xref: /linux/drivers/gpu/drm/renesas/rcar-du/rcar_du_crtc.c (revision 815e260a18a3af4dab59025ee99a7156c0e8b5e0)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * R-Car Display Unit CRTCs
4  *
5  * Copyright (C) 2013-2015 Renesas Electronics Corporation
6  *
7  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/mutex.h>
12 #include <linux/platform_device.h>
13 
14 #include <drm/drm_atomic.h>
15 #include <drm/drm_atomic_helper.h>
16 #include <drm/drm_bridge.h>
17 #include <drm/drm_crtc.h>
18 #include <drm/drm_device.h>
19 #include <drm/drm_gem_dma_helper.h>
20 #include <drm/drm_print.h>
21 #include <drm/drm_vblank.h>
22 
23 #include "rcar_cmm.h"
24 #include "rcar_du_crtc.h"
25 #include "rcar_du_drv.h"
26 #include "rcar_du_encoder.h"
27 #include "rcar_du_kms.h"
28 #include "rcar_du_plane.h"
29 #include "rcar_du_regs.h"
30 #include "rcar_du_vsp.h"
31 #include "rcar_lvds.h"
32 #include "rcar_mipi_dsi.h"
33 
34 static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
35 {
36 	struct rcar_du_device *rcdu = rcrtc->dev;
37 
38 	return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
39 }
40 
41 static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
42 {
43 	struct rcar_du_device *rcdu = rcrtc->dev;
44 
45 	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
46 }
47 
48 static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
49 {
50 	struct rcar_du_device *rcdu = rcrtc->dev;
51 
52 	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
53 		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
54 }
55 
56 static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
57 {
58 	struct rcar_du_device *rcdu = rcrtc->dev;
59 
60 	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
61 		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
62 }
63 
64 void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc *rcrtc, u32 clr, u32 set)
65 {
66 	struct rcar_du_device *rcdu = rcrtc->dev;
67 
68 	rcrtc->dsysr = (rcrtc->dsysr & ~clr) | set;
69 	rcar_du_write(rcdu, rcrtc->mmio_offset + DSYSR, rcrtc->dsysr);
70 }
71 
72 /* -----------------------------------------------------------------------------
73  * Hardware Setup
74  */
75 
76 struct dpll_info {
77 	unsigned int output;
78 	unsigned int fdpll;
79 	unsigned int n;
80 	unsigned int m;
81 };
82 
83 static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
84 				 struct dpll_info *dpll,
85 				 unsigned long input,
86 				 unsigned long target)
87 {
88 	unsigned long best_diff = (unsigned long)-1;
89 	unsigned long diff;
90 	unsigned int fdpll;
91 	unsigned int m;
92 	unsigned int n;
93 
94 	/*
95 	 *   fin                                 fvco        fout       fclkout
96 	 * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out
97 	 *              +-> |  |                             |
98 	 *              |                                    |
99 	 *              +---------------- [1/N] <------------+
100 	 *
101 	 *	fclkout = fvco / P / FDPLL -- (1)
102 	 *
103 	 * fin/M = fvco/P/N
104 	 *
105 	 *	fvco = fin * P *  N / M -- (2)
106 	 *
107 	 * (1) + (2) indicates
108 	 *
109 	 *	fclkout = fin * N / M / FDPLL
110 	 *
111 	 * NOTES
112 	 *	N	: (n + 1)
113 	 *	M	: (m + 1)
114 	 *	FDPLL	: (fdpll + 1)
115 	 *	P	: 2
116 	 *	2kHz < fvco < 4096MHz
117 	 *
118 	 * To minimize the jitter,
119 	 * N : as large as possible
120 	 * M : as small as possible
121 	 */
122 	for (m = 0; m < 4; m++) {
123 		for (n = 119; n > 38; n--) {
124 			/*
125 			 * This code only runs on 64-bit architectures, the
126 			 * unsigned long type can thus be used for 64-bit
127 			 * computation. It will still compile without any
128 			 * warning on 32-bit architectures.
129 			 *
130 			 * To optimize calculations, use fout instead of fvco
131 			 * to verify the VCO frequency constraint.
132 			 */
133 			unsigned long fout = input * (n + 1) / (m + 1);
134 
135 			if (fout < 1000 || fout > 2048 * 1000 * 1000U)
136 				continue;
137 
138 			for (fdpll = 1; fdpll < 32; fdpll++) {
139 				unsigned long output;
140 
141 				output = fout / (fdpll + 1);
142 				if (output >= 400 * 1000 * 1000)
143 					continue;
144 
145 				diff = abs((long)output - (long)target);
146 				if (best_diff > diff) {
147 					best_diff = diff;
148 					dpll->n = n;
149 					dpll->m = m;
150 					dpll->fdpll = fdpll;
151 					dpll->output = output;
152 				}
153 
154 				if (diff == 0)
155 					goto done;
156 			}
157 		}
158 	}
159 
160 done:
161 	dev_dbg(rcrtc->dev->dev,
162 		"output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
163 		 dpll->output, dpll->fdpll, dpll->n, dpll->m, best_diff);
164 }
165 
166 struct du_clk_params {
167 	struct clk *clk;
168 	unsigned long rate;
169 	unsigned long diff;
170 	u32 escr;
171 };
172 
173 static void rcar_du_escr_divider(struct clk *clk, unsigned long target,
174 				 u32 escr, struct du_clk_params *params)
175 {
176 	unsigned long rate;
177 	unsigned long diff;
178 	u32 div;
179 
180 	/*
181 	 * If the target rate has already been achieved perfectly we can't do
182 	 * better.
183 	 */
184 	if (params->diff == 0)
185 		return;
186 
187 	/*
188 	 * Compute the input clock rate and internal divisor values to obtain
189 	 * the clock rate closest to the target frequency.
190 	 */
191 	rate = clk_round_rate(clk, target);
192 	div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1;
193 	diff = abs(rate / (div + 1) - target);
194 
195 	/*
196 	 * Store the parameters if the resulting frequency is better than any
197 	 * previously calculated value.
198 	 */
199 	if (diff < params->diff) {
200 		params->clk = clk;
201 		params->rate = rate;
202 		params->diff = diff;
203 		params->escr = escr | div;
204 	}
205 }
206 
207 static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
208 {
209 	const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
210 	struct rcar_du_device *rcdu = rcrtc->dev;
211 	unsigned long mode_clock = mode->clock * 1000;
212 	unsigned int hdse_offset;
213 	u32 dsmr;
214 	u32 escr;
215 
216 	if (rcdu->info->dpll_mask & (1 << rcrtc->index)) {
217 		unsigned long target = mode_clock;
218 		struct dpll_info dpll = { 0 };
219 		unsigned long extclk;
220 		u32 dpllcr;
221 		u32 div = 0;
222 
223 		/*
224 		 * DU channels that have a display PLL can't use the internal
225 		 * system clock, and have no internal clock divider.
226 		 */
227 		extclk = clk_get_rate(rcrtc->extclock);
228 		rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);
229 
230 		dpllcr = DPLLCR_CODE | DPLLCR_CLKE
231 		       | DPLLCR_FDPLL(dpll.fdpll)
232 		       | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
233 		       | DPLLCR_STBY;
234 
235 		if (rcrtc->index == 1)
236 			dpllcr |= DPLLCR_PLCS1
237 			       |  DPLLCR_INCS_DOTCLKIN1;
238 		else
239 			dpllcr |= DPLLCR_PLCS0
240 			       |  DPLLCR_INCS_DOTCLKIN0;
241 
242 		rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr);
243 
244 		escr = ESCR_DCLKSEL_DCLKIN | div;
245 	} else if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) ||
246 		   rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) {
247 		/*
248 		 * Use the external LVDS or DSI PLL output as the dot clock when
249 		 * outputting to the LVDS or DSI encoder on an SoC that supports
250 		 * this clock routing option. We use the clock directly in that
251 		 * case, without any additional divider.
252 		 */
253 		escr = ESCR_DCLKSEL_DCLKIN;
254 	} else {
255 		struct du_clk_params params = { .diff = (unsigned long)-1 };
256 
257 		rcar_du_escr_divider(rcrtc->clock, mode_clock,
258 				     ESCR_DCLKSEL_CLKS, &params);
259 		if (rcrtc->extclock)
260 			rcar_du_escr_divider(rcrtc->extclock, mode_clock,
261 					     ESCR_DCLKSEL_DCLKIN, &params);
262 
263 		dev_dbg(rcrtc->dev->dev, "mode clock %lu %s rate %lu\n",
264 			mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext",
265 			params.rate);
266 
267 		clk_set_rate(params.clk, params.rate);
268 		escr = params.escr;
269 	}
270 
271 	/*
272 	 * The ESCR register only exists in DU channels that can output to an
273 	 * LVDS or DPAT, and the OTAR register in DU channels that can output
274 	 * to a DPAD.
275 	 */
276 	if ((rcdu->info->routes[RCAR_DU_OUTPUT_DPAD0].possible_crtcs |
277 	     rcdu->info->routes[RCAR_DU_OUTPUT_DPAD1].possible_crtcs |
278 	     rcdu->info->routes[RCAR_DU_OUTPUT_LVDS0].possible_crtcs |
279 	     rcdu->info->routes[RCAR_DU_OUTPUT_LVDS1].possible_crtcs) &
280 	    BIT(rcrtc->index)) {
281 		dev_dbg(rcrtc->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr);
282 
283 		rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr);
284 	}
285 
286 	if ((rcdu->info->routes[RCAR_DU_OUTPUT_DPAD0].possible_crtcs |
287 	     rcdu->info->routes[RCAR_DU_OUTPUT_DPAD1].possible_crtcs) &
288 	    BIT(rcrtc->index))
289 		rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0);
290 
291 	/* Signal polarities */
292 	dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
293 	     | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
294 	     | ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0)
295 	     | DSMR_DIPM_DISP | DSMR_CSPM;
296 	rcar_du_crtc_write(rcrtc, DSMR, dsmr);
297 
298 	/*
299 	 * When the CMM is enabled, an additional offset of 25 pixels must be
300 	 * subtracted from the HDS (horizontal display start) and HDE
301 	 * (horizontal display end) registers.
302 	 */
303 	hdse_offset = 19;
304 	if (rcrtc->group->cmms_mask & BIT(rcrtc->index % 2))
305 		hdse_offset += 25;
306 
307 	/* Display timings */
308 	rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start -
309 					hdse_offset);
310 	rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
311 					mode->hdisplay - hdse_offset);
312 	rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
313 					mode->hsync_start - 1);
314 	rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);
315 
316 	rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
317 					mode->crtc_vsync_end - 2);
318 	rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
319 					mode->crtc_vsync_end +
320 					mode->crtc_vdisplay - 2);
321 	rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
322 					mode->crtc_vsync_end +
323 					mode->crtc_vsync_start - 1);
324 	rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
325 
326 	rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start - 1);
327 	rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
328 }
329 
330 static unsigned int plane_zpos(struct rcar_du_plane *plane)
331 {
332 	return plane->plane.state->normalized_zpos;
333 }
334 
335 static const struct rcar_du_format_info *
336 plane_format(struct rcar_du_plane *plane)
337 {
338 	return to_rcar_plane_state(plane->plane.state)->format;
339 }
340 
341 static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
342 {
343 	struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
344 	struct rcar_du_device *rcdu = rcrtc->dev;
345 	unsigned int num_planes = 0;
346 	unsigned int dptsr_planes;
347 	unsigned int hwplanes = 0;
348 	unsigned int prio = 0;
349 	unsigned int i;
350 	u32 dspr = 0;
351 
352 	for (i = 0; i < rcrtc->group->num_planes; ++i) {
353 		struct rcar_du_plane *plane = &rcrtc->group->planes[i];
354 		unsigned int j;
355 
356 		if (plane->plane.state->crtc != &rcrtc->crtc ||
357 		    !plane->plane.state->visible)
358 			continue;
359 
360 		/* Insert the plane in the sorted planes array. */
361 		for (j = num_planes++; j > 0; --j) {
362 			if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
363 				break;
364 			planes[j] = planes[j-1];
365 		}
366 
367 		planes[j] = plane;
368 		prio += plane_format(plane)->planes * 4;
369 	}
370 
371 	for (i = 0; i < num_planes; ++i) {
372 		struct rcar_du_plane *plane = planes[i];
373 		struct drm_plane_state *state = plane->plane.state;
374 		unsigned int index = to_rcar_plane_state(state)->hwindex;
375 
376 		prio -= 4;
377 		dspr |= (index + 1) << prio;
378 		hwplanes |= 1 << index;
379 
380 		if (plane_format(plane)->planes == 2) {
381 			index = (index + 1) % 8;
382 
383 			prio -= 4;
384 			dspr |= (index + 1) << prio;
385 			hwplanes |= 1 << index;
386 		}
387 	}
388 
389 	/* If VSP+DU integration is enabled the plane assignment is fixed. */
390 	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
391 		if (rcdu->info->gen < 3) {
392 			dspr = (rcrtc->index % 2) + 1;
393 			hwplanes = 1 << (rcrtc->index % 2);
394 		} else {
395 			dspr = (rcrtc->index % 2) ? 3 : 1;
396 			hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
397 		}
398 	}
399 
400 	/*
401 	 * Update the planes to display timing and dot clock generator
402 	 * associations.
403 	 *
404 	 * Updating the DPTSR register requires restarting the CRTC group,
405 	 * resulting in visible flicker. To mitigate the issue only update the
406 	 * association if needed by enabled planes. Planes being disabled will
407 	 * keep their current association.
408 	 */
409 	mutex_lock(&rcrtc->group->lock);
410 
411 	dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
412 		     : rcrtc->group->dptsr_planes & ~hwplanes;
413 
414 	if (dptsr_planes != rcrtc->group->dptsr_planes) {
415 		rcar_du_group_write(rcrtc->group, DPTSR,
416 				    (dptsr_planes << 16) | dptsr_planes);
417 		rcrtc->group->dptsr_planes = dptsr_planes;
418 
419 		if (rcrtc->group->used_crtcs)
420 			rcar_du_group_restart(rcrtc->group);
421 	}
422 
423 	/* Restart the group if plane sources have changed. */
424 	if (rcrtc->group->need_restart)
425 		rcar_du_group_restart(rcrtc->group);
426 
427 	mutex_unlock(&rcrtc->group->lock);
428 
429 	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
430 			    dspr);
431 }
432 
433 /* -----------------------------------------------------------------------------
434  * Page Flip
435  */
436 
437 void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
438 {
439 	struct drm_pending_vblank_event *event;
440 	struct drm_device *dev = rcrtc->crtc.dev;
441 	unsigned long flags;
442 
443 	spin_lock_irqsave(&dev->event_lock, flags);
444 	event = rcrtc->event;
445 	rcrtc->event = NULL;
446 	spin_unlock_irqrestore(&dev->event_lock, flags);
447 
448 	if (event == NULL)
449 		return;
450 
451 	spin_lock_irqsave(&dev->event_lock, flags);
452 	drm_crtc_send_vblank_event(&rcrtc->crtc, event);
453 	wake_up(&rcrtc->flip_wait);
454 	spin_unlock_irqrestore(&dev->event_lock, flags);
455 
456 	drm_crtc_vblank_put(&rcrtc->crtc);
457 }
458 
459 static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
460 {
461 	struct drm_device *dev = rcrtc->crtc.dev;
462 	unsigned long flags;
463 	bool pending;
464 
465 	spin_lock_irqsave(&dev->event_lock, flags);
466 	pending = rcrtc->event != NULL;
467 	spin_unlock_irqrestore(&dev->event_lock, flags);
468 
469 	return pending;
470 }
471 
472 static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
473 {
474 	struct rcar_du_device *rcdu = rcrtc->dev;
475 
476 	if (wait_event_timeout(rcrtc->flip_wait,
477 			       !rcar_du_crtc_page_flip_pending(rcrtc),
478 			       msecs_to_jiffies(50)))
479 		return;
480 
481 	dev_warn(rcdu->dev, "page flip timeout\n");
482 
483 	rcar_du_crtc_finish_page_flip(rcrtc);
484 }
485 
486 /* -----------------------------------------------------------------------------
487  * Color Management Module (CMM)
488  */
489 
490 static int rcar_du_cmm_check(struct drm_crtc *crtc,
491 			     struct drm_crtc_state *state)
492 {
493 	struct drm_property_blob *drm_lut = state->gamma_lut;
494 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
495 	struct device *dev = rcrtc->dev->dev;
496 
497 	if (!drm_lut)
498 		return 0;
499 
500 	/* We only accept fully populated LUT tables. */
501 	if (drm_color_lut_size(drm_lut) != CM2_LUT_SIZE) {
502 		dev_err(dev, "invalid gamma lut size: %zu bytes\n",
503 			drm_lut->length);
504 		return -EINVAL;
505 	}
506 
507 	return 0;
508 }
509 
510 static void rcar_du_cmm_setup(struct drm_crtc *crtc)
511 {
512 	struct drm_property_blob *drm_lut = crtc->state->gamma_lut;
513 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
514 	struct rcar_cmm_config cmm_config = {};
515 
516 	if (!rcrtc->cmm)
517 		return;
518 
519 	if (drm_lut)
520 		cmm_config.lut.table = (struct drm_color_lut *)drm_lut->data;
521 
522 	rcar_cmm_setup(rcrtc->cmm, &cmm_config);
523 }
524 
525 /* -----------------------------------------------------------------------------
526  * Start/Stop and Suspend/Resume
527  */
528 
529 static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
530 {
531 	/* Set display off and background to black */
532 	rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
533 	rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
534 
535 	/* Configure display timings and output routing */
536 	rcar_du_crtc_set_display_timing(rcrtc);
537 	rcar_du_group_set_routing(rcrtc->group);
538 
539 	/* Start with all planes disabled. */
540 	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
541 
542 	/* Enable the VSP compositor. */
543 	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
544 		rcar_du_vsp_enable(rcrtc);
545 
546 	/* Turn vertical blanking interrupt reporting on. */
547 	drm_crtc_vblank_on(&rcrtc->crtc);
548 }
549 
550 static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
551 {
552 	int ret;
553 
554 	/*
555 	 * Guard against double-get, as the function is called from both the
556 	 * .atomic_enable() and .atomic_begin() handlers.
557 	 */
558 	if (rcrtc->initialized)
559 		return 0;
560 
561 	ret = clk_prepare_enable(rcrtc->clock);
562 	if (ret < 0)
563 		return ret;
564 
565 	ret = clk_prepare_enable(rcrtc->extclock);
566 	if (ret < 0)
567 		goto error_clock;
568 
569 	ret = rcar_du_group_get(rcrtc->group);
570 	if (ret < 0)
571 		goto error_group;
572 
573 	rcar_du_crtc_setup(rcrtc);
574 	rcrtc->initialized = true;
575 
576 	return 0;
577 
578 error_group:
579 	clk_disable_unprepare(rcrtc->extclock);
580 error_clock:
581 	clk_disable_unprepare(rcrtc->clock);
582 	return ret;
583 }
584 
585 static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
586 {
587 	rcar_du_group_put(rcrtc->group);
588 
589 	clk_disable_unprepare(rcrtc->extclock);
590 	clk_disable_unprepare(rcrtc->clock);
591 
592 	rcrtc->initialized = false;
593 }
594 
595 static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
596 {
597 	bool interlaced;
598 
599 	/*
600 	 * Select master sync mode. This enables display operation in master
601 	 * sync mode (with the HSYNC and VSYNC signals configured as outputs and
602 	 * actively driven).
603 	 */
604 	interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
605 	rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
606 				   (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
607 				   DSYSR_TVM_MASTER);
608 
609 	rcar_du_group_start_stop(rcrtc->group, true);
610 }
611 
612 static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
613 {
614 	struct rcar_du_device *rcdu = rcrtc->dev;
615 	struct drm_crtc *crtc = &rcrtc->crtc;
616 	u32 status;
617 
618 	/* Make sure vblank interrupts are enabled. */
619 	drm_crtc_vblank_get(crtc);
620 
621 	/*
622 	 * Disable planes and calculate how many vertical blanking interrupts we
623 	 * have to wait for. If a vertical blanking interrupt has been triggered
624 	 * but not processed yet, we don't know whether it occurred before or
625 	 * after the planes got disabled. We thus have to wait for two vblank
626 	 * interrupts in that case.
627 	 */
628 	spin_lock_irq(&rcrtc->vblank_lock);
629 	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
630 	status = rcar_du_crtc_read(rcrtc, DSSR);
631 	rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
632 	spin_unlock_irq(&rcrtc->vblank_lock);
633 
634 	if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
635 				msecs_to_jiffies(100)))
636 		dev_warn(rcdu->dev, "vertical blanking timeout\n");
637 
638 	drm_crtc_vblank_put(crtc);
639 }
640 
641 static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
642 {
643 	struct drm_crtc *crtc = &rcrtc->crtc;
644 
645 	/*
646 	 * Disable all planes and wait for the change to take effect. This is
647 	 * required as the plane enable registers are updated on vblank, and no
648 	 * vblank will occur once the CRTC is stopped. Disabling planes when
649 	 * starting the CRTC thus wouldn't be enough as it would start scanning
650 	 * out immediately from old frame buffers until the next vblank.
651 	 *
652 	 * This increases the CRTC stop delay, especially when multiple CRTCs
653 	 * are stopped in one operation as we now wait for one vblank per CRTC.
654 	 * Whether this can be improved needs to be researched.
655 	 */
656 	rcar_du_crtc_disable_planes(rcrtc);
657 
658 	/*
659 	 * Disable vertical blanking interrupt reporting. We first need to wait
660 	 * for page flip completion before stopping the CRTC as userspace
661 	 * expects page flips to eventually complete.
662 	 */
663 	rcar_du_crtc_wait_page_flip(rcrtc);
664 	drm_crtc_vblank_off(crtc);
665 
666 	/* Disable the VSP compositor. */
667 	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
668 		rcar_du_vsp_disable(rcrtc);
669 
670 	if (rcrtc->cmm)
671 		rcar_cmm_disable(rcrtc->cmm);
672 
673 	/*
674 	 * Select switch sync mode. This stops display operation and configures
675 	 * the HSYNC and VSYNC signals as inputs.
676 	 *
677 	 * TODO: Find another way to stop the display for DUs that don't support
678 	 * TVM sync.
679 	 */
680 	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_TVM_SYNC))
681 		rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK,
682 					   DSYSR_TVM_SWITCH);
683 
684 	rcar_du_group_start_stop(rcrtc->group, false);
685 }
686 
687 /* -----------------------------------------------------------------------------
688  * CRTC Functions
689  */
690 
691 static int rcar_du_crtc_atomic_check(struct drm_crtc *crtc,
692 				     struct drm_atomic_state *state)
693 {
694 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
695 									  crtc);
696 	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc_state);
697 	struct drm_encoder *encoder;
698 	int ret;
699 
700 	ret = rcar_du_cmm_check(crtc, crtc_state);
701 	if (ret)
702 		return ret;
703 
704 	/* Store the routes from the CRTC output to the DU outputs. */
705 	rstate->outputs = 0;
706 
707 	drm_for_each_encoder_mask(encoder, crtc->dev,
708 				  crtc_state->encoder_mask) {
709 		struct rcar_du_encoder *renc;
710 
711 		/* Skip the writeback encoder. */
712 		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
713 			continue;
714 
715 		renc = to_rcar_encoder(encoder);
716 		rstate->outputs |= BIT(renc->output);
717 	}
718 
719 	return 0;
720 }
721 
722 static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
723 				       struct drm_atomic_state *state)
724 {
725 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
726 	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc->state);
727 	struct rcar_du_device *rcdu = rcrtc->dev;
728 
729 	if (rcrtc->cmm)
730 		rcar_cmm_enable(rcrtc->cmm);
731 	rcar_du_crtc_get(rcrtc);
732 
733 	/*
734 	 * On D3/E3 the dot clock is provided by the LVDS encoder attached to
735 	 * the DU channel. We need to enable its clock output explicitly before
736 	 * starting the CRTC, as the bridge hasn't been enabled by the atomic
737 	 * helpers yet.
738 	 */
739 	if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) {
740 		bool dot_clk_only = rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0);
741 		struct drm_bridge *bridge = rcdu->lvds[rcrtc->index];
742 		const struct drm_display_mode *mode =
743 			&crtc->state->adjusted_mode;
744 
745 		rcar_lvds_pclk_enable(bridge, mode->clock * 1000, dot_clk_only);
746 	}
747 
748 	/*
749 	 * Similarly to LVDS, on V3U the dot clock is provided by the DSI
750 	 * encoder, and we need to enable the DSI clocks before enabling the CRTC.
751 	 */
752 	if ((rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) &&
753 	    (rstate->outputs &
754 	     (BIT(RCAR_DU_OUTPUT_DSI0) | BIT(RCAR_DU_OUTPUT_DSI1)))) {
755 		struct drm_bridge *bridge = rcdu->dsi[rcrtc->index];
756 
757 		rcar_mipi_dsi_pclk_enable(bridge, state);
758 	}
759 
760 	rcar_du_crtc_start(rcrtc);
761 
762 	/*
763 	 * TODO: The chip manual indicates that CMM tables should be written
764 	 * after the DU channel has been activated. Investigate the impact
765 	 * of this restriction on the first displayed frame.
766 	 */
767 	rcar_du_cmm_setup(crtc);
768 }
769 
770 static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
771 					struct drm_atomic_state *state)
772 {
773 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
774 									 crtc);
775 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
776 	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(old_state);
777 	struct rcar_du_device *rcdu = rcrtc->dev;
778 
779 	rcar_du_crtc_stop(rcrtc);
780 	rcar_du_crtc_put(rcrtc);
781 
782 	if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) {
783 		bool dot_clk_only = rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0);
784 		struct drm_bridge *bridge = rcdu->lvds[rcrtc->index];
785 
786 		/*
787 		 * Disable the LVDS clock output, see
788 		 * rcar_du_crtc_atomic_enable(). When the LVDS output is used,
789 		 * this also disables the LVDS encoder.
790 		 */
791 		rcar_lvds_pclk_disable(bridge, dot_clk_only);
792 	}
793 
794 	if ((rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) &&
795 	    (rstate->outputs &
796 	     (BIT(RCAR_DU_OUTPUT_DSI0) | BIT(RCAR_DU_OUTPUT_DSI1)))) {
797 		struct drm_bridge *bridge = rcdu->dsi[rcrtc->index];
798 
799 		/*
800 		 * Disable the DSI clock output, see
801 		 * rcar_du_crtc_atomic_enable().
802 		 */
803 		rcar_mipi_dsi_pclk_disable(bridge);
804 	}
805 
806 	spin_lock_irq(&crtc->dev->event_lock);
807 	if (crtc->state->event) {
808 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
809 		crtc->state->event = NULL;
810 	}
811 	spin_unlock_irq(&crtc->dev->event_lock);
812 }
813 
814 static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
815 				      struct drm_atomic_state *state)
816 {
817 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
818 
819 	WARN_ON(!crtc->state->enable);
820 
821 	/*
822 	 * If a mode set is in progress we can be called with the CRTC disabled.
823 	 * We thus need to first get and setup the CRTC in order to configure
824 	 * planes. We must *not* put the CRTC in .atomic_flush(), as it must be
825 	 * kept awake until the .atomic_enable() call that will follow. The get
826 	 * operation in .atomic_enable() will in that case be a no-op, and the
827 	 * CRTC will be put later in .atomic_disable().
828 	 *
829 	 * If a mode set is not in progress the CRTC is enabled, and the
830 	 * following get call will be a no-op. There is thus no need to balance
831 	 * it in .atomic_flush() either.
832 	 */
833 	rcar_du_crtc_get(rcrtc);
834 
835 	/* If the active state changed, we let .atomic_enable handle CMM. */
836 	if (crtc->state->color_mgmt_changed && !crtc->state->active_changed)
837 		rcar_du_cmm_setup(crtc);
838 
839 	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
840 		rcar_du_vsp_atomic_begin(rcrtc);
841 }
842 
843 static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
844 				      struct drm_atomic_state *state)
845 {
846 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
847 	struct drm_device *dev = rcrtc->crtc.dev;
848 	unsigned long flags;
849 
850 	rcar_du_crtc_update_planes(rcrtc);
851 
852 	if (crtc->state->event) {
853 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
854 
855 		spin_lock_irqsave(&dev->event_lock, flags);
856 		rcrtc->event = crtc->state->event;
857 		crtc->state->event = NULL;
858 		spin_unlock_irqrestore(&dev->event_lock, flags);
859 	}
860 
861 	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
862 		rcar_du_vsp_atomic_flush(rcrtc);
863 }
864 
865 static enum drm_mode_status
866 rcar_du_crtc_mode_valid(struct drm_crtc *crtc,
867 			const struct drm_display_mode *mode)
868 {
869 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
870 	struct rcar_du_device *rcdu = rcrtc->dev;
871 	bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
872 	unsigned int min_sync_porch;
873 	unsigned int vbp;
874 
875 	if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED))
876 		return MODE_NO_INTERLACE;
877 
878 	/*
879 	 * The hardware requires a minimum combined horizontal sync and back
880 	 * porch of 20 pixels (when CMM isn't used) or 45 pixels (when CMM is
881 	 * used), and a minimum vertical back porch of 3 lines.
882 	 */
883 	min_sync_porch = 20;
884 	if (rcrtc->group->cmms_mask & BIT(rcrtc->index % 2))
885 		min_sync_porch += 25;
886 
887 	if (mode->htotal - mode->hsync_start < min_sync_porch)
888 		return MODE_HBLANK_NARROW;
889 
890 	vbp = (mode->vtotal - mode->vsync_end) / (interlaced ? 2 : 1);
891 	if (vbp < 3)
892 		return MODE_VBLANK_NARROW;
893 
894 	return MODE_OK;
895 }
896 
897 static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
898 	.atomic_check = rcar_du_crtc_atomic_check,
899 	.atomic_begin = rcar_du_crtc_atomic_begin,
900 	.atomic_flush = rcar_du_crtc_atomic_flush,
901 	.atomic_enable = rcar_du_crtc_atomic_enable,
902 	.atomic_disable = rcar_du_crtc_atomic_disable,
903 	.mode_valid = rcar_du_crtc_mode_valid,
904 };
905 
906 static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc)
907 {
908 	struct rcar_du_device *rcdu = rcrtc->dev;
909 	const char **sources;
910 	unsigned int count;
911 	int i = -1;
912 
913 	/* CRC available only on Gen3 HW. */
914 	if (rcdu->info->gen < 3)
915 		return;
916 
917 	/* Reserve 1 for "auto" source. */
918 	count = rcrtc->vsp->num_planes + 1;
919 
920 	sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL);
921 	if (!sources)
922 		return;
923 
924 	sources[0] = kstrdup("auto", GFP_KERNEL);
925 	if (!sources[0])
926 		goto error;
927 
928 	for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
929 		struct drm_plane *plane = &rcrtc->vsp->planes[i].plane;
930 		char name[16];
931 
932 		sprintf(name, "plane%u", plane->base.id);
933 		sources[i + 1] = kstrdup(name, GFP_KERNEL);
934 		if (!sources[i + 1])
935 			goto error;
936 	}
937 
938 	rcrtc->sources = sources;
939 	rcrtc->sources_count = count;
940 	return;
941 
942 error:
943 	while (i >= 0) {
944 		kfree(sources[i]);
945 		i--;
946 	}
947 	kfree(sources);
948 }
949 
950 static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc)
951 {
952 	unsigned int i;
953 
954 	if (!rcrtc->sources)
955 		return;
956 
957 	for (i = 0; i < rcrtc->sources_count; i++)
958 		kfree(rcrtc->sources[i]);
959 	kfree(rcrtc->sources);
960 
961 	rcrtc->sources = NULL;
962 	rcrtc->sources_count = 0;
963 }
964 
965 static struct drm_crtc_state *
966 rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
967 {
968 	struct rcar_du_crtc_state *state;
969 	struct rcar_du_crtc_state *copy;
970 
971 	if (WARN_ON(!crtc->state))
972 		return NULL;
973 
974 	state = to_rcar_crtc_state(crtc->state);
975 	copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
976 	if (copy == NULL)
977 		return NULL;
978 
979 	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->state);
980 
981 	return &copy->state;
982 }
983 
984 static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc,
985 					      struct drm_crtc_state *state)
986 {
987 	__drm_atomic_helper_crtc_destroy_state(state);
988 	kfree(to_rcar_crtc_state(state));
989 }
990 
991 static void rcar_du_crtc_cleanup(struct drm_crtc *crtc)
992 {
993 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
994 
995 	rcar_du_crtc_crc_cleanup(rcrtc);
996 
997 	drm_crtc_cleanup(crtc);
998 }
999 
1000 static void rcar_du_crtc_reset(struct drm_crtc *crtc)
1001 {
1002 	struct rcar_du_crtc_state *state;
1003 
1004 	if (crtc->state) {
1005 		rcar_du_crtc_atomic_destroy_state(crtc, crtc->state);
1006 		crtc->state = NULL;
1007 	}
1008 
1009 	state = kzalloc(sizeof(*state), GFP_KERNEL);
1010 	if (state == NULL)
1011 		return;
1012 
1013 	state->crc.source = VSP1_DU_CRC_NONE;
1014 	state->crc.index = 0;
1015 
1016 	__drm_atomic_helper_crtc_reset(crtc, &state->state);
1017 }
1018 
1019 static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
1020 {
1021 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1022 
1023 	rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
1024 	rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
1025 	rcrtc->vblank_enable = true;
1026 
1027 	return 0;
1028 }
1029 
1030 static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
1031 {
1032 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1033 
1034 	rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
1035 	rcrtc->vblank_enable = false;
1036 }
1037 
1038 static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc,
1039 					 const char *source_name,
1040 					 enum vsp1_du_crc_source *source)
1041 {
1042 	unsigned int index;
1043 	int ret;
1044 
1045 	/*
1046 	 * Parse the source name. Supported values are "plane%u" to compute the
1047 	 * CRC on an input plane (%u is the plane ID), and "auto" to compute the
1048 	 * CRC on the composer (VSP) output.
1049 	 */
1050 
1051 	if (!source_name) {
1052 		*source = VSP1_DU_CRC_NONE;
1053 		return 0;
1054 	} else if (!strcmp(source_name, "auto")) {
1055 		*source = VSP1_DU_CRC_OUTPUT;
1056 		return 0;
1057 	} else if (strstarts(source_name, "plane")) {
1058 		unsigned int i;
1059 
1060 		*source = VSP1_DU_CRC_PLANE;
1061 
1062 		ret = kstrtouint(source_name + strlen("plane"), 10, &index);
1063 		if (ret < 0)
1064 			return ret;
1065 
1066 		for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
1067 			if (index == rcrtc->vsp->planes[i].plane.base.id)
1068 				return i;
1069 		}
1070 	}
1071 
1072 	return -EINVAL;
1073 }
1074 
1075 static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc,
1076 					  const char *source_name,
1077 					  size_t *values_cnt)
1078 {
1079 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1080 	enum vsp1_du_crc_source source;
1081 
1082 	if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) {
1083 		DRM_DEBUG_DRIVER("unknown source %s\n", source_name);
1084 		return -EINVAL;
1085 	}
1086 
1087 	*values_cnt = 1;
1088 	return 0;
1089 }
1090 
1091 static const char *const *
1092 rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc, size_t *count)
1093 {
1094 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1095 
1096 	*count = rcrtc->sources_count;
1097 	return rcrtc->sources;
1098 }
1099 
1100 static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc,
1101 				       const char *source_name)
1102 {
1103 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1104 	struct drm_modeset_acquire_ctx ctx;
1105 	struct drm_crtc_state *crtc_state;
1106 	struct drm_atomic_state *state;
1107 	enum vsp1_du_crc_source source;
1108 	unsigned int index;
1109 	int ret;
1110 
1111 	ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source);
1112 	if (ret < 0)
1113 		return ret;
1114 
1115 	index = ret;
1116 
1117 	/* Perform an atomic commit to set the CRC source. */
1118 	drm_modeset_acquire_init(&ctx, 0);
1119 
1120 	state = drm_atomic_state_alloc(crtc->dev);
1121 	if (!state) {
1122 		ret = -ENOMEM;
1123 		goto unlock;
1124 	}
1125 
1126 	state->acquire_ctx = &ctx;
1127 
1128 retry:
1129 	crtc_state = drm_atomic_get_crtc_state(state, crtc);
1130 	if (!IS_ERR(crtc_state)) {
1131 		struct rcar_du_crtc_state *rcrtc_state;
1132 
1133 		rcrtc_state = to_rcar_crtc_state(crtc_state);
1134 		rcrtc_state->crc.source = source;
1135 		rcrtc_state->crc.index = index;
1136 
1137 		ret = drm_atomic_commit(state);
1138 	} else {
1139 		ret = PTR_ERR(crtc_state);
1140 	}
1141 
1142 	if (ret == -EDEADLK) {
1143 		drm_atomic_state_clear(state);
1144 		drm_modeset_backoff(&ctx);
1145 		goto retry;
1146 	}
1147 
1148 	drm_atomic_state_put(state);
1149 
1150 unlock:
1151 	drm_modeset_drop_locks(&ctx);
1152 	drm_modeset_acquire_fini(&ctx);
1153 
1154 	return ret;
1155 }
1156 
1157 static const struct drm_crtc_funcs crtc_funcs_gen2 = {
1158 	.reset = rcar_du_crtc_reset,
1159 	.destroy = drm_crtc_cleanup,
1160 	.set_config = drm_atomic_helper_set_config,
1161 	.page_flip = drm_atomic_helper_page_flip,
1162 	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1163 	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1164 	.enable_vblank = rcar_du_crtc_enable_vblank,
1165 	.disable_vblank = rcar_du_crtc_disable_vblank,
1166 };
1167 
1168 static const struct drm_crtc_funcs crtc_funcs_gen3 = {
1169 	.reset = rcar_du_crtc_reset,
1170 	.destroy = rcar_du_crtc_cleanup,
1171 	.set_config = drm_atomic_helper_set_config,
1172 	.page_flip = drm_atomic_helper_page_flip,
1173 	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1174 	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1175 	.enable_vblank = rcar_du_crtc_enable_vblank,
1176 	.disable_vblank = rcar_du_crtc_disable_vblank,
1177 	.set_crc_source = rcar_du_crtc_set_crc_source,
1178 	.verify_crc_source = rcar_du_crtc_verify_crc_source,
1179 	.get_crc_sources = rcar_du_crtc_get_crc_sources,
1180 };
1181 
1182 /* -----------------------------------------------------------------------------
1183  * Interrupt Handling
1184  */
1185 
1186 static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
1187 {
1188 	struct rcar_du_crtc *rcrtc = arg;
1189 	struct rcar_du_device *rcdu = rcrtc->dev;
1190 	irqreturn_t ret = IRQ_NONE;
1191 	u32 status;
1192 
1193 	spin_lock(&rcrtc->vblank_lock);
1194 
1195 	status = rcar_du_crtc_read(rcrtc, DSSR);
1196 	rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
1197 
1198 	if (status & DSSR_VBK) {
1199 		/*
1200 		 * Wake up the vblank wait if the counter reaches 0. This must
1201 		 * be protected by the vblank_lock to avoid races in
1202 		 * rcar_du_crtc_disable_planes().
1203 		 */
1204 		if (rcrtc->vblank_count) {
1205 			if (--rcrtc->vblank_count == 0)
1206 				wake_up(&rcrtc->vblank_wait);
1207 		}
1208 	}
1209 
1210 	spin_unlock(&rcrtc->vblank_lock);
1211 
1212 	if (status & DSSR_VBK) {
1213 		if (rcdu->info->gen < 3) {
1214 			drm_crtc_handle_vblank(&rcrtc->crtc);
1215 			rcar_du_crtc_finish_page_flip(rcrtc);
1216 		}
1217 
1218 		ret = IRQ_HANDLED;
1219 	}
1220 
1221 	return ret;
1222 }
1223 
1224 /* -----------------------------------------------------------------------------
1225  * Initialization
1226  */
1227 
1228 int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex,
1229 			unsigned int hwindex)
1230 {
1231 	static const unsigned int mmio_offsets[] = {
1232 		DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
1233 	};
1234 
1235 	struct rcar_du_device *rcdu = rgrp->dev;
1236 	struct platform_device *pdev = to_platform_device(rcdu->dev);
1237 	struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex];
1238 	struct drm_crtc *crtc = &rcrtc->crtc;
1239 	struct drm_plane *primary;
1240 	unsigned int irqflags;
1241 	struct clk *clk;
1242 	char clk_name[9];
1243 	char *name;
1244 	int irq;
1245 	int ret;
1246 
1247 	/* Get the CRTC clock and the optional external clock. */
1248 	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_CLOCK)) {
1249 		sprintf(clk_name, "du.%u", hwindex);
1250 		name = clk_name;
1251 	} else {
1252 		name = NULL;
1253 	}
1254 
1255 	rcrtc->clock = devm_clk_get(rcdu->dev, name);
1256 	if (IS_ERR(rcrtc->clock)) {
1257 		dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex);
1258 		return PTR_ERR(rcrtc->clock);
1259 	}
1260 
1261 	sprintf(clk_name, "dclkin.%u", hwindex);
1262 	clk = devm_clk_get(rcdu->dev, clk_name);
1263 	if (!IS_ERR(clk)) {
1264 		rcrtc->extclock = clk;
1265 	} else if (PTR_ERR(clk) == -EPROBE_DEFER) {
1266 		return -EPROBE_DEFER;
1267 	} else if (rcdu->info->dpll_mask & BIT(hwindex)) {
1268 		/*
1269 		 * DU channels that have a display PLL can't use the internal
1270 		 * system clock and thus require an external clock.
1271 		 */
1272 		ret = PTR_ERR(clk);
1273 		dev_err(rcdu->dev, "can't get dclkin.%u: %d\n", hwindex, ret);
1274 		return ret;
1275 	}
1276 
1277 	init_waitqueue_head(&rcrtc->flip_wait);
1278 	init_waitqueue_head(&rcrtc->vblank_wait);
1279 	spin_lock_init(&rcrtc->vblank_lock);
1280 
1281 	rcrtc->dev = rcdu;
1282 	rcrtc->group = rgrp;
1283 	rcrtc->mmio_offset = mmio_offsets[hwindex];
1284 	rcrtc->index = hwindex;
1285 	rcrtc->dsysr = rcrtc->index % 2 ? 0 : DSYSR_DRES;
1286 
1287 	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_TVM_SYNC))
1288 		rcrtc->dsysr |= DSYSR_TVM_TVSYNC;
1289 
1290 	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
1291 		primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
1292 	else
1293 		primary = &rgrp->planes[swindex % 2].plane;
1294 
1295 	ret = drm_crtc_init_with_planes(&rcdu->ddev, crtc, primary, NULL,
1296 					rcdu->info->gen <= 2 ?
1297 					&crtc_funcs_gen2 : &crtc_funcs_gen3,
1298 					NULL);
1299 	if (ret < 0)
1300 		return ret;
1301 
1302 	/* CMM might be disabled for this CRTC. */
1303 	if (rcdu->cmms[swindex]) {
1304 		rcrtc->cmm = rcdu->cmms[swindex];
1305 		rgrp->cmms_mask |= BIT(hwindex % 2);
1306 
1307 		drm_mode_crtc_set_gamma_size(crtc, CM2_LUT_SIZE);
1308 		drm_crtc_enable_color_mgmt(crtc, 0, false, CM2_LUT_SIZE);
1309 	}
1310 
1311 	drm_crtc_helper_add(crtc, &crtc_helper_funcs);
1312 
1313 	/* Register the interrupt handler. */
1314 	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ)) {
1315 		/* The IRQ's are associated with the CRTC (sw)index. */
1316 		irq = platform_get_irq(pdev, swindex);
1317 		irqflags = 0;
1318 	} else {
1319 		irq = platform_get_irq(pdev, 0);
1320 		irqflags = IRQF_SHARED;
1321 	}
1322 
1323 	if (irq < 0) {
1324 		dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex);
1325 		return irq;
1326 	}
1327 
1328 	ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
1329 			       dev_name(rcdu->dev), rcrtc);
1330 	if (ret < 0) {
1331 		dev_err(rcdu->dev,
1332 			"failed to register IRQ for CRTC %u\n", swindex);
1333 		return ret;
1334 	}
1335 
1336 	rcar_du_crtc_crc_init(rcrtc);
1337 
1338 	return 0;
1339 }
1340