1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * R-Car Display Unit CRTCs 4 * 5 * Copyright (C) 2013-2015 Renesas Electronics Corporation 6 * 7 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com) 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/mutex.h> 12 #include <linux/platform_device.h> 13 14 #include <drm/drm_atomic.h> 15 #include <drm/drm_atomic_helper.h> 16 #include <drm/drm_bridge.h> 17 #include <drm/drm_crtc.h> 18 #include <drm/drm_device.h> 19 #include <drm/drm_gem_dma_helper.h> 20 #include <drm/drm_print.h> 21 #include <drm/drm_vblank.h> 22 23 #include "rcar_cmm.h" 24 #include "rcar_du_crtc.h" 25 #include "rcar_du_drv.h" 26 #include "rcar_du_encoder.h" 27 #include "rcar_du_kms.h" 28 #include "rcar_du_plane.h" 29 #include "rcar_du_regs.h" 30 #include "rcar_du_vsp.h" 31 #include "rcar_lvds.h" 32 #include "rcar_mipi_dsi.h" 33 34 static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg) 35 { 36 struct rcar_du_device *rcdu = rcrtc->dev; 37 38 return rcar_du_read(rcdu, rcrtc->mmio_offset + reg); 39 } 40 41 static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data) 42 { 43 struct rcar_du_device *rcdu = rcrtc->dev; 44 45 rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data); 46 } 47 48 static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr) 49 { 50 struct rcar_du_device *rcdu = rcrtc->dev; 51 52 rcar_du_write(rcdu, rcrtc->mmio_offset + reg, 53 rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr); 54 } 55 56 static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set) 57 { 58 struct rcar_du_device *rcdu = rcrtc->dev; 59 60 rcar_du_write(rcdu, rcrtc->mmio_offset + reg, 61 rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set); 62 } 63 64 void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc *rcrtc, u32 clr, u32 set) 65 { 66 struct rcar_du_device *rcdu = rcrtc->dev; 67 68 rcrtc->dsysr = (rcrtc->dsysr & ~clr) | set; 69 rcar_du_write(rcdu, rcrtc->mmio_offset + DSYSR, rcrtc->dsysr); 70 } 71 72 /* ----------------------------------------------------------------------------- 73 * Hardware Setup 74 */ 75 76 struct dpll_info { 77 unsigned int output; 78 unsigned int fdpll; 79 unsigned int n; 80 unsigned int m; 81 }; 82 83 static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc, 84 struct dpll_info *dpll, 85 unsigned long input, 86 unsigned long target) 87 { 88 unsigned long best_diff = (unsigned long)-1; 89 unsigned long diff; 90 unsigned int fdpll; 91 unsigned int m; 92 unsigned int n; 93 94 /* 95 * fin fvco fout fclkout 96 * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out 97 * +-> | | | 98 * | | 99 * +---------------- [1/N] <------------+ 100 * 101 * fclkout = fvco / P / FDPLL -- (1) 102 * 103 * fin/M = fvco/P/N 104 * 105 * fvco = fin * P * N / M -- (2) 106 * 107 * (1) + (2) indicates 108 * 109 * fclkout = fin * N / M / FDPLL 110 * 111 * NOTES 112 * N : (n + 1) 113 * M : (m + 1) 114 * FDPLL : (fdpll + 1) 115 * P : 2 116 * 2kHz < fvco < 4096MHz 117 * 118 * To minimize the jitter, 119 * N : as large as possible 120 * M : as small as possible 121 */ 122 for (m = 0; m < 4; m++) { 123 for (n = 119; n > 38; n--) { 124 /* 125 * This code only runs on 64-bit architectures, the 126 * unsigned long type can thus be used for 64-bit 127 * computation. It will still compile without any 128 * warning on 32-bit architectures. 129 * 130 * To optimize calculations, use fout instead of fvco 131 * to verify the VCO frequency constraint. 132 */ 133 unsigned long fout = input * (n + 1) / (m + 1); 134 135 if (fout < 1000 || fout > 2048 * 1000 * 1000U) 136 continue; 137 138 for (fdpll = 1; fdpll < 32; fdpll++) { 139 unsigned long output; 140 141 output = fout / (fdpll + 1); 142 if (output >= 400 * 1000 * 1000) 143 continue; 144 145 diff = abs((long)output - (long)target); 146 if (best_diff > diff) { 147 best_diff = diff; 148 dpll->n = n; 149 dpll->m = m; 150 dpll->fdpll = fdpll; 151 dpll->output = output; 152 } 153 154 if (diff == 0) 155 goto done; 156 } 157 } 158 } 159 160 done: 161 dev_dbg(rcrtc->dev->dev, 162 "output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n", 163 dpll->output, dpll->fdpll, dpll->n, dpll->m, best_diff); 164 } 165 166 struct du_clk_params { 167 struct clk *clk; 168 unsigned long rate; 169 unsigned long diff; 170 u32 escr; 171 }; 172 173 static void rcar_du_escr_divider(struct clk *clk, unsigned long target, 174 u32 escr, struct du_clk_params *params) 175 { 176 unsigned long rate; 177 unsigned long diff; 178 u32 div; 179 180 /* 181 * If the target rate has already been achieved perfectly we can't do 182 * better. 183 */ 184 if (params->diff == 0) 185 return; 186 187 /* 188 * Compute the input clock rate and internal divisor values to obtain 189 * the clock rate closest to the target frequency. 190 */ 191 rate = clk_round_rate(clk, target); 192 div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1; 193 diff = abs(rate / (div + 1) - target); 194 195 /* 196 * Store the parameters if the resulting frequency is better than any 197 * previously calculated value. 198 */ 199 if (diff < params->diff) { 200 params->clk = clk; 201 params->rate = rate; 202 params->diff = diff; 203 params->escr = escr | div; 204 } 205 } 206 207 static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc) 208 { 209 const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode; 210 struct rcar_du_device *rcdu = rcrtc->dev; 211 unsigned long mode_clock = mode->clock * 1000; 212 unsigned int hdse_offset; 213 u32 dsmr; 214 u32 escr; 215 216 if (rcdu->info->dpll_mask & (1 << rcrtc->index)) { 217 unsigned long target = mode_clock; 218 struct dpll_info dpll = { 0 }; 219 unsigned long extclk; 220 u32 dpllcr; 221 u32 div = 0; 222 223 /* 224 * DU channels that have a display PLL can't use the internal 225 * system clock, and have no internal clock divider. 226 */ 227 extclk = clk_get_rate(rcrtc->extclock); 228 rcar_du_dpll_divider(rcrtc, &dpll, extclk, target); 229 230 dpllcr = DPLLCR_CODE | DPLLCR_CLKE 231 | DPLLCR_FDPLL(dpll.fdpll) 232 | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m) 233 | DPLLCR_STBY; 234 235 if (rcrtc->index == 1) 236 dpllcr |= DPLLCR_PLCS1 237 | DPLLCR_INCS_DOTCLKIN1; 238 else 239 dpllcr |= DPLLCR_PLCS0 240 | DPLLCR_INCS_DOTCLKIN0; 241 242 rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr); 243 244 escr = ESCR_DCLKSEL_DCLKIN | div; 245 } else if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) || 246 rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) { 247 /* 248 * Use the external LVDS or DSI PLL output as the dot clock when 249 * outputting to the LVDS or DSI encoder on an SoC that supports 250 * this clock routing option. We use the clock directly in that 251 * case, without any additional divider. 252 */ 253 escr = ESCR_DCLKSEL_DCLKIN; 254 } else { 255 struct du_clk_params params = { .diff = (unsigned long)-1 }; 256 257 rcar_du_escr_divider(rcrtc->clock, mode_clock, 258 ESCR_DCLKSEL_CLKS, ¶ms); 259 if (rcrtc->extclock) 260 rcar_du_escr_divider(rcrtc->extclock, mode_clock, 261 ESCR_DCLKSEL_DCLKIN, ¶ms); 262 263 dev_dbg(rcrtc->dev->dev, "mode clock %lu %s rate %lu\n", 264 mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext", 265 params.rate); 266 267 clk_set_rate(params.clk, params.rate); 268 escr = params.escr; 269 } 270 271 /* 272 * The ESCR register only exists in DU channels that can output to an 273 * LVDS or DPAT, and the OTAR register in DU channels that can output 274 * to a DPAD. 275 */ 276 if ((rcdu->info->routes[RCAR_DU_OUTPUT_DPAD0].possible_crtcs | 277 rcdu->info->routes[RCAR_DU_OUTPUT_DPAD1].possible_crtcs | 278 rcdu->info->routes[RCAR_DU_OUTPUT_LVDS0].possible_crtcs | 279 rcdu->info->routes[RCAR_DU_OUTPUT_LVDS1].possible_crtcs) & 280 BIT(rcrtc->index)) { 281 dev_dbg(rcrtc->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr); 282 283 rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr); 284 } 285 286 if ((rcdu->info->routes[RCAR_DU_OUTPUT_DPAD0].possible_crtcs | 287 rcdu->info->routes[RCAR_DU_OUTPUT_DPAD1].possible_crtcs) & 288 BIT(rcrtc->index)) 289 rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0); 290 291 /* Signal polarities */ 292 dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0) 293 | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0) 294 | ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0) 295 | DSMR_DIPM_DISP | DSMR_CSPM; 296 rcar_du_crtc_write(rcrtc, DSMR, dsmr); 297 298 /* 299 * When the CMM is enabled, an additional offset of 25 pixels must be 300 * subtracted from the HDS (horizontal display start) and HDE 301 * (horizontal display end) registers. 302 */ 303 hdse_offset = 19; 304 if (rcrtc->group->cmms_mask & BIT(rcrtc->index % 2)) 305 hdse_offset += 25; 306 307 /* Display timings */ 308 rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 309 hdse_offset); 310 rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start + 311 mode->hdisplay - hdse_offset); 312 rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end - 313 mode->hsync_start - 1); 314 rcar_du_crtc_write(rcrtc, HCR, mode->htotal - 1); 315 316 rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal - 317 mode->crtc_vsync_end - 2); 318 rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal - 319 mode->crtc_vsync_end + 320 mode->crtc_vdisplay - 2); 321 rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal - 322 mode->crtc_vsync_end + 323 mode->crtc_vsync_start - 1); 324 rcar_du_crtc_write(rcrtc, VCR, mode->crtc_vtotal - 1); 325 326 rcar_du_crtc_write(rcrtc, DESR, mode->htotal - mode->hsync_start - 1); 327 rcar_du_crtc_write(rcrtc, DEWR, mode->hdisplay); 328 } 329 330 static unsigned int plane_zpos(struct rcar_du_plane *plane) 331 { 332 return plane->plane.state->normalized_zpos; 333 } 334 335 static const struct rcar_du_format_info * 336 plane_format(struct rcar_du_plane *plane) 337 { 338 return to_rcar_plane_state(plane->plane.state)->format; 339 } 340 341 static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc) 342 { 343 struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES]; 344 struct rcar_du_device *rcdu = rcrtc->dev; 345 unsigned int num_planes = 0; 346 unsigned int dptsr_planes; 347 unsigned int hwplanes = 0; 348 unsigned int prio = 0; 349 unsigned int i; 350 u32 dspr = 0; 351 352 for (i = 0; i < rcrtc->group->num_planes; ++i) { 353 struct rcar_du_plane *plane = &rcrtc->group->planes[i]; 354 unsigned int j; 355 356 if (plane->plane.state->crtc != &rcrtc->crtc || 357 !plane->plane.state->visible) 358 continue; 359 360 /* Insert the plane in the sorted planes array. */ 361 for (j = num_planes++; j > 0; --j) { 362 if (plane_zpos(planes[j-1]) <= plane_zpos(plane)) 363 break; 364 planes[j] = planes[j-1]; 365 } 366 367 planes[j] = plane; 368 prio += plane_format(plane)->planes * 4; 369 } 370 371 for (i = 0; i < num_planes; ++i) { 372 struct rcar_du_plane *plane = planes[i]; 373 struct drm_plane_state *state = plane->plane.state; 374 unsigned int index = to_rcar_plane_state(state)->hwindex; 375 376 prio -= 4; 377 dspr |= (index + 1) << prio; 378 hwplanes |= 1 << index; 379 380 if (plane_format(plane)->planes == 2) { 381 index = (index + 1) % 8; 382 383 prio -= 4; 384 dspr |= (index + 1) << prio; 385 hwplanes |= 1 << index; 386 } 387 } 388 389 /* If VSP+DU integration is enabled the plane assignment is fixed. */ 390 if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) { 391 if (rcdu->info->gen < 3) { 392 dspr = (rcrtc->index % 2) + 1; 393 hwplanes = 1 << (rcrtc->index % 2); 394 } else { 395 dspr = (rcrtc->index % 2) ? 3 : 1; 396 hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0); 397 } 398 } 399 400 /* 401 * Update the planes to display timing and dot clock generator 402 * associations. 403 * 404 * Updating the DPTSR register requires restarting the CRTC group, 405 * resulting in visible flicker. To mitigate the issue only update the 406 * association if needed by enabled planes. Planes being disabled will 407 * keep their current association. 408 */ 409 mutex_lock(&rcrtc->group->lock); 410 411 dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes 412 : rcrtc->group->dptsr_planes & ~hwplanes; 413 414 if (dptsr_planes != rcrtc->group->dptsr_planes) { 415 rcar_du_group_write(rcrtc->group, DPTSR, 416 (dptsr_planes << 16) | dptsr_planes); 417 rcrtc->group->dptsr_planes = dptsr_planes; 418 419 if (rcrtc->group->used_crtcs) 420 rcar_du_group_restart(rcrtc->group); 421 } 422 423 /* Restart the group if plane sources have changed. */ 424 if (rcrtc->group->need_restart) 425 rcar_du_group_restart(rcrtc->group); 426 427 mutex_unlock(&rcrtc->group->lock); 428 429 rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 430 dspr); 431 } 432 433 /* ----------------------------------------------------------------------------- 434 * Page Flip 435 */ 436 437 void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc) 438 { 439 struct drm_pending_vblank_event *event; 440 struct drm_device *dev = rcrtc->crtc.dev; 441 unsigned long flags; 442 443 spin_lock_irqsave(&dev->event_lock, flags); 444 event = rcrtc->event; 445 rcrtc->event = NULL; 446 spin_unlock_irqrestore(&dev->event_lock, flags); 447 448 if (event == NULL) 449 return; 450 451 spin_lock_irqsave(&dev->event_lock, flags); 452 drm_crtc_send_vblank_event(&rcrtc->crtc, event); 453 wake_up(&rcrtc->flip_wait); 454 spin_unlock_irqrestore(&dev->event_lock, flags); 455 456 drm_crtc_vblank_put(&rcrtc->crtc); 457 } 458 459 static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc) 460 { 461 struct drm_device *dev = rcrtc->crtc.dev; 462 unsigned long flags; 463 bool pending; 464 465 spin_lock_irqsave(&dev->event_lock, flags); 466 pending = rcrtc->event != NULL; 467 spin_unlock_irqrestore(&dev->event_lock, flags); 468 469 return pending; 470 } 471 472 static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc) 473 { 474 struct rcar_du_device *rcdu = rcrtc->dev; 475 476 if (wait_event_timeout(rcrtc->flip_wait, 477 !rcar_du_crtc_page_flip_pending(rcrtc), 478 msecs_to_jiffies(50))) 479 return; 480 481 dev_warn(rcdu->dev, "page flip timeout\n"); 482 483 rcar_du_crtc_finish_page_flip(rcrtc); 484 } 485 486 /* ----------------------------------------------------------------------------- 487 * Color Management Module (CMM) 488 */ 489 490 static int rcar_du_cmm_check(struct drm_crtc *crtc, 491 struct drm_crtc_state *state) 492 { 493 struct drm_property_blob *drm_lut = state->gamma_lut; 494 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); 495 struct device *dev = rcrtc->dev->dev; 496 497 if (!drm_lut) 498 return 0; 499 500 /* We only accept fully populated LUT tables. */ 501 if (drm_color_lut_size(drm_lut) != CM2_LUT_SIZE) { 502 dev_err(dev, "invalid gamma lut size: %zu bytes\n", 503 drm_lut->length); 504 return -EINVAL; 505 } 506 507 return 0; 508 } 509 510 static void rcar_du_cmm_setup(struct drm_crtc *crtc) 511 { 512 struct drm_property_blob *drm_lut = crtc->state->gamma_lut; 513 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); 514 struct rcar_cmm_config cmm_config = {}; 515 516 if (!rcrtc->cmm) 517 return; 518 519 if (drm_lut) 520 cmm_config.lut.table = (struct drm_color_lut *)drm_lut->data; 521 522 rcar_cmm_setup(rcrtc->cmm, &cmm_config); 523 } 524 525 /* ----------------------------------------------------------------------------- 526 * Start/Stop and Suspend/Resume 527 */ 528 529 static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc) 530 { 531 /* Set display off and background to black */ 532 rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0)); 533 rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0)); 534 535 /* Configure display timings and output routing */ 536 rcar_du_crtc_set_display_timing(rcrtc); 537 rcar_du_group_set_routing(rcrtc->group); 538 539 /* Start with all planes disabled. */ 540 rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0); 541 542 /* Enable the VSP compositor. */ 543 if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE)) 544 rcar_du_vsp_enable(rcrtc); 545 546 /* Turn vertical blanking interrupt reporting on. */ 547 drm_crtc_vblank_on(&rcrtc->crtc); 548 } 549 550 static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc) 551 { 552 int ret; 553 554 /* 555 * Guard against double-get, as the function is called from both the 556 * .atomic_enable() and .atomic_begin() handlers. 557 */ 558 if (rcrtc->initialized) 559 return 0; 560 561 ret = clk_prepare_enable(rcrtc->clock); 562 if (ret < 0) 563 return ret; 564 565 ret = clk_prepare_enable(rcrtc->extclock); 566 if (ret < 0) 567 goto error_clock; 568 569 ret = rcar_du_group_get(rcrtc->group); 570 if (ret < 0) 571 goto error_group; 572 573 rcar_du_crtc_setup(rcrtc); 574 rcrtc->initialized = true; 575 576 return 0; 577 578 error_group: 579 clk_disable_unprepare(rcrtc->extclock); 580 error_clock: 581 clk_disable_unprepare(rcrtc->clock); 582 return ret; 583 } 584 585 static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc) 586 { 587 rcar_du_group_put(rcrtc->group); 588 589 clk_disable_unprepare(rcrtc->extclock); 590 clk_disable_unprepare(rcrtc->clock); 591 592 rcrtc->initialized = false; 593 } 594 595 static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc) 596 { 597 bool interlaced; 598 599 /* 600 * Select master sync mode. This enables display operation in master 601 * sync mode (with the HSYNC and VSYNC signals configured as outputs and 602 * actively driven). 603 */ 604 interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE; 605 rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK | DSYSR_SCM_MASK, 606 (interlaced ? DSYSR_SCM_INT_VIDEO : 0) | 607 DSYSR_TVM_MASTER); 608 609 rcar_du_group_start_stop(rcrtc->group, true); 610 } 611 612 static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc) 613 { 614 struct rcar_du_device *rcdu = rcrtc->dev; 615 struct drm_crtc *crtc = &rcrtc->crtc; 616 u32 status; 617 618 /* Make sure vblank interrupts are enabled. */ 619 drm_crtc_vblank_get(crtc); 620 621 /* 622 * Disable planes and calculate how many vertical blanking interrupts we 623 * have to wait for. If a vertical blanking interrupt has been triggered 624 * but not processed yet, we don't know whether it occurred before or 625 * after the planes got disabled. We thus have to wait for two vblank 626 * interrupts in that case. 627 */ 628 spin_lock_irq(&rcrtc->vblank_lock); 629 rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0); 630 status = rcar_du_crtc_read(rcrtc, DSSR); 631 rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1; 632 spin_unlock_irq(&rcrtc->vblank_lock); 633 634 if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0, 635 msecs_to_jiffies(100))) 636 dev_warn(rcdu->dev, "vertical blanking timeout\n"); 637 638 drm_crtc_vblank_put(crtc); 639 } 640 641 static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc) 642 { 643 struct drm_crtc *crtc = &rcrtc->crtc; 644 645 /* 646 * Disable all planes and wait for the change to take effect. This is 647 * required as the plane enable registers are updated on vblank, and no 648 * vblank will occur once the CRTC is stopped. Disabling planes when 649 * starting the CRTC thus wouldn't be enough as it would start scanning 650 * out immediately from old frame buffers until the next vblank. 651 * 652 * This increases the CRTC stop delay, especially when multiple CRTCs 653 * are stopped in one operation as we now wait for one vblank per CRTC. 654 * Whether this can be improved needs to be researched. 655 */ 656 rcar_du_crtc_disable_planes(rcrtc); 657 658 /* 659 * Disable vertical blanking interrupt reporting. We first need to wait 660 * for page flip completion before stopping the CRTC as userspace 661 * expects page flips to eventually complete. 662 */ 663 rcar_du_crtc_wait_page_flip(rcrtc); 664 drm_crtc_vblank_off(crtc); 665 666 /* Disable the VSP compositor. */ 667 if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE)) 668 rcar_du_vsp_disable(rcrtc); 669 670 if (rcrtc->cmm) 671 rcar_cmm_disable(rcrtc->cmm); 672 673 /* 674 * Select switch sync mode. This stops display operation and configures 675 * the HSYNC and VSYNC signals as inputs. 676 * 677 * TODO: Find another way to stop the display for DUs that don't support 678 * TVM sync. 679 */ 680 if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_TVM_SYNC)) 681 rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK, 682 DSYSR_TVM_SWITCH); 683 684 rcar_du_group_start_stop(rcrtc->group, false); 685 } 686 687 /* ----------------------------------------------------------------------------- 688 * CRTC Functions 689 */ 690 691 static int rcar_du_crtc_atomic_check(struct drm_crtc *crtc, 692 struct drm_atomic_state *state) 693 { 694 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 695 crtc); 696 struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc_state); 697 struct drm_encoder *encoder; 698 int ret; 699 700 ret = rcar_du_cmm_check(crtc, crtc_state); 701 if (ret) 702 return ret; 703 704 /* Store the routes from the CRTC output to the DU outputs. */ 705 rstate->outputs = 0; 706 707 drm_for_each_encoder_mask(encoder, crtc->dev, 708 crtc_state->encoder_mask) { 709 struct rcar_du_encoder *renc; 710 711 /* Skip the writeback encoder. */ 712 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) 713 continue; 714 715 renc = to_rcar_encoder(encoder); 716 rstate->outputs |= BIT(renc->output); 717 } 718 719 return 0; 720 } 721 722 static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc, 723 struct drm_atomic_state *state) 724 { 725 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); 726 struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc->state); 727 struct rcar_du_device *rcdu = rcrtc->dev; 728 729 if (rcrtc->cmm) 730 rcar_cmm_enable(rcrtc->cmm); 731 rcar_du_crtc_get(rcrtc); 732 733 /* 734 * On D3/E3 the dot clock is provided by the LVDS encoder attached to 735 * the DU channel. We need to enable its clock output explicitly before 736 * starting the CRTC, as the bridge hasn't been enabled by the atomic 737 * helpers yet. 738 */ 739 if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) { 740 bool dot_clk_only = rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0); 741 struct drm_bridge *bridge = rcdu->lvds[rcrtc->index]; 742 const struct drm_display_mode *mode = 743 &crtc->state->adjusted_mode; 744 745 rcar_lvds_pclk_enable(bridge, mode->clock * 1000, dot_clk_only); 746 } 747 748 /* 749 * Similarly to LVDS, on V3U the dot clock is provided by the DSI 750 * encoder, and we need to enable the DSI clocks before enabling the CRTC. 751 */ 752 if ((rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) && 753 (rstate->outputs & 754 (BIT(RCAR_DU_OUTPUT_DSI0) | BIT(RCAR_DU_OUTPUT_DSI1)))) { 755 struct drm_bridge *bridge = rcdu->dsi[rcrtc->index]; 756 757 rcar_mipi_dsi_pclk_enable(bridge, state); 758 } 759 760 rcar_du_crtc_start(rcrtc); 761 762 /* 763 * TODO: The chip manual indicates that CMM tables should be written 764 * after the DU channel has been activated. Investigate the impact 765 * of this restriction on the first displayed frame. 766 */ 767 rcar_du_cmm_setup(crtc); 768 } 769 770 static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc, 771 struct drm_atomic_state *state) 772 { 773 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, 774 crtc); 775 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); 776 struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(old_state); 777 struct rcar_du_device *rcdu = rcrtc->dev; 778 779 rcar_du_crtc_stop(rcrtc); 780 rcar_du_crtc_put(rcrtc); 781 782 if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) { 783 bool dot_clk_only = rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0); 784 struct drm_bridge *bridge = rcdu->lvds[rcrtc->index]; 785 786 /* 787 * Disable the LVDS clock output, see 788 * rcar_du_crtc_atomic_enable(). When the LVDS output is used, 789 * this also disables the LVDS encoder. 790 */ 791 rcar_lvds_pclk_disable(bridge, dot_clk_only); 792 } 793 794 if ((rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) && 795 (rstate->outputs & 796 (BIT(RCAR_DU_OUTPUT_DSI0) | BIT(RCAR_DU_OUTPUT_DSI1)))) { 797 struct drm_bridge *bridge = rcdu->dsi[rcrtc->index]; 798 799 /* 800 * Disable the DSI clock output, see 801 * rcar_du_crtc_atomic_enable(). 802 */ 803 rcar_mipi_dsi_pclk_disable(bridge); 804 } 805 806 spin_lock_irq(&crtc->dev->event_lock); 807 if (crtc->state->event) { 808 drm_crtc_send_vblank_event(crtc, crtc->state->event); 809 crtc->state->event = NULL; 810 } 811 spin_unlock_irq(&crtc->dev->event_lock); 812 } 813 814 static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc, 815 struct drm_atomic_state *state) 816 { 817 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); 818 819 WARN_ON(!crtc->state->enable); 820 821 /* 822 * If a mode set is in progress we can be called with the CRTC disabled. 823 * We thus need to first get and setup the CRTC in order to configure 824 * planes. We must *not* put the CRTC in .atomic_flush(), as it must be 825 * kept awake until the .atomic_enable() call that will follow. The get 826 * operation in .atomic_enable() will in that case be a no-op, and the 827 * CRTC will be put later in .atomic_disable(). 828 * 829 * If a mode set is not in progress the CRTC is enabled, and the 830 * following get call will be a no-op. There is thus no need to balance 831 * it in .atomic_flush() either. 832 */ 833 rcar_du_crtc_get(rcrtc); 834 835 /* If the active state changed, we let .atomic_enable handle CMM. */ 836 if (crtc->state->color_mgmt_changed && !crtc->state->active_changed) 837 rcar_du_cmm_setup(crtc); 838 839 if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE)) 840 rcar_du_vsp_atomic_begin(rcrtc); 841 } 842 843 static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc, 844 struct drm_atomic_state *state) 845 { 846 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); 847 struct drm_device *dev = rcrtc->crtc.dev; 848 unsigned long flags; 849 850 rcar_du_crtc_update_planes(rcrtc); 851 852 if (crtc->state->event) { 853 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 854 855 spin_lock_irqsave(&dev->event_lock, flags); 856 rcrtc->event = crtc->state->event; 857 crtc->state->event = NULL; 858 spin_unlock_irqrestore(&dev->event_lock, flags); 859 } 860 861 if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE)) 862 rcar_du_vsp_atomic_flush(rcrtc); 863 } 864 865 static enum drm_mode_status 866 rcar_du_crtc_mode_valid(struct drm_crtc *crtc, 867 const struct drm_display_mode *mode) 868 { 869 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); 870 struct rcar_du_device *rcdu = rcrtc->dev; 871 bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE; 872 unsigned int min_sync_porch; 873 unsigned int vbp; 874 875 if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED)) 876 return MODE_NO_INTERLACE; 877 878 /* 879 * The hardware requires a minimum combined horizontal sync and back 880 * porch of 20 pixels (when CMM isn't used) or 45 pixels (when CMM is 881 * used), and a minimum vertical back porch of 3 lines. 882 */ 883 min_sync_porch = 20; 884 if (rcrtc->group->cmms_mask & BIT(rcrtc->index % 2)) 885 min_sync_porch += 25; 886 887 if (mode->htotal - mode->hsync_start < min_sync_porch) 888 return MODE_HBLANK_NARROW; 889 890 vbp = (mode->vtotal - mode->vsync_end) / (interlaced ? 2 : 1); 891 if (vbp < 3) 892 return MODE_VBLANK_NARROW; 893 894 return MODE_OK; 895 } 896 897 static const struct drm_crtc_helper_funcs crtc_helper_funcs = { 898 .atomic_check = rcar_du_crtc_atomic_check, 899 .atomic_begin = rcar_du_crtc_atomic_begin, 900 .atomic_flush = rcar_du_crtc_atomic_flush, 901 .atomic_enable = rcar_du_crtc_atomic_enable, 902 .atomic_disable = rcar_du_crtc_atomic_disable, 903 .mode_valid = rcar_du_crtc_mode_valid, 904 }; 905 906 static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc) 907 { 908 struct rcar_du_device *rcdu = rcrtc->dev; 909 const char **sources; 910 unsigned int count; 911 int i = -1; 912 913 /* CRC available only on Gen3 HW. */ 914 if (rcdu->info->gen < 3) 915 return; 916 917 /* Reserve 1 for "auto" source. */ 918 count = rcrtc->vsp->num_planes + 1; 919 920 sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL); 921 if (!sources) 922 return; 923 924 sources[0] = kstrdup("auto", GFP_KERNEL); 925 if (!sources[0]) 926 goto error; 927 928 for (i = 0; i < rcrtc->vsp->num_planes; ++i) { 929 struct drm_plane *plane = &rcrtc->vsp->planes[i].plane; 930 char name[16]; 931 932 sprintf(name, "plane%u", plane->base.id); 933 sources[i + 1] = kstrdup(name, GFP_KERNEL); 934 if (!sources[i + 1]) 935 goto error; 936 } 937 938 rcrtc->sources = sources; 939 rcrtc->sources_count = count; 940 return; 941 942 error: 943 while (i >= 0) { 944 kfree(sources[i]); 945 i--; 946 } 947 kfree(sources); 948 } 949 950 static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc) 951 { 952 unsigned int i; 953 954 if (!rcrtc->sources) 955 return; 956 957 for (i = 0; i < rcrtc->sources_count; i++) 958 kfree(rcrtc->sources[i]); 959 kfree(rcrtc->sources); 960 961 rcrtc->sources = NULL; 962 rcrtc->sources_count = 0; 963 } 964 965 static struct drm_crtc_state * 966 rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc) 967 { 968 struct rcar_du_crtc_state *state; 969 struct rcar_du_crtc_state *copy; 970 971 if (WARN_ON(!crtc->state)) 972 return NULL; 973 974 state = to_rcar_crtc_state(crtc->state); 975 copy = kmemdup(state, sizeof(*state), GFP_KERNEL); 976 if (copy == NULL) 977 return NULL; 978 979 __drm_atomic_helper_crtc_duplicate_state(crtc, ©->state); 980 981 return ©->state; 982 } 983 984 static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc, 985 struct drm_crtc_state *state) 986 { 987 __drm_atomic_helper_crtc_destroy_state(state); 988 kfree(to_rcar_crtc_state(state)); 989 } 990 991 static void rcar_du_crtc_cleanup(struct drm_crtc *crtc) 992 { 993 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); 994 995 rcar_du_crtc_crc_cleanup(rcrtc); 996 997 drm_crtc_cleanup(crtc); 998 } 999 1000 static void rcar_du_crtc_reset(struct drm_crtc *crtc) 1001 { 1002 struct rcar_du_crtc_state *state; 1003 1004 if (crtc->state) { 1005 rcar_du_crtc_atomic_destroy_state(crtc, crtc->state); 1006 crtc->state = NULL; 1007 } 1008 1009 state = kzalloc(sizeof(*state), GFP_KERNEL); 1010 if (state == NULL) 1011 return; 1012 1013 state->crc.source = VSP1_DU_CRC_NONE; 1014 state->crc.index = 0; 1015 1016 __drm_atomic_helper_crtc_reset(crtc, &state->state); 1017 } 1018 1019 static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc) 1020 { 1021 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); 1022 1023 rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL); 1024 rcar_du_crtc_set(rcrtc, DIER, DIER_VBE); 1025 rcrtc->vblank_enable = true; 1026 1027 return 0; 1028 } 1029 1030 static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc) 1031 { 1032 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); 1033 1034 rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE); 1035 rcrtc->vblank_enable = false; 1036 } 1037 1038 static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc, 1039 const char *source_name, 1040 enum vsp1_du_crc_source *source) 1041 { 1042 unsigned int index; 1043 int ret; 1044 1045 /* 1046 * Parse the source name. Supported values are "plane%u" to compute the 1047 * CRC on an input plane (%u is the plane ID), and "auto" to compute the 1048 * CRC on the composer (VSP) output. 1049 */ 1050 1051 if (!source_name) { 1052 *source = VSP1_DU_CRC_NONE; 1053 return 0; 1054 } else if (!strcmp(source_name, "auto")) { 1055 *source = VSP1_DU_CRC_OUTPUT; 1056 return 0; 1057 } else if (strstarts(source_name, "plane")) { 1058 unsigned int i; 1059 1060 *source = VSP1_DU_CRC_PLANE; 1061 1062 ret = kstrtouint(source_name + strlen("plane"), 10, &index); 1063 if (ret < 0) 1064 return ret; 1065 1066 for (i = 0; i < rcrtc->vsp->num_planes; ++i) { 1067 if (index == rcrtc->vsp->planes[i].plane.base.id) 1068 return i; 1069 } 1070 } 1071 1072 return -EINVAL; 1073 } 1074 1075 static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc, 1076 const char *source_name, 1077 size_t *values_cnt) 1078 { 1079 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); 1080 enum vsp1_du_crc_source source; 1081 1082 if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) { 1083 DRM_DEBUG_DRIVER("unknown source %s\n", source_name); 1084 return -EINVAL; 1085 } 1086 1087 *values_cnt = 1; 1088 return 0; 1089 } 1090 1091 static const char *const * 1092 rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc, size_t *count) 1093 { 1094 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); 1095 1096 *count = rcrtc->sources_count; 1097 return rcrtc->sources; 1098 } 1099 1100 static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc, 1101 const char *source_name) 1102 { 1103 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); 1104 struct drm_modeset_acquire_ctx ctx; 1105 struct drm_crtc_state *crtc_state; 1106 struct drm_atomic_state *state; 1107 enum vsp1_du_crc_source source; 1108 unsigned int index; 1109 int ret; 1110 1111 ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source); 1112 if (ret < 0) 1113 return ret; 1114 1115 index = ret; 1116 1117 /* Perform an atomic commit to set the CRC source. */ 1118 drm_modeset_acquire_init(&ctx, 0); 1119 1120 state = drm_atomic_state_alloc(crtc->dev); 1121 if (!state) { 1122 ret = -ENOMEM; 1123 goto unlock; 1124 } 1125 1126 state->acquire_ctx = &ctx; 1127 1128 retry: 1129 crtc_state = drm_atomic_get_crtc_state(state, crtc); 1130 if (!IS_ERR(crtc_state)) { 1131 struct rcar_du_crtc_state *rcrtc_state; 1132 1133 rcrtc_state = to_rcar_crtc_state(crtc_state); 1134 rcrtc_state->crc.source = source; 1135 rcrtc_state->crc.index = index; 1136 1137 ret = drm_atomic_commit(state); 1138 } else { 1139 ret = PTR_ERR(crtc_state); 1140 } 1141 1142 if (ret == -EDEADLK) { 1143 drm_atomic_state_clear(state); 1144 drm_modeset_backoff(&ctx); 1145 goto retry; 1146 } 1147 1148 drm_atomic_state_put(state); 1149 1150 unlock: 1151 drm_modeset_drop_locks(&ctx); 1152 drm_modeset_acquire_fini(&ctx); 1153 1154 return ret; 1155 } 1156 1157 static const struct drm_crtc_funcs crtc_funcs_gen2 = { 1158 .reset = rcar_du_crtc_reset, 1159 .destroy = drm_crtc_cleanup, 1160 .set_config = drm_atomic_helper_set_config, 1161 .page_flip = drm_atomic_helper_page_flip, 1162 .atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state, 1163 .atomic_destroy_state = rcar_du_crtc_atomic_destroy_state, 1164 .enable_vblank = rcar_du_crtc_enable_vblank, 1165 .disable_vblank = rcar_du_crtc_disable_vblank, 1166 }; 1167 1168 static const struct drm_crtc_funcs crtc_funcs_gen3 = { 1169 .reset = rcar_du_crtc_reset, 1170 .destroy = rcar_du_crtc_cleanup, 1171 .set_config = drm_atomic_helper_set_config, 1172 .page_flip = drm_atomic_helper_page_flip, 1173 .atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state, 1174 .atomic_destroy_state = rcar_du_crtc_atomic_destroy_state, 1175 .enable_vblank = rcar_du_crtc_enable_vblank, 1176 .disable_vblank = rcar_du_crtc_disable_vblank, 1177 .set_crc_source = rcar_du_crtc_set_crc_source, 1178 .verify_crc_source = rcar_du_crtc_verify_crc_source, 1179 .get_crc_sources = rcar_du_crtc_get_crc_sources, 1180 }; 1181 1182 /* ----------------------------------------------------------------------------- 1183 * Interrupt Handling 1184 */ 1185 1186 static irqreturn_t rcar_du_crtc_irq(int irq, void *arg) 1187 { 1188 struct rcar_du_crtc *rcrtc = arg; 1189 struct rcar_du_device *rcdu = rcrtc->dev; 1190 irqreturn_t ret = IRQ_NONE; 1191 u32 status; 1192 1193 spin_lock(&rcrtc->vblank_lock); 1194 1195 status = rcar_du_crtc_read(rcrtc, DSSR); 1196 rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK); 1197 1198 if (status & DSSR_VBK) { 1199 /* 1200 * Wake up the vblank wait if the counter reaches 0. This must 1201 * be protected by the vblank_lock to avoid races in 1202 * rcar_du_crtc_disable_planes(). 1203 */ 1204 if (rcrtc->vblank_count) { 1205 if (--rcrtc->vblank_count == 0) 1206 wake_up(&rcrtc->vblank_wait); 1207 } 1208 } 1209 1210 spin_unlock(&rcrtc->vblank_lock); 1211 1212 if (status & DSSR_VBK) { 1213 if (rcdu->info->gen < 3) { 1214 drm_crtc_handle_vblank(&rcrtc->crtc); 1215 rcar_du_crtc_finish_page_flip(rcrtc); 1216 } 1217 1218 ret = IRQ_HANDLED; 1219 } 1220 1221 return ret; 1222 } 1223 1224 /* ----------------------------------------------------------------------------- 1225 * Initialization 1226 */ 1227 1228 int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex, 1229 unsigned int hwindex) 1230 { 1231 static const unsigned int mmio_offsets[] = { 1232 DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET 1233 }; 1234 1235 struct rcar_du_device *rcdu = rgrp->dev; 1236 struct platform_device *pdev = to_platform_device(rcdu->dev); 1237 struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex]; 1238 struct drm_crtc *crtc = &rcrtc->crtc; 1239 struct drm_plane *primary; 1240 unsigned int irqflags; 1241 struct clk *clk; 1242 char clk_name[9]; 1243 char *name; 1244 int irq; 1245 int ret; 1246 1247 /* Get the CRTC clock and the optional external clock. */ 1248 if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_CLOCK)) { 1249 sprintf(clk_name, "du.%u", hwindex); 1250 name = clk_name; 1251 } else { 1252 name = NULL; 1253 } 1254 1255 rcrtc->clock = devm_clk_get(rcdu->dev, name); 1256 if (IS_ERR(rcrtc->clock)) { 1257 dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex); 1258 return PTR_ERR(rcrtc->clock); 1259 } 1260 1261 sprintf(clk_name, "dclkin.%u", hwindex); 1262 clk = devm_clk_get(rcdu->dev, clk_name); 1263 if (!IS_ERR(clk)) { 1264 rcrtc->extclock = clk; 1265 } else if (PTR_ERR(clk) == -EPROBE_DEFER) { 1266 return -EPROBE_DEFER; 1267 } else if (rcdu->info->dpll_mask & BIT(hwindex)) { 1268 /* 1269 * DU channels that have a display PLL can't use the internal 1270 * system clock and thus require an external clock. 1271 */ 1272 ret = PTR_ERR(clk); 1273 dev_err(rcdu->dev, "can't get dclkin.%u: %d\n", hwindex, ret); 1274 return ret; 1275 } 1276 1277 init_waitqueue_head(&rcrtc->flip_wait); 1278 init_waitqueue_head(&rcrtc->vblank_wait); 1279 spin_lock_init(&rcrtc->vblank_lock); 1280 1281 rcrtc->dev = rcdu; 1282 rcrtc->group = rgrp; 1283 rcrtc->mmio_offset = mmio_offsets[hwindex]; 1284 rcrtc->index = hwindex; 1285 rcrtc->dsysr = rcrtc->index % 2 ? 0 : DSYSR_DRES; 1286 1287 if (rcar_du_has(rcdu, RCAR_DU_FEATURE_TVM_SYNC)) 1288 rcrtc->dsysr |= DSYSR_TVM_TVSYNC; 1289 1290 if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) 1291 primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane; 1292 else 1293 primary = &rgrp->planes[swindex % 2].plane; 1294 1295 ret = drm_crtc_init_with_planes(&rcdu->ddev, crtc, primary, NULL, 1296 rcdu->info->gen <= 2 ? 1297 &crtc_funcs_gen2 : &crtc_funcs_gen3, 1298 NULL); 1299 if (ret < 0) 1300 return ret; 1301 1302 /* CMM might be disabled for this CRTC. */ 1303 if (rcdu->cmms[swindex]) { 1304 rcrtc->cmm = rcdu->cmms[swindex]; 1305 rgrp->cmms_mask |= BIT(hwindex % 2); 1306 1307 drm_mode_crtc_set_gamma_size(crtc, CM2_LUT_SIZE); 1308 drm_crtc_enable_color_mgmt(crtc, 0, false, CM2_LUT_SIZE); 1309 } 1310 1311 drm_crtc_helper_add(crtc, &crtc_helper_funcs); 1312 1313 /* Register the interrupt handler. */ 1314 if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ)) { 1315 /* The IRQ's are associated with the CRTC (sw)index. */ 1316 irq = platform_get_irq(pdev, swindex); 1317 irqflags = 0; 1318 } else { 1319 irq = platform_get_irq(pdev, 0); 1320 irqflags = IRQF_SHARED; 1321 } 1322 1323 if (irq < 0) { 1324 dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex); 1325 return irq; 1326 } 1327 1328 ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags, 1329 dev_name(rcdu->dev), rcrtc); 1330 if (ret < 0) { 1331 dev_err(rcdu->dev, 1332 "failed to register IRQ for CRTC %u\n", swindex); 1333 return ret; 1334 } 1335 1336 rcar_du_crtc_crc_init(rcrtc); 1337 1338 return 0; 1339 } 1340