1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include "xe_gt_pagefault.h" 7 8 #include <linux/bitfield.h> 9 #include <linux/circ_buf.h> 10 11 #include <drm/drm_exec.h> 12 #include <drm/drm_managed.h> 13 #include <drm/ttm/ttm_execbuf_util.h> 14 15 #include "abi/guc_actions_abi.h" 16 #include "xe_bo.h" 17 #include "xe_gt.h" 18 #include "xe_gt_tlb_invalidation.h" 19 #include "xe_guc.h" 20 #include "xe_guc_ct.h" 21 #include "xe_migrate.h" 22 #include "xe_trace_bo.h" 23 #include "xe_vm.h" 24 25 struct pagefault { 26 u64 page_addr; 27 u32 asid; 28 u16 pdata; 29 u8 vfid; 30 u8 access_type; 31 u8 fault_type; 32 u8 fault_level; 33 u8 engine_class; 34 u8 engine_instance; 35 u8 fault_unsuccessful; 36 bool trva_fault; 37 }; 38 39 enum access_type { 40 ACCESS_TYPE_READ = 0, 41 ACCESS_TYPE_WRITE = 1, 42 ACCESS_TYPE_ATOMIC = 2, 43 ACCESS_TYPE_RESERVED = 3, 44 }; 45 46 enum fault_type { 47 NOT_PRESENT = 0, 48 WRITE_ACCESS_VIOLATION = 1, 49 ATOMIC_ACCESS_VIOLATION = 2, 50 }; 51 52 struct acc { 53 u64 va_range_base; 54 u32 asid; 55 u32 sub_granularity; 56 u8 granularity; 57 u8 vfid; 58 u8 access_type; 59 u8 engine_class; 60 u8 engine_instance; 61 }; 62 63 static bool access_is_atomic(enum access_type access_type) 64 { 65 return access_type == ACCESS_TYPE_ATOMIC; 66 } 67 68 static bool vma_is_valid(struct xe_tile *tile, struct xe_vma *vma) 69 { 70 return BIT(tile->id) & vma->tile_present && 71 !(BIT(tile->id) & vma->tile_invalidated); 72 } 73 74 static bool vma_matches(struct xe_vma *vma, u64 page_addr) 75 { 76 if (page_addr > xe_vma_end(vma) - 1 || 77 page_addr + SZ_4K - 1 < xe_vma_start(vma)) 78 return false; 79 80 return true; 81 } 82 83 static struct xe_vma *lookup_vma(struct xe_vm *vm, u64 page_addr) 84 { 85 struct xe_vma *vma = NULL; 86 87 if (vm->usm.last_fault_vma) { /* Fast lookup */ 88 if (vma_matches(vm->usm.last_fault_vma, page_addr)) 89 vma = vm->usm.last_fault_vma; 90 } 91 if (!vma) 92 vma = xe_vm_find_overlapping_vma(vm, page_addr, SZ_4K); 93 94 return vma; 95 } 96 97 static int xe_pf_begin(struct drm_exec *exec, struct xe_vma *vma, 98 bool atomic, unsigned int id) 99 { 100 struct xe_bo *bo = xe_vma_bo(vma); 101 struct xe_vm *vm = xe_vma_vm(vma); 102 int err; 103 104 err = xe_vm_lock_vma(exec, vma); 105 if (err) 106 return err; 107 108 if (atomic && IS_DGFX(vm->xe)) { 109 if (xe_vma_is_userptr(vma)) { 110 err = -EACCES; 111 return err; 112 } 113 114 /* Migrate to VRAM, move should invalidate the VMA first */ 115 err = xe_bo_migrate(bo, XE_PL_VRAM0 + id); 116 if (err) 117 return err; 118 } else if (bo) { 119 /* Create backing store if needed */ 120 err = xe_bo_validate(bo, vm, true); 121 if (err) 122 return err; 123 } 124 125 return 0; 126 } 127 128 static int handle_vma_pagefault(struct xe_tile *tile, struct pagefault *pf, 129 struct xe_vma *vma) 130 { 131 struct xe_vm *vm = xe_vma_vm(vma); 132 struct drm_exec exec; 133 struct dma_fence *fence; 134 ktime_t end = 0; 135 int err; 136 bool atomic; 137 138 trace_xe_vma_pagefault(vma); 139 atomic = access_is_atomic(pf->access_type); 140 141 /* Check if VMA is valid */ 142 if (vma_is_valid(tile, vma) && !atomic) 143 return 0; 144 145 retry_userptr: 146 if (xe_vma_is_userptr(vma) && 147 xe_vma_userptr_check_repin(to_userptr_vma(vma))) { 148 struct xe_userptr_vma *uvma = to_userptr_vma(vma); 149 150 err = xe_vma_userptr_pin_pages(uvma); 151 if (err) 152 return err; 153 } 154 155 /* Lock VM and BOs dma-resv */ 156 drm_exec_init(&exec, 0, 0); 157 drm_exec_until_all_locked(&exec) { 158 err = xe_pf_begin(&exec, vma, atomic, tile->id); 159 drm_exec_retry_on_contention(&exec); 160 if (xe_vm_validate_should_retry(&exec, err, &end)) 161 err = -EAGAIN; 162 if (err) 163 goto unlock_dma_resv; 164 165 /* Bind VMA only to the GT that has faulted */ 166 trace_xe_vma_pf_bind(vma); 167 fence = xe_vma_rebind(vm, vma, BIT(tile->id)); 168 if (IS_ERR(fence)) { 169 err = PTR_ERR(fence); 170 if (xe_vm_validate_should_retry(&exec, err, &end)) 171 err = -EAGAIN; 172 goto unlock_dma_resv; 173 } 174 } 175 176 dma_fence_wait(fence, false); 177 dma_fence_put(fence); 178 vma->tile_invalidated &= ~BIT(tile->id); 179 180 unlock_dma_resv: 181 drm_exec_fini(&exec); 182 if (err == -EAGAIN) 183 goto retry_userptr; 184 185 return err; 186 } 187 188 static struct xe_vm *asid_to_vm(struct xe_device *xe, u32 asid) 189 { 190 struct xe_vm *vm; 191 192 down_read(&xe->usm.lock); 193 vm = xa_load(&xe->usm.asid_to_vm, asid); 194 if (vm && xe_vm_in_fault_mode(vm)) 195 xe_vm_get(vm); 196 else 197 vm = ERR_PTR(-EINVAL); 198 up_read(&xe->usm.lock); 199 200 return vm; 201 } 202 203 static int handle_pagefault(struct xe_gt *gt, struct pagefault *pf) 204 { 205 struct xe_device *xe = gt_to_xe(gt); 206 struct xe_tile *tile = gt_to_tile(gt); 207 struct xe_vm *vm; 208 struct xe_vma *vma = NULL; 209 int err; 210 211 /* SW isn't expected to handle TRTT faults */ 212 if (pf->trva_fault) 213 return -EFAULT; 214 215 vm = asid_to_vm(xe, pf->asid); 216 if (IS_ERR(vm)) 217 return PTR_ERR(vm); 218 219 /* 220 * TODO: Change to read lock? Using write lock for simplicity. 221 */ 222 down_write(&vm->lock); 223 224 if (xe_vm_is_closed(vm)) { 225 err = -ENOENT; 226 goto unlock_vm; 227 } 228 229 vma = lookup_vma(vm, pf->page_addr); 230 if (!vma) { 231 err = -EINVAL; 232 goto unlock_vm; 233 } 234 235 err = handle_vma_pagefault(tile, pf, vma); 236 237 unlock_vm: 238 if (!err) 239 vm->usm.last_fault_vma = vma; 240 up_write(&vm->lock); 241 xe_vm_put(vm); 242 243 return err; 244 } 245 246 static int send_pagefault_reply(struct xe_guc *guc, 247 struct xe_guc_pagefault_reply *reply) 248 { 249 u32 action[] = { 250 XE_GUC_ACTION_PAGE_FAULT_RES_DESC, 251 reply->dw0, 252 reply->dw1, 253 }; 254 255 return xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0); 256 } 257 258 static void print_pagefault(struct xe_device *xe, struct pagefault *pf) 259 { 260 drm_dbg(&xe->drm, "\n\tASID: %d\n" 261 "\tVFID: %d\n" 262 "\tPDATA: 0x%04x\n" 263 "\tFaulted Address: 0x%08x%08x\n" 264 "\tFaultType: %d\n" 265 "\tAccessType: %d\n" 266 "\tFaultLevel: %d\n" 267 "\tEngineClass: %d\n" 268 "\tEngineInstance: %d\n", 269 pf->asid, pf->vfid, pf->pdata, upper_32_bits(pf->page_addr), 270 lower_32_bits(pf->page_addr), 271 pf->fault_type, pf->access_type, pf->fault_level, 272 pf->engine_class, pf->engine_instance); 273 } 274 275 #define PF_MSG_LEN_DW 4 276 277 static bool get_pagefault(struct pf_queue *pf_queue, struct pagefault *pf) 278 { 279 const struct xe_guc_pagefault_desc *desc; 280 bool ret = false; 281 282 spin_lock_irq(&pf_queue->lock); 283 if (pf_queue->tail != pf_queue->head) { 284 desc = (const struct xe_guc_pagefault_desc *) 285 (pf_queue->data + pf_queue->tail); 286 287 pf->fault_level = FIELD_GET(PFD_FAULT_LEVEL, desc->dw0); 288 pf->trva_fault = FIELD_GET(XE2_PFD_TRVA_FAULT, desc->dw0); 289 pf->engine_class = FIELD_GET(PFD_ENG_CLASS, desc->dw0); 290 pf->engine_instance = FIELD_GET(PFD_ENG_INSTANCE, desc->dw0); 291 pf->pdata = FIELD_GET(PFD_PDATA_HI, desc->dw1) << 292 PFD_PDATA_HI_SHIFT; 293 pf->pdata |= FIELD_GET(PFD_PDATA_LO, desc->dw0); 294 pf->asid = FIELD_GET(PFD_ASID, desc->dw1); 295 pf->vfid = FIELD_GET(PFD_VFID, desc->dw2); 296 pf->access_type = FIELD_GET(PFD_ACCESS_TYPE, desc->dw2); 297 pf->fault_type = FIELD_GET(PFD_FAULT_TYPE, desc->dw2); 298 pf->page_addr = (u64)(FIELD_GET(PFD_VIRTUAL_ADDR_HI, desc->dw3)) << 299 PFD_VIRTUAL_ADDR_HI_SHIFT; 300 pf->page_addr |= FIELD_GET(PFD_VIRTUAL_ADDR_LO, desc->dw2) << 301 PFD_VIRTUAL_ADDR_LO_SHIFT; 302 303 pf_queue->tail = (pf_queue->tail + PF_MSG_LEN_DW) % 304 pf_queue->num_dw; 305 ret = true; 306 } 307 spin_unlock_irq(&pf_queue->lock); 308 309 return ret; 310 } 311 312 static bool pf_queue_full(struct pf_queue *pf_queue) 313 { 314 lockdep_assert_held(&pf_queue->lock); 315 316 return CIRC_SPACE(pf_queue->head, pf_queue->tail, 317 pf_queue->num_dw) <= 318 PF_MSG_LEN_DW; 319 } 320 321 int xe_guc_pagefault_handler(struct xe_guc *guc, u32 *msg, u32 len) 322 { 323 struct xe_gt *gt = guc_to_gt(guc); 324 struct xe_device *xe = gt_to_xe(gt); 325 struct pf_queue *pf_queue; 326 unsigned long flags; 327 u32 asid; 328 bool full; 329 330 if (unlikely(len != PF_MSG_LEN_DW)) 331 return -EPROTO; 332 333 asid = FIELD_GET(PFD_ASID, msg[1]); 334 pf_queue = gt->usm.pf_queue + (asid % NUM_PF_QUEUE); 335 336 /* 337 * The below logic doesn't work unless PF_QUEUE_NUM_DW % PF_MSG_LEN_DW == 0 338 */ 339 xe_gt_assert(gt, !(pf_queue->num_dw % PF_MSG_LEN_DW)); 340 341 spin_lock_irqsave(&pf_queue->lock, flags); 342 full = pf_queue_full(pf_queue); 343 if (!full) { 344 memcpy(pf_queue->data + pf_queue->head, msg, len * sizeof(u32)); 345 pf_queue->head = (pf_queue->head + len) % 346 pf_queue->num_dw; 347 queue_work(gt->usm.pf_wq, &pf_queue->worker); 348 } else { 349 drm_warn(&xe->drm, "PF Queue full, shouldn't be possible"); 350 } 351 spin_unlock_irqrestore(&pf_queue->lock, flags); 352 353 return full ? -ENOSPC : 0; 354 } 355 356 #define USM_QUEUE_MAX_RUNTIME_MS 20 357 358 static void pf_queue_work_func(struct work_struct *w) 359 { 360 struct pf_queue *pf_queue = container_of(w, struct pf_queue, worker); 361 struct xe_gt *gt = pf_queue->gt; 362 struct xe_device *xe = gt_to_xe(gt); 363 struct xe_guc_pagefault_reply reply = {}; 364 struct pagefault pf = {}; 365 unsigned long threshold; 366 int ret; 367 368 threshold = jiffies + msecs_to_jiffies(USM_QUEUE_MAX_RUNTIME_MS); 369 370 while (get_pagefault(pf_queue, &pf)) { 371 ret = handle_pagefault(gt, &pf); 372 if (unlikely(ret)) { 373 print_pagefault(xe, &pf); 374 pf.fault_unsuccessful = 1; 375 drm_dbg(&xe->drm, "Fault response: Unsuccessful %d\n", ret); 376 } 377 378 reply.dw0 = FIELD_PREP(PFR_VALID, 1) | 379 FIELD_PREP(PFR_SUCCESS, pf.fault_unsuccessful) | 380 FIELD_PREP(PFR_REPLY, PFR_ACCESS) | 381 FIELD_PREP(PFR_DESC_TYPE, FAULT_RESPONSE_DESC) | 382 FIELD_PREP(PFR_ASID, pf.asid); 383 384 reply.dw1 = FIELD_PREP(PFR_VFID, pf.vfid) | 385 FIELD_PREP(PFR_ENG_INSTANCE, pf.engine_instance) | 386 FIELD_PREP(PFR_ENG_CLASS, pf.engine_class) | 387 FIELD_PREP(PFR_PDATA, pf.pdata); 388 389 send_pagefault_reply(>->uc.guc, &reply); 390 391 if (time_after(jiffies, threshold) && 392 pf_queue->tail != pf_queue->head) { 393 queue_work(gt->usm.pf_wq, w); 394 break; 395 } 396 } 397 } 398 399 static void acc_queue_work_func(struct work_struct *w); 400 401 static void pagefault_fini(void *arg) 402 { 403 struct xe_gt *gt = arg; 404 struct xe_device *xe = gt_to_xe(gt); 405 406 if (!xe->info.has_usm) 407 return; 408 409 destroy_workqueue(gt->usm.acc_wq); 410 destroy_workqueue(gt->usm.pf_wq); 411 } 412 413 static int xe_alloc_pf_queue(struct xe_gt *gt, struct pf_queue *pf_queue) 414 { 415 struct xe_device *xe = gt_to_xe(gt); 416 xe_dss_mask_t all_dss; 417 int num_dss, num_eus; 418 419 bitmap_or(all_dss, gt->fuse_topo.g_dss_mask, gt->fuse_topo.c_dss_mask, 420 XE_MAX_DSS_FUSE_BITS); 421 422 num_dss = bitmap_weight(all_dss, XE_MAX_DSS_FUSE_BITS); 423 num_eus = bitmap_weight(gt->fuse_topo.eu_mask_per_dss, 424 XE_MAX_EU_FUSE_BITS) * num_dss; 425 426 /* user can issue separate page faults per EU and per CS */ 427 pf_queue->num_dw = 428 (num_eus + XE_NUM_HW_ENGINES) * PF_MSG_LEN_DW; 429 430 pf_queue->gt = gt; 431 pf_queue->data = devm_kcalloc(xe->drm.dev, pf_queue->num_dw, 432 sizeof(u32), GFP_KERNEL); 433 if (!pf_queue->data) 434 return -ENOMEM; 435 436 spin_lock_init(&pf_queue->lock); 437 INIT_WORK(&pf_queue->worker, pf_queue_work_func); 438 439 return 0; 440 } 441 442 int xe_gt_pagefault_init(struct xe_gt *gt) 443 { 444 struct xe_device *xe = gt_to_xe(gt); 445 int i, ret = 0; 446 447 if (!xe->info.has_usm) 448 return 0; 449 450 for (i = 0; i < NUM_PF_QUEUE; ++i) { 451 ret = xe_alloc_pf_queue(gt, >->usm.pf_queue[i]); 452 if (ret) 453 return ret; 454 } 455 for (i = 0; i < NUM_ACC_QUEUE; ++i) { 456 gt->usm.acc_queue[i].gt = gt; 457 spin_lock_init(>->usm.acc_queue[i].lock); 458 INIT_WORK(>->usm.acc_queue[i].worker, acc_queue_work_func); 459 } 460 461 gt->usm.pf_wq = alloc_workqueue("xe_gt_page_fault_work_queue", 462 WQ_UNBOUND | WQ_HIGHPRI, NUM_PF_QUEUE); 463 if (!gt->usm.pf_wq) 464 return -ENOMEM; 465 466 gt->usm.acc_wq = alloc_workqueue("xe_gt_access_counter_work_queue", 467 WQ_UNBOUND | WQ_HIGHPRI, 468 NUM_ACC_QUEUE); 469 if (!gt->usm.acc_wq) { 470 destroy_workqueue(gt->usm.pf_wq); 471 return -ENOMEM; 472 } 473 474 return devm_add_action_or_reset(xe->drm.dev, pagefault_fini, gt); 475 } 476 477 void xe_gt_pagefault_reset(struct xe_gt *gt) 478 { 479 struct xe_device *xe = gt_to_xe(gt); 480 int i; 481 482 if (!xe->info.has_usm) 483 return; 484 485 for (i = 0; i < NUM_PF_QUEUE; ++i) { 486 spin_lock_irq(>->usm.pf_queue[i].lock); 487 gt->usm.pf_queue[i].head = 0; 488 gt->usm.pf_queue[i].tail = 0; 489 spin_unlock_irq(>->usm.pf_queue[i].lock); 490 } 491 492 for (i = 0; i < NUM_ACC_QUEUE; ++i) { 493 spin_lock(>->usm.acc_queue[i].lock); 494 gt->usm.acc_queue[i].head = 0; 495 gt->usm.acc_queue[i].tail = 0; 496 spin_unlock(>->usm.acc_queue[i].lock); 497 } 498 } 499 500 static int granularity_in_byte(int val) 501 { 502 switch (val) { 503 case 0: 504 return SZ_128K; 505 case 1: 506 return SZ_2M; 507 case 2: 508 return SZ_16M; 509 case 3: 510 return SZ_64M; 511 default: 512 return 0; 513 } 514 } 515 516 static int sub_granularity_in_byte(int val) 517 { 518 return (granularity_in_byte(val) / 32); 519 } 520 521 static void print_acc(struct xe_device *xe, struct acc *acc) 522 { 523 drm_warn(&xe->drm, "Access counter request:\n" 524 "\tType: %s\n" 525 "\tASID: %d\n" 526 "\tVFID: %d\n" 527 "\tEngine: %d:%d\n" 528 "\tGranularity: 0x%x KB Region/ %d KB sub-granularity\n" 529 "\tSub_Granularity Vector: 0x%08x\n" 530 "\tVA Range base: 0x%016llx\n", 531 acc->access_type ? "AC_NTFY_VAL" : "AC_TRIG_VAL", 532 acc->asid, acc->vfid, acc->engine_class, acc->engine_instance, 533 granularity_in_byte(acc->granularity) / SZ_1K, 534 sub_granularity_in_byte(acc->granularity) / SZ_1K, 535 acc->sub_granularity, acc->va_range_base); 536 } 537 538 static struct xe_vma *get_acc_vma(struct xe_vm *vm, struct acc *acc) 539 { 540 u64 page_va = acc->va_range_base + (ffs(acc->sub_granularity) - 1) * 541 sub_granularity_in_byte(acc->granularity); 542 543 return xe_vm_find_overlapping_vma(vm, page_va, SZ_4K); 544 } 545 546 static int handle_acc(struct xe_gt *gt, struct acc *acc) 547 { 548 struct xe_device *xe = gt_to_xe(gt); 549 struct xe_tile *tile = gt_to_tile(gt); 550 struct drm_exec exec; 551 struct xe_vm *vm; 552 struct xe_vma *vma; 553 int ret = 0; 554 555 /* We only support ACC_TRIGGER at the moment */ 556 if (acc->access_type != ACC_TRIGGER) 557 return -EINVAL; 558 559 vm = asid_to_vm(xe, acc->asid); 560 if (IS_ERR(vm)) 561 return PTR_ERR(vm); 562 563 down_read(&vm->lock); 564 565 /* Lookup VMA */ 566 vma = get_acc_vma(vm, acc); 567 if (!vma) { 568 ret = -EINVAL; 569 goto unlock_vm; 570 } 571 572 trace_xe_vma_acc(vma); 573 574 /* Userptr or null can't be migrated, nothing to do */ 575 if (xe_vma_has_no_bo(vma)) 576 goto unlock_vm; 577 578 /* Lock VM and BOs dma-resv */ 579 drm_exec_init(&exec, 0, 0); 580 drm_exec_until_all_locked(&exec) { 581 ret = xe_pf_begin(&exec, vma, true, tile->id); 582 drm_exec_retry_on_contention(&exec); 583 if (ret) 584 break; 585 } 586 587 drm_exec_fini(&exec); 588 unlock_vm: 589 up_read(&vm->lock); 590 xe_vm_put(vm); 591 592 return ret; 593 } 594 595 #define make_u64(hi__, low__) ((u64)(hi__) << 32 | (u64)(low__)) 596 597 #define ACC_MSG_LEN_DW 4 598 599 static bool get_acc(struct acc_queue *acc_queue, struct acc *acc) 600 { 601 const struct xe_guc_acc_desc *desc; 602 bool ret = false; 603 604 spin_lock(&acc_queue->lock); 605 if (acc_queue->tail != acc_queue->head) { 606 desc = (const struct xe_guc_acc_desc *) 607 (acc_queue->data + acc_queue->tail); 608 609 acc->granularity = FIELD_GET(ACC_GRANULARITY, desc->dw2); 610 acc->sub_granularity = FIELD_GET(ACC_SUBG_HI, desc->dw1) << 31 | 611 FIELD_GET(ACC_SUBG_LO, desc->dw0); 612 acc->engine_class = FIELD_GET(ACC_ENG_CLASS, desc->dw1); 613 acc->engine_instance = FIELD_GET(ACC_ENG_INSTANCE, desc->dw1); 614 acc->asid = FIELD_GET(ACC_ASID, desc->dw1); 615 acc->vfid = FIELD_GET(ACC_VFID, desc->dw2); 616 acc->access_type = FIELD_GET(ACC_TYPE, desc->dw0); 617 acc->va_range_base = make_u64(desc->dw3 & ACC_VIRTUAL_ADDR_RANGE_HI, 618 desc->dw2 & ACC_VIRTUAL_ADDR_RANGE_LO); 619 620 acc_queue->tail = (acc_queue->tail + ACC_MSG_LEN_DW) % 621 ACC_QUEUE_NUM_DW; 622 ret = true; 623 } 624 spin_unlock(&acc_queue->lock); 625 626 return ret; 627 } 628 629 static void acc_queue_work_func(struct work_struct *w) 630 { 631 struct acc_queue *acc_queue = container_of(w, struct acc_queue, worker); 632 struct xe_gt *gt = acc_queue->gt; 633 struct xe_device *xe = gt_to_xe(gt); 634 struct acc acc = {}; 635 unsigned long threshold; 636 int ret; 637 638 threshold = jiffies + msecs_to_jiffies(USM_QUEUE_MAX_RUNTIME_MS); 639 640 while (get_acc(acc_queue, &acc)) { 641 ret = handle_acc(gt, &acc); 642 if (unlikely(ret)) { 643 print_acc(xe, &acc); 644 drm_warn(&xe->drm, "ACC: Unsuccessful %d\n", ret); 645 } 646 647 if (time_after(jiffies, threshold) && 648 acc_queue->tail != acc_queue->head) { 649 queue_work(gt->usm.acc_wq, w); 650 break; 651 } 652 } 653 } 654 655 static bool acc_queue_full(struct acc_queue *acc_queue) 656 { 657 lockdep_assert_held(&acc_queue->lock); 658 659 return CIRC_SPACE(acc_queue->head, acc_queue->tail, ACC_QUEUE_NUM_DW) <= 660 ACC_MSG_LEN_DW; 661 } 662 663 int xe_guc_access_counter_notify_handler(struct xe_guc *guc, u32 *msg, u32 len) 664 { 665 struct xe_gt *gt = guc_to_gt(guc); 666 struct acc_queue *acc_queue; 667 u32 asid; 668 bool full; 669 670 /* 671 * The below logic doesn't work unless ACC_QUEUE_NUM_DW % ACC_MSG_LEN_DW == 0 672 */ 673 BUILD_BUG_ON(ACC_QUEUE_NUM_DW % ACC_MSG_LEN_DW); 674 675 if (unlikely(len != ACC_MSG_LEN_DW)) 676 return -EPROTO; 677 678 asid = FIELD_GET(ACC_ASID, msg[1]); 679 acc_queue = >->usm.acc_queue[asid % NUM_ACC_QUEUE]; 680 681 spin_lock(&acc_queue->lock); 682 full = acc_queue_full(acc_queue); 683 if (!full) { 684 memcpy(acc_queue->data + acc_queue->head, msg, 685 len * sizeof(u32)); 686 acc_queue->head = (acc_queue->head + len) % ACC_QUEUE_NUM_DW; 687 queue_work(gt->usm.acc_wq, &acc_queue->worker); 688 } else { 689 drm_warn(>_to_xe(gt)->drm, "ACC Queue full, dropping ACC"); 690 } 691 spin_unlock(&acc_queue->lock); 692 693 return full ? -ENOSPC : 0; 694 } 695