1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * R-Car Display Unit CRTCs
4 *
5 * Copyright (C) 2013-2015 Renesas Electronics Corporation
6 *
7 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8 */
9
10 #include <linux/clk.h>
11 #include <linux/mutex.h>
12 #include <linux/platform_device.h>
13
14 #include <drm/drm_atomic.h>
15 #include <drm/drm_atomic_helper.h>
16 #include <drm/drm_bridge.h>
17 #include <drm/drm_crtc.h>
18 #include <drm/drm_device.h>
19 #include <drm/drm_gem_dma_helper.h>
20 #include <drm/drm_vblank.h>
21
22 #include "rcar_cmm.h"
23 #include "rcar_du_crtc.h"
24 #include "rcar_du_drv.h"
25 #include "rcar_du_encoder.h"
26 #include "rcar_du_kms.h"
27 #include "rcar_du_plane.h"
28 #include "rcar_du_regs.h"
29 #include "rcar_du_vsp.h"
30 #include "rcar_lvds.h"
31 #include "rcar_mipi_dsi.h"
32
rcar_du_crtc_read(struct rcar_du_crtc * rcrtc,u32 reg)33 static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
34 {
35 struct rcar_du_device *rcdu = rcrtc->dev;
36
37 return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
38 }
39
rcar_du_crtc_write(struct rcar_du_crtc * rcrtc,u32 reg,u32 data)40 static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
41 {
42 struct rcar_du_device *rcdu = rcrtc->dev;
43
44 rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
45 }
46
rcar_du_crtc_clr(struct rcar_du_crtc * rcrtc,u32 reg,u32 clr)47 static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
48 {
49 struct rcar_du_device *rcdu = rcrtc->dev;
50
51 rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
52 rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
53 }
54
rcar_du_crtc_set(struct rcar_du_crtc * rcrtc,u32 reg,u32 set)55 static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
56 {
57 struct rcar_du_device *rcdu = rcrtc->dev;
58
59 rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
60 rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
61 }
62
rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc * rcrtc,u32 clr,u32 set)63 void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc *rcrtc, u32 clr, u32 set)
64 {
65 struct rcar_du_device *rcdu = rcrtc->dev;
66
67 rcrtc->dsysr = (rcrtc->dsysr & ~clr) | set;
68 rcar_du_write(rcdu, rcrtc->mmio_offset + DSYSR, rcrtc->dsysr);
69 }
70
71 /* -----------------------------------------------------------------------------
72 * Hardware Setup
73 */
74
75 struct dpll_info {
76 unsigned int output;
77 unsigned int fdpll;
78 unsigned int n;
79 unsigned int m;
80 };
81
rcar_du_dpll_divider(struct rcar_du_crtc * rcrtc,struct dpll_info * dpll,unsigned long input,unsigned long target)82 static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
83 struct dpll_info *dpll,
84 unsigned long input,
85 unsigned long target)
86 {
87 unsigned long best_diff = (unsigned long)-1;
88 unsigned long diff;
89 unsigned int fdpll;
90 unsigned int m;
91 unsigned int n;
92
93 /*
94 * fin fvco fout fclkout
95 * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out
96 * +-> | | |
97 * | |
98 * +---------------- [1/N] <------------+
99 *
100 * fclkout = fvco / P / FDPLL -- (1)
101 *
102 * fin/M = fvco/P/N
103 *
104 * fvco = fin * P * N / M -- (2)
105 *
106 * (1) + (2) indicates
107 *
108 * fclkout = fin * N / M / FDPLL
109 *
110 * NOTES
111 * N : (n + 1)
112 * M : (m + 1)
113 * FDPLL : (fdpll + 1)
114 * P : 2
115 * 2kHz < fvco < 4096MHz
116 *
117 * To minimize the jitter,
118 * N : as large as possible
119 * M : as small as possible
120 */
121 for (m = 0; m < 4; m++) {
122 for (n = 119; n > 38; n--) {
123 /*
124 * This code only runs on 64-bit architectures, the
125 * unsigned long type can thus be used for 64-bit
126 * computation. It will still compile without any
127 * warning on 32-bit architectures.
128 *
129 * To optimize calculations, use fout instead of fvco
130 * to verify the VCO frequency constraint.
131 */
132 unsigned long fout = input * (n + 1) / (m + 1);
133
134 if (fout < 1000 || fout > 2048 * 1000 * 1000U)
135 continue;
136
137 for (fdpll = 1; fdpll < 32; fdpll++) {
138 unsigned long output;
139
140 output = fout / (fdpll + 1);
141 if (output >= 400 * 1000 * 1000)
142 continue;
143
144 diff = abs((long)output - (long)target);
145 if (best_diff > diff) {
146 best_diff = diff;
147 dpll->n = n;
148 dpll->m = m;
149 dpll->fdpll = fdpll;
150 dpll->output = output;
151 }
152
153 if (diff == 0)
154 goto done;
155 }
156 }
157 }
158
159 done:
160 dev_dbg(rcrtc->dev->dev,
161 "output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
162 dpll->output, dpll->fdpll, dpll->n, dpll->m, best_diff);
163 }
164
165 struct du_clk_params {
166 struct clk *clk;
167 unsigned long rate;
168 unsigned long diff;
169 u32 escr;
170 };
171
rcar_du_escr_divider(struct clk * clk,unsigned long target,u32 escr,struct du_clk_params * params)172 static void rcar_du_escr_divider(struct clk *clk, unsigned long target,
173 u32 escr, struct du_clk_params *params)
174 {
175 unsigned long rate;
176 unsigned long diff;
177 u32 div;
178
179 /*
180 * If the target rate has already been achieved perfectly we can't do
181 * better.
182 */
183 if (params->diff == 0)
184 return;
185
186 /*
187 * Compute the input clock rate and internal divisor values to obtain
188 * the clock rate closest to the target frequency.
189 */
190 rate = clk_round_rate(clk, target);
191 div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1;
192 diff = abs(rate / (div + 1) - target);
193
194 /*
195 * Store the parameters if the resulting frequency is better than any
196 * previously calculated value.
197 */
198 if (diff < params->diff) {
199 params->clk = clk;
200 params->rate = rate;
201 params->diff = diff;
202 params->escr = escr | div;
203 }
204 }
205
rcar_du_crtc_set_display_timing(struct rcar_du_crtc * rcrtc)206 static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
207 {
208 const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
209 struct rcar_du_device *rcdu = rcrtc->dev;
210 unsigned long mode_clock = mode->clock * 1000;
211 unsigned int hdse_offset;
212 u32 dsmr;
213 u32 escr;
214
215 if (rcdu->info->dpll_mask & (1 << rcrtc->index)) {
216 unsigned long target = mode_clock;
217 struct dpll_info dpll = { 0 };
218 unsigned long extclk;
219 u32 dpllcr;
220 u32 div = 0;
221
222 /*
223 * DU channels that have a display PLL can't use the internal
224 * system clock, and have no internal clock divider.
225 */
226 extclk = clk_get_rate(rcrtc->extclock);
227 rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);
228
229 dpllcr = DPLLCR_CODE | DPLLCR_CLKE
230 | DPLLCR_FDPLL(dpll.fdpll)
231 | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
232 | DPLLCR_STBY;
233
234 if (rcrtc->index == 1)
235 dpllcr |= DPLLCR_PLCS1
236 | DPLLCR_INCS_DOTCLKIN1;
237 else
238 dpllcr |= DPLLCR_PLCS0
239 | DPLLCR_INCS_DOTCLKIN0;
240
241 rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr);
242
243 escr = ESCR_DCLKSEL_DCLKIN | div;
244 } else if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) ||
245 rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) {
246 /*
247 * Use the external LVDS or DSI PLL output as the dot clock when
248 * outputting to the LVDS or DSI encoder on an SoC that supports
249 * this clock routing option. We use the clock directly in that
250 * case, without any additional divider.
251 */
252 escr = ESCR_DCLKSEL_DCLKIN;
253 } else {
254 struct du_clk_params params = { .diff = (unsigned long)-1 };
255
256 rcar_du_escr_divider(rcrtc->clock, mode_clock,
257 ESCR_DCLKSEL_CLKS, ¶ms);
258 if (rcrtc->extclock)
259 rcar_du_escr_divider(rcrtc->extclock, mode_clock,
260 ESCR_DCLKSEL_DCLKIN, ¶ms);
261
262 dev_dbg(rcrtc->dev->dev, "mode clock %lu %s rate %lu\n",
263 mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext",
264 params.rate);
265
266 clk_set_rate(params.clk, params.rate);
267 escr = params.escr;
268 }
269
270 /*
271 * The ESCR register only exists in DU channels that can output to an
272 * LVDS or DPAT, and the OTAR register in DU channels that can output
273 * to a DPAD.
274 */
275 if ((rcdu->info->routes[RCAR_DU_OUTPUT_DPAD0].possible_crtcs |
276 rcdu->info->routes[RCAR_DU_OUTPUT_DPAD1].possible_crtcs |
277 rcdu->info->routes[RCAR_DU_OUTPUT_LVDS0].possible_crtcs |
278 rcdu->info->routes[RCAR_DU_OUTPUT_LVDS1].possible_crtcs) &
279 BIT(rcrtc->index)) {
280 dev_dbg(rcrtc->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr);
281
282 rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr);
283 }
284
285 if ((rcdu->info->routes[RCAR_DU_OUTPUT_DPAD0].possible_crtcs |
286 rcdu->info->routes[RCAR_DU_OUTPUT_DPAD1].possible_crtcs) &
287 BIT(rcrtc->index))
288 rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0);
289
290 /* Signal polarities */
291 dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
292 | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
293 | ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0)
294 | DSMR_DIPM_DISP | DSMR_CSPM;
295 rcar_du_crtc_write(rcrtc, DSMR, dsmr);
296
297 /*
298 * When the CMM is enabled, an additional offset of 25 pixels must be
299 * subtracted from the HDS (horizontal display start) and HDE
300 * (horizontal display end) registers.
301 */
302 hdse_offset = 19;
303 if (rcrtc->group->cmms_mask & BIT(rcrtc->index % 2))
304 hdse_offset += 25;
305
306 /* Display timings */
307 rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start -
308 hdse_offset);
309 rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
310 mode->hdisplay - hdse_offset);
311 rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
312 mode->hsync_start - 1);
313 rcar_du_crtc_write(rcrtc, HCR, mode->htotal - 1);
314
315 rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
316 mode->crtc_vsync_end - 2);
317 rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
318 mode->crtc_vsync_end +
319 mode->crtc_vdisplay - 2);
320 rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
321 mode->crtc_vsync_end +
322 mode->crtc_vsync_start - 1);
323 rcar_du_crtc_write(rcrtc, VCR, mode->crtc_vtotal - 1);
324
325 rcar_du_crtc_write(rcrtc, DESR, mode->htotal - mode->hsync_start - 1);
326 rcar_du_crtc_write(rcrtc, DEWR, mode->hdisplay);
327 }
328
plane_zpos(struct rcar_du_plane * plane)329 static unsigned int plane_zpos(struct rcar_du_plane *plane)
330 {
331 return plane->plane.state->normalized_zpos;
332 }
333
334 static const struct rcar_du_format_info *
plane_format(struct rcar_du_plane * plane)335 plane_format(struct rcar_du_plane *plane)
336 {
337 return to_rcar_plane_state(plane->plane.state)->format;
338 }
339
rcar_du_crtc_update_planes(struct rcar_du_crtc * rcrtc)340 static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
341 {
342 struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
343 struct rcar_du_device *rcdu = rcrtc->dev;
344 unsigned int num_planes = 0;
345 unsigned int dptsr_planes;
346 unsigned int hwplanes = 0;
347 unsigned int prio = 0;
348 unsigned int i;
349 u32 dspr = 0;
350
351 for (i = 0; i < rcrtc->group->num_planes; ++i) {
352 struct rcar_du_plane *plane = &rcrtc->group->planes[i];
353 unsigned int j;
354
355 if (plane->plane.state->crtc != &rcrtc->crtc ||
356 !plane->plane.state->visible)
357 continue;
358
359 /* Insert the plane in the sorted planes array. */
360 for (j = num_planes++; j > 0; --j) {
361 if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
362 break;
363 planes[j] = planes[j-1];
364 }
365
366 planes[j] = plane;
367 prio += plane_format(plane)->planes * 4;
368 }
369
370 for (i = 0; i < num_planes; ++i) {
371 struct rcar_du_plane *plane = planes[i];
372 struct drm_plane_state *state = plane->plane.state;
373 unsigned int index = to_rcar_plane_state(state)->hwindex;
374
375 prio -= 4;
376 dspr |= (index + 1) << prio;
377 hwplanes |= 1 << index;
378
379 if (plane_format(plane)->planes == 2) {
380 index = (index + 1) % 8;
381
382 prio -= 4;
383 dspr |= (index + 1) << prio;
384 hwplanes |= 1 << index;
385 }
386 }
387
388 /* If VSP+DU integration is enabled the plane assignment is fixed. */
389 if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
390 if (rcdu->info->gen < 3) {
391 dspr = (rcrtc->index % 2) + 1;
392 hwplanes = 1 << (rcrtc->index % 2);
393 } else {
394 dspr = (rcrtc->index % 2) ? 3 : 1;
395 hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
396 }
397 }
398
399 /*
400 * Update the planes to display timing and dot clock generator
401 * associations.
402 *
403 * Updating the DPTSR register requires restarting the CRTC group,
404 * resulting in visible flicker. To mitigate the issue only update the
405 * association if needed by enabled planes. Planes being disabled will
406 * keep their current association.
407 */
408 mutex_lock(&rcrtc->group->lock);
409
410 dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
411 : rcrtc->group->dptsr_planes & ~hwplanes;
412
413 if (dptsr_planes != rcrtc->group->dptsr_planes) {
414 rcar_du_group_write(rcrtc->group, DPTSR,
415 (dptsr_planes << 16) | dptsr_planes);
416 rcrtc->group->dptsr_planes = dptsr_planes;
417
418 if (rcrtc->group->used_crtcs)
419 rcar_du_group_restart(rcrtc->group);
420 }
421
422 /* Restart the group if plane sources have changed. */
423 if (rcrtc->group->need_restart)
424 rcar_du_group_restart(rcrtc->group);
425
426 mutex_unlock(&rcrtc->group->lock);
427
428 rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
429 dspr);
430 }
431
432 /* -----------------------------------------------------------------------------
433 * Page Flip
434 */
435
rcar_du_crtc_finish_page_flip(struct rcar_du_crtc * rcrtc)436 void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
437 {
438 struct drm_pending_vblank_event *event;
439 struct drm_device *dev = rcrtc->crtc.dev;
440 unsigned long flags;
441
442 spin_lock_irqsave(&dev->event_lock, flags);
443 event = rcrtc->event;
444 rcrtc->event = NULL;
445 spin_unlock_irqrestore(&dev->event_lock, flags);
446
447 if (event == NULL)
448 return;
449
450 spin_lock_irqsave(&dev->event_lock, flags);
451 drm_crtc_send_vblank_event(&rcrtc->crtc, event);
452 wake_up(&rcrtc->flip_wait);
453 spin_unlock_irqrestore(&dev->event_lock, flags);
454
455 drm_crtc_vblank_put(&rcrtc->crtc);
456 }
457
rcar_du_crtc_page_flip_pending(struct rcar_du_crtc * rcrtc)458 static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
459 {
460 struct drm_device *dev = rcrtc->crtc.dev;
461 unsigned long flags;
462 bool pending;
463
464 spin_lock_irqsave(&dev->event_lock, flags);
465 pending = rcrtc->event != NULL;
466 spin_unlock_irqrestore(&dev->event_lock, flags);
467
468 return pending;
469 }
470
rcar_du_crtc_wait_page_flip(struct rcar_du_crtc * rcrtc)471 static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
472 {
473 struct rcar_du_device *rcdu = rcrtc->dev;
474
475 if (wait_event_timeout(rcrtc->flip_wait,
476 !rcar_du_crtc_page_flip_pending(rcrtc),
477 msecs_to_jiffies(50)))
478 return;
479
480 dev_warn(rcdu->dev, "page flip timeout\n");
481
482 rcar_du_crtc_finish_page_flip(rcrtc);
483 }
484
485 /* -----------------------------------------------------------------------------
486 * Color Management Module (CMM)
487 */
488
rcar_du_cmm_check(struct drm_crtc * crtc,struct drm_crtc_state * state)489 static int rcar_du_cmm_check(struct drm_crtc *crtc,
490 struct drm_crtc_state *state)
491 {
492 struct drm_property_blob *drm_lut = state->gamma_lut;
493 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
494 struct device *dev = rcrtc->dev->dev;
495
496 if (!drm_lut)
497 return 0;
498
499 /* We only accept fully populated LUT tables. */
500 if (drm_color_lut_size(drm_lut) != CM2_LUT_SIZE) {
501 dev_err(dev, "invalid gamma lut size: %zu bytes\n",
502 drm_lut->length);
503 return -EINVAL;
504 }
505
506 return 0;
507 }
508
rcar_du_cmm_setup(struct drm_crtc * crtc)509 static void rcar_du_cmm_setup(struct drm_crtc *crtc)
510 {
511 struct drm_property_blob *drm_lut = crtc->state->gamma_lut;
512 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
513 struct rcar_cmm_config cmm_config = {};
514
515 if (!rcrtc->cmm)
516 return;
517
518 if (drm_lut)
519 cmm_config.lut.table = (struct drm_color_lut *)drm_lut->data;
520
521 rcar_cmm_setup(rcrtc->cmm, &cmm_config);
522 }
523
524 /* -----------------------------------------------------------------------------
525 * Start/Stop and Suspend/Resume
526 */
527
rcar_du_crtc_setup(struct rcar_du_crtc * rcrtc)528 static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
529 {
530 /* Set display off and background to black */
531 rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
532 rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
533
534 /* Configure display timings and output routing */
535 rcar_du_crtc_set_display_timing(rcrtc);
536 rcar_du_group_set_routing(rcrtc->group);
537
538 /* Start with all planes disabled. */
539 rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
540
541 /* Enable the VSP compositor. */
542 if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
543 rcar_du_vsp_enable(rcrtc);
544
545 /* Turn vertical blanking interrupt reporting on. */
546 drm_crtc_vblank_on(&rcrtc->crtc);
547 }
548
rcar_du_crtc_get(struct rcar_du_crtc * rcrtc)549 static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
550 {
551 int ret;
552
553 /*
554 * Guard against double-get, as the function is called from both the
555 * .atomic_enable() and .atomic_begin() handlers.
556 */
557 if (rcrtc->initialized)
558 return 0;
559
560 ret = clk_prepare_enable(rcrtc->clock);
561 if (ret < 0)
562 return ret;
563
564 ret = clk_prepare_enable(rcrtc->extclock);
565 if (ret < 0)
566 goto error_clock;
567
568 ret = rcar_du_group_get(rcrtc->group);
569 if (ret < 0)
570 goto error_group;
571
572 rcar_du_crtc_setup(rcrtc);
573 rcrtc->initialized = true;
574
575 return 0;
576
577 error_group:
578 clk_disable_unprepare(rcrtc->extclock);
579 error_clock:
580 clk_disable_unprepare(rcrtc->clock);
581 return ret;
582 }
583
rcar_du_crtc_put(struct rcar_du_crtc * rcrtc)584 static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
585 {
586 rcar_du_group_put(rcrtc->group);
587
588 clk_disable_unprepare(rcrtc->extclock);
589 clk_disable_unprepare(rcrtc->clock);
590
591 rcrtc->initialized = false;
592 }
593
rcar_du_crtc_start(struct rcar_du_crtc * rcrtc)594 static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
595 {
596 bool interlaced;
597
598 /*
599 * Select master sync mode. This enables display operation in master
600 * sync mode (with the HSYNC and VSYNC signals configured as outputs and
601 * actively driven).
602 */
603 interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
604 rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
605 (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
606 DSYSR_TVM_MASTER);
607
608 rcar_du_group_start_stop(rcrtc->group, true);
609 }
610
rcar_du_crtc_disable_planes(struct rcar_du_crtc * rcrtc)611 static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
612 {
613 struct rcar_du_device *rcdu = rcrtc->dev;
614 struct drm_crtc *crtc = &rcrtc->crtc;
615 u32 status;
616
617 /* Make sure vblank interrupts are enabled. */
618 drm_crtc_vblank_get(crtc);
619
620 /*
621 * Disable planes and calculate how many vertical blanking interrupts we
622 * have to wait for. If a vertical blanking interrupt has been triggered
623 * but not processed yet, we don't know whether it occurred before or
624 * after the planes got disabled. We thus have to wait for two vblank
625 * interrupts in that case.
626 */
627 spin_lock_irq(&rcrtc->vblank_lock);
628 rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
629 status = rcar_du_crtc_read(rcrtc, DSSR);
630 rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
631 spin_unlock_irq(&rcrtc->vblank_lock);
632
633 if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
634 msecs_to_jiffies(100)))
635 dev_warn(rcdu->dev, "vertical blanking timeout\n");
636
637 drm_crtc_vblank_put(crtc);
638 }
639
rcar_du_crtc_stop(struct rcar_du_crtc * rcrtc)640 static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
641 {
642 struct drm_crtc *crtc = &rcrtc->crtc;
643
644 /*
645 * Disable all planes and wait for the change to take effect. This is
646 * required as the plane enable registers are updated on vblank, and no
647 * vblank will occur once the CRTC is stopped. Disabling planes when
648 * starting the CRTC thus wouldn't be enough as it would start scanning
649 * out immediately from old frame buffers until the next vblank.
650 *
651 * This increases the CRTC stop delay, especially when multiple CRTCs
652 * are stopped in one operation as we now wait for one vblank per CRTC.
653 * Whether this can be improved needs to be researched.
654 */
655 rcar_du_crtc_disable_planes(rcrtc);
656
657 /*
658 * Disable vertical blanking interrupt reporting. We first need to wait
659 * for page flip completion before stopping the CRTC as userspace
660 * expects page flips to eventually complete.
661 */
662 rcar_du_crtc_wait_page_flip(rcrtc);
663 drm_crtc_vblank_off(crtc);
664
665 /* Disable the VSP compositor. */
666 if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
667 rcar_du_vsp_disable(rcrtc);
668
669 if (rcrtc->cmm)
670 rcar_cmm_disable(rcrtc->cmm);
671
672 /*
673 * Select switch sync mode. This stops display operation and configures
674 * the HSYNC and VSYNC signals as inputs.
675 *
676 * TODO: Find another way to stop the display for DUs that don't support
677 * TVM sync.
678 */
679 if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_TVM_SYNC))
680 rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK,
681 DSYSR_TVM_SWITCH);
682
683 rcar_du_group_start_stop(rcrtc->group, false);
684 }
685
686 /* -----------------------------------------------------------------------------
687 * CRTC Functions
688 */
689
rcar_du_crtc_atomic_check(struct drm_crtc * crtc,struct drm_atomic_state * state)690 static int rcar_du_crtc_atomic_check(struct drm_crtc *crtc,
691 struct drm_atomic_state *state)
692 {
693 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
694 crtc);
695 struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc_state);
696 struct drm_encoder *encoder;
697 int ret;
698
699 ret = rcar_du_cmm_check(crtc, crtc_state);
700 if (ret)
701 return ret;
702
703 /* Store the routes from the CRTC output to the DU outputs. */
704 rstate->outputs = 0;
705
706 drm_for_each_encoder_mask(encoder, crtc->dev,
707 crtc_state->encoder_mask) {
708 struct rcar_du_encoder *renc;
709
710 /* Skip the writeback encoder. */
711 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
712 continue;
713
714 renc = to_rcar_encoder(encoder);
715 rstate->outputs |= BIT(renc->output);
716 }
717
718 return 0;
719 }
720
rcar_du_crtc_atomic_enable(struct drm_crtc * crtc,struct drm_atomic_state * state)721 static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
722 struct drm_atomic_state *state)
723 {
724 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
725 struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc->state);
726 struct rcar_du_device *rcdu = rcrtc->dev;
727
728 if (rcrtc->cmm)
729 rcar_cmm_enable(rcrtc->cmm);
730 rcar_du_crtc_get(rcrtc);
731
732 /*
733 * On D3/E3 the dot clock is provided by the LVDS encoder attached to
734 * the DU channel. We need to enable its clock output explicitly before
735 * starting the CRTC, as the bridge hasn't been enabled by the atomic
736 * helpers yet.
737 */
738 if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) {
739 bool dot_clk_only = rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0);
740 struct drm_bridge *bridge = rcdu->lvds[rcrtc->index];
741 const struct drm_display_mode *mode =
742 &crtc->state->adjusted_mode;
743
744 rcar_lvds_pclk_enable(bridge, mode->clock * 1000, dot_clk_only);
745 }
746
747 /*
748 * Similarly to LVDS, on V3U the dot clock is provided by the DSI
749 * encoder, and we need to enable the DSI clocks before enabling the CRTC.
750 */
751 if ((rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) &&
752 (rstate->outputs &
753 (BIT(RCAR_DU_OUTPUT_DSI0) | BIT(RCAR_DU_OUTPUT_DSI1)))) {
754 struct drm_bridge *bridge = rcdu->dsi[rcrtc->index];
755
756 rcar_mipi_dsi_pclk_enable(bridge, state);
757 }
758
759 rcar_du_crtc_start(rcrtc);
760
761 /*
762 * TODO: The chip manual indicates that CMM tables should be written
763 * after the DU channel has been activated. Investigate the impact
764 * of this restriction on the first displayed frame.
765 */
766 rcar_du_cmm_setup(crtc);
767 }
768
rcar_du_crtc_atomic_disable(struct drm_crtc * crtc,struct drm_atomic_state * state)769 static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
770 struct drm_atomic_state *state)
771 {
772 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
773 crtc);
774 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
775 struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(old_state);
776 struct rcar_du_device *rcdu = rcrtc->dev;
777
778 rcar_du_crtc_stop(rcrtc);
779 rcar_du_crtc_put(rcrtc);
780
781 if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) {
782 bool dot_clk_only = rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0);
783 struct drm_bridge *bridge = rcdu->lvds[rcrtc->index];
784
785 /*
786 * Disable the LVDS clock output, see
787 * rcar_du_crtc_atomic_enable(). When the LVDS output is used,
788 * this also disables the LVDS encoder.
789 */
790 rcar_lvds_pclk_disable(bridge, dot_clk_only);
791 }
792
793 if ((rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) &&
794 (rstate->outputs &
795 (BIT(RCAR_DU_OUTPUT_DSI0) | BIT(RCAR_DU_OUTPUT_DSI1)))) {
796 struct drm_bridge *bridge = rcdu->dsi[rcrtc->index];
797
798 /*
799 * Disable the DSI clock output, see
800 * rcar_du_crtc_atomic_enable().
801 */
802 rcar_mipi_dsi_pclk_disable(bridge);
803 }
804
805 spin_lock_irq(&crtc->dev->event_lock);
806 if (crtc->state->event) {
807 drm_crtc_send_vblank_event(crtc, crtc->state->event);
808 crtc->state->event = NULL;
809 }
810 spin_unlock_irq(&crtc->dev->event_lock);
811 }
812
rcar_du_crtc_atomic_begin(struct drm_crtc * crtc,struct drm_atomic_state * state)813 static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
814 struct drm_atomic_state *state)
815 {
816 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
817
818 WARN_ON(!crtc->state->enable);
819
820 /*
821 * If a mode set is in progress we can be called with the CRTC disabled.
822 * We thus need to first get and setup the CRTC in order to configure
823 * planes. We must *not* put the CRTC in .atomic_flush(), as it must be
824 * kept awake until the .atomic_enable() call that will follow. The get
825 * operation in .atomic_enable() will in that case be a no-op, and the
826 * CRTC will be put later in .atomic_disable().
827 *
828 * If a mode set is not in progress the CRTC is enabled, and the
829 * following get call will be a no-op. There is thus no need to balance
830 * it in .atomic_flush() either.
831 */
832 rcar_du_crtc_get(rcrtc);
833
834 /* If the active state changed, we let .atomic_enable handle CMM. */
835 if (crtc->state->color_mgmt_changed && !crtc->state->active_changed)
836 rcar_du_cmm_setup(crtc);
837
838 if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
839 rcar_du_vsp_atomic_begin(rcrtc);
840 }
841
rcar_du_crtc_atomic_flush(struct drm_crtc * crtc,struct drm_atomic_state * state)842 static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
843 struct drm_atomic_state *state)
844 {
845 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
846 struct drm_device *dev = rcrtc->crtc.dev;
847 unsigned long flags;
848
849 rcar_du_crtc_update_planes(rcrtc);
850
851 if (crtc->state->event) {
852 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
853
854 spin_lock_irqsave(&dev->event_lock, flags);
855 rcrtc->event = crtc->state->event;
856 crtc->state->event = NULL;
857 spin_unlock_irqrestore(&dev->event_lock, flags);
858 }
859
860 if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
861 rcar_du_vsp_atomic_flush(rcrtc);
862 }
863
864 static enum drm_mode_status
rcar_du_crtc_mode_valid(struct drm_crtc * crtc,const struct drm_display_mode * mode)865 rcar_du_crtc_mode_valid(struct drm_crtc *crtc,
866 const struct drm_display_mode *mode)
867 {
868 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
869 struct rcar_du_device *rcdu = rcrtc->dev;
870 bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
871 unsigned int min_sync_porch;
872 unsigned int vbp;
873
874 if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED))
875 return MODE_NO_INTERLACE;
876
877 /*
878 * The hardware requires a minimum combined horizontal sync and back
879 * porch of 20 pixels (when CMM isn't used) or 45 pixels (when CMM is
880 * used), and a minimum vertical back porch of 3 lines.
881 */
882 min_sync_porch = 20;
883 if (rcrtc->group->cmms_mask & BIT(rcrtc->index % 2))
884 min_sync_porch += 25;
885
886 if (mode->htotal - mode->hsync_start < min_sync_porch)
887 return MODE_HBLANK_NARROW;
888
889 vbp = (mode->vtotal - mode->vsync_end) / (interlaced ? 2 : 1);
890 if (vbp < 3)
891 return MODE_VBLANK_NARROW;
892
893 return MODE_OK;
894 }
895
896 static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
897 .atomic_check = rcar_du_crtc_atomic_check,
898 .atomic_begin = rcar_du_crtc_atomic_begin,
899 .atomic_flush = rcar_du_crtc_atomic_flush,
900 .atomic_enable = rcar_du_crtc_atomic_enable,
901 .atomic_disable = rcar_du_crtc_atomic_disable,
902 .mode_valid = rcar_du_crtc_mode_valid,
903 };
904
rcar_du_crtc_crc_init(struct rcar_du_crtc * rcrtc)905 static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc)
906 {
907 struct rcar_du_device *rcdu = rcrtc->dev;
908 const char **sources;
909 unsigned int count;
910 int i = -1;
911
912 /* CRC available only on Gen3 HW. */
913 if (rcdu->info->gen < 3)
914 return;
915
916 /* Reserve 1 for "auto" source. */
917 count = rcrtc->vsp->num_planes + 1;
918
919 sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL);
920 if (!sources)
921 return;
922
923 sources[0] = kstrdup("auto", GFP_KERNEL);
924 if (!sources[0])
925 goto error;
926
927 for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
928 struct drm_plane *plane = &rcrtc->vsp->planes[i].plane;
929 char name[16];
930
931 sprintf(name, "plane%u", plane->base.id);
932 sources[i + 1] = kstrdup(name, GFP_KERNEL);
933 if (!sources[i + 1])
934 goto error;
935 }
936
937 rcrtc->sources = sources;
938 rcrtc->sources_count = count;
939 return;
940
941 error:
942 while (i >= 0) {
943 kfree(sources[i]);
944 i--;
945 }
946 kfree(sources);
947 }
948
rcar_du_crtc_crc_cleanup(struct rcar_du_crtc * rcrtc)949 static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc)
950 {
951 unsigned int i;
952
953 if (!rcrtc->sources)
954 return;
955
956 for (i = 0; i < rcrtc->sources_count; i++)
957 kfree(rcrtc->sources[i]);
958 kfree(rcrtc->sources);
959
960 rcrtc->sources = NULL;
961 rcrtc->sources_count = 0;
962 }
963
964 static struct drm_crtc_state *
rcar_du_crtc_atomic_duplicate_state(struct drm_crtc * crtc)965 rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
966 {
967 struct rcar_du_crtc_state *state;
968 struct rcar_du_crtc_state *copy;
969
970 if (WARN_ON(!crtc->state))
971 return NULL;
972
973 state = to_rcar_crtc_state(crtc->state);
974 copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
975 if (copy == NULL)
976 return NULL;
977
978 __drm_atomic_helper_crtc_duplicate_state(crtc, ©->state);
979
980 return ©->state;
981 }
982
rcar_du_crtc_atomic_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)983 static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc,
984 struct drm_crtc_state *state)
985 {
986 __drm_atomic_helper_crtc_destroy_state(state);
987 kfree(to_rcar_crtc_state(state));
988 }
989
rcar_du_crtc_cleanup(struct drm_crtc * crtc)990 static void rcar_du_crtc_cleanup(struct drm_crtc *crtc)
991 {
992 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
993
994 rcar_du_crtc_crc_cleanup(rcrtc);
995
996 return drm_crtc_cleanup(crtc);
997 }
998
rcar_du_crtc_reset(struct drm_crtc * crtc)999 static void rcar_du_crtc_reset(struct drm_crtc *crtc)
1000 {
1001 struct rcar_du_crtc_state *state;
1002
1003 if (crtc->state) {
1004 rcar_du_crtc_atomic_destroy_state(crtc, crtc->state);
1005 crtc->state = NULL;
1006 }
1007
1008 state = kzalloc(sizeof(*state), GFP_KERNEL);
1009 if (state == NULL)
1010 return;
1011
1012 state->crc.source = VSP1_DU_CRC_NONE;
1013 state->crc.index = 0;
1014
1015 __drm_atomic_helper_crtc_reset(crtc, &state->state);
1016 }
1017
rcar_du_crtc_enable_vblank(struct drm_crtc * crtc)1018 static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
1019 {
1020 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1021
1022 rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
1023 rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
1024 rcrtc->vblank_enable = true;
1025
1026 return 0;
1027 }
1028
rcar_du_crtc_disable_vblank(struct drm_crtc * crtc)1029 static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
1030 {
1031 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1032
1033 rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
1034 rcrtc->vblank_enable = false;
1035 }
1036
rcar_du_crtc_parse_crc_source(struct rcar_du_crtc * rcrtc,const char * source_name,enum vsp1_du_crc_source * source)1037 static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc,
1038 const char *source_name,
1039 enum vsp1_du_crc_source *source)
1040 {
1041 unsigned int index;
1042 int ret;
1043
1044 /*
1045 * Parse the source name. Supported values are "plane%u" to compute the
1046 * CRC on an input plane (%u is the plane ID), and "auto" to compute the
1047 * CRC on the composer (VSP) output.
1048 */
1049
1050 if (!source_name) {
1051 *source = VSP1_DU_CRC_NONE;
1052 return 0;
1053 } else if (!strcmp(source_name, "auto")) {
1054 *source = VSP1_DU_CRC_OUTPUT;
1055 return 0;
1056 } else if (strstarts(source_name, "plane")) {
1057 unsigned int i;
1058
1059 *source = VSP1_DU_CRC_PLANE;
1060
1061 ret = kstrtouint(source_name + strlen("plane"), 10, &index);
1062 if (ret < 0)
1063 return ret;
1064
1065 for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
1066 if (index == rcrtc->vsp->planes[i].plane.base.id)
1067 return i;
1068 }
1069 }
1070
1071 return -EINVAL;
1072 }
1073
rcar_du_crtc_verify_crc_source(struct drm_crtc * crtc,const char * source_name,size_t * values_cnt)1074 static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc,
1075 const char *source_name,
1076 size_t *values_cnt)
1077 {
1078 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1079 enum vsp1_du_crc_source source;
1080
1081 if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) {
1082 DRM_DEBUG_DRIVER("unknown source %s\n", source_name);
1083 return -EINVAL;
1084 }
1085
1086 *values_cnt = 1;
1087 return 0;
1088 }
1089
1090 static const char *const *
rcar_du_crtc_get_crc_sources(struct drm_crtc * crtc,size_t * count)1091 rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc, size_t *count)
1092 {
1093 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1094
1095 *count = rcrtc->sources_count;
1096 return rcrtc->sources;
1097 }
1098
rcar_du_crtc_set_crc_source(struct drm_crtc * crtc,const char * source_name)1099 static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc,
1100 const char *source_name)
1101 {
1102 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1103 struct drm_modeset_acquire_ctx ctx;
1104 struct drm_crtc_state *crtc_state;
1105 struct drm_atomic_state *state;
1106 enum vsp1_du_crc_source source;
1107 unsigned int index;
1108 int ret;
1109
1110 ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source);
1111 if (ret < 0)
1112 return ret;
1113
1114 index = ret;
1115
1116 /* Perform an atomic commit to set the CRC source. */
1117 drm_modeset_acquire_init(&ctx, 0);
1118
1119 state = drm_atomic_state_alloc(crtc->dev);
1120 if (!state) {
1121 ret = -ENOMEM;
1122 goto unlock;
1123 }
1124
1125 state->acquire_ctx = &ctx;
1126
1127 retry:
1128 crtc_state = drm_atomic_get_crtc_state(state, crtc);
1129 if (!IS_ERR(crtc_state)) {
1130 struct rcar_du_crtc_state *rcrtc_state;
1131
1132 rcrtc_state = to_rcar_crtc_state(crtc_state);
1133 rcrtc_state->crc.source = source;
1134 rcrtc_state->crc.index = index;
1135
1136 ret = drm_atomic_commit(state);
1137 } else {
1138 ret = PTR_ERR(crtc_state);
1139 }
1140
1141 if (ret == -EDEADLK) {
1142 drm_atomic_state_clear(state);
1143 drm_modeset_backoff(&ctx);
1144 goto retry;
1145 }
1146
1147 drm_atomic_state_put(state);
1148
1149 unlock:
1150 drm_modeset_drop_locks(&ctx);
1151 drm_modeset_acquire_fini(&ctx);
1152
1153 return ret;
1154 }
1155
1156 static const struct drm_crtc_funcs crtc_funcs_gen2 = {
1157 .reset = rcar_du_crtc_reset,
1158 .destroy = drm_crtc_cleanup,
1159 .set_config = drm_atomic_helper_set_config,
1160 .page_flip = drm_atomic_helper_page_flip,
1161 .atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1162 .atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1163 .enable_vblank = rcar_du_crtc_enable_vblank,
1164 .disable_vblank = rcar_du_crtc_disable_vblank,
1165 };
1166
1167 static const struct drm_crtc_funcs crtc_funcs_gen3 = {
1168 .reset = rcar_du_crtc_reset,
1169 .destroy = rcar_du_crtc_cleanup,
1170 .set_config = drm_atomic_helper_set_config,
1171 .page_flip = drm_atomic_helper_page_flip,
1172 .atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1173 .atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1174 .enable_vblank = rcar_du_crtc_enable_vblank,
1175 .disable_vblank = rcar_du_crtc_disable_vblank,
1176 .set_crc_source = rcar_du_crtc_set_crc_source,
1177 .verify_crc_source = rcar_du_crtc_verify_crc_source,
1178 .get_crc_sources = rcar_du_crtc_get_crc_sources,
1179 };
1180
1181 /* -----------------------------------------------------------------------------
1182 * Interrupt Handling
1183 */
1184
rcar_du_crtc_irq(int irq,void * arg)1185 static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
1186 {
1187 struct rcar_du_crtc *rcrtc = arg;
1188 struct rcar_du_device *rcdu = rcrtc->dev;
1189 irqreturn_t ret = IRQ_NONE;
1190 u32 status;
1191
1192 spin_lock(&rcrtc->vblank_lock);
1193
1194 status = rcar_du_crtc_read(rcrtc, DSSR);
1195 rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
1196
1197 if (status & DSSR_VBK) {
1198 /*
1199 * Wake up the vblank wait if the counter reaches 0. This must
1200 * be protected by the vblank_lock to avoid races in
1201 * rcar_du_crtc_disable_planes().
1202 */
1203 if (rcrtc->vblank_count) {
1204 if (--rcrtc->vblank_count == 0)
1205 wake_up(&rcrtc->vblank_wait);
1206 }
1207 }
1208
1209 spin_unlock(&rcrtc->vblank_lock);
1210
1211 if (status & DSSR_VBK) {
1212 if (rcdu->info->gen < 3) {
1213 drm_crtc_handle_vblank(&rcrtc->crtc);
1214 rcar_du_crtc_finish_page_flip(rcrtc);
1215 }
1216
1217 ret = IRQ_HANDLED;
1218 }
1219
1220 return ret;
1221 }
1222
1223 /* -----------------------------------------------------------------------------
1224 * Initialization
1225 */
1226
rcar_du_crtc_create(struct rcar_du_group * rgrp,unsigned int swindex,unsigned int hwindex)1227 int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex,
1228 unsigned int hwindex)
1229 {
1230 static const unsigned int mmio_offsets[] = {
1231 DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
1232 };
1233
1234 struct rcar_du_device *rcdu = rgrp->dev;
1235 struct platform_device *pdev = to_platform_device(rcdu->dev);
1236 struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex];
1237 struct drm_crtc *crtc = &rcrtc->crtc;
1238 struct drm_plane *primary;
1239 unsigned int irqflags;
1240 struct clk *clk;
1241 char clk_name[9];
1242 char *name;
1243 int irq;
1244 int ret;
1245
1246 /* Get the CRTC clock and the optional external clock. */
1247 if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_CLOCK)) {
1248 sprintf(clk_name, "du.%u", hwindex);
1249 name = clk_name;
1250 } else {
1251 name = NULL;
1252 }
1253
1254 rcrtc->clock = devm_clk_get(rcdu->dev, name);
1255 if (IS_ERR(rcrtc->clock)) {
1256 dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex);
1257 return PTR_ERR(rcrtc->clock);
1258 }
1259
1260 sprintf(clk_name, "dclkin.%u", hwindex);
1261 clk = devm_clk_get(rcdu->dev, clk_name);
1262 if (!IS_ERR(clk)) {
1263 rcrtc->extclock = clk;
1264 } else if (PTR_ERR(clk) == -EPROBE_DEFER) {
1265 return -EPROBE_DEFER;
1266 } else if (rcdu->info->dpll_mask & BIT(hwindex)) {
1267 /*
1268 * DU channels that have a display PLL can't use the internal
1269 * system clock and thus require an external clock.
1270 */
1271 ret = PTR_ERR(clk);
1272 dev_err(rcdu->dev, "can't get dclkin.%u: %d\n", hwindex, ret);
1273 return ret;
1274 }
1275
1276 init_waitqueue_head(&rcrtc->flip_wait);
1277 init_waitqueue_head(&rcrtc->vblank_wait);
1278 spin_lock_init(&rcrtc->vblank_lock);
1279
1280 rcrtc->dev = rcdu;
1281 rcrtc->group = rgrp;
1282 rcrtc->mmio_offset = mmio_offsets[hwindex];
1283 rcrtc->index = hwindex;
1284 rcrtc->dsysr = rcrtc->index % 2 ? 0 : DSYSR_DRES;
1285
1286 if (rcar_du_has(rcdu, RCAR_DU_FEATURE_TVM_SYNC))
1287 rcrtc->dsysr |= DSYSR_TVM_TVSYNC;
1288
1289 if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
1290 primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
1291 else
1292 primary = &rgrp->planes[swindex % 2].plane;
1293
1294 ret = drm_crtc_init_with_planes(&rcdu->ddev, crtc, primary, NULL,
1295 rcdu->info->gen <= 2 ?
1296 &crtc_funcs_gen2 : &crtc_funcs_gen3,
1297 NULL);
1298 if (ret < 0)
1299 return ret;
1300
1301 /* CMM might be disabled for this CRTC. */
1302 if (rcdu->cmms[swindex]) {
1303 rcrtc->cmm = rcdu->cmms[swindex];
1304 rgrp->cmms_mask |= BIT(hwindex % 2);
1305
1306 drm_mode_crtc_set_gamma_size(crtc, CM2_LUT_SIZE);
1307 drm_crtc_enable_color_mgmt(crtc, 0, false, CM2_LUT_SIZE);
1308 }
1309
1310 drm_crtc_helper_add(crtc, &crtc_helper_funcs);
1311
1312 /* Register the interrupt handler. */
1313 if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ)) {
1314 /* The IRQ's are associated with the CRTC (sw)index. */
1315 irq = platform_get_irq(pdev, swindex);
1316 irqflags = 0;
1317 } else {
1318 irq = platform_get_irq(pdev, 0);
1319 irqflags = IRQF_SHARED;
1320 }
1321
1322 if (irq < 0) {
1323 dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex);
1324 return irq;
1325 }
1326
1327 ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
1328 dev_name(rcdu->dev), rcrtc);
1329 if (ret < 0) {
1330 dev_err(rcdu->dev,
1331 "failed to register IRQ for CRTC %u\n", swindex);
1332 return ret;
1333 }
1334
1335 rcar_du_crtc_crc_init(rcrtc);
1336
1337 return 0;
1338 }
1339