xref: /linux/drivers/gpu/drm/xe/xe_gt_pagefault.c (revision bdce82e960d1205d118662f575cec39379984e34)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_gt_pagefault.h"
7 
8 #include <linux/bitfield.h>
9 #include <linux/circ_buf.h>
10 
11 #include <drm/drm_exec.h>
12 #include <drm/drm_managed.h>
13 #include <drm/ttm/ttm_execbuf_util.h>
14 
15 #include "abi/guc_actions_abi.h"
16 #include "xe_bo.h"
17 #include "xe_gt.h"
18 #include "xe_gt_tlb_invalidation.h"
19 #include "xe_guc.h"
20 #include "xe_guc_ct.h"
21 #include "xe_migrate.h"
22 #include "xe_pt.h"
23 #include "xe_trace.h"
24 #include "xe_vm.h"
25 
26 struct pagefault {
27 	u64 page_addr;
28 	u32 asid;
29 	u16 pdata;
30 	u8 vfid;
31 	u8 access_type;
32 	u8 fault_type;
33 	u8 fault_level;
34 	u8 engine_class;
35 	u8 engine_instance;
36 	u8 fault_unsuccessful;
37 	bool trva_fault;
38 };
39 
40 enum access_type {
41 	ACCESS_TYPE_READ = 0,
42 	ACCESS_TYPE_WRITE = 1,
43 	ACCESS_TYPE_ATOMIC = 2,
44 	ACCESS_TYPE_RESERVED = 3,
45 };
46 
47 enum fault_type {
48 	NOT_PRESENT = 0,
49 	WRITE_ACCESS_VIOLATION = 1,
50 	ATOMIC_ACCESS_VIOLATION = 2,
51 };
52 
53 struct acc {
54 	u64 va_range_base;
55 	u32 asid;
56 	u32 sub_granularity;
57 	u8 granularity;
58 	u8 vfid;
59 	u8 access_type;
60 	u8 engine_class;
61 	u8 engine_instance;
62 };
63 
64 static bool access_is_atomic(enum access_type access_type)
65 {
66 	return access_type == ACCESS_TYPE_ATOMIC;
67 }
68 
69 static bool vma_is_valid(struct xe_tile *tile, struct xe_vma *vma)
70 {
71 	return BIT(tile->id) & vma->tile_present &&
72 		!(BIT(tile->id) & vma->usm.tile_invalidated);
73 }
74 
75 static bool vma_matches(struct xe_vma *vma, u64 page_addr)
76 {
77 	if (page_addr > xe_vma_end(vma) - 1 ||
78 	    page_addr + SZ_4K - 1 < xe_vma_start(vma))
79 		return false;
80 
81 	return true;
82 }
83 
84 static struct xe_vma *lookup_vma(struct xe_vm *vm, u64 page_addr)
85 {
86 	struct xe_vma *vma = NULL;
87 
88 	if (vm->usm.last_fault_vma) {   /* Fast lookup */
89 		if (vma_matches(vm->usm.last_fault_vma, page_addr))
90 			vma = vm->usm.last_fault_vma;
91 	}
92 	if (!vma)
93 		vma = xe_vm_find_overlapping_vma(vm, page_addr, SZ_4K);
94 
95 	return vma;
96 }
97 
98 static int xe_pf_begin(struct drm_exec *exec, struct xe_vma *vma,
99 		       bool atomic, unsigned int id)
100 {
101 	struct xe_bo *bo = xe_vma_bo(vma);
102 	struct xe_vm *vm = xe_vma_vm(vma);
103 	unsigned int num_shared = 2; /* slots for bind + move */
104 	int err;
105 
106 	err = xe_vm_prepare_vma(exec, vma, num_shared);
107 	if (err)
108 		return err;
109 
110 	if (atomic && IS_DGFX(vm->xe)) {
111 		if (xe_vma_is_userptr(vma)) {
112 			err = -EACCES;
113 			return err;
114 		}
115 
116 		/* Migrate to VRAM, move should invalidate the VMA first */
117 		err = xe_bo_migrate(bo, XE_PL_VRAM0 + id);
118 		if (err)
119 			return err;
120 	} else if (bo) {
121 		/* Create backing store if needed */
122 		err = xe_bo_validate(bo, vm, true);
123 		if (err)
124 			return err;
125 	}
126 
127 	return 0;
128 }
129 
130 static int handle_pagefault(struct xe_gt *gt, struct pagefault *pf)
131 {
132 	struct xe_device *xe = gt_to_xe(gt);
133 	struct xe_tile *tile = gt_to_tile(gt);
134 	struct drm_exec exec;
135 	struct xe_vm *vm;
136 	struct xe_vma *vma = NULL;
137 	struct dma_fence *fence;
138 	bool write_locked;
139 	int ret = 0;
140 	bool atomic;
141 
142 	/* SW isn't expected to handle TRTT faults */
143 	if (pf->trva_fault)
144 		return -EFAULT;
145 
146 	/* ASID to VM */
147 	mutex_lock(&xe->usm.lock);
148 	vm = xa_load(&xe->usm.asid_to_vm, pf->asid);
149 	if (vm)
150 		xe_vm_get(vm);
151 	mutex_unlock(&xe->usm.lock);
152 	if (!vm || !xe_vm_in_fault_mode(vm))
153 		return -EINVAL;
154 
155 retry_userptr:
156 	/*
157 	 * TODO: Avoid exclusive lock if VM doesn't have userptrs, or
158 	 * start out read-locked?
159 	 */
160 	down_write(&vm->lock);
161 	write_locked = true;
162 	vma = lookup_vma(vm, pf->page_addr);
163 	if (!vma) {
164 		ret = -EINVAL;
165 		goto unlock_vm;
166 	}
167 
168 	if (!xe_vma_is_userptr(vma) || !xe_vma_userptr_check_repin(vma)) {
169 		downgrade_write(&vm->lock);
170 		write_locked = false;
171 	}
172 
173 	trace_xe_vma_pagefault(vma);
174 
175 	atomic = access_is_atomic(pf->access_type);
176 
177 	/* Check if VMA is valid */
178 	if (vma_is_valid(tile, vma) && !atomic)
179 		goto unlock_vm;
180 
181 	/* TODO: Validate fault */
182 
183 	if (xe_vma_is_userptr(vma) && write_locked) {
184 		spin_lock(&vm->userptr.invalidated_lock);
185 		list_del_init(&vma->userptr.invalidate_link);
186 		spin_unlock(&vm->userptr.invalidated_lock);
187 
188 		ret = xe_vma_userptr_pin_pages(vma);
189 		if (ret)
190 			goto unlock_vm;
191 
192 		downgrade_write(&vm->lock);
193 		write_locked = false;
194 	}
195 
196 	/* Lock VM and BOs dma-resv */
197 	drm_exec_init(&exec, 0, 0);
198 	drm_exec_until_all_locked(&exec) {
199 		ret = xe_pf_begin(&exec, vma, atomic, tile->id);
200 		drm_exec_retry_on_contention(&exec);
201 		if (ret)
202 			goto unlock_dma_resv;
203 	}
204 
205 	/* Bind VMA only to the GT that has faulted */
206 	trace_xe_vma_pf_bind(vma);
207 	fence = __xe_pt_bind_vma(tile, vma, xe_tile_migrate_engine(tile), NULL, 0,
208 				 vma->tile_present & BIT(tile->id));
209 	if (IS_ERR(fence)) {
210 		ret = PTR_ERR(fence);
211 		goto unlock_dma_resv;
212 	}
213 
214 	/*
215 	 * XXX: Should we drop the lock before waiting? This only helps if doing
216 	 * GPU binds which is currently only done if we have to wait for more
217 	 * than 10ms on a move.
218 	 */
219 	dma_fence_wait(fence, false);
220 	dma_fence_put(fence);
221 
222 	if (xe_vma_is_userptr(vma))
223 		ret = xe_vma_userptr_check_repin(vma);
224 	vma->usm.tile_invalidated &= ~BIT(tile->id);
225 
226 unlock_dma_resv:
227 	drm_exec_fini(&exec);
228 unlock_vm:
229 	if (!ret)
230 		vm->usm.last_fault_vma = vma;
231 	if (write_locked)
232 		up_write(&vm->lock);
233 	else
234 		up_read(&vm->lock);
235 	if (ret == -EAGAIN)
236 		goto retry_userptr;
237 
238 	if (!ret) {
239 		ret = xe_gt_tlb_invalidation_vma(gt, NULL, vma);
240 		if (ret >= 0)
241 			ret = 0;
242 	}
243 	xe_vm_put(vm);
244 
245 	return ret;
246 }
247 
248 static int send_pagefault_reply(struct xe_guc *guc,
249 				struct xe_guc_pagefault_reply *reply)
250 {
251 	u32 action[] = {
252 		XE_GUC_ACTION_PAGE_FAULT_RES_DESC,
253 		reply->dw0,
254 		reply->dw1,
255 	};
256 
257 	return xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0);
258 }
259 
260 static void print_pagefault(struct xe_device *xe, struct pagefault *pf)
261 {
262 	drm_dbg(&xe->drm, "\n\tASID: %d\n"
263 		 "\tVFID: %d\n"
264 		 "\tPDATA: 0x%04x\n"
265 		 "\tFaulted Address: 0x%08x%08x\n"
266 		 "\tFaultType: %d\n"
267 		 "\tAccessType: %d\n"
268 		 "\tFaultLevel: %d\n"
269 		 "\tEngineClass: %d\n"
270 		 "\tEngineInstance: %d\n",
271 		 pf->asid, pf->vfid, pf->pdata, upper_32_bits(pf->page_addr),
272 		 lower_32_bits(pf->page_addr),
273 		 pf->fault_type, pf->access_type, pf->fault_level,
274 		 pf->engine_class, pf->engine_instance);
275 }
276 
277 #define PF_MSG_LEN_DW	4
278 
279 static bool get_pagefault(struct pf_queue *pf_queue, struct pagefault *pf)
280 {
281 	const struct xe_guc_pagefault_desc *desc;
282 	bool ret = false;
283 
284 	spin_lock_irq(&pf_queue->lock);
285 	if (pf_queue->head != pf_queue->tail) {
286 		desc = (const struct xe_guc_pagefault_desc *)
287 			(pf_queue->data + pf_queue->head);
288 
289 		pf->fault_level = FIELD_GET(PFD_FAULT_LEVEL, desc->dw0);
290 		pf->trva_fault = FIELD_GET(XE2_PFD_TRVA_FAULT, desc->dw0);
291 		pf->engine_class = FIELD_GET(PFD_ENG_CLASS, desc->dw0);
292 		pf->engine_instance = FIELD_GET(PFD_ENG_INSTANCE, desc->dw0);
293 		pf->pdata = FIELD_GET(PFD_PDATA_HI, desc->dw1) <<
294 			PFD_PDATA_HI_SHIFT;
295 		pf->pdata |= FIELD_GET(PFD_PDATA_LO, desc->dw0);
296 		pf->asid = FIELD_GET(PFD_ASID, desc->dw1);
297 		pf->vfid = FIELD_GET(PFD_VFID, desc->dw2);
298 		pf->access_type = FIELD_GET(PFD_ACCESS_TYPE, desc->dw2);
299 		pf->fault_type = FIELD_GET(PFD_FAULT_TYPE, desc->dw2);
300 		pf->page_addr = (u64)(FIELD_GET(PFD_VIRTUAL_ADDR_HI, desc->dw3)) <<
301 			PFD_VIRTUAL_ADDR_HI_SHIFT;
302 		pf->page_addr |= FIELD_GET(PFD_VIRTUAL_ADDR_LO, desc->dw2) <<
303 			PFD_VIRTUAL_ADDR_LO_SHIFT;
304 
305 		pf_queue->head = (pf_queue->head + PF_MSG_LEN_DW) %
306 			PF_QUEUE_NUM_DW;
307 		ret = true;
308 	}
309 	spin_unlock_irq(&pf_queue->lock);
310 
311 	return ret;
312 }
313 
314 static bool pf_queue_full(struct pf_queue *pf_queue)
315 {
316 	lockdep_assert_held(&pf_queue->lock);
317 
318 	return CIRC_SPACE(pf_queue->tail, pf_queue->head, PF_QUEUE_NUM_DW) <=
319 		PF_MSG_LEN_DW;
320 }
321 
322 int xe_guc_pagefault_handler(struct xe_guc *guc, u32 *msg, u32 len)
323 {
324 	struct xe_gt *gt = guc_to_gt(guc);
325 	struct xe_device *xe = gt_to_xe(gt);
326 	struct pf_queue *pf_queue;
327 	unsigned long flags;
328 	u32 asid;
329 	bool full;
330 
331 	if (unlikely(len != PF_MSG_LEN_DW))
332 		return -EPROTO;
333 
334 	asid = FIELD_GET(PFD_ASID, msg[1]);
335 	pf_queue = &gt->usm.pf_queue[asid % NUM_PF_QUEUE];
336 
337 	spin_lock_irqsave(&pf_queue->lock, flags);
338 	full = pf_queue_full(pf_queue);
339 	if (!full) {
340 		memcpy(pf_queue->data + pf_queue->tail, msg, len * sizeof(u32));
341 		pf_queue->tail = (pf_queue->tail + len) % PF_QUEUE_NUM_DW;
342 		queue_work(gt->usm.pf_wq, &pf_queue->worker);
343 	} else {
344 		drm_warn(&xe->drm, "PF Queue full, shouldn't be possible");
345 	}
346 	spin_unlock_irqrestore(&pf_queue->lock, flags);
347 
348 	return full ? -ENOSPC : 0;
349 }
350 
351 #define USM_QUEUE_MAX_RUNTIME_MS	20
352 
353 static void pf_queue_work_func(struct work_struct *w)
354 {
355 	struct pf_queue *pf_queue = container_of(w, struct pf_queue, worker);
356 	struct xe_gt *gt = pf_queue->gt;
357 	struct xe_device *xe = gt_to_xe(gt);
358 	struct xe_guc_pagefault_reply reply = {};
359 	struct pagefault pf = {};
360 	unsigned long threshold;
361 	int ret;
362 
363 	threshold = jiffies + msecs_to_jiffies(USM_QUEUE_MAX_RUNTIME_MS);
364 
365 	while (get_pagefault(pf_queue, &pf)) {
366 		ret = handle_pagefault(gt, &pf);
367 		if (unlikely(ret)) {
368 			print_pagefault(xe, &pf);
369 			pf.fault_unsuccessful = 1;
370 			drm_dbg(&xe->drm, "Fault response: Unsuccessful %d\n", ret);
371 		}
372 
373 		reply.dw0 = FIELD_PREP(PFR_VALID, 1) |
374 			FIELD_PREP(PFR_SUCCESS, pf.fault_unsuccessful) |
375 			FIELD_PREP(PFR_REPLY, PFR_ACCESS) |
376 			FIELD_PREP(PFR_DESC_TYPE, FAULT_RESPONSE_DESC) |
377 			FIELD_PREP(PFR_ASID, pf.asid);
378 
379 		reply.dw1 = FIELD_PREP(PFR_VFID, pf.vfid) |
380 			FIELD_PREP(PFR_ENG_INSTANCE, pf.engine_instance) |
381 			FIELD_PREP(PFR_ENG_CLASS, pf.engine_class) |
382 			FIELD_PREP(PFR_PDATA, pf.pdata);
383 
384 		send_pagefault_reply(&gt->uc.guc, &reply);
385 
386 		if (time_after(jiffies, threshold) &&
387 		    pf_queue->head != pf_queue->tail) {
388 			queue_work(gt->usm.pf_wq, w);
389 			break;
390 		}
391 	}
392 }
393 
394 static void acc_queue_work_func(struct work_struct *w);
395 
396 int xe_gt_pagefault_init(struct xe_gt *gt)
397 {
398 	struct xe_device *xe = gt_to_xe(gt);
399 	int i;
400 
401 	if (!xe->info.has_usm)
402 		return 0;
403 
404 	for (i = 0; i < NUM_PF_QUEUE; ++i) {
405 		gt->usm.pf_queue[i].gt = gt;
406 		spin_lock_init(&gt->usm.pf_queue[i].lock);
407 		INIT_WORK(&gt->usm.pf_queue[i].worker, pf_queue_work_func);
408 	}
409 	for (i = 0; i < NUM_ACC_QUEUE; ++i) {
410 		gt->usm.acc_queue[i].gt = gt;
411 		spin_lock_init(&gt->usm.acc_queue[i].lock);
412 		INIT_WORK(&gt->usm.acc_queue[i].worker, acc_queue_work_func);
413 	}
414 
415 	gt->usm.pf_wq = alloc_workqueue("xe_gt_page_fault_work_queue",
416 					WQ_UNBOUND | WQ_HIGHPRI, NUM_PF_QUEUE);
417 	if (!gt->usm.pf_wq)
418 		return -ENOMEM;
419 
420 	gt->usm.acc_wq = alloc_workqueue("xe_gt_access_counter_work_queue",
421 					 WQ_UNBOUND | WQ_HIGHPRI,
422 					 NUM_ACC_QUEUE);
423 	if (!gt->usm.acc_wq)
424 		return -ENOMEM;
425 
426 	return 0;
427 }
428 
429 void xe_gt_pagefault_reset(struct xe_gt *gt)
430 {
431 	struct xe_device *xe = gt_to_xe(gt);
432 	int i;
433 
434 	if (!xe->info.has_usm)
435 		return;
436 
437 	for (i = 0; i < NUM_PF_QUEUE; ++i) {
438 		spin_lock_irq(&gt->usm.pf_queue[i].lock);
439 		gt->usm.pf_queue[i].head = 0;
440 		gt->usm.pf_queue[i].tail = 0;
441 		spin_unlock_irq(&gt->usm.pf_queue[i].lock);
442 	}
443 
444 	for (i = 0; i < NUM_ACC_QUEUE; ++i) {
445 		spin_lock(&gt->usm.acc_queue[i].lock);
446 		gt->usm.acc_queue[i].head = 0;
447 		gt->usm.acc_queue[i].tail = 0;
448 		spin_unlock(&gt->usm.acc_queue[i].lock);
449 	}
450 }
451 
452 static int granularity_in_byte(int val)
453 {
454 	switch (val) {
455 	case 0:
456 		return SZ_128K;
457 	case 1:
458 		return SZ_2M;
459 	case 2:
460 		return SZ_16M;
461 	case 3:
462 		return SZ_64M;
463 	default:
464 		return 0;
465 	}
466 }
467 
468 static int sub_granularity_in_byte(int val)
469 {
470 	return (granularity_in_byte(val) / 32);
471 }
472 
473 static void print_acc(struct xe_device *xe, struct acc *acc)
474 {
475 	drm_warn(&xe->drm, "Access counter request:\n"
476 		 "\tType: %s\n"
477 		 "\tASID: %d\n"
478 		 "\tVFID: %d\n"
479 		 "\tEngine: %d:%d\n"
480 		 "\tGranularity: 0x%x KB Region/ %d KB sub-granularity\n"
481 		 "\tSub_Granularity Vector: 0x%08x\n"
482 		 "\tVA Range base: 0x%016llx\n",
483 		 acc->access_type ? "AC_NTFY_VAL" : "AC_TRIG_VAL",
484 		 acc->asid, acc->vfid, acc->engine_class, acc->engine_instance,
485 		 granularity_in_byte(acc->granularity) / SZ_1K,
486 		 sub_granularity_in_byte(acc->granularity) / SZ_1K,
487 		 acc->sub_granularity, acc->va_range_base);
488 }
489 
490 static struct xe_vma *get_acc_vma(struct xe_vm *vm, struct acc *acc)
491 {
492 	u64 page_va = acc->va_range_base + (ffs(acc->sub_granularity) - 1) *
493 		sub_granularity_in_byte(acc->granularity);
494 
495 	return xe_vm_find_overlapping_vma(vm, page_va, SZ_4K);
496 }
497 
498 static int handle_acc(struct xe_gt *gt, struct acc *acc)
499 {
500 	struct xe_device *xe = gt_to_xe(gt);
501 	struct xe_tile *tile = gt_to_tile(gt);
502 	struct drm_exec exec;
503 	struct xe_vm *vm;
504 	struct xe_vma *vma;
505 	int ret = 0;
506 
507 	/* We only support ACC_TRIGGER at the moment */
508 	if (acc->access_type != ACC_TRIGGER)
509 		return -EINVAL;
510 
511 	/* ASID to VM */
512 	mutex_lock(&xe->usm.lock);
513 	vm = xa_load(&xe->usm.asid_to_vm, acc->asid);
514 	if (vm)
515 		xe_vm_get(vm);
516 	mutex_unlock(&xe->usm.lock);
517 	if (!vm || !xe_vm_in_fault_mode(vm))
518 		return -EINVAL;
519 
520 	down_read(&vm->lock);
521 
522 	/* Lookup VMA */
523 	vma = get_acc_vma(vm, acc);
524 	if (!vma) {
525 		ret = -EINVAL;
526 		goto unlock_vm;
527 	}
528 
529 	trace_xe_vma_acc(vma);
530 
531 	/* Userptr or null can't be migrated, nothing to do */
532 	if (xe_vma_has_no_bo(vma))
533 		goto unlock_vm;
534 
535 	/* Lock VM and BOs dma-resv */
536 	drm_exec_init(&exec, 0, 0);
537 	drm_exec_until_all_locked(&exec) {
538 		ret = xe_pf_begin(&exec, vma, true, tile->id);
539 		drm_exec_retry_on_contention(&exec);
540 		if (ret)
541 			break;
542 	}
543 
544 	drm_exec_fini(&exec);
545 unlock_vm:
546 	up_read(&vm->lock);
547 	xe_vm_put(vm);
548 
549 	return ret;
550 }
551 
552 #define make_u64(hi__, low__)  ((u64)(hi__) << 32 | (u64)(low__))
553 
554 #define ACC_MSG_LEN_DW        4
555 
556 static bool get_acc(struct acc_queue *acc_queue, struct acc *acc)
557 {
558 	const struct xe_guc_acc_desc *desc;
559 	bool ret = false;
560 
561 	spin_lock(&acc_queue->lock);
562 	if (acc_queue->head != acc_queue->tail) {
563 		desc = (const struct xe_guc_acc_desc *)
564 			(acc_queue->data + acc_queue->head);
565 
566 		acc->granularity = FIELD_GET(ACC_GRANULARITY, desc->dw2);
567 		acc->sub_granularity = FIELD_GET(ACC_SUBG_HI, desc->dw1) << 31 |
568 			FIELD_GET(ACC_SUBG_LO, desc->dw0);
569 		acc->engine_class = FIELD_GET(ACC_ENG_CLASS, desc->dw1);
570 		acc->engine_instance = FIELD_GET(ACC_ENG_INSTANCE, desc->dw1);
571 		acc->asid =  FIELD_GET(ACC_ASID, desc->dw1);
572 		acc->vfid =  FIELD_GET(ACC_VFID, desc->dw2);
573 		acc->access_type = FIELD_GET(ACC_TYPE, desc->dw0);
574 		acc->va_range_base = make_u64(desc->dw3 & ACC_VIRTUAL_ADDR_RANGE_HI,
575 					      desc->dw2 & ACC_VIRTUAL_ADDR_RANGE_LO);
576 
577 		acc_queue->head = (acc_queue->head + ACC_MSG_LEN_DW) %
578 				  ACC_QUEUE_NUM_DW;
579 		ret = true;
580 	}
581 	spin_unlock(&acc_queue->lock);
582 
583 	return ret;
584 }
585 
586 static void acc_queue_work_func(struct work_struct *w)
587 {
588 	struct acc_queue *acc_queue = container_of(w, struct acc_queue, worker);
589 	struct xe_gt *gt = acc_queue->gt;
590 	struct xe_device *xe = gt_to_xe(gt);
591 	struct acc acc = {};
592 	unsigned long threshold;
593 	int ret;
594 
595 	threshold = jiffies + msecs_to_jiffies(USM_QUEUE_MAX_RUNTIME_MS);
596 
597 	while (get_acc(acc_queue, &acc)) {
598 		ret = handle_acc(gt, &acc);
599 		if (unlikely(ret)) {
600 			print_acc(xe, &acc);
601 			drm_warn(&xe->drm, "ACC: Unsuccessful %d\n", ret);
602 		}
603 
604 		if (time_after(jiffies, threshold) &&
605 		    acc_queue->head != acc_queue->tail) {
606 			queue_work(gt->usm.acc_wq, w);
607 			break;
608 		}
609 	}
610 }
611 
612 static bool acc_queue_full(struct acc_queue *acc_queue)
613 {
614 	lockdep_assert_held(&acc_queue->lock);
615 
616 	return CIRC_SPACE(acc_queue->tail, acc_queue->head, ACC_QUEUE_NUM_DW) <=
617 		ACC_MSG_LEN_DW;
618 }
619 
620 int xe_guc_access_counter_notify_handler(struct xe_guc *guc, u32 *msg, u32 len)
621 {
622 	struct xe_gt *gt = guc_to_gt(guc);
623 	struct acc_queue *acc_queue;
624 	u32 asid;
625 	bool full;
626 
627 	if (unlikely(len != ACC_MSG_LEN_DW))
628 		return -EPROTO;
629 
630 	asid = FIELD_GET(ACC_ASID, msg[1]);
631 	acc_queue = &gt->usm.acc_queue[asid % NUM_ACC_QUEUE];
632 
633 	spin_lock(&acc_queue->lock);
634 	full = acc_queue_full(acc_queue);
635 	if (!full) {
636 		memcpy(acc_queue->data + acc_queue->tail, msg,
637 		       len * sizeof(u32));
638 		acc_queue->tail = (acc_queue->tail + len) % ACC_QUEUE_NUM_DW;
639 		queue_work(gt->usm.acc_wq, &acc_queue->worker);
640 	} else {
641 		drm_warn(&gt_to_xe(gt)->drm, "ACC Queue full, dropping ACC");
642 	}
643 	spin_unlock(&acc_queue->lock);
644 
645 	return full ? -ENOSPC : 0;
646 }
647