xref: /linux/drivers/gpu/drm/xe/xe_guc.c (revision 36ec807b627b4c0a0a382f0ae48eac7187d14b2b)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_guc.h"
7 
8 #include <drm/drm_managed.h>
9 
10 #include <generated/xe_wa_oob.h>
11 
12 #include "abi/guc_actions_abi.h"
13 #include "abi/guc_errors_abi.h"
14 #include "regs/xe_gt_regs.h"
15 #include "regs/xe_gtt_defs.h"
16 #include "regs/xe_guc_regs.h"
17 #include "xe_bo.h"
18 #include "xe_device.h"
19 #include "xe_force_wake.h"
20 #include "xe_gt.h"
21 #include "xe_gt_printk.h"
22 #include "xe_gt_sriov_vf.h"
23 #include "xe_gt_throttle.h"
24 #include "xe_guc_ads.h"
25 #include "xe_guc_ct.h"
26 #include "xe_guc_db_mgr.h"
27 #include "xe_guc_hwconfig.h"
28 #include "xe_guc_log.h"
29 #include "xe_guc_pc.h"
30 #include "xe_guc_relay.h"
31 #include "xe_guc_submit.h"
32 #include "xe_memirq.h"
33 #include "xe_mmio.h"
34 #include "xe_platform_types.h"
35 #include "xe_sriov.h"
36 #include "xe_uc.h"
37 #include "xe_uc_fw.h"
38 #include "xe_wa.h"
39 #include "xe_wopcm.h"
40 
41 static u32 guc_bo_ggtt_addr(struct xe_guc *guc,
42 			    struct xe_bo *bo)
43 {
44 	struct xe_device *xe = guc_to_xe(guc);
45 	u32 addr = xe_bo_ggtt_addr(bo);
46 
47 	/* GuC addresses above GUC_GGTT_TOP don't map through the GTT */
48 	xe_assert(xe, addr >= xe_wopcm_size(guc_to_xe(guc)));
49 	xe_assert(xe, addr < GUC_GGTT_TOP);
50 	xe_assert(xe, bo->size <= GUC_GGTT_TOP - addr);
51 
52 	return addr;
53 }
54 
55 static u32 guc_ctl_debug_flags(struct xe_guc *guc)
56 {
57 	u32 level = xe_guc_log_get_level(&guc->log);
58 	u32 flags = 0;
59 
60 	if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
61 		flags |= GUC_LOG_DISABLED;
62 	else
63 		flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
64 			 GUC_LOG_VERBOSITY_SHIFT;
65 
66 	return flags;
67 }
68 
69 static u32 guc_ctl_feature_flags(struct xe_guc *guc)
70 {
71 	u32 flags = 0;
72 
73 	if (!guc_to_xe(guc)->info.skip_guc_pc)
74 		flags |= GUC_CTL_ENABLE_SLPC;
75 
76 	return flags;
77 }
78 
79 static u32 guc_ctl_log_params_flags(struct xe_guc *guc)
80 {
81 	u32 offset = guc_bo_ggtt_addr(guc, guc->log.bo) >> PAGE_SHIFT;
82 	u32 flags;
83 
84 	#if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
85 	#define LOG_UNIT SZ_1M
86 	#define LOG_FLAG GUC_LOG_LOG_ALLOC_UNITS
87 	#else
88 	#define LOG_UNIT SZ_4K
89 	#define LOG_FLAG 0
90 	#endif
91 
92 	#if (((CAPTURE_BUFFER_SIZE) % SZ_1M) == 0)
93 	#define CAPTURE_UNIT SZ_1M
94 	#define CAPTURE_FLAG GUC_LOG_CAPTURE_ALLOC_UNITS
95 	#else
96 	#define CAPTURE_UNIT SZ_4K
97 	#define CAPTURE_FLAG 0
98 	#endif
99 
100 	BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
101 	BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, LOG_UNIT));
102 	BUILD_BUG_ON(!DEBUG_BUFFER_SIZE);
103 	BUILD_BUG_ON(!IS_ALIGNED(DEBUG_BUFFER_SIZE, LOG_UNIT));
104 	BUILD_BUG_ON(!CAPTURE_BUFFER_SIZE);
105 	BUILD_BUG_ON(!IS_ALIGNED(CAPTURE_BUFFER_SIZE, CAPTURE_UNIT));
106 
107 	BUILD_BUG_ON((CRASH_BUFFER_SIZE / LOG_UNIT - 1) >
108 			(GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
109 	BUILD_BUG_ON((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) >
110 			(GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT));
111 	BUILD_BUG_ON((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) >
112 			(GUC_LOG_CAPTURE_MASK >> GUC_LOG_CAPTURE_SHIFT));
113 
114 	flags = GUC_LOG_VALID |
115 		GUC_LOG_NOTIFY_ON_HALF_FULL |
116 		CAPTURE_FLAG |
117 		LOG_FLAG |
118 		((CRASH_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
119 		((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_DEBUG_SHIFT) |
120 		((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) <<
121 		 GUC_LOG_CAPTURE_SHIFT) |
122 		(offset << GUC_LOG_BUF_ADDR_SHIFT);
123 
124 	#undef LOG_UNIT
125 	#undef LOG_FLAG
126 	#undef CAPTURE_UNIT
127 	#undef CAPTURE_FLAG
128 
129 	return flags;
130 }
131 
132 static u32 guc_ctl_ads_flags(struct xe_guc *guc)
133 {
134 	u32 ads = guc_bo_ggtt_addr(guc, guc->ads.bo) >> PAGE_SHIFT;
135 	u32 flags = ads << GUC_ADS_ADDR_SHIFT;
136 
137 	return flags;
138 }
139 
140 static u32 guc_ctl_wa_flags(struct xe_guc *guc)
141 {
142 	struct xe_device *xe = guc_to_xe(guc);
143 	struct xe_gt *gt = guc_to_gt(guc);
144 	u32 flags = 0;
145 
146 	if (XE_WA(gt, 22012773006))
147 		flags |= GUC_WA_POLLCS;
148 
149 	if (XE_WA(gt, 14014475959))
150 		flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
151 
152 	if (XE_WA(gt, 22011391025))
153 		flags |= GUC_WA_DUAL_QUEUE;
154 
155 	/*
156 	 * Wa_22011802037: FIXME - there's more to be done than simply setting
157 	 * this flag: make sure each CS is stopped when preparing for GT reset
158 	 * and wait for pending MI_FW.
159 	 */
160 	if (GRAPHICS_VERx100(xe) < 1270)
161 		flags |= GUC_WA_PRE_PARSER;
162 
163 	if (XE_WA(gt, 22012727170) || XE_WA(gt, 22012727685))
164 		flags |= GUC_WA_CONTEXT_ISOLATION;
165 
166 	if (XE_WA(gt, 18020744125) &&
167 	    !xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_RENDER))
168 		flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST;
169 
170 	if (XE_WA(gt, 1509372804))
171 		flags |= GUC_WA_RENDER_RST_RC6_EXIT;
172 
173 	if (XE_WA(gt, 14018913170))
174 		flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6;
175 
176 	return flags;
177 }
178 
179 static u32 guc_ctl_devid(struct xe_guc *guc)
180 {
181 	struct xe_device *xe = guc_to_xe(guc);
182 
183 	return (((u32)xe->info.devid) << 16) | xe->info.revid;
184 }
185 
186 static void guc_print_params(struct xe_guc *guc)
187 {
188 	struct xe_gt *gt = guc_to_gt(guc);
189 	u32 *params = guc->params;
190 	int i;
191 
192 	BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
193 	BUILD_BUG_ON(GUC_CTL_MAX_DWORDS + 2 != SOFT_SCRATCH_COUNT);
194 
195 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
196 		xe_gt_dbg(gt, "GuC param[%2d] = 0x%08x\n", i, params[i]);
197 }
198 
199 static void guc_init_params(struct xe_guc *guc)
200 {
201 	u32 *params = guc->params;
202 
203 	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
204 	params[GUC_CTL_FEATURE] = 0;
205 	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
206 	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
207 	params[GUC_CTL_WA] = 0;
208 	params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
209 
210 	guc_print_params(guc);
211 }
212 
213 static void guc_init_params_post_hwconfig(struct xe_guc *guc)
214 {
215 	u32 *params = guc->params;
216 
217 	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
218 	params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
219 	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
220 	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
221 	params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
222 	params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
223 
224 	guc_print_params(guc);
225 }
226 
227 /*
228  * Initialize the GuC parameter block before starting the firmware
229  * transfer. These parameters are read by the firmware on startup
230  * and cannot be changed thereafter.
231  */
232 static void guc_write_params(struct xe_guc *guc)
233 {
234 	struct xe_gt *gt = guc_to_gt(guc);
235 	int i;
236 
237 	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
238 
239 	xe_mmio_write32(gt, SOFT_SCRATCH(0), 0);
240 
241 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
242 		xe_mmio_write32(gt, SOFT_SCRATCH(1 + i), guc->params[i]);
243 }
244 
245 static void guc_fini_hw(void *arg)
246 {
247 	struct xe_guc *guc = arg;
248 	struct xe_gt *gt = guc_to_gt(guc);
249 
250 	xe_gt_WARN_ON(gt, xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL));
251 	xe_uc_fini_hw(&guc_to_gt(guc)->uc);
252 	xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL);
253 }
254 
255 /**
256  * xe_guc_comm_init_early - early initialization of GuC communication
257  * @guc: the &xe_guc to initialize
258  *
259  * Must be called prior to first MMIO communication with GuC firmware.
260  */
261 void xe_guc_comm_init_early(struct xe_guc *guc)
262 {
263 	struct xe_gt *gt = guc_to_gt(guc);
264 
265 	if (xe_gt_is_media_type(gt))
266 		guc->notify_reg = MED_GUC_HOST_INTERRUPT;
267 	else
268 		guc->notify_reg = GUC_HOST_INTERRUPT;
269 }
270 
271 static int xe_guc_realloc_post_hwconfig(struct xe_guc *guc)
272 {
273 	struct xe_tile *tile = gt_to_tile(guc_to_gt(guc));
274 	struct xe_device *xe = guc_to_xe(guc);
275 	int ret;
276 
277 	if (!IS_DGFX(guc_to_xe(guc)))
278 		return 0;
279 
280 	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->fw.bo);
281 	if (ret)
282 		return ret;
283 
284 	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->log.bo);
285 	if (ret)
286 		return ret;
287 
288 	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ads.bo);
289 	if (ret)
290 		return ret;
291 
292 	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ct.bo);
293 	if (ret)
294 		return ret;
295 
296 	return 0;
297 }
298 
299 static int vf_guc_init(struct xe_guc *guc)
300 {
301 	int err;
302 
303 	xe_guc_comm_init_early(guc);
304 
305 	err = xe_guc_ct_init(&guc->ct);
306 	if (err)
307 		return err;
308 
309 	err = xe_guc_relay_init(&guc->relay);
310 	if (err)
311 		return err;
312 
313 	return 0;
314 }
315 
316 int xe_guc_init(struct xe_guc *guc)
317 {
318 	struct xe_device *xe = guc_to_xe(guc);
319 	struct xe_gt *gt = guc_to_gt(guc);
320 	int ret;
321 
322 	guc->fw.type = XE_UC_FW_TYPE_GUC;
323 	ret = xe_uc_fw_init(&guc->fw);
324 	if (ret)
325 		goto out;
326 
327 	if (!xe_uc_fw_is_enabled(&guc->fw))
328 		return 0;
329 
330 	if (IS_SRIOV_VF(xe)) {
331 		ret = vf_guc_init(guc);
332 		if (ret)
333 			goto out;
334 		return 0;
335 	}
336 
337 	ret = xe_guc_log_init(&guc->log);
338 	if (ret)
339 		goto out;
340 
341 	ret = xe_guc_ads_init(&guc->ads);
342 	if (ret)
343 		goto out;
344 
345 	ret = xe_guc_ct_init(&guc->ct);
346 	if (ret)
347 		goto out;
348 
349 	ret = xe_guc_relay_init(&guc->relay);
350 	if (ret)
351 		goto out;
352 
353 	ret = devm_add_action_or_reset(xe->drm.dev, guc_fini_hw, guc);
354 	if (ret)
355 		goto out;
356 
357 	guc_init_params(guc);
358 
359 	xe_guc_comm_init_early(guc);
360 
361 	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOADABLE);
362 
363 	return 0;
364 
365 out:
366 	xe_gt_err(gt, "GuC init failed with %pe\n", ERR_PTR(ret));
367 	return ret;
368 }
369 
370 static int vf_guc_init_post_hwconfig(struct xe_guc *guc)
371 {
372 	int err;
373 
374 	err = xe_guc_submit_init(guc, xe_gt_sriov_vf_guc_ids(guc_to_gt(guc)));
375 	if (err)
376 		return err;
377 
378 	/* XXX xe_guc_db_mgr_init not needed for now */
379 
380 	return 0;
381 }
382 
383 /**
384  * xe_guc_init_post_hwconfig - initialize GuC post hwconfig load
385  * @guc: The GuC object
386  *
387  * Return: 0 on success, negative error code on error.
388  */
389 int xe_guc_init_post_hwconfig(struct xe_guc *guc)
390 {
391 	int ret;
392 
393 	if (IS_SRIOV_VF(guc_to_xe(guc)))
394 		return vf_guc_init_post_hwconfig(guc);
395 
396 	ret = xe_guc_realloc_post_hwconfig(guc);
397 	if (ret)
398 		return ret;
399 
400 	guc_init_params_post_hwconfig(guc);
401 
402 	ret = xe_guc_submit_init(guc, ~0);
403 	if (ret)
404 		return ret;
405 
406 	ret = xe_guc_db_mgr_init(&guc->dbm, ~0);
407 	if (ret)
408 		return ret;
409 
410 	ret = xe_guc_pc_init(&guc->pc);
411 	if (ret)
412 		return ret;
413 
414 	return xe_guc_ads_init_post_hwconfig(&guc->ads);
415 }
416 
417 int xe_guc_post_load_init(struct xe_guc *guc)
418 {
419 	xe_guc_ads_populate_post_load(&guc->ads);
420 	guc->submission_state.enabled = true;
421 
422 	return 0;
423 }
424 
425 int xe_guc_reset(struct xe_guc *guc)
426 {
427 	struct xe_gt *gt = guc_to_gt(guc);
428 	u32 guc_status, gdrst;
429 	int ret;
430 
431 	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
432 
433 	if (IS_SRIOV_VF(gt_to_xe(gt)))
434 		return xe_gt_sriov_vf_bootstrap(gt);
435 
436 	xe_mmio_write32(gt, GDRST, GRDOM_GUC);
437 
438 	ret = xe_mmio_wait32(gt, GDRST, GRDOM_GUC, 0, 5000, &gdrst, false);
439 	if (ret) {
440 		xe_gt_err(gt, "GuC reset timed out, GDRST=%#x\n", gdrst);
441 		goto err_out;
442 	}
443 
444 	guc_status = xe_mmio_read32(gt, GUC_STATUS);
445 	if (!(guc_status & GS_MIA_IN_RESET)) {
446 		xe_gt_err(gt, "GuC status: %#x, MIA core expected to be in reset\n",
447 			  guc_status);
448 		ret = -EIO;
449 		goto err_out;
450 	}
451 
452 	return 0;
453 
454 err_out:
455 
456 	return ret;
457 }
458 
459 static void guc_prepare_xfer(struct xe_guc *guc)
460 {
461 	struct xe_gt *gt = guc_to_gt(guc);
462 	struct xe_device *xe =  guc_to_xe(guc);
463 	u32 shim_flags = GUC_ENABLE_READ_CACHE_LOGIC |
464 		GUC_ENABLE_READ_CACHE_FOR_SRAM_DATA |
465 		GUC_ENABLE_READ_CACHE_FOR_WOPCM_DATA |
466 		GUC_ENABLE_MIA_CLOCK_GATING;
467 
468 	if (GRAPHICS_VERx100(xe) < 1250)
469 		shim_flags |= GUC_DISABLE_SRAM_INIT_TO_ZEROES |
470 				GUC_ENABLE_MIA_CACHING;
471 
472 	if (GRAPHICS_VER(xe) >= 20 || xe->info.platform == XE_PVC)
473 		shim_flags |= REG_FIELD_PREP(GUC_MOCS_INDEX_MASK, gt->mocs.uc_index);
474 
475 	/* Must program this register before loading the ucode with DMA */
476 	xe_mmio_write32(gt, GUC_SHIM_CONTROL, shim_flags);
477 
478 	xe_mmio_write32(gt, GT_PM_CONFIG, GT_DOORBELL_ENABLE);
479 
480 	/* Make sure GuC receives ARAT interrupts */
481 	xe_mmio_rmw32(gt, PMINTRMSK, ARAT_EXPIRED_INTRMSK, 0);
482 }
483 
484 /*
485  * Supporting MMIO & in memory RSA
486  */
487 static int guc_xfer_rsa(struct xe_guc *guc)
488 {
489 	struct xe_gt *gt = guc_to_gt(guc);
490 	u32 rsa[UOS_RSA_SCRATCH_COUNT];
491 	size_t copied;
492 	int i;
493 
494 	if (guc->fw.rsa_size > 256) {
495 		u32 rsa_ggtt_addr = xe_bo_ggtt_addr(guc->fw.bo) +
496 				    xe_uc_fw_rsa_offset(&guc->fw);
497 		xe_mmio_write32(gt, UOS_RSA_SCRATCH(0), rsa_ggtt_addr);
498 		return 0;
499 	}
500 
501 	copied = xe_uc_fw_copy_rsa(&guc->fw, rsa, sizeof(rsa));
502 	if (copied < sizeof(rsa))
503 		return -ENOMEM;
504 
505 	for (i = 0; i < UOS_RSA_SCRATCH_COUNT; i++)
506 		xe_mmio_write32(gt, UOS_RSA_SCRATCH(i), rsa[i]);
507 
508 	return 0;
509 }
510 
511 /*
512  * Check a previously read GuC status register (GUC_STATUS) looking for
513  * known terminal states (either completion or failure) of either the
514  * microkernel status field or the boot ROM status field. Returns +1 for
515  * successful completion, -1 for failure and 0 for any intermediate state.
516  */
517 static int guc_load_done(u32 status)
518 {
519 	u32 uk_val = REG_FIELD_GET(GS_UKERNEL_MASK, status);
520 	u32 br_val = REG_FIELD_GET(GS_BOOTROM_MASK, status);
521 
522 	switch (uk_val) {
523 	case XE_GUC_LOAD_STATUS_READY:
524 		return 1;
525 
526 	case XE_GUC_LOAD_STATUS_ERROR_DEVID_BUILD_MISMATCH:
527 	case XE_GUC_LOAD_STATUS_GUC_PREPROD_BUILD_MISMATCH:
528 	case XE_GUC_LOAD_STATUS_ERROR_DEVID_INVALID_GUCTYPE:
529 	case XE_GUC_LOAD_STATUS_HWCONFIG_ERROR:
530 	case XE_GUC_LOAD_STATUS_DPC_ERROR:
531 	case XE_GUC_LOAD_STATUS_EXCEPTION:
532 	case XE_GUC_LOAD_STATUS_INIT_DATA_INVALID:
533 	case XE_GUC_LOAD_STATUS_MPU_DATA_INVALID:
534 	case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
535 		return -1;
536 	}
537 
538 	switch (br_val) {
539 	case XE_BOOTROM_STATUS_NO_KEY_FOUND:
540 	case XE_BOOTROM_STATUS_RSA_FAILED:
541 	case XE_BOOTROM_STATUS_PAVPC_FAILED:
542 	case XE_BOOTROM_STATUS_WOPCM_FAILED:
543 	case XE_BOOTROM_STATUS_LOADLOC_FAILED:
544 	case XE_BOOTROM_STATUS_JUMP_FAILED:
545 	case XE_BOOTROM_STATUS_RC6CTXCONFIG_FAILED:
546 	case XE_BOOTROM_STATUS_MPUMAP_INCORRECT:
547 	case XE_BOOTROM_STATUS_EXCEPTION:
548 	case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
549 		return -1;
550 	}
551 
552 	return 0;
553 }
554 
555 static s32 guc_pc_get_cur_freq(struct xe_guc_pc *guc_pc)
556 {
557 	u32 freq;
558 	int ret = xe_guc_pc_get_cur_freq(guc_pc, &freq);
559 
560 	return ret ? ret : freq;
561 }
562 
563 /*
564  * Wait for the GuC to start up.
565  *
566  * Measurements indicate this should take no more than 20ms (assuming the GT
567  * clock is at maximum frequency). However, thermal throttling and other issues
568  * can prevent the clock hitting max and thus making the load take significantly
569  * longer. Allow up to 200ms as a safety margin for real world worst case situations.
570  *
571  * However, bugs anywhere from KMD to GuC to PCODE to fan failure in a CI farm can
572  * lead to even longer times. E.g. if the GT is clamped to minimum frequency then
573  * the load times can be in the seconds range. So the timeout is increased for debug
574  * builds to ensure that problems can be correctly analysed. For release builds, the
575  * timeout is kept short so that users don't wait forever to find out that there is a
576  * problem. In either case, if the load took longer than is reasonable even with some
577  * 'sensible' throttling, then flag a warning because something is not right.
578  *
579  * Note that there is a limit on how long an individual usleep_range() can wait for,
580  * hence longer waits require wrapping a shorter wait in a loop.
581  *
582  * Note that the only reason an end user should hit the shorter timeout is in case of
583  * extreme thermal throttling. And a system that is that hot during boot is probably
584  * dead anyway!
585  */
586 #if defined(CONFIG_DRM_XE_DEBUG)
587 #define GUC_LOAD_RETRY_LIMIT	20
588 #else
589 #define GUC_LOAD_RETRY_LIMIT	3
590 #endif
591 #define GUC_LOAD_TIME_WARN_MS      200
592 
593 static void guc_wait_ucode(struct xe_guc *guc)
594 {
595 	struct xe_gt *gt = guc_to_gt(guc);
596 	struct xe_guc_pc *guc_pc = &gt->uc.guc.pc;
597 	ktime_t before, after, delta;
598 	int load_done;
599 	u32 status = 0;
600 	int count = 0;
601 	u64 delta_ms;
602 	u32 before_freq;
603 
604 	before_freq = xe_guc_pc_get_act_freq(guc_pc);
605 	before = ktime_get();
606 	/*
607 	 * Note, can't use any kind of timing information from the call to xe_mmio_wait.
608 	 * It could return a thousand intermediate stages at random times. Instead, must
609 	 * manually track the total time taken and locally implement the timeout.
610 	 */
611 	do {
612 		u32 last_status = status & (GS_UKERNEL_MASK | GS_BOOTROM_MASK);
613 		int ret;
614 
615 		/*
616 		 * Wait for any change (intermediate or terminal) in the status register.
617 		 * Note, the return value is a don't care. The only failure code is timeout
618 		 * but the timeouts need to be accumulated over all the intermediate partial
619 		 * timeouts rather than allowing a huge timeout each time. So basically, need
620 		 * to treat a timeout no different to a value change.
621 		 */
622 		ret = xe_mmio_wait32_not(gt, GUC_STATUS, GS_UKERNEL_MASK | GS_BOOTROM_MASK,
623 					 last_status, 1000 * 1000, &status, false);
624 		if (ret < 0)
625 			count++;
626 		after = ktime_get();
627 		delta = ktime_sub(after, before);
628 		delta_ms = ktime_to_ms(delta);
629 
630 		load_done = guc_load_done(status);
631 		if (load_done != 0)
632 			break;
633 
634 		if (delta_ms >= (GUC_LOAD_RETRY_LIMIT * 1000))
635 			break;
636 
637 		xe_gt_dbg(gt, "load still in progress, timeouts = %d, freq = %dMHz (req %dMHz), status = 0x%08X [0x%02X/%02X]\n",
638 			  count, xe_guc_pc_get_act_freq(guc_pc),
639 			  guc_pc_get_cur_freq(guc_pc), status,
640 			  REG_FIELD_GET(GS_BOOTROM_MASK, status),
641 			  REG_FIELD_GET(GS_UKERNEL_MASK, status));
642 	} while (1);
643 
644 	if (load_done != 1) {
645 		u32 ukernel = REG_FIELD_GET(GS_UKERNEL_MASK, status);
646 		u32 bootrom = REG_FIELD_GET(GS_BOOTROM_MASK, status);
647 
648 		xe_gt_err(gt, "load failed: status = 0x%08X, time = %lldms, freq = %dMHz (req %dMHz), done = %d\n",
649 			  status, delta_ms, xe_guc_pc_get_act_freq(guc_pc),
650 			  guc_pc_get_cur_freq(guc_pc), load_done);
651 		xe_gt_err(gt, "load failed: status: Reset = %d, BootROM = 0x%02X, UKernel = 0x%02X, MIA = 0x%02X, Auth = 0x%02X\n",
652 			  REG_FIELD_GET(GS_MIA_IN_RESET, status),
653 			  bootrom, ukernel,
654 			  REG_FIELD_GET(GS_MIA_MASK, status),
655 			  REG_FIELD_GET(GS_AUTH_STATUS_MASK, status));
656 
657 		switch (bootrom) {
658 		case XE_BOOTROM_STATUS_NO_KEY_FOUND:
659 			xe_gt_err(gt, "invalid key requested, header = 0x%08X\n",
660 				  xe_mmio_read32(gt, GUC_HEADER_INFO));
661 			break;
662 
663 		case XE_BOOTROM_STATUS_RSA_FAILED:
664 			xe_gt_err(gt, "firmware signature verification failed\n");
665 			break;
666 
667 		case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
668 			xe_gt_err(gt, "firmware production part check failure\n");
669 			break;
670 		}
671 
672 		switch (ukernel) {
673 		case XE_GUC_LOAD_STATUS_EXCEPTION:
674 			xe_gt_err(gt, "firmware exception. EIP: %#x\n",
675 				  xe_mmio_read32(gt, SOFT_SCRATCH(13)));
676 			break;
677 
678 		case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
679 			xe_gt_err(gt, "illegal register in save/restore workaround list\n");
680 			break;
681 
682 		case XE_GUC_LOAD_STATUS_HWCONFIG_START:
683 			xe_gt_err(gt, "still extracting hwconfig table.\n");
684 			break;
685 		}
686 
687 		xe_device_declare_wedged(gt_to_xe(gt));
688 	} else if (delta_ms > GUC_LOAD_TIME_WARN_MS) {
689 		xe_gt_warn(gt, "excessive init time: %lldms! [status = 0x%08X, timeouts = %d]\n",
690 			   delta_ms, status, count);
691 		xe_gt_warn(gt, "excessive init time: [freq = %dMHz (req = %dMHz), before = %dMHz, perf_limit_reasons = 0x%08X]\n",
692 			   xe_guc_pc_get_act_freq(guc_pc), guc_pc_get_cur_freq(guc_pc),
693 			   before_freq, xe_gt_throttle_get_limit_reasons(gt));
694 	} else {
695 		xe_gt_dbg(gt, "init took %lldms, freq = %dMHz (req = %dMHz), before = %dMHz, status = 0x%08X, timeouts = %d\n",
696 			  delta_ms, xe_guc_pc_get_act_freq(guc_pc), guc_pc_get_cur_freq(guc_pc),
697 			  before_freq, status, count);
698 	}
699 }
700 
701 static int __xe_guc_upload(struct xe_guc *guc)
702 {
703 	int ret;
704 
705 	/* Raise GT freq to speed up HuC/GuC load */
706 	xe_guc_pc_raise_unslice(&guc->pc);
707 
708 	guc_write_params(guc);
709 	guc_prepare_xfer(guc);
710 
711 	/*
712 	 * Note that GuC needs the CSS header plus uKernel code to be copied
713 	 * by the DMA engine in one operation, whereas the RSA signature is
714 	 * loaded separately, either by copying it to the UOS_RSA_SCRATCH
715 	 * register (if key size <= 256) or through a ggtt-pinned vma (if key
716 	 * size > 256). The RSA size and therefore the way we provide it to the
717 	 * HW is fixed for each platform and hard-coded in the bootrom.
718 	 */
719 	ret = guc_xfer_rsa(guc);
720 	if (ret)
721 		goto out;
722 	/*
723 	 * Current uCode expects the code to be loaded at 8k; locations below
724 	 * this are used for the stack.
725 	 */
726 	ret = xe_uc_fw_upload(&guc->fw, 0x2000, UOS_MOVE);
727 	if (ret)
728 		goto out;
729 
730 	/* Wait for authentication */
731 	guc_wait_ucode(guc);
732 
733 	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_RUNNING);
734 	return 0;
735 
736 out:
737 	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOAD_FAIL);
738 	return 0	/* FIXME: ret, don't want to stop load currently */;
739 }
740 
741 static int vf_guc_min_load_for_hwconfig(struct xe_guc *guc)
742 {
743 	struct xe_gt *gt = guc_to_gt(guc);
744 	int ret;
745 
746 	ret = xe_gt_sriov_vf_bootstrap(gt);
747 	if (ret)
748 		return ret;
749 
750 	ret = xe_gt_sriov_vf_query_config(gt);
751 	if (ret)
752 		return ret;
753 
754 	ret = xe_guc_hwconfig_init(guc);
755 	if (ret)
756 		return ret;
757 
758 	ret = xe_guc_enable_communication(guc);
759 	if (ret)
760 		return ret;
761 
762 	ret = xe_gt_sriov_vf_connect(gt);
763 	if (ret)
764 		return ret;
765 
766 	ret = xe_gt_sriov_vf_query_runtime(gt);
767 	if (ret)
768 		return ret;
769 
770 	return 0;
771 }
772 
773 /**
774  * xe_guc_min_load_for_hwconfig - load minimal GuC and read hwconfig table
775  * @guc: The GuC object
776  *
777  * This function uploads a minimal GuC that does not support submissions but
778  * in a state where the hwconfig table can be read. Next, it reads and parses
779  * the hwconfig table so it can be used for subsequent steps in the driver load.
780  * Lastly, it enables CT communication (XXX: this is needed for PFs/VFs only).
781  *
782  * Return: 0 on success, negative error code on error.
783  */
784 int xe_guc_min_load_for_hwconfig(struct xe_guc *guc)
785 {
786 	int ret;
787 
788 	if (IS_SRIOV_VF(guc_to_xe(guc)))
789 		return vf_guc_min_load_for_hwconfig(guc);
790 
791 	xe_guc_ads_populate_minimal(&guc->ads);
792 
793 	xe_guc_pc_init_early(&guc->pc);
794 
795 	ret = __xe_guc_upload(guc);
796 	if (ret)
797 		return ret;
798 
799 	ret = xe_guc_hwconfig_init(guc);
800 	if (ret)
801 		return ret;
802 
803 	ret = xe_guc_enable_communication(guc);
804 	if (ret)
805 		return ret;
806 
807 	return 0;
808 }
809 
810 int xe_guc_upload(struct xe_guc *guc)
811 {
812 	xe_guc_ads_populate(&guc->ads);
813 
814 	return __xe_guc_upload(guc);
815 }
816 
817 static void guc_handle_mmio_msg(struct xe_guc *guc)
818 {
819 	struct xe_gt *gt = guc_to_gt(guc);
820 	u32 msg;
821 
822 	if (IS_SRIOV_VF(guc_to_xe(guc)))
823 		return;
824 
825 	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
826 
827 	msg = xe_mmio_read32(gt, SOFT_SCRATCH(15));
828 	msg &= XE_GUC_RECV_MSG_EXCEPTION |
829 		XE_GUC_RECV_MSG_CRASH_DUMP_POSTED;
830 	xe_mmio_write32(gt, SOFT_SCRATCH(15), 0);
831 
832 	if (msg & XE_GUC_RECV_MSG_CRASH_DUMP_POSTED)
833 		xe_gt_err(gt, "Received early GuC crash dump notification!\n");
834 
835 	if (msg & XE_GUC_RECV_MSG_EXCEPTION)
836 		xe_gt_err(gt, "Received early GuC exception notification!\n");
837 }
838 
839 static void guc_enable_irq(struct xe_guc *guc)
840 {
841 	struct xe_gt *gt = guc_to_gt(guc);
842 	u32 events = xe_gt_is_media_type(gt) ?
843 		REG_FIELD_PREP(ENGINE0_MASK, GUC_INTR_GUC2HOST)  :
844 		REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
845 
846 	/* Primary GuC and media GuC share a single enable bit */
847 	xe_mmio_write32(gt, GUC_SG_INTR_ENABLE,
848 			REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST));
849 
850 	/*
851 	 * There are separate mask bits for primary and media GuCs, so use
852 	 * a RMW operation to avoid clobbering the other GuC's setting.
853 	 */
854 	xe_mmio_rmw32(gt, GUC_SG_INTR_MASK, events, 0);
855 }
856 
857 int xe_guc_enable_communication(struct xe_guc *guc)
858 {
859 	struct xe_device *xe = guc_to_xe(guc);
860 	int err;
861 
862 	if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe)) {
863 		struct xe_gt *gt = guc_to_gt(guc);
864 		struct xe_tile *tile = gt_to_tile(gt);
865 
866 		err = xe_memirq_init_guc(&tile->sriov.vf.memirq, guc);
867 		if (err)
868 			return err;
869 	} else {
870 		guc_enable_irq(guc);
871 	}
872 
873 	err = xe_guc_ct_enable(&guc->ct);
874 	if (err)
875 		return err;
876 
877 	guc_handle_mmio_msg(guc);
878 
879 	return 0;
880 }
881 
882 int xe_guc_suspend(struct xe_guc *guc)
883 {
884 	struct xe_gt *gt = guc_to_gt(guc);
885 	u32 action[] = {
886 		XE_GUC_ACTION_CLIENT_SOFT_RESET,
887 	};
888 	int ret;
889 
890 	ret = xe_guc_mmio_send(guc, action, ARRAY_SIZE(action));
891 	if (ret) {
892 		xe_gt_err(gt, "GuC suspend failed: %pe\n", ERR_PTR(ret));
893 		return ret;
894 	}
895 
896 	xe_guc_sanitize(guc);
897 	return 0;
898 }
899 
900 void xe_guc_notify(struct xe_guc *guc)
901 {
902 	struct xe_gt *gt = guc_to_gt(guc);
903 	const u32 default_notify_data = 0;
904 
905 	/*
906 	 * Both GUC_HOST_INTERRUPT and MED_GUC_HOST_INTERRUPT can pass
907 	 * additional payload data to the GuC but this capability is not
908 	 * used by the firmware yet. Use default value in the meantime.
909 	 */
910 	xe_mmio_write32(gt, guc->notify_reg, default_notify_data);
911 }
912 
913 int xe_guc_auth_huc(struct xe_guc *guc, u32 rsa_addr)
914 {
915 	u32 action[] = {
916 		XE_GUC_ACTION_AUTHENTICATE_HUC,
917 		rsa_addr
918 	};
919 
920 	return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
921 }
922 
923 int xe_guc_mmio_send_recv(struct xe_guc *guc, const u32 *request,
924 			  u32 len, u32 *response_buf)
925 {
926 	struct xe_device *xe = guc_to_xe(guc);
927 	struct xe_gt *gt = guc_to_gt(guc);
928 	u32 header, reply;
929 	struct xe_reg reply_reg = xe_gt_is_media_type(gt) ?
930 		MED_VF_SW_FLAG(0) : VF_SW_FLAG(0);
931 	const u32 LAST_INDEX = VF_SW_FLAG_COUNT - 1;
932 	int ret;
933 	int i;
934 
935 	BUILD_BUG_ON(VF_SW_FLAG_COUNT != MED_VF_SW_FLAG_COUNT);
936 
937 	xe_assert(xe, !xe_guc_ct_enabled(&guc->ct));
938 	xe_assert(xe, len);
939 	xe_assert(xe, len <= VF_SW_FLAG_COUNT);
940 	xe_assert(xe, len <= MED_VF_SW_FLAG_COUNT);
941 	xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) ==
942 		  GUC_HXG_ORIGIN_HOST);
943 	xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) ==
944 		  GUC_HXG_TYPE_REQUEST);
945 
946 retry:
947 	/* Not in critical data-path, just do if else for GT type */
948 	if (xe_gt_is_media_type(gt)) {
949 		for (i = 0; i < len; ++i)
950 			xe_mmio_write32(gt, MED_VF_SW_FLAG(i),
951 					request[i]);
952 		xe_mmio_read32(gt, MED_VF_SW_FLAG(LAST_INDEX));
953 	} else {
954 		for (i = 0; i < len; ++i)
955 			xe_mmio_write32(gt, VF_SW_FLAG(i),
956 					request[i]);
957 		xe_mmio_read32(gt, VF_SW_FLAG(LAST_INDEX));
958 	}
959 
960 	xe_guc_notify(guc);
961 
962 	ret = xe_mmio_wait32(gt, reply_reg, GUC_HXG_MSG_0_ORIGIN,
963 			     FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_GUC),
964 			     50000, &reply, false);
965 	if (ret) {
966 timeout:
967 		xe_gt_err(gt, "GuC mmio request %#x: no reply %#x\n",
968 			  request[0], reply);
969 		return ret;
970 	}
971 
972 	header = xe_mmio_read32(gt, reply_reg);
973 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
974 	    GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
975 		/*
976 		 * Once we got a BUSY reply we must wait again for the final
977 		 * response but this time we can't use ORIGIN mask anymore.
978 		 * To spot a right change in the reply, we take advantage that
979 		 * response SUCCESS and FAILURE differ only by the single bit
980 		 * and all other bits are set and can be used as a new mask.
981 		 */
982 		u32 resp_bits = GUC_HXG_TYPE_RESPONSE_SUCCESS & GUC_HXG_TYPE_RESPONSE_FAILURE;
983 		u32 resp_mask = FIELD_PREP(GUC_HXG_MSG_0_TYPE, resp_bits);
984 
985 		BUILD_BUG_ON(FIELD_MAX(GUC_HXG_MSG_0_TYPE) != GUC_HXG_TYPE_RESPONSE_SUCCESS);
986 		BUILD_BUG_ON((GUC_HXG_TYPE_RESPONSE_SUCCESS ^ GUC_HXG_TYPE_RESPONSE_FAILURE) != 1);
987 
988 		ret = xe_mmio_wait32(gt, reply_reg,  resp_mask, resp_mask,
989 				     1000000, &header, false);
990 
991 		if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
992 			     GUC_HXG_ORIGIN_GUC))
993 			goto proto;
994 		if (unlikely(ret)) {
995 			if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
996 			    GUC_HXG_TYPE_NO_RESPONSE_BUSY)
997 				goto proto;
998 			goto timeout;
999 		}
1000 	}
1001 
1002 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
1003 	    GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
1004 		u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
1005 
1006 		xe_gt_dbg(gt, "GuC mmio request %#x: retrying, reason %#x\n",
1007 			  request[0], reason);
1008 		goto retry;
1009 	}
1010 
1011 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
1012 	    GUC_HXG_TYPE_RESPONSE_FAILURE) {
1013 		u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
1014 		u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
1015 
1016 		xe_gt_err(gt, "GuC mmio request %#x: failure %#x hint %#x\n",
1017 			  request[0], error, hint);
1018 		return -ENXIO;
1019 	}
1020 
1021 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
1022 	    GUC_HXG_TYPE_RESPONSE_SUCCESS) {
1023 proto:
1024 		xe_gt_err(gt, "GuC mmio request %#x: unexpected reply %#x\n",
1025 			  request[0], header);
1026 		return -EPROTO;
1027 	}
1028 
1029 	/* Just copy entire possible message response */
1030 	if (response_buf) {
1031 		response_buf[0] = header;
1032 
1033 		for (i = 1; i < VF_SW_FLAG_COUNT; i++) {
1034 			reply_reg.addr += sizeof(u32);
1035 			response_buf[i] = xe_mmio_read32(gt, reply_reg);
1036 		}
1037 	}
1038 
1039 	/* Use data from the GuC response as our return value */
1040 	return FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
1041 }
1042 
1043 int xe_guc_mmio_send(struct xe_guc *guc, const u32 *request, u32 len)
1044 {
1045 	return xe_guc_mmio_send_recv(guc, request, len, NULL);
1046 }
1047 
1048 static int guc_self_cfg(struct xe_guc *guc, u16 key, u16 len, u64 val)
1049 {
1050 	struct xe_device *xe = guc_to_xe(guc);
1051 	u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
1052 		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
1053 		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
1054 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
1055 			   GUC_ACTION_HOST2GUC_SELF_CFG),
1056 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
1057 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
1058 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32,
1059 			   lower_32_bits(val)),
1060 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64,
1061 			   upper_32_bits(val)),
1062 	};
1063 	int ret;
1064 
1065 	xe_assert(xe, len <= 2);
1066 	xe_assert(xe, len != 1 || !upper_32_bits(val));
1067 
1068 	/* Self config must go over MMIO */
1069 	ret = xe_guc_mmio_send(guc, request, ARRAY_SIZE(request));
1070 
1071 	if (unlikely(ret < 0))
1072 		return ret;
1073 	if (unlikely(ret > 1))
1074 		return -EPROTO;
1075 	if (unlikely(!ret))
1076 		return -ENOKEY;
1077 
1078 	return 0;
1079 }
1080 
1081 int xe_guc_self_cfg32(struct xe_guc *guc, u16 key, u32 val)
1082 {
1083 	return guc_self_cfg(guc, key, 1, val);
1084 }
1085 
1086 int xe_guc_self_cfg64(struct xe_guc *guc, u16 key, u64 val)
1087 {
1088 	return guc_self_cfg(guc, key, 2, val);
1089 }
1090 
1091 void xe_guc_irq_handler(struct xe_guc *guc, const u16 iir)
1092 {
1093 	if (iir & GUC_INTR_GUC2HOST)
1094 		xe_guc_ct_irq_handler(&guc->ct);
1095 }
1096 
1097 void xe_guc_sanitize(struct xe_guc *guc)
1098 {
1099 	xe_uc_fw_sanitize(&guc->fw);
1100 	xe_guc_ct_disable(&guc->ct);
1101 	guc->submission_state.enabled = false;
1102 }
1103 
1104 int xe_guc_reset_prepare(struct xe_guc *guc)
1105 {
1106 	return xe_guc_submit_reset_prepare(guc);
1107 }
1108 
1109 void xe_guc_reset_wait(struct xe_guc *guc)
1110 {
1111 	xe_guc_submit_reset_wait(guc);
1112 }
1113 
1114 void xe_guc_stop_prepare(struct xe_guc *guc)
1115 {
1116 	if (!IS_SRIOV_VF(guc_to_xe(guc))) {
1117 		int err;
1118 
1119 		err = xe_guc_pc_stop(&guc->pc);
1120 		xe_gt_WARN(guc_to_gt(guc), err, "Failed to stop GuC PC: %pe\n",
1121 			   ERR_PTR(err));
1122 	}
1123 }
1124 
1125 void xe_guc_stop(struct xe_guc *guc)
1126 {
1127 	xe_guc_ct_stop(&guc->ct);
1128 
1129 	xe_guc_submit_stop(guc);
1130 }
1131 
1132 int xe_guc_start(struct xe_guc *guc)
1133 {
1134 	if (!IS_SRIOV_VF(guc_to_xe(guc))) {
1135 		int err;
1136 
1137 		err = xe_guc_pc_start(&guc->pc);
1138 		xe_gt_WARN(guc_to_gt(guc), err, "Failed to start GuC PC: %pe\n",
1139 			   ERR_PTR(err));
1140 	}
1141 
1142 	return xe_guc_submit_start(guc);
1143 }
1144 
1145 void xe_guc_print_info(struct xe_guc *guc, struct drm_printer *p)
1146 {
1147 	struct xe_gt *gt = guc_to_gt(guc);
1148 	u32 status;
1149 	int err;
1150 	int i;
1151 
1152 	xe_uc_fw_print(&guc->fw, p);
1153 
1154 	err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1155 	if (err)
1156 		return;
1157 
1158 	status = xe_mmio_read32(gt, GUC_STATUS);
1159 
1160 	drm_printf(p, "\nGuC status 0x%08x:\n", status);
1161 	drm_printf(p, "\tBootrom status = 0x%x\n",
1162 		   REG_FIELD_GET(GS_BOOTROM_MASK, status));
1163 	drm_printf(p, "\tuKernel status = 0x%x\n",
1164 		   REG_FIELD_GET(GS_UKERNEL_MASK, status));
1165 	drm_printf(p, "\tMIA Core status = 0x%x\n",
1166 		   REG_FIELD_GET(GS_MIA_MASK, status));
1167 	drm_printf(p, "\tLog level = %d\n",
1168 		   xe_guc_log_get_level(&guc->log));
1169 
1170 	drm_puts(p, "\nScratch registers:\n");
1171 	for (i = 0; i < SOFT_SCRATCH_COUNT; i++) {
1172 		drm_printf(p, "\t%2d: \t0x%x\n",
1173 			   i, xe_mmio_read32(gt, SOFT_SCRATCH(i)));
1174 	}
1175 
1176 	xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
1177 
1178 	xe_guc_ct_print(&guc->ct, p, false);
1179 	xe_guc_submit_print(guc, p);
1180 }
1181 
1182 /**
1183  * xe_guc_declare_wedged() - Declare GuC wedged
1184  * @guc: the GuC object
1185  *
1186  * Wedge the GuC which stops all submission, saves desired debug state, and
1187  * cleans up anything which could timeout.
1188  */
1189 void xe_guc_declare_wedged(struct xe_guc *guc)
1190 {
1191 	xe_gt_assert(guc_to_gt(guc), guc_to_xe(guc)->wedged.mode);
1192 
1193 	xe_guc_reset_prepare(guc);
1194 	xe_guc_ct_stop(&guc->ct);
1195 	xe_guc_submit_wedge(guc);
1196 }
1197