xref: /linux/drivers/gpu/drm/xe/xe_guc.c (revision 429508c84d95811dd1300181dfe84743caff9a38)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_guc.h"
7 
8 #include <drm/drm_managed.h>
9 
10 #include <generated/xe_wa_oob.h>
11 
12 #include "abi/guc_actions_abi.h"
13 #include "abi/guc_errors_abi.h"
14 #include "regs/xe_gt_regs.h"
15 #include "regs/xe_gtt_defs.h"
16 #include "regs/xe_guc_regs.h"
17 #include "xe_bo.h"
18 #include "xe_device.h"
19 #include "xe_force_wake.h"
20 #include "xe_gt.h"
21 #include "xe_gt_printk.h"
22 #include "xe_gt_sriov_vf.h"
23 #include "xe_gt_throttle.h"
24 #include "xe_guc_ads.h"
25 #include "xe_guc_ct.h"
26 #include "xe_guc_db_mgr.h"
27 #include "xe_guc_hwconfig.h"
28 #include "xe_guc_log.h"
29 #include "xe_guc_pc.h"
30 #include "xe_guc_relay.h"
31 #include "xe_guc_submit.h"
32 #include "xe_memirq.h"
33 #include "xe_mmio.h"
34 #include "xe_platform_types.h"
35 #include "xe_sriov.h"
36 #include "xe_uc.h"
37 #include "xe_uc_fw.h"
38 #include "xe_wa.h"
39 #include "xe_wopcm.h"
40 
41 static u32 guc_bo_ggtt_addr(struct xe_guc *guc,
42 			    struct xe_bo *bo)
43 {
44 	struct xe_device *xe = guc_to_xe(guc);
45 	u32 addr = xe_bo_ggtt_addr(bo);
46 
47 	/* GuC addresses above GUC_GGTT_TOP don't map through the GTT */
48 	xe_assert(xe, addr >= xe_wopcm_size(guc_to_xe(guc)));
49 	xe_assert(xe, addr < GUC_GGTT_TOP);
50 	xe_assert(xe, bo->size <= GUC_GGTT_TOP - addr);
51 
52 	return addr;
53 }
54 
55 static u32 guc_ctl_debug_flags(struct xe_guc *guc)
56 {
57 	u32 level = xe_guc_log_get_level(&guc->log);
58 	u32 flags = 0;
59 
60 	if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
61 		flags |= GUC_LOG_DISABLED;
62 	else
63 		flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
64 			 GUC_LOG_VERBOSITY_SHIFT;
65 
66 	return flags;
67 }
68 
69 static u32 guc_ctl_feature_flags(struct xe_guc *guc)
70 {
71 	u32 flags = 0;
72 
73 	if (!guc_to_xe(guc)->info.skip_guc_pc)
74 		flags |= GUC_CTL_ENABLE_SLPC;
75 
76 	return flags;
77 }
78 
79 static u32 guc_ctl_log_params_flags(struct xe_guc *guc)
80 {
81 	u32 offset = guc_bo_ggtt_addr(guc, guc->log.bo) >> PAGE_SHIFT;
82 	u32 flags;
83 
84 	#if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
85 	#define LOG_UNIT SZ_1M
86 	#define LOG_FLAG GUC_LOG_LOG_ALLOC_UNITS
87 	#else
88 	#define LOG_UNIT SZ_4K
89 	#define LOG_FLAG 0
90 	#endif
91 
92 	#if (((CAPTURE_BUFFER_SIZE) % SZ_1M) == 0)
93 	#define CAPTURE_UNIT SZ_1M
94 	#define CAPTURE_FLAG GUC_LOG_CAPTURE_ALLOC_UNITS
95 	#else
96 	#define CAPTURE_UNIT SZ_4K
97 	#define CAPTURE_FLAG 0
98 	#endif
99 
100 	BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
101 	BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, LOG_UNIT));
102 	BUILD_BUG_ON(!DEBUG_BUFFER_SIZE);
103 	BUILD_BUG_ON(!IS_ALIGNED(DEBUG_BUFFER_SIZE, LOG_UNIT));
104 	BUILD_BUG_ON(!CAPTURE_BUFFER_SIZE);
105 	BUILD_BUG_ON(!IS_ALIGNED(CAPTURE_BUFFER_SIZE, CAPTURE_UNIT));
106 
107 	BUILD_BUG_ON((CRASH_BUFFER_SIZE / LOG_UNIT - 1) >
108 			(GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
109 	BUILD_BUG_ON((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) >
110 			(GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT));
111 	BUILD_BUG_ON((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) >
112 			(GUC_LOG_CAPTURE_MASK >> GUC_LOG_CAPTURE_SHIFT));
113 
114 	flags = GUC_LOG_VALID |
115 		GUC_LOG_NOTIFY_ON_HALF_FULL |
116 		CAPTURE_FLAG |
117 		LOG_FLAG |
118 		((CRASH_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
119 		((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_DEBUG_SHIFT) |
120 		((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) <<
121 		 GUC_LOG_CAPTURE_SHIFT) |
122 		(offset << GUC_LOG_BUF_ADDR_SHIFT);
123 
124 	#undef LOG_UNIT
125 	#undef LOG_FLAG
126 	#undef CAPTURE_UNIT
127 	#undef CAPTURE_FLAG
128 
129 	return flags;
130 }
131 
132 static u32 guc_ctl_ads_flags(struct xe_guc *guc)
133 {
134 	u32 ads = guc_bo_ggtt_addr(guc, guc->ads.bo) >> PAGE_SHIFT;
135 	u32 flags = ads << GUC_ADS_ADDR_SHIFT;
136 
137 	return flags;
138 }
139 
140 static u32 guc_ctl_wa_flags(struct xe_guc *guc)
141 {
142 	struct xe_device *xe = guc_to_xe(guc);
143 	struct xe_gt *gt = guc_to_gt(guc);
144 	u32 flags = 0;
145 
146 	if (XE_WA(gt, 22012773006))
147 		flags |= GUC_WA_POLLCS;
148 
149 	if (XE_WA(gt, 14014475959))
150 		flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
151 
152 	if (XE_WA(gt, 22011391025))
153 		flags |= GUC_WA_DUAL_QUEUE;
154 
155 	/*
156 	 * Wa_22011802037: FIXME - there's more to be done than simply setting
157 	 * this flag: make sure each CS is stopped when preparing for GT reset
158 	 * and wait for pending MI_FW.
159 	 */
160 	if (GRAPHICS_VERx100(xe) < 1270)
161 		flags |= GUC_WA_PRE_PARSER;
162 
163 	if (XE_WA(gt, 22012727170) || XE_WA(gt, 22012727685))
164 		flags |= GUC_WA_CONTEXT_ISOLATION;
165 
166 	if (XE_WA(gt, 18020744125) &&
167 	    !xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_RENDER))
168 		flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST;
169 
170 	if (XE_WA(gt, 1509372804))
171 		flags |= GUC_WA_RENDER_RST_RC6_EXIT;
172 
173 	if (XE_WA(gt, 14018913170))
174 		flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6;
175 
176 	return flags;
177 }
178 
179 static u32 guc_ctl_devid(struct xe_guc *guc)
180 {
181 	struct xe_device *xe = guc_to_xe(guc);
182 
183 	return (((u32)xe->info.devid) << 16) | xe->info.revid;
184 }
185 
186 static void guc_print_params(struct xe_guc *guc)
187 {
188 	struct xe_gt *gt = guc_to_gt(guc);
189 	u32 *params = guc->params;
190 	int i;
191 
192 	BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
193 	BUILD_BUG_ON(GUC_CTL_MAX_DWORDS + 2 != SOFT_SCRATCH_COUNT);
194 
195 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
196 		xe_gt_dbg(gt, "GuC param[%2d] = 0x%08x\n", i, params[i]);
197 }
198 
199 static void guc_init_params(struct xe_guc *guc)
200 {
201 	u32 *params = guc->params;
202 
203 	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
204 	params[GUC_CTL_FEATURE] = 0;
205 	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
206 	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
207 	params[GUC_CTL_WA] = 0;
208 	params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
209 
210 	guc_print_params(guc);
211 }
212 
213 static void guc_init_params_post_hwconfig(struct xe_guc *guc)
214 {
215 	u32 *params = guc->params;
216 
217 	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
218 	params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
219 	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
220 	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
221 	params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
222 	params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
223 
224 	guc_print_params(guc);
225 }
226 
227 /*
228  * Initialize the GuC parameter block before starting the firmware
229  * transfer. These parameters are read by the firmware on startup
230  * and cannot be changed thereafter.
231  */
232 static void guc_write_params(struct xe_guc *guc)
233 {
234 	struct xe_gt *gt = guc_to_gt(guc);
235 	int i;
236 
237 	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
238 
239 	xe_mmio_write32(gt, SOFT_SCRATCH(0), 0);
240 
241 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
242 		xe_mmio_write32(gt, SOFT_SCRATCH(1 + i), guc->params[i]);
243 }
244 
245 static void guc_fini_hw(void *arg)
246 {
247 	struct xe_guc *guc = arg;
248 	struct xe_gt *gt = guc_to_gt(guc);
249 
250 	xe_gt_WARN_ON(gt, xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL));
251 	xe_uc_fini_hw(&guc_to_gt(guc)->uc);
252 	xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL);
253 }
254 
255 /**
256  * xe_guc_comm_init_early - early initialization of GuC communication
257  * @guc: the &xe_guc to initialize
258  *
259  * Must be called prior to first MMIO communication with GuC firmware.
260  */
261 void xe_guc_comm_init_early(struct xe_guc *guc)
262 {
263 	struct xe_gt *gt = guc_to_gt(guc);
264 
265 	if (xe_gt_is_media_type(gt))
266 		guc->notify_reg = MED_GUC_HOST_INTERRUPT;
267 	else
268 		guc->notify_reg = GUC_HOST_INTERRUPT;
269 }
270 
271 static int xe_guc_realloc_post_hwconfig(struct xe_guc *guc)
272 {
273 	struct xe_tile *tile = gt_to_tile(guc_to_gt(guc));
274 	struct xe_device *xe = guc_to_xe(guc);
275 	int ret;
276 
277 	if (!IS_DGFX(guc_to_xe(guc)))
278 		return 0;
279 
280 	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->fw.bo);
281 	if (ret)
282 		return ret;
283 
284 	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->log.bo);
285 	if (ret)
286 		return ret;
287 
288 	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ads.bo);
289 	if (ret)
290 		return ret;
291 
292 	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ct.bo);
293 	if (ret)
294 		return ret;
295 
296 	return 0;
297 }
298 
299 static int vf_guc_init(struct xe_guc *guc)
300 {
301 	int err;
302 
303 	xe_guc_comm_init_early(guc);
304 
305 	err = xe_guc_ct_init(&guc->ct);
306 	if (err)
307 		return err;
308 
309 	err = xe_guc_relay_init(&guc->relay);
310 	if (err)
311 		return err;
312 
313 	return 0;
314 }
315 
316 int xe_guc_init(struct xe_guc *guc)
317 {
318 	struct xe_device *xe = guc_to_xe(guc);
319 	struct xe_gt *gt = guc_to_gt(guc);
320 	int ret;
321 
322 	guc->fw.type = XE_UC_FW_TYPE_GUC;
323 	ret = xe_uc_fw_init(&guc->fw);
324 	if (ret)
325 		goto out;
326 
327 	if (!xe_uc_fw_is_enabled(&guc->fw))
328 		return 0;
329 
330 	if (IS_SRIOV_VF(xe)) {
331 		ret = vf_guc_init(guc);
332 		if (ret)
333 			goto out;
334 		return 0;
335 	}
336 
337 	ret = xe_guc_log_init(&guc->log);
338 	if (ret)
339 		goto out;
340 
341 	ret = xe_guc_ads_init(&guc->ads);
342 	if (ret)
343 		goto out;
344 
345 	ret = xe_guc_ct_init(&guc->ct);
346 	if (ret)
347 		goto out;
348 
349 	ret = xe_guc_relay_init(&guc->relay);
350 	if (ret)
351 		goto out;
352 
353 	ret = devm_add_action_or_reset(xe->drm.dev, guc_fini_hw, guc);
354 	if (ret)
355 		goto out;
356 
357 	guc_init_params(guc);
358 
359 	xe_guc_comm_init_early(guc);
360 
361 	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOADABLE);
362 
363 	return 0;
364 
365 out:
366 	xe_gt_err(gt, "GuC init failed with %pe\n", ERR_PTR(ret));
367 	return ret;
368 }
369 
370 static int vf_guc_init_post_hwconfig(struct xe_guc *guc)
371 {
372 	int err;
373 
374 	err = xe_guc_submit_init(guc, xe_gt_sriov_vf_guc_ids(guc_to_gt(guc)));
375 	if (err)
376 		return err;
377 
378 	/* XXX xe_guc_db_mgr_init not needed for now */
379 
380 	return 0;
381 }
382 
383 /**
384  * xe_guc_init_post_hwconfig - initialize GuC post hwconfig load
385  * @guc: The GuC object
386  *
387  * Return: 0 on success, negative error code on error.
388  */
389 int xe_guc_init_post_hwconfig(struct xe_guc *guc)
390 {
391 	int ret;
392 
393 	if (IS_SRIOV_VF(guc_to_xe(guc)))
394 		return vf_guc_init_post_hwconfig(guc);
395 
396 	ret = xe_guc_realloc_post_hwconfig(guc);
397 	if (ret)
398 		return ret;
399 
400 	guc_init_params_post_hwconfig(guc);
401 
402 	ret = xe_guc_submit_init(guc, ~0);
403 	if (ret)
404 		return ret;
405 
406 	ret = xe_guc_db_mgr_init(&guc->dbm, ~0);
407 	if (ret)
408 		return ret;
409 
410 	ret = xe_guc_pc_init(&guc->pc);
411 	if (ret)
412 		return ret;
413 
414 	return xe_guc_ads_init_post_hwconfig(&guc->ads);
415 }
416 
417 int xe_guc_post_load_init(struct xe_guc *guc)
418 {
419 	xe_guc_ads_populate_post_load(&guc->ads);
420 	guc->submission_state.enabled = true;
421 
422 	return 0;
423 }
424 
425 int xe_guc_reset(struct xe_guc *guc)
426 {
427 	struct xe_gt *gt = guc_to_gt(guc);
428 	u32 guc_status, gdrst;
429 	int ret;
430 
431 	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
432 
433 	if (IS_SRIOV_VF(gt_to_xe(gt)))
434 		return xe_gt_sriov_vf_bootstrap(gt);
435 
436 	xe_mmio_write32(gt, GDRST, GRDOM_GUC);
437 
438 	ret = xe_mmio_wait32(gt, GDRST, GRDOM_GUC, 0, 5000, &gdrst, false);
439 	if (ret) {
440 		xe_gt_err(gt, "GuC reset timed out, GDRST=%#x\n", gdrst);
441 		goto err_out;
442 	}
443 
444 	guc_status = xe_mmio_read32(gt, GUC_STATUS);
445 	if (!(guc_status & GS_MIA_IN_RESET)) {
446 		xe_gt_err(gt, "GuC status: %#x, MIA core expected to be in reset\n",
447 			  guc_status);
448 		ret = -EIO;
449 		goto err_out;
450 	}
451 
452 	return 0;
453 
454 err_out:
455 
456 	return ret;
457 }
458 
459 static void guc_prepare_xfer(struct xe_guc *guc)
460 {
461 	struct xe_gt *gt = guc_to_gt(guc);
462 	struct xe_device *xe =  guc_to_xe(guc);
463 	u32 shim_flags = GUC_ENABLE_READ_CACHE_LOGIC |
464 		GUC_ENABLE_READ_CACHE_FOR_SRAM_DATA |
465 		GUC_ENABLE_READ_CACHE_FOR_WOPCM_DATA |
466 		GUC_ENABLE_MIA_CLOCK_GATING;
467 
468 	if (GRAPHICS_VERx100(xe) < 1250)
469 		shim_flags |= GUC_DISABLE_SRAM_INIT_TO_ZEROES |
470 				GUC_ENABLE_MIA_CACHING;
471 
472 	if (GRAPHICS_VER(xe) >= 20 || xe->info.platform == XE_PVC)
473 		shim_flags |= REG_FIELD_PREP(GUC_MOCS_INDEX_MASK, gt->mocs.uc_index);
474 
475 	/* Must program this register before loading the ucode with DMA */
476 	xe_mmio_write32(gt, GUC_SHIM_CONTROL, shim_flags);
477 
478 	xe_mmio_write32(gt, GT_PM_CONFIG, GT_DOORBELL_ENABLE);
479 }
480 
481 /*
482  * Supporting MMIO & in memory RSA
483  */
484 static int guc_xfer_rsa(struct xe_guc *guc)
485 {
486 	struct xe_gt *gt = guc_to_gt(guc);
487 	u32 rsa[UOS_RSA_SCRATCH_COUNT];
488 	size_t copied;
489 	int i;
490 
491 	if (guc->fw.rsa_size > 256) {
492 		u32 rsa_ggtt_addr = xe_bo_ggtt_addr(guc->fw.bo) +
493 				    xe_uc_fw_rsa_offset(&guc->fw);
494 		xe_mmio_write32(gt, UOS_RSA_SCRATCH(0), rsa_ggtt_addr);
495 		return 0;
496 	}
497 
498 	copied = xe_uc_fw_copy_rsa(&guc->fw, rsa, sizeof(rsa));
499 	if (copied < sizeof(rsa))
500 		return -ENOMEM;
501 
502 	for (i = 0; i < UOS_RSA_SCRATCH_COUNT; i++)
503 		xe_mmio_write32(gt, UOS_RSA_SCRATCH(i), rsa[i]);
504 
505 	return 0;
506 }
507 
508 /*
509  * Check a previously read GuC status register (GUC_STATUS) looking for
510  * known terminal states (either completion or failure) of either the
511  * microkernel status field or the boot ROM status field. Returns +1 for
512  * successful completion, -1 for failure and 0 for any intermediate state.
513  */
514 static int guc_load_done(u32 status)
515 {
516 	u32 uk_val = REG_FIELD_GET(GS_UKERNEL_MASK, status);
517 	u32 br_val = REG_FIELD_GET(GS_BOOTROM_MASK, status);
518 
519 	switch (uk_val) {
520 	case XE_GUC_LOAD_STATUS_READY:
521 		return 1;
522 
523 	case XE_GUC_LOAD_STATUS_ERROR_DEVID_BUILD_MISMATCH:
524 	case XE_GUC_LOAD_STATUS_GUC_PREPROD_BUILD_MISMATCH:
525 	case XE_GUC_LOAD_STATUS_ERROR_DEVID_INVALID_GUCTYPE:
526 	case XE_GUC_LOAD_STATUS_HWCONFIG_ERROR:
527 	case XE_GUC_LOAD_STATUS_DPC_ERROR:
528 	case XE_GUC_LOAD_STATUS_EXCEPTION:
529 	case XE_GUC_LOAD_STATUS_INIT_DATA_INVALID:
530 	case XE_GUC_LOAD_STATUS_MPU_DATA_INVALID:
531 	case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
532 		return -1;
533 	}
534 
535 	switch (br_val) {
536 	case XE_BOOTROM_STATUS_NO_KEY_FOUND:
537 	case XE_BOOTROM_STATUS_RSA_FAILED:
538 	case XE_BOOTROM_STATUS_PAVPC_FAILED:
539 	case XE_BOOTROM_STATUS_WOPCM_FAILED:
540 	case XE_BOOTROM_STATUS_LOADLOC_FAILED:
541 	case XE_BOOTROM_STATUS_JUMP_FAILED:
542 	case XE_BOOTROM_STATUS_RC6CTXCONFIG_FAILED:
543 	case XE_BOOTROM_STATUS_MPUMAP_INCORRECT:
544 	case XE_BOOTROM_STATUS_EXCEPTION:
545 	case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
546 		return -1;
547 	}
548 
549 	return 0;
550 }
551 
552 static s32 guc_pc_get_cur_freq(struct xe_guc_pc *guc_pc)
553 {
554 	u32 freq;
555 	int ret = xe_guc_pc_get_cur_freq(guc_pc, &freq);
556 
557 	return ret ? ret : freq;
558 }
559 
560 /*
561  * Wait for the GuC to start up.
562  *
563  * Measurements indicate this should take no more than 20ms (assuming the GT
564  * clock is at maximum frequency). However, thermal throttling and other issues
565  * can prevent the clock hitting max and thus making the load take significantly
566  * longer. Allow up to 200ms as a safety margin for real world worst case situations.
567  *
568  * However, bugs anywhere from KMD to GuC to PCODE to fan failure in a CI farm can
569  * lead to even longer times. E.g. if the GT is clamped to minimum frequency then
570  * the load times can be in the seconds range. So the timeout is increased for debug
571  * builds to ensure that problems can be correctly analysed. For release builds, the
572  * timeout is kept short so that users don't wait forever to find out that there is a
573  * problem. In either case, if the load took longer than is reasonable even with some
574  * 'sensible' throttling, then flag a warning because something is not right.
575  *
576  * Note that there is a limit on how long an individual usleep_range() can wait for,
577  * hence longer waits require wrapping a shorter wait in a loop.
578  *
579  * Note that the only reason an end user should hit the shorter timeout is in case of
580  * extreme thermal throttling. And a system that is that hot during boot is probably
581  * dead anyway!
582  */
583 #if defined(CONFIG_DRM_XE_DEBUG)
584 #define GUC_LOAD_RETRY_LIMIT	20
585 #else
586 #define GUC_LOAD_RETRY_LIMIT	3
587 #endif
588 #define GUC_LOAD_TIME_WARN_MS      200
589 
590 static void guc_wait_ucode(struct xe_guc *guc)
591 {
592 	struct xe_gt *gt = guc_to_gt(guc);
593 	struct xe_guc_pc *guc_pc = &gt->uc.guc.pc;
594 	ktime_t before, after, delta;
595 	int load_done;
596 	u32 status = 0;
597 	int count = 0;
598 	u64 delta_ms;
599 	u32 before_freq;
600 
601 	before_freq = xe_guc_pc_get_act_freq(guc_pc);
602 	before = ktime_get();
603 	/*
604 	 * Note, can't use any kind of timing information from the call to xe_mmio_wait.
605 	 * It could return a thousand intermediate stages at random times. Instead, must
606 	 * manually track the total time taken and locally implement the timeout.
607 	 */
608 	do {
609 		u32 last_status = status & (GS_UKERNEL_MASK | GS_BOOTROM_MASK);
610 		int ret;
611 
612 		/*
613 		 * Wait for any change (intermediate or terminal) in the status register.
614 		 * Note, the return value is a don't care. The only failure code is timeout
615 		 * but the timeouts need to be accumulated over all the intermediate partial
616 		 * timeouts rather than allowing a huge timeout each time. So basically, need
617 		 * to treat a timeout no different to a value change.
618 		 */
619 		ret = xe_mmio_wait32_not(gt, GUC_STATUS, GS_UKERNEL_MASK | GS_BOOTROM_MASK,
620 					 last_status, 1000 * 1000, &status, false);
621 		if (ret < 0)
622 			count++;
623 		after = ktime_get();
624 		delta = ktime_sub(after, before);
625 		delta_ms = ktime_to_ms(delta);
626 
627 		load_done = guc_load_done(status);
628 		if (load_done != 0)
629 			break;
630 
631 		if (delta_ms >= (GUC_LOAD_RETRY_LIMIT * 1000))
632 			break;
633 
634 		xe_gt_dbg(gt, "load still in progress, timeouts = %d, freq = %dMHz (req %dMHz), status = 0x%08X [0x%02X/%02X]\n",
635 			  count, xe_guc_pc_get_act_freq(guc_pc),
636 			  guc_pc_get_cur_freq(guc_pc), status,
637 			  REG_FIELD_GET(GS_BOOTROM_MASK, status),
638 			  REG_FIELD_GET(GS_UKERNEL_MASK, status));
639 	} while (1);
640 
641 	if (load_done != 1) {
642 		u32 ukernel = REG_FIELD_GET(GS_UKERNEL_MASK, status);
643 		u32 bootrom = REG_FIELD_GET(GS_BOOTROM_MASK, status);
644 
645 		xe_gt_err(gt, "load failed: status = 0x%08X, time = %lldms, freq = %dMHz (req %dMHz), done = %d\n",
646 			  status, delta_ms, xe_guc_pc_get_act_freq(guc_pc),
647 			  guc_pc_get_cur_freq(guc_pc), load_done);
648 		xe_gt_err(gt, "load failed: status: Reset = %d, BootROM = 0x%02X, UKernel = 0x%02X, MIA = 0x%02X, Auth = 0x%02X\n",
649 			  REG_FIELD_GET(GS_MIA_IN_RESET, status),
650 			  bootrom, ukernel,
651 			  REG_FIELD_GET(GS_MIA_MASK, status),
652 			  REG_FIELD_GET(GS_AUTH_STATUS_MASK, status));
653 
654 		switch (bootrom) {
655 		case XE_BOOTROM_STATUS_NO_KEY_FOUND:
656 			xe_gt_err(gt, "invalid key requested, header = 0x%08X\n",
657 				  xe_mmio_read32(gt, GUC_HEADER_INFO));
658 			break;
659 
660 		case XE_BOOTROM_STATUS_RSA_FAILED:
661 			xe_gt_err(gt, "firmware signature verification failed\n");
662 			break;
663 
664 		case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
665 			xe_gt_err(gt, "firmware production part check failure\n");
666 			break;
667 		}
668 
669 		switch (ukernel) {
670 		case XE_GUC_LOAD_STATUS_EXCEPTION:
671 			xe_gt_err(gt, "firmware exception. EIP: %#x\n",
672 				  xe_mmio_read32(gt, SOFT_SCRATCH(13)));
673 			break;
674 
675 		case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
676 			xe_gt_err(gt, "illegal register in save/restore workaround list\n");
677 			break;
678 
679 		case XE_GUC_LOAD_STATUS_HWCONFIG_START:
680 			xe_gt_err(gt, "still extracting hwconfig table.\n");
681 			break;
682 		}
683 
684 		xe_device_declare_wedged(gt_to_xe(gt));
685 	} else if (delta_ms > GUC_LOAD_TIME_WARN_MS) {
686 		xe_gt_warn(gt, "excessive init time: %lldms! [status = 0x%08X, timeouts = %d]\n",
687 			   delta_ms, status, count);
688 		xe_gt_warn(gt, "excessive init time: [freq = %dMHz (req = %dMHz), before = %dMHz, perf_limit_reasons = 0x%08X]\n",
689 			   xe_guc_pc_get_act_freq(guc_pc), guc_pc_get_cur_freq(guc_pc),
690 			   before_freq, xe_gt_throttle_get_limit_reasons(gt));
691 	} else {
692 		xe_gt_dbg(gt, "init took %lldms, freq = %dMHz (req = %dMHz), before = %dMHz, status = 0x%08X, timeouts = %d\n",
693 			  delta_ms, xe_guc_pc_get_act_freq(guc_pc), guc_pc_get_cur_freq(guc_pc),
694 			  before_freq, status, count);
695 	}
696 }
697 
698 static int __xe_guc_upload(struct xe_guc *guc)
699 {
700 	int ret;
701 
702 	guc_write_params(guc);
703 	guc_prepare_xfer(guc);
704 
705 	/*
706 	 * Note that GuC needs the CSS header plus uKernel code to be copied
707 	 * by the DMA engine in one operation, whereas the RSA signature is
708 	 * loaded separately, either by copying it to the UOS_RSA_SCRATCH
709 	 * register (if key size <= 256) or through a ggtt-pinned vma (if key
710 	 * size > 256). The RSA size and therefore the way we provide it to the
711 	 * HW is fixed for each platform and hard-coded in the bootrom.
712 	 */
713 	ret = guc_xfer_rsa(guc);
714 	if (ret)
715 		goto out;
716 	/*
717 	 * Current uCode expects the code to be loaded at 8k; locations below
718 	 * this are used for the stack.
719 	 */
720 	ret = xe_uc_fw_upload(&guc->fw, 0x2000, UOS_MOVE);
721 	if (ret)
722 		goto out;
723 
724 	/* Wait for authentication */
725 	guc_wait_ucode(guc);
726 
727 	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_RUNNING);
728 	return 0;
729 
730 out:
731 	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOAD_FAIL);
732 	return 0	/* FIXME: ret, don't want to stop load currently */;
733 }
734 
735 static int vf_guc_min_load_for_hwconfig(struct xe_guc *guc)
736 {
737 	struct xe_gt *gt = guc_to_gt(guc);
738 	int ret;
739 
740 	ret = xe_gt_sriov_vf_bootstrap(gt);
741 	if (ret)
742 		return ret;
743 
744 	ret = xe_gt_sriov_vf_query_config(gt);
745 	if (ret)
746 		return ret;
747 
748 	ret = xe_guc_hwconfig_init(guc);
749 	if (ret)
750 		return ret;
751 
752 	ret = xe_guc_enable_communication(guc);
753 	if (ret)
754 		return ret;
755 
756 	ret = xe_gt_sriov_vf_connect(gt);
757 	if (ret)
758 		return ret;
759 
760 	ret = xe_gt_sriov_vf_query_runtime(gt);
761 	if (ret)
762 		return ret;
763 
764 	return 0;
765 }
766 
767 /**
768  * xe_guc_min_load_for_hwconfig - load minimal GuC and read hwconfig table
769  * @guc: The GuC object
770  *
771  * This function uploads a minimal GuC that does not support submissions but
772  * in a state where the hwconfig table can be read. Next, it reads and parses
773  * the hwconfig table so it can be used for subsequent steps in the driver load.
774  * Lastly, it enables CT communication (XXX: this is needed for PFs/VFs only).
775  *
776  * Return: 0 on success, negative error code on error.
777  */
778 int xe_guc_min_load_for_hwconfig(struct xe_guc *guc)
779 {
780 	int ret;
781 
782 	if (IS_SRIOV_VF(guc_to_xe(guc)))
783 		return vf_guc_min_load_for_hwconfig(guc);
784 
785 	xe_guc_ads_populate_minimal(&guc->ads);
786 
787 	/* Raise GT freq to speed up HuC/GuC load */
788 	xe_guc_pc_init_early(&guc->pc);
789 
790 	ret = __xe_guc_upload(guc);
791 	if (ret)
792 		return ret;
793 
794 	ret = xe_guc_hwconfig_init(guc);
795 	if (ret)
796 		return ret;
797 
798 	ret = xe_guc_enable_communication(guc);
799 	if (ret)
800 		return ret;
801 
802 	return 0;
803 }
804 
805 int xe_guc_upload(struct xe_guc *guc)
806 {
807 	xe_guc_ads_populate(&guc->ads);
808 
809 	return __xe_guc_upload(guc);
810 }
811 
812 static void guc_handle_mmio_msg(struct xe_guc *guc)
813 {
814 	struct xe_gt *gt = guc_to_gt(guc);
815 	u32 msg;
816 
817 	if (IS_SRIOV_VF(guc_to_xe(guc)))
818 		return;
819 
820 	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
821 
822 	msg = xe_mmio_read32(gt, SOFT_SCRATCH(15));
823 	msg &= XE_GUC_RECV_MSG_EXCEPTION |
824 		XE_GUC_RECV_MSG_CRASH_DUMP_POSTED;
825 	xe_mmio_write32(gt, SOFT_SCRATCH(15), 0);
826 
827 	if (msg & XE_GUC_RECV_MSG_CRASH_DUMP_POSTED)
828 		xe_gt_err(gt, "Received early GuC crash dump notification!\n");
829 
830 	if (msg & XE_GUC_RECV_MSG_EXCEPTION)
831 		xe_gt_err(gt, "Received early GuC exception notification!\n");
832 }
833 
834 static void guc_enable_irq(struct xe_guc *guc)
835 {
836 	struct xe_gt *gt = guc_to_gt(guc);
837 	u32 events = xe_gt_is_media_type(gt) ?
838 		REG_FIELD_PREP(ENGINE0_MASK, GUC_INTR_GUC2HOST)  :
839 		REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
840 
841 	/* Primary GuC and media GuC share a single enable bit */
842 	xe_mmio_write32(gt, GUC_SG_INTR_ENABLE,
843 			REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST));
844 
845 	/*
846 	 * There are separate mask bits for primary and media GuCs, so use
847 	 * a RMW operation to avoid clobbering the other GuC's setting.
848 	 */
849 	xe_mmio_rmw32(gt, GUC_SG_INTR_MASK, events, 0);
850 }
851 
852 int xe_guc_enable_communication(struct xe_guc *guc)
853 {
854 	struct xe_device *xe = guc_to_xe(guc);
855 	int err;
856 
857 	guc_enable_irq(guc);
858 
859 	if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe)) {
860 		struct xe_gt *gt = guc_to_gt(guc);
861 		struct xe_tile *tile = gt_to_tile(gt);
862 
863 		err = xe_memirq_init_guc(&tile->sriov.vf.memirq, guc);
864 		if (err)
865 			return err;
866 	}
867 
868 	xe_mmio_rmw32(guc_to_gt(guc), PMINTRMSK,
869 		      ARAT_EXPIRED_INTRMSK, 0);
870 
871 	err = xe_guc_ct_enable(&guc->ct);
872 	if (err)
873 		return err;
874 
875 	guc_handle_mmio_msg(guc);
876 
877 	return 0;
878 }
879 
880 int xe_guc_suspend(struct xe_guc *guc)
881 {
882 	struct xe_gt *gt = guc_to_gt(guc);
883 	u32 action[] = {
884 		XE_GUC_ACTION_CLIENT_SOFT_RESET,
885 	};
886 	int ret;
887 
888 	ret = xe_guc_mmio_send(guc, action, ARRAY_SIZE(action));
889 	if (ret) {
890 		xe_gt_err(gt, "GuC suspend failed: %pe\n", ERR_PTR(ret));
891 		return ret;
892 	}
893 
894 	xe_guc_sanitize(guc);
895 	return 0;
896 }
897 
898 void xe_guc_notify(struct xe_guc *guc)
899 {
900 	struct xe_gt *gt = guc_to_gt(guc);
901 	const u32 default_notify_data = 0;
902 
903 	/*
904 	 * Both GUC_HOST_INTERRUPT and MED_GUC_HOST_INTERRUPT can pass
905 	 * additional payload data to the GuC but this capability is not
906 	 * used by the firmware yet. Use default value in the meantime.
907 	 */
908 	xe_mmio_write32(gt, guc->notify_reg, default_notify_data);
909 }
910 
911 int xe_guc_auth_huc(struct xe_guc *guc, u32 rsa_addr)
912 {
913 	u32 action[] = {
914 		XE_GUC_ACTION_AUTHENTICATE_HUC,
915 		rsa_addr
916 	};
917 
918 	return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
919 }
920 
921 int xe_guc_mmio_send_recv(struct xe_guc *guc, const u32 *request,
922 			  u32 len, u32 *response_buf)
923 {
924 	struct xe_device *xe = guc_to_xe(guc);
925 	struct xe_gt *gt = guc_to_gt(guc);
926 	u32 header, reply;
927 	struct xe_reg reply_reg = xe_gt_is_media_type(gt) ?
928 		MED_VF_SW_FLAG(0) : VF_SW_FLAG(0);
929 	const u32 LAST_INDEX = VF_SW_FLAG_COUNT - 1;
930 	int ret;
931 	int i;
932 
933 	BUILD_BUG_ON(VF_SW_FLAG_COUNT != MED_VF_SW_FLAG_COUNT);
934 
935 	xe_assert(xe, !xe_guc_ct_enabled(&guc->ct));
936 	xe_assert(xe, len);
937 	xe_assert(xe, len <= VF_SW_FLAG_COUNT);
938 	xe_assert(xe, len <= MED_VF_SW_FLAG_COUNT);
939 	xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) ==
940 		  GUC_HXG_ORIGIN_HOST);
941 	xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) ==
942 		  GUC_HXG_TYPE_REQUEST);
943 
944 retry:
945 	/* Not in critical data-path, just do if else for GT type */
946 	if (xe_gt_is_media_type(gt)) {
947 		for (i = 0; i < len; ++i)
948 			xe_mmio_write32(gt, MED_VF_SW_FLAG(i),
949 					request[i]);
950 		xe_mmio_read32(gt, MED_VF_SW_FLAG(LAST_INDEX));
951 	} else {
952 		for (i = 0; i < len; ++i)
953 			xe_mmio_write32(gt, VF_SW_FLAG(i),
954 					request[i]);
955 		xe_mmio_read32(gt, VF_SW_FLAG(LAST_INDEX));
956 	}
957 
958 	xe_guc_notify(guc);
959 
960 	ret = xe_mmio_wait32(gt, reply_reg, GUC_HXG_MSG_0_ORIGIN,
961 			     FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_GUC),
962 			     50000, &reply, false);
963 	if (ret) {
964 timeout:
965 		xe_gt_err(gt, "GuC mmio request %#x: no reply %#x\n",
966 			  request[0], reply);
967 		return ret;
968 	}
969 
970 	header = xe_mmio_read32(gt, reply_reg);
971 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
972 	    GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
973 		/*
974 		 * Once we got a BUSY reply we must wait again for the final
975 		 * response but this time we can't use ORIGIN mask anymore.
976 		 * To spot a right change in the reply, we take advantage that
977 		 * response SUCCESS and FAILURE differ only by the single bit
978 		 * and all other bits are set and can be used as a new mask.
979 		 */
980 		u32 resp_bits = GUC_HXG_TYPE_RESPONSE_SUCCESS & GUC_HXG_TYPE_RESPONSE_FAILURE;
981 		u32 resp_mask = FIELD_PREP(GUC_HXG_MSG_0_TYPE, resp_bits);
982 
983 		BUILD_BUG_ON(FIELD_MAX(GUC_HXG_MSG_0_TYPE) != GUC_HXG_TYPE_RESPONSE_SUCCESS);
984 		BUILD_BUG_ON((GUC_HXG_TYPE_RESPONSE_SUCCESS ^ GUC_HXG_TYPE_RESPONSE_FAILURE) != 1);
985 
986 		ret = xe_mmio_wait32(gt, reply_reg,  resp_mask, resp_mask,
987 				     1000000, &header, false);
988 
989 		if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
990 			     GUC_HXG_ORIGIN_GUC))
991 			goto proto;
992 		if (unlikely(ret)) {
993 			if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
994 			    GUC_HXG_TYPE_NO_RESPONSE_BUSY)
995 				goto proto;
996 			goto timeout;
997 		}
998 	}
999 
1000 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
1001 	    GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
1002 		u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
1003 
1004 		xe_gt_dbg(gt, "GuC mmio request %#x: retrying, reason %#x\n",
1005 			  request[0], reason);
1006 		goto retry;
1007 	}
1008 
1009 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
1010 	    GUC_HXG_TYPE_RESPONSE_FAILURE) {
1011 		u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
1012 		u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
1013 
1014 		xe_gt_err(gt, "GuC mmio request %#x: failure %#x hint %#x\n",
1015 			  request[0], error, hint);
1016 		return -ENXIO;
1017 	}
1018 
1019 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
1020 	    GUC_HXG_TYPE_RESPONSE_SUCCESS) {
1021 proto:
1022 		xe_gt_err(gt, "GuC mmio request %#x: unexpected reply %#x\n",
1023 			  request[0], header);
1024 		return -EPROTO;
1025 	}
1026 
1027 	/* Just copy entire possible message response */
1028 	if (response_buf) {
1029 		response_buf[0] = header;
1030 
1031 		for (i = 1; i < VF_SW_FLAG_COUNT; i++) {
1032 			reply_reg.addr += sizeof(u32);
1033 			response_buf[i] = xe_mmio_read32(gt, reply_reg);
1034 		}
1035 	}
1036 
1037 	/* Use data from the GuC response as our return value */
1038 	return FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
1039 }
1040 
1041 int xe_guc_mmio_send(struct xe_guc *guc, const u32 *request, u32 len)
1042 {
1043 	return xe_guc_mmio_send_recv(guc, request, len, NULL);
1044 }
1045 
1046 static int guc_self_cfg(struct xe_guc *guc, u16 key, u16 len, u64 val)
1047 {
1048 	struct xe_device *xe = guc_to_xe(guc);
1049 	u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
1050 		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
1051 		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
1052 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
1053 			   GUC_ACTION_HOST2GUC_SELF_CFG),
1054 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
1055 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
1056 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32,
1057 			   lower_32_bits(val)),
1058 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64,
1059 			   upper_32_bits(val)),
1060 	};
1061 	int ret;
1062 
1063 	xe_assert(xe, len <= 2);
1064 	xe_assert(xe, len != 1 || !upper_32_bits(val));
1065 
1066 	/* Self config must go over MMIO */
1067 	ret = xe_guc_mmio_send(guc, request, ARRAY_SIZE(request));
1068 
1069 	if (unlikely(ret < 0))
1070 		return ret;
1071 	if (unlikely(ret > 1))
1072 		return -EPROTO;
1073 	if (unlikely(!ret))
1074 		return -ENOKEY;
1075 
1076 	return 0;
1077 }
1078 
1079 int xe_guc_self_cfg32(struct xe_guc *guc, u16 key, u32 val)
1080 {
1081 	return guc_self_cfg(guc, key, 1, val);
1082 }
1083 
1084 int xe_guc_self_cfg64(struct xe_guc *guc, u16 key, u64 val)
1085 {
1086 	return guc_self_cfg(guc, key, 2, val);
1087 }
1088 
1089 void xe_guc_irq_handler(struct xe_guc *guc, const u16 iir)
1090 {
1091 	if (iir & GUC_INTR_GUC2HOST)
1092 		xe_guc_ct_irq_handler(&guc->ct);
1093 }
1094 
1095 void xe_guc_sanitize(struct xe_guc *guc)
1096 {
1097 	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOADABLE);
1098 	xe_guc_ct_disable(&guc->ct);
1099 	guc->submission_state.enabled = false;
1100 }
1101 
1102 int xe_guc_reset_prepare(struct xe_guc *guc)
1103 {
1104 	return xe_guc_submit_reset_prepare(guc);
1105 }
1106 
1107 void xe_guc_reset_wait(struct xe_guc *guc)
1108 {
1109 	xe_guc_submit_reset_wait(guc);
1110 }
1111 
1112 void xe_guc_stop_prepare(struct xe_guc *guc)
1113 {
1114 	XE_WARN_ON(xe_guc_pc_stop(&guc->pc));
1115 }
1116 
1117 void xe_guc_stop(struct xe_guc *guc)
1118 {
1119 	xe_guc_ct_stop(&guc->ct);
1120 
1121 	xe_guc_submit_stop(guc);
1122 }
1123 
1124 int xe_guc_start(struct xe_guc *guc)
1125 {
1126 	int ret;
1127 
1128 	ret = xe_guc_pc_start(&guc->pc);
1129 	XE_WARN_ON(ret);
1130 
1131 	return xe_guc_submit_start(guc);
1132 }
1133 
1134 void xe_guc_print_info(struct xe_guc *guc, struct drm_printer *p)
1135 {
1136 	struct xe_gt *gt = guc_to_gt(guc);
1137 	u32 status;
1138 	int err;
1139 	int i;
1140 
1141 	xe_uc_fw_print(&guc->fw, p);
1142 
1143 	err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1144 	if (err)
1145 		return;
1146 
1147 	status = xe_mmio_read32(gt, GUC_STATUS);
1148 
1149 	drm_printf(p, "\nGuC status 0x%08x:\n", status);
1150 	drm_printf(p, "\tBootrom status = 0x%x\n",
1151 		   REG_FIELD_GET(GS_BOOTROM_MASK, status));
1152 	drm_printf(p, "\tuKernel status = 0x%x\n",
1153 		   REG_FIELD_GET(GS_UKERNEL_MASK, status));
1154 	drm_printf(p, "\tMIA Core status = 0x%x\n",
1155 		   REG_FIELD_GET(GS_MIA_MASK, status));
1156 	drm_printf(p, "\tLog level = %d\n",
1157 		   xe_guc_log_get_level(&guc->log));
1158 
1159 	drm_puts(p, "\nScratch registers:\n");
1160 	for (i = 0; i < SOFT_SCRATCH_COUNT; i++) {
1161 		drm_printf(p, "\t%2d: \t0x%x\n",
1162 			   i, xe_mmio_read32(gt, SOFT_SCRATCH(i)));
1163 	}
1164 
1165 	xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
1166 
1167 	xe_guc_ct_print(&guc->ct, p, false);
1168 	xe_guc_submit_print(guc, p);
1169 }
1170