xref: /linux/drivers/gpu/drm/xe/xe_gt_pagefault.c (revision 3a546a67a4cc251b4ec2ba02d8f7aacf0bfc3148)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_gt_pagefault.h"
7 
8 #include <linux/bitfield.h>
9 #include <linux/circ_buf.h>
10 
11 #include <drm/drm_exec.h>
12 #include <drm/drm_managed.h>
13 #include <drm/ttm/ttm_execbuf_util.h>
14 
15 #include "abi/guc_actions_abi.h"
16 #include "xe_bo.h"
17 #include "xe_gt.h"
18 #include "xe_gt_tlb_invalidation.h"
19 #include "xe_guc.h"
20 #include "xe_guc_ct.h"
21 #include "xe_migrate.h"
22 #include "xe_trace_bo.h"
23 #include "xe_vm.h"
24 
25 struct pagefault {
26 	u64 page_addr;
27 	u32 asid;
28 	u16 pdata;
29 	u8 vfid;
30 	u8 access_type;
31 	u8 fault_type;
32 	u8 fault_level;
33 	u8 engine_class;
34 	u8 engine_instance;
35 	u8 fault_unsuccessful;
36 	bool trva_fault;
37 };
38 
39 enum access_type {
40 	ACCESS_TYPE_READ = 0,
41 	ACCESS_TYPE_WRITE = 1,
42 	ACCESS_TYPE_ATOMIC = 2,
43 	ACCESS_TYPE_RESERVED = 3,
44 };
45 
46 enum fault_type {
47 	NOT_PRESENT = 0,
48 	WRITE_ACCESS_VIOLATION = 1,
49 	ATOMIC_ACCESS_VIOLATION = 2,
50 };
51 
52 struct acc {
53 	u64 va_range_base;
54 	u32 asid;
55 	u32 sub_granularity;
56 	u8 granularity;
57 	u8 vfid;
58 	u8 access_type;
59 	u8 engine_class;
60 	u8 engine_instance;
61 };
62 
63 static bool access_is_atomic(enum access_type access_type)
64 {
65 	return access_type == ACCESS_TYPE_ATOMIC;
66 }
67 
68 static bool vma_is_valid(struct xe_tile *tile, struct xe_vma *vma)
69 {
70 	return BIT(tile->id) & vma->tile_present &&
71 		!(BIT(tile->id) & vma->tile_invalidated);
72 }
73 
74 static bool vma_matches(struct xe_vma *vma, u64 page_addr)
75 {
76 	if (page_addr > xe_vma_end(vma) - 1 ||
77 	    page_addr + SZ_4K - 1 < xe_vma_start(vma))
78 		return false;
79 
80 	return true;
81 }
82 
83 static struct xe_vma *lookup_vma(struct xe_vm *vm, u64 page_addr)
84 {
85 	struct xe_vma *vma = NULL;
86 
87 	if (vm->usm.last_fault_vma) {   /* Fast lookup */
88 		if (vma_matches(vm->usm.last_fault_vma, page_addr))
89 			vma = vm->usm.last_fault_vma;
90 	}
91 	if (!vma)
92 		vma = xe_vm_find_overlapping_vma(vm, page_addr, SZ_4K);
93 
94 	return vma;
95 }
96 
97 static int xe_pf_begin(struct drm_exec *exec, struct xe_vma *vma,
98 		       bool atomic, unsigned int id)
99 {
100 	struct xe_bo *bo = xe_vma_bo(vma);
101 	struct xe_vm *vm = xe_vma_vm(vma);
102 	int err;
103 
104 	err = xe_vm_lock_vma(exec, vma);
105 	if (err)
106 		return err;
107 
108 	if (atomic && IS_DGFX(vm->xe)) {
109 		if (xe_vma_is_userptr(vma)) {
110 			err = -EACCES;
111 			return err;
112 		}
113 
114 		/* Migrate to VRAM, move should invalidate the VMA first */
115 		err = xe_bo_migrate(bo, XE_PL_VRAM0 + id);
116 		if (err)
117 			return err;
118 	} else if (bo) {
119 		/* Create backing store if needed */
120 		err = xe_bo_validate(bo, vm, true);
121 		if (err)
122 			return err;
123 	}
124 
125 	return 0;
126 }
127 
128 static int handle_vma_pagefault(struct xe_tile *tile, struct pagefault *pf,
129 				struct xe_vma *vma)
130 {
131 	struct xe_vm *vm = xe_vma_vm(vma);
132 	struct drm_exec exec;
133 	struct dma_fence *fence;
134 	ktime_t end = 0;
135 	int err;
136 	bool atomic;
137 
138 	trace_xe_vma_pagefault(vma);
139 	atomic = access_is_atomic(pf->access_type);
140 
141 	/* Check if VMA is valid */
142 	if (vma_is_valid(tile, vma) && !atomic)
143 		return 0;
144 
145 retry_userptr:
146 	if (xe_vma_is_userptr(vma) &&
147 	    xe_vma_userptr_check_repin(to_userptr_vma(vma))) {
148 		struct xe_userptr_vma *uvma = to_userptr_vma(vma);
149 
150 		err = xe_vma_userptr_pin_pages(uvma);
151 		if (err)
152 			return err;
153 	}
154 
155 	/* Lock VM and BOs dma-resv */
156 	drm_exec_init(&exec, 0, 0);
157 	drm_exec_until_all_locked(&exec) {
158 		err = xe_pf_begin(&exec, vma, atomic, tile->id);
159 		drm_exec_retry_on_contention(&exec);
160 		if (xe_vm_validate_should_retry(&exec, err, &end))
161 			err = -EAGAIN;
162 		if (err)
163 			goto unlock_dma_resv;
164 
165 		/* Bind VMA only to the GT that has faulted */
166 		trace_xe_vma_pf_bind(vma);
167 		fence = xe_vma_rebind(vm, vma, BIT(tile->id));
168 		if (IS_ERR(fence)) {
169 			err = PTR_ERR(fence);
170 			if (xe_vm_validate_should_retry(&exec, err, &end))
171 				err = -EAGAIN;
172 			goto unlock_dma_resv;
173 		}
174 	}
175 
176 	dma_fence_wait(fence, false);
177 	dma_fence_put(fence);
178 	vma->tile_invalidated &= ~BIT(tile->id);
179 
180 unlock_dma_resv:
181 	drm_exec_fini(&exec);
182 	if (err == -EAGAIN)
183 		goto retry_userptr;
184 
185 	return err;
186 }
187 
188 static int handle_pagefault(struct xe_gt *gt, struct pagefault *pf)
189 {
190 	struct xe_device *xe = gt_to_xe(gt);
191 	struct xe_tile *tile = gt_to_tile(gt);
192 	struct xe_vm *vm;
193 	struct xe_vma *vma = NULL;
194 	int err;
195 
196 	/* SW isn't expected to handle TRTT faults */
197 	if (pf->trva_fault)
198 		return -EFAULT;
199 
200 	/* ASID to VM */
201 	mutex_lock(&xe->usm.lock);
202 	vm = xa_load(&xe->usm.asid_to_vm, pf->asid);
203 	if (vm && xe_vm_in_fault_mode(vm))
204 		xe_vm_get(vm);
205 	else
206 		vm = NULL;
207 	mutex_unlock(&xe->usm.lock);
208 	if (!vm)
209 		return -EINVAL;
210 
211 	/*
212 	 * TODO: Change to read lock? Using write lock for simplicity.
213 	 */
214 	down_write(&vm->lock);
215 
216 	if (xe_vm_is_closed(vm)) {
217 		err = -ENOENT;
218 		goto unlock_vm;
219 	}
220 
221 	vma = lookup_vma(vm, pf->page_addr);
222 	if (!vma) {
223 		err = -EINVAL;
224 		goto unlock_vm;
225 	}
226 
227 	err = handle_vma_pagefault(tile, pf, vma);
228 
229 unlock_vm:
230 	if (!err)
231 		vm->usm.last_fault_vma = vma;
232 	up_write(&vm->lock);
233 	xe_vm_put(vm);
234 
235 	return err;
236 }
237 
238 static int send_pagefault_reply(struct xe_guc *guc,
239 				struct xe_guc_pagefault_reply *reply)
240 {
241 	u32 action[] = {
242 		XE_GUC_ACTION_PAGE_FAULT_RES_DESC,
243 		reply->dw0,
244 		reply->dw1,
245 	};
246 
247 	return xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0);
248 }
249 
250 static void print_pagefault(struct xe_device *xe, struct pagefault *pf)
251 {
252 	drm_dbg(&xe->drm, "\n\tASID: %d\n"
253 		 "\tVFID: %d\n"
254 		 "\tPDATA: 0x%04x\n"
255 		 "\tFaulted Address: 0x%08x%08x\n"
256 		 "\tFaultType: %d\n"
257 		 "\tAccessType: %d\n"
258 		 "\tFaultLevel: %d\n"
259 		 "\tEngineClass: %d\n"
260 		 "\tEngineInstance: %d\n",
261 		 pf->asid, pf->vfid, pf->pdata, upper_32_bits(pf->page_addr),
262 		 lower_32_bits(pf->page_addr),
263 		 pf->fault_type, pf->access_type, pf->fault_level,
264 		 pf->engine_class, pf->engine_instance);
265 }
266 
267 #define PF_MSG_LEN_DW	4
268 
269 static bool get_pagefault(struct pf_queue *pf_queue, struct pagefault *pf)
270 {
271 	const struct xe_guc_pagefault_desc *desc;
272 	bool ret = false;
273 
274 	spin_lock_irq(&pf_queue->lock);
275 	if (pf_queue->tail != pf_queue->head) {
276 		desc = (const struct xe_guc_pagefault_desc *)
277 			(pf_queue->data + pf_queue->tail);
278 
279 		pf->fault_level = FIELD_GET(PFD_FAULT_LEVEL, desc->dw0);
280 		pf->trva_fault = FIELD_GET(XE2_PFD_TRVA_FAULT, desc->dw0);
281 		pf->engine_class = FIELD_GET(PFD_ENG_CLASS, desc->dw0);
282 		pf->engine_instance = FIELD_GET(PFD_ENG_INSTANCE, desc->dw0);
283 		pf->pdata = FIELD_GET(PFD_PDATA_HI, desc->dw1) <<
284 			PFD_PDATA_HI_SHIFT;
285 		pf->pdata |= FIELD_GET(PFD_PDATA_LO, desc->dw0);
286 		pf->asid = FIELD_GET(PFD_ASID, desc->dw1);
287 		pf->vfid = FIELD_GET(PFD_VFID, desc->dw2);
288 		pf->access_type = FIELD_GET(PFD_ACCESS_TYPE, desc->dw2);
289 		pf->fault_type = FIELD_GET(PFD_FAULT_TYPE, desc->dw2);
290 		pf->page_addr = (u64)(FIELD_GET(PFD_VIRTUAL_ADDR_HI, desc->dw3)) <<
291 			PFD_VIRTUAL_ADDR_HI_SHIFT;
292 		pf->page_addr |= FIELD_GET(PFD_VIRTUAL_ADDR_LO, desc->dw2) <<
293 			PFD_VIRTUAL_ADDR_LO_SHIFT;
294 
295 		pf_queue->tail = (pf_queue->tail + PF_MSG_LEN_DW) %
296 			pf_queue->num_dw;
297 		ret = true;
298 	}
299 	spin_unlock_irq(&pf_queue->lock);
300 
301 	return ret;
302 }
303 
304 static bool pf_queue_full(struct pf_queue *pf_queue)
305 {
306 	lockdep_assert_held(&pf_queue->lock);
307 
308 	return CIRC_SPACE(pf_queue->head, pf_queue->tail,
309 			  pf_queue->num_dw) <=
310 		PF_MSG_LEN_DW;
311 }
312 
313 int xe_guc_pagefault_handler(struct xe_guc *guc, u32 *msg, u32 len)
314 {
315 	struct xe_gt *gt = guc_to_gt(guc);
316 	struct xe_device *xe = gt_to_xe(gt);
317 	struct pf_queue *pf_queue;
318 	unsigned long flags;
319 	u32 asid;
320 	bool full;
321 
322 	if (unlikely(len != PF_MSG_LEN_DW))
323 		return -EPROTO;
324 
325 	asid = FIELD_GET(PFD_ASID, msg[1]);
326 	pf_queue = gt->usm.pf_queue + (asid % NUM_PF_QUEUE);
327 
328 	/*
329 	 * The below logic doesn't work unless PF_QUEUE_NUM_DW % PF_MSG_LEN_DW == 0
330 	 */
331 	xe_gt_assert(gt, !(pf_queue->num_dw % PF_MSG_LEN_DW));
332 
333 	spin_lock_irqsave(&pf_queue->lock, flags);
334 	full = pf_queue_full(pf_queue);
335 	if (!full) {
336 		memcpy(pf_queue->data + pf_queue->head, msg, len * sizeof(u32));
337 		pf_queue->head = (pf_queue->head + len) %
338 			pf_queue->num_dw;
339 		queue_work(gt->usm.pf_wq, &pf_queue->worker);
340 	} else {
341 		drm_warn(&xe->drm, "PF Queue full, shouldn't be possible");
342 	}
343 	spin_unlock_irqrestore(&pf_queue->lock, flags);
344 
345 	return full ? -ENOSPC : 0;
346 }
347 
348 #define USM_QUEUE_MAX_RUNTIME_MS	20
349 
350 static void pf_queue_work_func(struct work_struct *w)
351 {
352 	struct pf_queue *pf_queue = container_of(w, struct pf_queue, worker);
353 	struct xe_gt *gt = pf_queue->gt;
354 	struct xe_device *xe = gt_to_xe(gt);
355 	struct xe_guc_pagefault_reply reply = {};
356 	struct pagefault pf = {};
357 	unsigned long threshold;
358 	int ret;
359 
360 	threshold = jiffies + msecs_to_jiffies(USM_QUEUE_MAX_RUNTIME_MS);
361 
362 	while (get_pagefault(pf_queue, &pf)) {
363 		ret = handle_pagefault(gt, &pf);
364 		if (unlikely(ret)) {
365 			print_pagefault(xe, &pf);
366 			pf.fault_unsuccessful = 1;
367 			drm_dbg(&xe->drm, "Fault response: Unsuccessful %d\n", ret);
368 		}
369 
370 		reply.dw0 = FIELD_PREP(PFR_VALID, 1) |
371 			FIELD_PREP(PFR_SUCCESS, pf.fault_unsuccessful) |
372 			FIELD_PREP(PFR_REPLY, PFR_ACCESS) |
373 			FIELD_PREP(PFR_DESC_TYPE, FAULT_RESPONSE_DESC) |
374 			FIELD_PREP(PFR_ASID, pf.asid);
375 
376 		reply.dw1 = FIELD_PREP(PFR_VFID, pf.vfid) |
377 			FIELD_PREP(PFR_ENG_INSTANCE, pf.engine_instance) |
378 			FIELD_PREP(PFR_ENG_CLASS, pf.engine_class) |
379 			FIELD_PREP(PFR_PDATA, pf.pdata);
380 
381 		send_pagefault_reply(&gt->uc.guc, &reply);
382 
383 		if (time_after(jiffies, threshold) &&
384 		    pf_queue->tail != pf_queue->head) {
385 			queue_work(gt->usm.pf_wq, w);
386 			break;
387 		}
388 	}
389 }
390 
391 static void acc_queue_work_func(struct work_struct *w);
392 
393 static void pagefault_fini(void *arg)
394 {
395 	struct xe_gt *gt = arg;
396 	struct xe_device *xe = gt_to_xe(gt);
397 
398 	if (!xe->info.has_usm)
399 		return;
400 
401 	destroy_workqueue(gt->usm.acc_wq);
402 	destroy_workqueue(gt->usm.pf_wq);
403 }
404 
405 static int xe_alloc_pf_queue(struct xe_gt *gt, struct pf_queue *pf_queue)
406 {
407 	struct xe_device *xe = gt_to_xe(gt);
408 	xe_dss_mask_t all_dss;
409 	int num_dss, num_eus;
410 
411 	bitmap_or(all_dss, gt->fuse_topo.g_dss_mask, gt->fuse_topo.c_dss_mask,
412 		  XE_MAX_DSS_FUSE_BITS);
413 
414 	num_dss = bitmap_weight(all_dss, XE_MAX_DSS_FUSE_BITS);
415 	num_eus = bitmap_weight(gt->fuse_topo.eu_mask_per_dss,
416 				XE_MAX_EU_FUSE_BITS) * num_dss;
417 
418 	/* user can issue separate page faults per EU and per CS */
419 	pf_queue->num_dw =
420 		(num_eus + XE_NUM_HW_ENGINES) * PF_MSG_LEN_DW;
421 
422 	pf_queue->gt = gt;
423 	pf_queue->data = devm_kcalloc(xe->drm.dev, pf_queue->num_dw,
424 				      sizeof(u32), GFP_KERNEL);
425 	if (!pf_queue->data)
426 		return -ENOMEM;
427 
428 	spin_lock_init(&pf_queue->lock);
429 	INIT_WORK(&pf_queue->worker, pf_queue_work_func);
430 
431 	return 0;
432 }
433 
434 int xe_gt_pagefault_init(struct xe_gt *gt)
435 {
436 	struct xe_device *xe = gt_to_xe(gt);
437 	int i, ret = 0;
438 
439 	if (!xe->info.has_usm)
440 		return 0;
441 
442 	for (i = 0; i < NUM_PF_QUEUE; ++i) {
443 		ret = xe_alloc_pf_queue(gt, &gt->usm.pf_queue[i]);
444 		if (ret)
445 			return ret;
446 	}
447 	for (i = 0; i < NUM_ACC_QUEUE; ++i) {
448 		gt->usm.acc_queue[i].gt = gt;
449 		spin_lock_init(&gt->usm.acc_queue[i].lock);
450 		INIT_WORK(&gt->usm.acc_queue[i].worker, acc_queue_work_func);
451 	}
452 
453 	gt->usm.pf_wq = alloc_workqueue("xe_gt_page_fault_work_queue",
454 					WQ_UNBOUND | WQ_HIGHPRI, NUM_PF_QUEUE);
455 	if (!gt->usm.pf_wq)
456 		return -ENOMEM;
457 
458 	gt->usm.acc_wq = alloc_workqueue("xe_gt_access_counter_work_queue",
459 					 WQ_UNBOUND | WQ_HIGHPRI,
460 					 NUM_ACC_QUEUE);
461 	if (!gt->usm.acc_wq) {
462 		destroy_workqueue(gt->usm.pf_wq);
463 		return -ENOMEM;
464 	}
465 
466 	return devm_add_action_or_reset(xe->drm.dev, pagefault_fini, gt);
467 }
468 
469 void xe_gt_pagefault_reset(struct xe_gt *gt)
470 {
471 	struct xe_device *xe = gt_to_xe(gt);
472 	int i;
473 
474 	if (!xe->info.has_usm)
475 		return;
476 
477 	for (i = 0; i < NUM_PF_QUEUE; ++i) {
478 		spin_lock_irq(&gt->usm.pf_queue[i].lock);
479 		gt->usm.pf_queue[i].head = 0;
480 		gt->usm.pf_queue[i].tail = 0;
481 		spin_unlock_irq(&gt->usm.pf_queue[i].lock);
482 	}
483 
484 	for (i = 0; i < NUM_ACC_QUEUE; ++i) {
485 		spin_lock(&gt->usm.acc_queue[i].lock);
486 		gt->usm.acc_queue[i].head = 0;
487 		gt->usm.acc_queue[i].tail = 0;
488 		spin_unlock(&gt->usm.acc_queue[i].lock);
489 	}
490 }
491 
492 static int granularity_in_byte(int val)
493 {
494 	switch (val) {
495 	case 0:
496 		return SZ_128K;
497 	case 1:
498 		return SZ_2M;
499 	case 2:
500 		return SZ_16M;
501 	case 3:
502 		return SZ_64M;
503 	default:
504 		return 0;
505 	}
506 }
507 
508 static int sub_granularity_in_byte(int val)
509 {
510 	return (granularity_in_byte(val) / 32);
511 }
512 
513 static void print_acc(struct xe_device *xe, struct acc *acc)
514 {
515 	drm_warn(&xe->drm, "Access counter request:\n"
516 		 "\tType: %s\n"
517 		 "\tASID: %d\n"
518 		 "\tVFID: %d\n"
519 		 "\tEngine: %d:%d\n"
520 		 "\tGranularity: 0x%x KB Region/ %d KB sub-granularity\n"
521 		 "\tSub_Granularity Vector: 0x%08x\n"
522 		 "\tVA Range base: 0x%016llx\n",
523 		 acc->access_type ? "AC_NTFY_VAL" : "AC_TRIG_VAL",
524 		 acc->asid, acc->vfid, acc->engine_class, acc->engine_instance,
525 		 granularity_in_byte(acc->granularity) / SZ_1K,
526 		 sub_granularity_in_byte(acc->granularity) / SZ_1K,
527 		 acc->sub_granularity, acc->va_range_base);
528 }
529 
530 static struct xe_vma *get_acc_vma(struct xe_vm *vm, struct acc *acc)
531 {
532 	u64 page_va = acc->va_range_base + (ffs(acc->sub_granularity) - 1) *
533 		sub_granularity_in_byte(acc->granularity);
534 
535 	return xe_vm_find_overlapping_vma(vm, page_va, SZ_4K);
536 }
537 
538 static int handle_acc(struct xe_gt *gt, struct acc *acc)
539 {
540 	struct xe_device *xe = gt_to_xe(gt);
541 	struct xe_tile *tile = gt_to_tile(gt);
542 	struct drm_exec exec;
543 	struct xe_vm *vm;
544 	struct xe_vma *vma;
545 	int ret = 0;
546 
547 	/* We only support ACC_TRIGGER at the moment */
548 	if (acc->access_type != ACC_TRIGGER)
549 		return -EINVAL;
550 
551 	/* ASID to VM */
552 	mutex_lock(&xe->usm.lock);
553 	vm = xa_load(&xe->usm.asid_to_vm, acc->asid);
554 	if (vm)
555 		xe_vm_get(vm);
556 	mutex_unlock(&xe->usm.lock);
557 	if (!vm || !xe_vm_in_fault_mode(vm))
558 		return -EINVAL;
559 
560 	down_read(&vm->lock);
561 
562 	/* Lookup VMA */
563 	vma = get_acc_vma(vm, acc);
564 	if (!vma) {
565 		ret = -EINVAL;
566 		goto unlock_vm;
567 	}
568 
569 	trace_xe_vma_acc(vma);
570 
571 	/* Userptr or null can't be migrated, nothing to do */
572 	if (xe_vma_has_no_bo(vma))
573 		goto unlock_vm;
574 
575 	/* Lock VM and BOs dma-resv */
576 	drm_exec_init(&exec, 0, 0);
577 	drm_exec_until_all_locked(&exec) {
578 		ret = xe_pf_begin(&exec, vma, true, tile->id);
579 		drm_exec_retry_on_contention(&exec);
580 		if (ret)
581 			break;
582 	}
583 
584 	drm_exec_fini(&exec);
585 unlock_vm:
586 	up_read(&vm->lock);
587 	xe_vm_put(vm);
588 
589 	return ret;
590 }
591 
592 #define make_u64(hi__, low__)  ((u64)(hi__) << 32 | (u64)(low__))
593 
594 #define ACC_MSG_LEN_DW        4
595 
596 static bool get_acc(struct acc_queue *acc_queue, struct acc *acc)
597 {
598 	const struct xe_guc_acc_desc *desc;
599 	bool ret = false;
600 
601 	spin_lock(&acc_queue->lock);
602 	if (acc_queue->tail != acc_queue->head) {
603 		desc = (const struct xe_guc_acc_desc *)
604 			(acc_queue->data + acc_queue->tail);
605 
606 		acc->granularity = FIELD_GET(ACC_GRANULARITY, desc->dw2);
607 		acc->sub_granularity = FIELD_GET(ACC_SUBG_HI, desc->dw1) << 31 |
608 			FIELD_GET(ACC_SUBG_LO, desc->dw0);
609 		acc->engine_class = FIELD_GET(ACC_ENG_CLASS, desc->dw1);
610 		acc->engine_instance = FIELD_GET(ACC_ENG_INSTANCE, desc->dw1);
611 		acc->asid =  FIELD_GET(ACC_ASID, desc->dw1);
612 		acc->vfid =  FIELD_GET(ACC_VFID, desc->dw2);
613 		acc->access_type = FIELD_GET(ACC_TYPE, desc->dw0);
614 		acc->va_range_base = make_u64(desc->dw3 & ACC_VIRTUAL_ADDR_RANGE_HI,
615 					      desc->dw2 & ACC_VIRTUAL_ADDR_RANGE_LO);
616 
617 		acc_queue->tail = (acc_queue->tail + ACC_MSG_LEN_DW) %
618 				  ACC_QUEUE_NUM_DW;
619 		ret = true;
620 	}
621 	spin_unlock(&acc_queue->lock);
622 
623 	return ret;
624 }
625 
626 static void acc_queue_work_func(struct work_struct *w)
627 {
628 	struct acc_queue *acc_queue = container_of(w, struct acc_queue, worker);
629 	struct xe_gt *gt = acc_queue->gt;
630 	struct xe_device *xe = gt_to_xe(gt);
631 	struct acc acc = {};
632 	unsigned long threshold;
633 	int ret;
634 
635 	threshold = jiffies + msecs_to_jiffies(USM_QUEUE_MAX_RUNTIME_MS);
636 
637 	while (get_acc(acc_queue, &acc)) {
638 		ret = handle_acc(gt, &acc);
639 		if (unlikely(ret)) {
640 			print_acc(xe, &acc);
641 			drm_warn(&xe->drm, "ACC: Unsuccessful %d\n", ret);
642 		}
643 
644 		if (time_after(jiffies, threshold) &&
645 		    acc_queue->tail != acc_queue->head) {
646 			queue_work(gt->usm.acc_wq, w);
647 			break;
648 		}
649 	}
650 }
651 
652 static bool acc_queue_full(struct acc_queue *acc_queue)
653 {
654 	lockdep_assert_held(&acc_queue->lock);
655 
656 	return CIRC_SPACE(acc_queue->head, acc_queue->tail, ACC_QUEUE_NUM_DW) <=
657 		ACC_MSG_LEN_DW;
658 }
659 
660 int xe_guc_access_counter_notify_handler(struct xe_guc *guc, u32 *msg, u32 len)
661 {
662 	struct xe_gt *gt = guc_to_gt(guc);
663 	struct acc_queue *acc_queue;
664 	u32 asid;
665 	bool full;
666 
667 	/*
668 	 * The below logic doesn't work unless ACC_QUEUE_NUM_DW % ACC_MSG_LEN_DW == 0
669 	 */
670 	BUILD_BUG_ON(ACC_QUEUE_NUM_DW % ACC_MSG_LEN_DW);
671 
672 	if (unlikely(len != ACC_MSG_LEN_DW))
673 		return -EPROTO;
674 
675 	asid = FIELD_GET(ACC_ASID, msg[1]);
676 	acc_queue = &gt->usm.acc_queue[asid % NUM_ACC_QUEUE];
677 
678 	spin_lock(&acc_queue->lock);
679 	full = acc_queue_full(acc_queue);
680 	if (!full) {
681 		memcpy(acc_queue->data + acc_queue->head, msg,
682 		       len * sizeof(u32));
683 		acc_queue->head = (acc_queue->head + len) % ACC_QUEUE_NUM_DW;
684 		queue_work(gt->usm.acc_wq, &acc_queue->worker);
685 	} else {
686 		drm_warn(&gt_to_xe(gt)->drm, "ACC Queue full, dropping ACC");
687 	}
688 	spin_unlock(&acc_queue->lock);
689 
690 	return full ? -ENOSPC : 0;
691 }
692