));
686 			break;
687 
688 		case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
689 			xe_gt_err(gt, "illegal register in save/restore workaround list\n");
690 			break;
691 
692 		case XE_GUC_LOAD_STATUS_HWCONFIG_START:
693 			xe_gt_err(gt, "still extracting hwconfig table.\n");
694 			break;
695 		}
696 
697 		xe_device_declare_wedged(gt_to_xe(gt));
698 	} else if (delta_ms > GUC_LOAD_TIME_WARN_MS) {
699 		xe_gt_warn(gt, "excessive init time: %lldms! [status = 0x%08X, timeouts = %d]\n",
700 			   delta_ms, status, count);
701 		xe_gt_warn(gt, "excessive init time: [freq = %dMHz (req = %dMHz), before = %dMHz, perf_limit_reasons = 0x%08X]\n",
702 			   xe_guc_pc_get_act_freq(guc_pc), guc_pc_get_cur_freq(guc_pc),
703 			   before_freq, xe_gt_throttle_get_limit_reasons(gt));
704 	} else {
705 		xe_gt_dbg(gt, "init took %lldms, freq = %dMHz (req = %dMHz), before = %dMHz, status = 0x%08X, timeouts = %d\n",
706 			  delta_ms, xe_guc_pc_get_act_freq(guc_pc), guc_pc_get_cur_freq(guc_pc),
707 			  before_freq, status, count);
708 	}
709 }
710 
711 static int __xe_guc_upload(struct xe_guc *guc)
712 {
713 	int ret;
714 
715 	/* Raise GT freq to speed up HuC/GuC load */
716 	xe_guc_pc_raise_unslice(&guc->pc);
717 
718 	guc_write_params(guc);
719 	guc_prepare_xfer(guc);
720 
721 	/*
722 	 * Note that GuC needs the CSS header plus uKernel code to be copied
723 	 * by the DMA engine in one operation, whereas the RSA signature is
724 	 * loaded separately, either by copying it to the UOS_RSA_SCRATCH
725 	 * register (if key size <= 256) or through a ggtt-pinned vma (if key
726 	 * size > 256). The RSA size and therefore the way we provide it to the
727 	 * HW is fixed for each platform and hard-coded in the bootrom.
728 	 */
729 	ret = guc_xfer_rsa(guc);
730 	if (ret)
731 		goto out;
732 	/*
733 	 * Current uCode expects the code to be loaded at 8k; locations below
734 	 * this are used for the stack.
735 	 */
736 	ret = xe_uc_fw_upload(&guc->fw, 0x2000, UOS_MOVE);
737 	if (ret)
738 		goto out;
739 
740 	/* Wait for authentication */
741 	guc_wait_ucode(guc);
742 
743 	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_RUNNING);
744 	return 0;
745 
746 out:
747 	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOAD_FAIL);
748 	return 0	/* FIXME: ret, don't want to stop load currently */;
749 }
750 
751 static int vf_guc_min_load_for_hwconfig(struct xe_guc *guc)
752 {
753 	struct xe_gt *gt = guc_to_gt(guc);
754 	int ret;
755 
756 	ret = xe_gt_sriov_vf_bootstrap(gt);
757 	if (ret)
758 		return ret;
759 
760 	ret = xe_gt_sriov_vf_query_config(gt);
761 	if (ret)
762 		return ret;
763 
764 	ret = xe_guc_hwconfig_init(guc);
765 	if (ret)
766 		return ret;
767 
768 	ret = xe_guc_enable_communication(guc);
769 	if (ret)
770 		return ret;
771 
772 	ret = xe_gt_sriov_vf_connect(gt);
773 	if (ret)
774 		return ret;
775 
776 	ret = xe_gt_sriov_vf_query_runtime(gt);
777 	if (ret)
778 		return ret;
779 
780 	return 0;
781 }
782 
783 /**
784  * xe_guc_min_load_for_hwconfig - load minimal GuC and read hwconfig table
785  * @guc: The GuC object
786  *
787  * This function uploads a minimal GuC that does not support submissions but
788  * in a state where the hwconfig table can be read. Next, it reads and parses
789  * the hwconfig table so it can be used for subsequent steps in the driver load.
790  * Lastly, it enables CT communication (XXX: this is needed for PFs/VFs only).
791  *
792  * Return: 0 on success, negative error code on error.
793  */
794 int xe_guc_min_load_for_hwconfig(struct xe_guc *guc)
795 {
796 	int ret;
797 
798 	if (IS_SRIOV_VF(guc_to_xe(guc)))
799 		return vf_guc_min_load_for_hwconfig(guc);
800 
801 	xe_guc_ads_populate_minimal(&guc->ads);
802 
803 	xe_guc_pc_init_early(&guc->pc);
804 
805 	ret = __xe_guc_upload(guc);
806 	if (ret)
807 		return ret;
808 
809 	ret = xe_guc_hwconfig_init(guc);
810 	if (ret)
811 		return ret;
812 
813 	ret = xe_guc_enable_communication(guc);
814 	if (ret)
815 		return ret;
816 
817 	return 0;
818 }
819 
820 int xe_guc_upload(struct xe_guc *guc)
821 {
822 	xe_guc_ads_populate(&guc->ads);
823 
824 	return __xe_guc_upload(guc);
825 }
826 
827 static void guc_handle_mmio_msg(struct xe_guc *guc)
828 {
829 	struct xe_gt *gt = guc_to_gt(guc);
830 	u32 msg;
831 
832 	if (IS_SRIOV_VF(guc_to_xe(guc)))
833 		return;
834 
835 	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
836 
837 	msg = xe_mmio_read32(&gt->mmio, SOFT_SCRATCH(15));
838 	msg &= XE_GUC_RECV_MSG_EXCEPTION |
839 		XE_GUC_RECV_MSG_CRASH_DUMP_POSTED;
840 	xe_mmio_write32(&gt->mmio, SOFT_SCRATCH(15), 0);
841 
842 	if (msg & XE_GUC_RECV_MSG_CRASH_DUMP_POSTED)
843 		xe_gt_err(gt, "Received early GuC crash dump notification!\n");
844 
845 	if (msg & XE_GUC_RECV_MSG_EXCEPTION)
846 		xe_gt_err(gt, "Received early GuC exception notification!\n");
847 }
848 
849 static void guc_enable_irq(struct xe_guc *guc)
850 {
851 	struct xe_gt *gt = guc_to_gt(guc);
852 	u32 events = xe_gt_is_media_type(gt) ?
853 		REG_FIELD_PREP(ENGINE0_MASK, GUC_INTR_GUC2HOST)  :
854 		REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
855 
856 	/* Primary GuC and media GuC share a single enable bit */
857 	xe_mmio_write32(&gt->mmio, GUC_SG_INTR_ENABLE,
858 			REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST));
859 
860 	/*
861 	 * There are separate mask bits for primary and media GuCs, so use
862 	 * a RMW operation to avoid clobbering the other GuC's setting.
863 	 */
864 	xe_mmio_rmw32(&gt->mmio, GUC_SG_INTR_MASK, events, 0);
865 }
866 
867 int xe_guc_enable_communication(struct xe_guc *guc)
868 {
869 	struct xe_device *xe = guc_to_xe(guc);
870 	int err;
871 
872 	if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe)) {
873 		struct xe_gt *gt = guc_to_gt(guc);
874 		struct xe_tile *tile = gt_to_tile(gt);
875 
876 		err = xe_memirq_init_guc(&tile->memirq, guc);
877 		if (err)
878 			return err;
879 	} else {
880 		guc_enable_irq(guc);
881 	}
882 
883 	err = xe_guc_ct_enable(&guc->ct);
884 	if (err)
885 		return err;
886 
887 	guc_handle_mmio_msg(guc);
888 
889 	return 0;
890 }
891 
892 int xe_guc_suspend(struct xe_guc *guc)
893 {
894 	struct xe_gt *gt = guc_to_gt(guc);
895 	u32 action[] = {
896 		XE_GUC_ACTION_CLIENT_SOFT_RESET,
897 	};
898 	int ret;
899 
900 	ret = xe_guc_mmio_send(guc, action, ARRAY_SIZE(action));
901 	if (ret) {
902 		xe_gt_err(gt, "GuC suspend failed: %pe\n", ERR_PTR(ret));
903 		return ret;
904 	}
905 
906 	xe_guc_sanitize(guc);
907 	return 0;
908 }
909 
910 void xe_guc_notify(struct xe_guc *guc)
911 {
912 	struct xe_gt *gt = guc_to_gt(guc);
913 	const u32 default_notify_data = 0;
914 
915 	/*
916 	 * Both GUC_HOST_INTERRUPT and MED_GUC_HOST_INTERRUPT can pass
917 	 * additional payload data to the GuC but this capability is not
918 	 * used by the firmware yet. Use default value in the meantime.
919 	 */
920 	xe_mmio_write32(&gt->mmio, guc->notify_reg, default_notify_data);
921 }
922 
923 int xe_guc_auth_huc(struct xe_guc *guc, u32 rsa_addr)
924 {
925 	u32 action[] = {
926 		XE_GUC_ACTION_AUTHENTICATE_HUC,
927 		rsa_addr
928 	};
929 
930 	return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
931 }
932 
933 int xe_guc_mmio_send_recv(struct xe_guc *guc, const u32 *request,
934 			  u32 len, u32 *response_buf)
935 {
936 	struct xe_device *xe = guc_to_xe(guc);
937 	struct xe_gt *gt = guc_to_gt(guc);
938 	struct xe_mmio *mmio = &gt->mmio;
939 	u32 header, reply;
940 	struct xe_reg reply_reg = xe_gt_is_media_type(gt) ?
941 		MED_VF_SW_FLAG(0) : VF_SW_FLAG(0);
942 	const u32 LAST_INDEX = VF_SW_FLAG_COUNT - 1;
943 	int ret;
944 	int i;
945 
946 	BUILD_BUG_ON(VF_SW_FLAG_COUNT != MED_VF_SW_FLAG_COUNT);
947 
948 	xe_assert(xe, !xe_guc_ct_enabled(&guc->ct));
949 	xe_assert(xe, len);
950 	xe_assert(xe, len <= VF_SW_FLAG_COUNT);
951 	xe_assert(xe, len <= MED_VF_SW_FLAG_COUNT);
952 	xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) ==
953 		  GUC_HXG_ORIGIN_HOST);
954 	xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) ==
955 		  GUC_HXG_TYPE_REQUEST);
956 
957 retry:
958 	/* Not in critical data-path, just do if else for GT type */
959 	if (xe_gt_is_media_type(gt)) {
960 		for (i = 0; i < len; ++i)
961 			xe_mmio_write32(mmio, MED_VF_SW_FLAG(i),
962 					request[i]);
963 		xe_mmio_read32(mmio, MED_VF_SW_FLAG(LAST_INDEX));
964 	} else {
965 		for (i = 0; i < len; ++i)
966 			xe_mmio_write32(mmio, VF_SW_FLAG(i),
967 					request[i]);
968 		xe_mmio_read32(mmio, VF_SW_FLAG(LAST_INDEX));
969 	}
970 
971 	xe_guc_notify(guc);
972 
973 	ret = xe_mmio_wait32(mmio, reply_reg, GUC_HXG_MSG_0_ORIGIN,
974 			     FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_GUC),
975 			     50000, &reply, false);
976 	if (ret) {
977 timeout:
978 		xe_gt_err(gt, "GuC mmio request %#x: no reply %#x\n",
979 			  request[0], reply);
980 		return ret;
981 	}
982 
983 	header = xe_mmio_read32(mmio, reply_reg);
984 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
985 	    GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
986 		/*
987 		 * Once we got a BUSY reply we must wait again for the final
988 		 * response but this time we can't use ORIGIN mask anymore.
989 		 * To spot a right change in the reply, we take advantage that
990 		 * response SUCCESS and FAILURE differ only by the single bit
991 		 * and all other bits are set and can be used as a new mask.
992 		 */
993 		u32 resp_bits = GUC_HXG_TYPE_RESPONSE_SUCCESS & GUC_HXG_TYPE_RESPONSE_FAILURE;
994 		u32 resp_mask = FIELD_PREP(GUC_HXG_MSG_0_TYPE, resp_bits);
995 
996 		BUILD_BUG_ON(FIELD_MAX(GUC_HXG_MSG_0_TYPE) != GUC_HXG_TYPE_RESPONSE_SUCCESS);
997 		BUILD_BUG_ON((GUC_HXG_TYPE_RESPONSE_SUCCESS ^ GUC_HXG_TYPE_RESPONSE_FAILURE) != 1);
998 
999 		ret = xe_mmio_wait32(mmio, reply_reg, resp_mask, resp_mask,
1000 				     1000000, &header, false);
1001 
1002 		if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
1003 			     GUC_HXG_ORIGIN_GUC))
1004 			goto proto;
1005 		if (unlikely(ret)) {
1006 			if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
1007 			    GUC_HXG_TYPE_NO_RESPONSE_BUSY)
1008 				goto proto;
1009 			goto timeout;
1010 		}
1011 	}
1012 
1013 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
1014 	    GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
1015 		u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
1016 
1017 		xe_gt_dbg(gt, "GuC mmio request %#x: retrying, reason %#x\n",
1018 			  request[0], reason);
1019 		goto retry;
1020 	}
1021 
1022 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
1023 	    GUC_HXG_TYPE_RESPONSE_FAILURE) {
1024 		u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
1025 		u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
1026 
1027 		xe_gt_err(gt, "GuC mmio request %#x: failure %#x hint %#x\n",
1028 			  request[0], error, hint);
1029 		return -ENXIO;
1030 	}
1031 
1032 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
1033 	    GUC_HXG_TYPE_RESPONSE_SUCCESS) {
1034 proto:
1035 		xe_gt_err(gt, "GuC mmio request %#x: unexpected reply %#x\n",
1036 			  request[0], header);
1037 		return -EPROTO;
1038 	}
1039 
1040 	/* Just copy entire possible message response */
1041 	if (response_buf) {
1042 		response_buf[0] = header;
1043 
1044 		for (i = 1; i < VF_SW_FLAG_COUNT; i++) {
1045 			reply_reg.addr += sizeof(u32);
1046 			response_buf[i] = xe_mmio_read32(mmio, reply_reg);
1047 		}
1048 	}
1049 
1050 	/* Use data from the GuC response as our return value */
1051 	return FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
1052 }
1053 
1054 int xe_guc_mmio_send(struct xe_guc *guc, const u32 *request, u32 len)
1055 {
1056 	return xe_guc_mmio_send_recv(guc, request, len, NULL);
1057 }
1058 
1059 static int guc_self_cfg(struct xe_guc *guc, u16 key, u16 len, u64 val)
1060 {
1061 	struct xe_device *xe = guc_to_xe(guc);
1062 	u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
1063 		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
1064 		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
1065 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
1066 			   GUC_ACTION_HOST2GUC_SELF_CFG),
1067 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
1068 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
1069 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32,
1070 			   lower_32_bits(val)),
1071 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64,
1072 			   upper_32_bits(val)),
1073 	};
1074 	int ret;
1075 
1076 	xe_assert(xe, len <= 2);
1077 	xe_assert(xe, len != 1 || !upper_32_bits(val));
1078 
1079 	/* Self config must go over MMIO */
1080 	ret = xe_guc_mmio_send(guc, request, ARRAY_SIZE(request));
1081 
1082 	if (unlikely(ret < 0))
1083 		return ret;
1084 	if (unlikely(ret > 1))
1085 		return -EPROTO;
1086 	if (unlikely(!ret))
1087 		return -ENOKEY;
1088 
1089 	return 0;
1090 }
1091 
1092 int xe_guc_self_cfg32(struct xe_guc *guc, u16 key, u32 val)
1093 {
1094 	return guc_self_cfg(guc, key, 1, val);
1095 }
1096 
1097 int xe_guc_self_cfg64(struct xe_guc *guc, u16 key, u64 val)
1098 {
1099 	return guc_self_cfg(guc, key, 2, val);
1100 }
1101 
1102 void xe_guc_irq_handler(struct xe_guc *guc, const u16 iir)
1103 {
1104 	if (iir & GUC_INTR_GUC2HOST)
1105 		xe_guc_ct_irq_handler(&guc->ct);
1106 }
1107 
1108 void xe_guc_sanitize(struct xe_guc *guc)
1109 {
1110 	xe_uc_fw_sanitize(&guc->fw);
1111 	xe_guc_ct_disable(&guc->ct);
1112 	guc->submission_state.enabled = false;
1113 }
1114 
1115 int xe_guc_reset_prepare(struct xe_guc *guc)
1116 {
1117 	return xe_guc_submit_reset_prepare(guc);
1118 }
1119 
1120 void xe_guc_reset_wait(struct xe_guc *guc)
1121 {
1122 	xe_guc_submit_reset_wait(guc);
1123 }
1124 
1125 void xe_guc_stop_prepare(struct xe_guc *guc)
1126 {
1127 	if (!IS_SRIOV_VF(guc_to_xe(guc))) {
1128 		int err;
1129 
1130 		err = xe_guc_pc_stop(&guc->pc);
1131 		xe_gt_WARN(guc_to_gt(guc), err, "Failed to stop GuC PC: %pe\n",
1132 			   ERR_PTR(err));
1133 	}
1134 }
1135 
1136 void xe_guc_stop(struct xe_guc *guc)
1137 {
1138 	xe_guc_ct_stop(&guc->ct);
1139 
1140 	xe_guc_submit_stop(guc);
1141 }
1142 
1143 int xe_guc_start(struct xe_guc *guc)
1144 {
1145 	if (!IS_SRIOV_VF(guc_to_xe(guc))) {
1146 		int err;
1147 
1148 		err = xe_guc_pc_start(&guc->pc);
1149 		xe_gt_WARN(guc_to_gt(guc), err, "Failed to start GuC PC: %pe\n",
1150 			   ERR_PTR(err));
1151 	}
1152 
1153 	return xe_guc_submit_start(guc);
1154 }
1155 
1156 void xe_guc_print_info(struct xe_guc *guc, struct drm_printer *p)
1157 {
1158 	struct xe_gt *gt = guc_to_gt(guc);
1159 	unsigned int fw_ref;
1160 	u32 status;
1161 	int i;
1162 
1163 	xe_uc_fw_print(&guc->fw, p);
1164 
1165 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1166 	if (!fw_ref)
1167 		return;
1168 
1169 	status = xe_mmio_read32(&gt->mmio, GUC_STATUS);
1170 
1171 	drm_printf(p, "\nGuC status 0x%08x:\n", status);
1172 	drm_printf(p, "\tBootrom status = 0x%x\n",
1173 		   REG_FIELD_GET(GS_BOOTROM_MASK, status));
1174 	drm_printf(p, "\tuKernel status = 0x%x\n",
1175 		   REG_FIELD_GET(GS_UKERNEL_MASK, status));
1176 	drm_printf(p, "\tMIA Core status = 0x%x\n",
1177 		   REG_FIELD_GET(GS_MIA_MASK, status));
1178 	drm_printf(p, "\tLog level = %d\n",
1179 		   xe_guc_log_get_level(&guc->log));
1180 
1181 	drm_puts(p, "\nScratch registers:\n");
1182 	for (i = 0; i < SOFT_SCRATCH_COUNT; i++) {
1183 		drm_printf(p, "\t%2d: \t0x%x\n",
1184 			   i, xe_mmio_read32(&gt->mmio, SOFT_SCRATCH(i)));
1185 	}
1186 
1187 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
1188 
1189 	drm_puts(p, "\n");
1190 	xe_guc_ct_print(&guc->ct, p, false);
1191 
1192 	drm_puts(p, "\n");
1193 	xe_guc_submit_print(guc, p);
1194 }
1195 
1196 /**
1197  * xe_guc_declare_wedged() - Declare GuC wedged
1198  * @guc: the GuC object
1199  *
1200  * Wedge the GuC which stops all submission, saves desired debug state, and
1201  * cleans up anything which could timeout.
1202  */
1203 void xe_guc_declare_wedged(struct xe_guc *guc)
1204 {
1205 	xe_gt_assert(guc_to_gt(guc), guc_to_xe(guc)->wedged.mode);
1206 
1207 	xe_guc_reset_prepare(guc);
1208 	xe_guc_ct_stop(&guc->ct);
1209 	xe_guc_submit_wedge(guc);
1210 }
1211