xref: /linux/drivers/gpu/drm/panthor/panthor_mmu.c (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 // SPDX-License-Identifier: GPL-2.0 or MIT
2 /* Copyright 2019 Linaro, Ltd, Rob Herring <robh@kernel.org> */
3 /* Copyright 2023 Collabora ltd. */
4 
5 #include <drm/drm_debugfs.h>
6 #include <drm/drm_drv.h>
7 #include <drm/drm_exec.h>
8 #include <drm/drm_gpuvm.h>
9 #include <drm/drm_managed.h>
10 #include <drm/gpu_scheduler.h>
11 #include <drm/panthor_drm.h>
12 
13 #include <linux/atomic.h>
14 #include <linux/bitfield.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/io-pgtable.h>
21 #include <linux/iommu.h>
22 #include <linux/kmemleak.h>
23 #include <linux/platform_device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/rwsem.h>
26 #include <linux/sched.h>
27 #include <linux/shmem_fs.h>
28 #include <linux/sizes.h>
29 
30 #include "panthor_device.h"
31 #include "panthor_gem.h"
32 #include "panthor_heap.h"
33 #include "panthor_mmu.h"
34 #include "panthor_regs.h"
35 #include "panthor_sched.h"
36 
37 #define MAX_AS_SLOTS			32
38 
39 struct panthor_vm;
40 
41 /**
42  * struct panthor_as_slot - Address space slot
43  */
44 struct panthor_as_slot {
45 	/** @vm: VM bound to this slot. NULL is no VM is bound. */
46 	struct panthor_vm *vm;
47 };
48 
49 /**
50  * struct panthor_mmu - MMU related data
51  */
52 struct panthor_mmu {
53 	/** @irq: The MMU irq. */
54 	struct panthor_irq irq;
55 
56 	/** @as: Address space related fields.
57 	 *
58 	 * The GPU has a limited number of address spaces (AS) slots, forcing
59 	 * us to re-assign them to re-assign slots on-demand.
60 	 */
61 	struct {
62 		/** @slots_lock: Lock protecting access to all other AS fields. */
63 		struct mutex slots_lock;
64 
65 		/** @alloc_mask: Bitmask encoding the allocated slots. */
66 		unsigned long alloc_mask;
67 
68 		/** @faulty_mask: Bitmask encoding the faulty slots. */
69 		unsigned long faulty_mask;
70 
71 		/** @slots: VMs currently bound to the AS slots. */
72 		struct panthor_as_slot slots[MAX_AS_SLOTS];
73 
74 		/**
75 		 * @lru_list: List of least recently used VMs.
76 		 *
77 		 * We use this list to pick a VM to evict when all slots are
78 		 * used.
79 		 *
80 		 * There should be no more active VMs than there are AS slots,
81 		 * so this LRU is just here to keep VMs bound until there's
82 		 * a need to release a slot, thus avoid unnecessary TLB/cache
83 		 * flushes.
84 		 */
85 		struct list_head lru_list;
86 	} as;
87 
88 	/** @vm: VMs management fields */
89 	struct {
90 		/** @lock: Lock protecting access to list. */
91 		struct mutex lock;
92 
93 		/** @list: List containing all VMs. */
94 		struct list_head list;
95 
96 		/** @reset_in_progress: True if a reset is in progress. */
97 		bool reset_in_progress;
98 
99 		/** @wq: Workqueue used for the VM_BIND queues. */
100 		struct workqueue_struct *wq;
101 	} vm;
102 };
103 
104 /**
105  * struct panthor_vm_pool - VM pool object
106  */
107 struct panthor_vm_pool {
108 	/** @xa: Array used for VM handle tracking. */
109 	struct xarray xa;
110 };
111 
112 /**
113  * struct panthor_vma - GPU mapping object
114  *
115  * This is used to track GEM mappings in GPU space.
116  */
117 struct panthor_vma {
118 	/** @base: Inherits from drm_gpuva. */
119 	struct drm_gpuva base;
120 
121 	/** @node: Used to implement deferred release of VMAs. */
122 	struct list_head node;
123 
124 	/**
125 	 * @flags: Combination of drm_panthor_vm_bind_op_flags.
126 	 *
127 	 * Only map related flags are accepted.
128 	 */
129 	u32 flags;
130 };
131 
132 /**
133  * struct panthor_vm_op_ctx - VM operation context
134  *
135  * With VM operations potentially taking place in a dma-signaling path, we
136  * need to make sure everything that might require resource allocation is
137  * pre-allocated upfront. This is what this operation context is far.
138  *
139  * We also collect resources that have been freed, so we can release them
140  * asynchronously, and let the VM_BIND scheduler process the next VM_BIND
141  * request.
142  */
143 struct panthor_vm_op_ctx {
144 	/** @rsvd_page_tables: Pages reserved for the MMU page table update. */
145 	struct {
146 		/** @count: Number of pages reserved. */
147 		u32 count;
148 
149 		/** @ptr: Point to the first unused page in the @pages table. */
150 		u32 ptr;
151 
152 		/**
153 		 * @page: Array of pages that can be used for an MMU page table update.
154 		 *
155 		 * After an VM operation, there might be free pages left in this array.
156 		 * They should be returned to the pt_cache as part of the op_ctx cleanup.
157 		 */
158 		void **pages;
159 	} rsvd_page_tables;
160 
161 	/**
162 	 * @preallocated_vmas: Pre-allocated VMAs to handle the remap case.
163 	 *
164 	 * Partial unmap requests or map requests overlapping existing mappings will
165 	 * trigger a remap call, which need to register up to three panthor_vma objects
166 	 * (one for the new mapping, and two for the previous and next mappings).
167 	 */
168 	struct panthor_vma *preallocated_vmas[3];
169 
170 	/** @flags: Combination of drm_panthor_vm_bind_op_flags. */
171 	u32 flags;
172 
173 	/** @va: Virtual range targeted by the VM operation. */
174 	struct {
175 		/** @addr: Start address. */
176 		u64 addr;
177 
178 		/** @range: Range size. */
179 		u64 range;
180 	} va;
181 
182 	/**
183 	 * @returned_vmas: List of panthor_vma objects returned after a VM operation.
184 	 *
185 	 * For unmap operations, this will contain all VMAs that were covered by the
186 	 * specified VA range.
187 	 *
188 	 * For map operations, this will contain all VMAs that previously mapped to
189 	 * the specified VA range.
190 	 *
191 	 * Those VMAs, and the resources they point to will be released as part of
192 	 * the op_ctx cleanup operation.
193 	 */
194 	struct list_head returned_vmas;
195 
196 	/** @map: Fields specific to a map operation. */
197 	struct {
198 		/** @vm_bo: Buffer object to map. */
199 		struct drm_gpuvm_bo *vm_bo;
200 
201 		/** @bo_offset: Offset in the buffer object. */
202 		u64 bo_offset;
203 
204 		/**
205 		 * @sgt: sg-table pointing to pages backing the GEM object.
206 		 *
207 		 * This is gathered at job creation time, such that we don't have
208 		 * to allocate in ::run_job().
209 		 */
210 		struct sg_table *sgt;
211 
212 		/**
213 		 * @new_vma: The new VMA object that will be inserted to the VA tree.
214 		 */
215 		struct panthor_vma *new_vma;
216 	} map;
217 };
218 
219 /**
220  * struct panthor_vm - VM object
221  *
222  * A VM is an object representing a GPU (or MCU) virtual address space.
223  * It embeds the MMU page table for this address space, a tree containing
224  * all the virtual mappings of GEM objects, and other things needed to manage
225  * the VM.
226  *
227  * Except for the MCU VM, which is managed by the kernel, all other VMs are
228  * created by userspace and mostly managed by userspace, using the
229  * %DRM_IOCTL_PANTHOR_VM_BIND ioctl.
230  *
231  * A portion of the virtual address space is reserved for kernel objects,
232  * like heap chunks, and userspace gets to decide how much of the virtual
233  * address space is left to the kernel (half of the virtual address space
234  * by default).
235  */
236 struct panthor_vm {
237 	/**
238 	 * @base: Inherit from drm_gpuvm.
239 	 *
240 	 * We delegate all the VA management to the common drm_gpuvm framework
241 	 * and only implement hooks to update the MMU page table.
242 	 */
243 	struct drm_gpuvm base;
244 
245 	/**
246 	 * @sched: Scheduler used for asynchronous VM_BIND request.
247 	 *
248 	 * We use a 1:1 scheduler here.
249 	 */
250 	struct drm_gpu_scheduler sched;
251 
252 	/**
253 	 * @entity: Scheduling entity representing the VM_BIND queue.
254 	 *
255 	 * There's currently one bind queue per VM. It doesn't make sense to
256 	 * allow more given the VM operations are serialized anyway.
257 	 */
258 	struct drm_sched_entity entity;
259 
260 	/** @ptdev: Device. */
261 	struct panthor_device *ptdev;
262 
263 	/** @memattr: Value to program to the AS_MEMATTR register. */
264 	u64 memattr;
265 
266 	/** @pgtbl_ops: Page table operations. */
267 	struct io_pgtable_ops *pgtbl_ops;
268 
269 	/** @root_page_table: Stores the root page table pointer. */
270 	void *root_page_table;
271 
272 	/**
273 	 * @op_lock: Lock used to serialize operations on a VM.
274 	 *
275 	 * The serialization of jobs queued to the VM_BIND queue is already
276 	 * taken care of by drm_sched, but we need to serialize synchronous
277 	 * and asynchronous VM_BIND request. This is what this lock is for.
278 	 */
279 	struct mutex op_lock;
280 
281 	/**
282 	 * @op_ctx: The context attached to the currently executing VM operation.
283 	 *
284 	 * NULL when no operation is in progress.
285 	 */
286 	struct panthor_vm_op_ctx *op_ctx;
287 
288 	/**
289 	 * @mm: Memory management object representing the auto-VA/kernel-VA.
290 	 *
291 	 * Used to auto-allocate VA space for kernel-managed objects (tiler
292 	 * heaps, ...).
293 	 *
294 	 * For the MCU VM, this is managing the VA range that's used to map
295 	 * all shared interfaces.
296 	 *
297 	 * For user VMs, the range is specified by userspace, and must not
298 	 * exceed half of the VA space addressable.
299 	 */
300 	struct drm_mm mm;
301 
302 	/** @mm_lock: Lock protecting the @mm field. */
303 	struct mutex mm_lock;
304 
305 	/** @kernel_auto_va: Automatic VA-range for kernel BOs. */
306 	struct {
307 		/** @start: Start of the automatic VA-range for kernel BOs. */
308 		u64 start;
309 
310 		/** @size: Size of the automatic VA-range for kernel BOs. */
311 		u64 end;
312 	} kernel_auto_va;
313 
314 	/** @as: Address space related fields. */
315 	struct {
316 		/**
317 		 * @id: ID of the address space this VM is bound to.
318 		 *
319 		 * A value of -1 means the VM is inactive/not bound.
320 		 */
321 		int id;
322 
323 		/** @active_cnt: Number of active users of this VM. */
324 		refcount_t active_cnt;
325 
326 		/**
327 		 * @lru_node: Used to instead the VM in the panthor_mmu::as::lru_list.
328 		 *
329 		 * Active VMs should not be inserted in the LRU list.
330 		 */
331 		struct list_head lru_node;
332 	} as;
333 
334 	/**
335 	 * @heaps: Tiler heap related fields.
336 	 */
337 	struct {
338 		/**
339 		 * @pool: The heap pool attached to this VM.
340 		 *
341 		 * Will stay NULL until someone creates a heap context on this VM.
342 		 */
343 		struct panthor_heap_pool *pool;
344 
345 		/** @lock: Lock used to protect access to @pool. */
346 		struct mutex lock;
347 	} heaps;
348 
349 	/** @node: Used to insert the VM in the panthor_mmu::vm::list. */
350 	struct list_head node;
351 
352 	/** @for_mcu: True if this is the MCU VM. */
353 	bool for_mcu;
354 
355 	/**
356 	 * @destroyed: True if the VM was destroyed.
357 	 *
358 	 * No further bind requests should be queued to a destroyed VM.
359 	 */
360 	bool destroyed;
361 
362 	/**
363 	 * @unusable: True if the VM has turned unusable because something
364 	 * bad happened during an asynchronous request.
365 	 *
366 	 * We don't try to recover from such failures, because this implies
367 	 * informing userspace about the specific operation that failed, and
368 	 * hoping the userspace driver can replay things from there. This all
369 	 * sounds very complicated for little gain.
370 	 *
371 	 * Instead, we should just flag the VM as unusable, and fail any
372 	 * further request targeting this VM.
373 	 *
374 	 * We also provide a way to query a VM state, so userspace can destroy
375 	 * it and create a new one.
376 	 *
377 	 * As an analogy, this would be mapped to a VK_ERROR_DEVICE_LOST
378 	 * situation, where the logical device needs to be re-created.
379 	 */
380 	bool unusable;
381 
382 	/**
383 	 * @unhandled_fault: Unhandled fault happened.
384 	 *
385 	 * This should be reported to the scheduler, and the queue/group be
386 	 * flagged as faulty as a result.
387 	 */
388 	bool unhandled_fault;
389 };
390 
391 /**
392  * struct panthor_vm_bind_job - VM bind job
393  */
394 struct panthor_vm_bind_job {
395 	/** @base: Inherit from drm_sched_job. */
396 	struct drm_sched_job base;
397 
398 	/** @refcount: Reference count. */
399 	struct kref refcount;
400 
401 	/** @cleanup_op_ctx_work: Work used to cleanup the VM operation context. */
402 	struct work_struct cleanup_op_ctx_work;
403 
404 	/** @vm: VM targeted by the VM operation. */
405 	struct panthor_vm *vm;
406 
407 	/** @ctx: Operation context. */
408 	struct panthor_vm_op_ctx ctx;
409 };
410 
411 /**
412  * @pt_cache: Cache used to allocate MMU page tables.
413  *
414  * The pre-allocation pattern forces us to over-allocate to plan for
415  * the worst case scenario, and return the pages we didn't use.
416  *
417  * Having a kmem_cache allows us to speed allocations.
418  */
419 static struct kmem_cache *pt_cache;
420 
421 /**
422  * alloc_pt() - Custom page table allocator
423  * @cookie: Cookie passed at page table allocation time.
424  * @size: Size of the page table. This size should be fixed,
425  * and determined at creation time based on the granule size.
426  * @gfp: GFP flags.
427  *
428  * We want a custom allocator so we can use a cache for page table
429  * allocations and amortize the cost of the over-reservation that's
430  * done to allow asynchronous VM operations.
431  *
432  * Return: non-NULL on success, NULL if the allocation failed for any
433  * reason.
434  */
435 static void *alloc_pt(void *cookie, size_t size, gfp_t gfp)
436 {
437 	struct panthor_vm *vm = cookie;
438 	void *page;
439 
440 	/* Allocation of the root page table happening during init. */
441 	if (unlikely(!vm->root_page_table)) {
442 		struct page *p;
443 
444 		drm_WARN_ON(&vm->ptdev->base, vm->op_ctx);
445 		p = alloc_pages_node(dev_to_node(vm->ptdev->base.dev),
446 				     gfp | __GFP_ZERO, get_order(size));
447 		page = p ? page_address(p) : NULL;
448 		vm->root_page_table = page;
449 		return page;
450 	}
451 
452 	/* We're not supposed to have anything bigger than 4k here, because we picked a
453 	 * 4k granule size at init time.
454 	 */
455 	if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K))
456 		return NULL;
457 
458 	/* We must have some op_ctx attached to the VM and it must have at least one
459 	 * free page.
460 	 */
461 	if (drm_WARN_ON(&vm->ptdev->base, !vm->op_ctx) ||
462 	    drm_WARN_ON(&vm->ptdev->base,
463 			vm->op_ctx->rsvd_page_tables.ptr >= vm->op_ctx->rsvd_page_tables.count))
464 		return NULL;
465 
466 	page = vm->op_ctx->rsvd_page_tables.pages[vm->op_ctx->rsvd_page_tables.ptr++];
467 	memset(page, 0, SZ_4K);
468 
469 	/* Page table entries don't use virtual addresses, which trips out
470 	 * kmemleak. kmemleak_alloc_phys() might work, but physical addresses
471 	 * are mixed with other fields, and I fear kmemleak won't detect that
472 	 * either.
473 	 *
474 	 * Let's just ignore memory passed to the page-table driver for now.
475 	 */
476 	kmemleak_ignore(page);
477 	return page;
478 }
479 
480 /**
481  * @free_pt() - Custom page table free function
482  * @cookie: Cookie passed at page table allocation time.
483  * @data: Page table to free.
484  * @size: Size of the page table. This size should be fixed,
485  * and determined at creation time based on the granule size.
486  */
487 static void free_pt(void *cookie, void *data, size_t size)
488 {
489 	struct panthor_vm *vm = cookie;
490 
491 	if (unlikely(vm->root_page_table == data)) {
492 		free_pages((unsigned long)data, get_order(size));
493 		vm->root_page_table = NULL;
494 		return;
495 	}
496 
497 	if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K))
498 		return;
499 
500 	/* Return the page to the pt_cache. */
501 	kmem_cache_free(pt_cache, data);
502 }
503 
504 static int wait_ready(struct panthor_device *ptdev, u32 as_nr)
505 {
506 	int ret;
507 	u32 val;
508 
509 	/* Wait for the MMU status to indicate there is no active command, in
510 	 * case one is pending.
511 	 */
512 	ret = readl_relaxed_poll_timeout_atomic(ptdev->iomem + AS_STATUS(as_nr),
513 						val, !(val & AS_STATUS_AS_ACTIVE),
514 						10, 100000);
515 
516 	if (ret) {
517 		panthor_device_schedule_reset(ptdev);
518 		drm_err(&ptdev->base, "AS_ACTIVE bit stuck\n");
519 	}
520 
521 	return ret;
522 }
523 
524 static int write_cmd(struct panthor_device *ptdev, u32 as_nr, u32 cmd)
525 {
526 	int status;
527 
528 	/* write AS_COMMAND when MMU is ready to accept another command */
529 	status = wait_ready(ptdev, as_nr);
530 	if (!status)
531 		gpu_write(ptdev, AS_COMMAND(as_nr), cmd);
532 
533 	return status;
534 }
535 
536 static void lock_region(struct panthor_device *ptdev, u32 as_nr,
537 			u64 region_start, u64 size)
538 {
539 	u8 region_width;
540 	u64 region;
541 	u64 region_end = region_start + size;
542 
543 	if (!size)
544 		return;
545 
546 	/*
547 	 * The locked region is a naturally aligned power of 2 block encoded as
548 	 * log2 minus(1).
549 	 * Calculate the desired start/end and look for the highest bit which
550 	 * differs. The smallest naturally aligned block must include this bit
551 	 * change, the desired region starts with this bit (and subsequent bits)
552 	 * zeroed and ends with the bit (and subsequent bits) set to one.
553 	 */
554 	region_width = max(fls64(region_start ^ (region_end - 1)),
555 			   const_ilog2(AS_LOCK_REGION_MIN_SIZE)) - 1;
556 
557 	/*
558 	 * Mask off the low bits of region_start (which would be ignored by
559 	 * the hardware anyway)
560 	 */
561 	region_start &= GENMASK_ULL(63, region_width);
562 
563 	region = region_width | region_start;
564 
565 	/* Lock the region that needs to be updated */
566 	gpu_write(ptdev, AS_LOCKADDR_LO(as_nr), lower_32_bits(region));
567 	gpu_write(ptdev, AS_LOCKADDR_HI(as_nr), upper_32_bits(region));
568 	write_cmd(ptdev, as_nr, AS_COMMAND_LOCK);
569 }
570 
571 static int mmu_hw_do_operation_locked(struct panthor_device *ptdev, int as_nr,
572 				      u64 iova, u64 size, u32 op)
573 {
574 	lockdep_assert_held(&ptdev->mmu->as.slots_lock);
575 
576 	if (as_nr < 0)
577 		return 0;
578 
579 	/*
580 	 * If the AS number is greater than zero, then we can be sure
581 	 * the device is up and running, so we don't need to explicitly
582 	 * power it up
583 	 */
584 
585 	if (op != AS_COMMAND_UNLOCK)
586 		lock_region(ptdev, as_nr, iova, size);
587 
588 	/* Run the MMU operation */
589 	write_cmd(ptdev, as_nr, op);
590 
591 	/* Wait for the flush to complete */
592 	return wait_ready(ptdev, as_nr);
593 }
594 
595 static int mmu_hw_do_operation(struct panthor_vm *vm,
596 			       u64 iova, u64 size, u32 op)
597 {
598 	struct panthor_device *ptdev = vm->ptdev;
599 	int ret;
600 
601 	mutex_lock(&ptdev->mmu->as.slots_lock);
602 	ret = mmu_hw_do_operation_locked(ptdev, vm->as.id, iova, size, op);
603 	mutex_unlock(&ptdev->mmu->as.slots_lock);
604 
605 	return ret;
606 }
607 
608 static int panthor_mmu_as_enable(struct panthor_device *ptdev, u32 as_nr,
609 				 u64 transtab, u64 transcfg, u64 memattr)
610 {
611 	int ret;
612 
613 	ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
614 	if (ret)
615 		return ret;
616 
617 	gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), lower_32_bits(transtab));
618 	gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), upper_32_bits(transtab));
619 
620 	gpu_write(ptdev, AS_MEMATTR_LO(as_nr), lower_32_bits(memattr));
621 	gpu_write(ptdev, AS_MEMATTR_HI(as_nr), upper_32_bits(memattr));
622 
623 	gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), lower_32_bits(transcfg));
624 	gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), upper_32_bits(transcfg));
625 
626 	return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE);
627 }
628 
629 static int panthor_mmu_as_disable(struct panthor_device *ptdev, u32 as_nr)
630 {
631 	int ret;
632 
633 	ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
634 	if (ret)
635 		return ret;
636 
637 	gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), 0);
638 	gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), 0);
639 
640 	gpu_write(ptdev, AS_MEMATTR_LO(as_nr), 0);
641 	gpu_write(ptdev, AS_MEMATTR_HI(as_nr), 0);
642 
643 	gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), AS_TRANSCFG_ADRMODE_UNMAPPED);
644 	gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), 0);
645 
646 	return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE);
647 }
648 
649 static u32 panthor_mmu_fault_mask(struct panthor_device *ptdev, u32 value)
650 {
651 	/* Bits 16 to 31 mean REQ_COMPLETE. */
652 	return value & GENMASK(15, 0);
653 }
654 
655 static u32 panthor_mmu_as_fault_mask(struct panthor_device *ptdev, u32 as)
656 {
657 	return BIT(as);
658 }
659 
660 /**
661  * panthor_vm_has_unhandled_faults() - Check if a VM has unhandled faults
662  * @vm: VM to check.
663  *
664  * Return: true if the VM has unhandled faults, false otherwise.
665  */
666 bool panthor_vm_has_unhandled_faults(struct panthor_vm *vm)
667 {
668 	return vm->unhandled_fault;
669 }
670 
671 /**
672  * panthor_vm_is_unusable() - Check if the VM is still usable
673  * @vm: VM to check.
674  *
675  * Return: true if the VM is unusable, false otherwise.
676  */
677 bool panthor_vm_is_unusable(struct panthor_vm *vm)
678 {
679 	return vm->unusable;
680 }
681 
682 static void panthor_vm_release_as_locked(struct panthor_vm *vm)
683 {
684 	struct panthor_device *ptdev = vm->ptdev;
685 
686 	lockdep_assert_held(&ptdev->mmu->as.slots_lock);
687 
688 	if (drm_WARN_ON(&ptdev->base, vm->as.id < 0))
689 		return;
690 
691 	ptdev->mmu->as.slots[vm->as.id].vm = NULL;
692 	clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask);
693 	refcount_set(&vm->as.active_cnt, 0);
694 	list_del_init(&vm->as.lru_node);
695 	vm->as.id = -1;
696 }
697 
698 /**
699  * panthor_vm_active() - Flag a VM as active
700  * @VM: VM to flag as active.
701  *
702  * Assigns an address space to a VM so it can be used by the GPU/MCU.
703  *
704  * Return: 0 on success, a negative error code otherwise.
705  */
706 int panthor_vm_active(struct panthor_vm *vm)
707 {
708 	struct panthor_device *ptdev = vm->ptdev;
709 	u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
710 	struct io_pgtable_cfg *cfg = &io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg;
711 	int ret = 0, as, cookie;
712 	u64 transtab, transcfg;
713 
714 	if (!drm_dev_enter(&ptdev->base, &cookie))
715 		return -ENODEV;
716 
717 	if (refcount_inc_not_zero(&vm->as.active_cnt))
718 		goto out_dev_exit;
719 
720 	mutex_lock(&ptdev->mmu->as.slots_lock);
721 
722 	if (refcount_inc_not_zero(&vm->as.active_cnt))
723 		goto out_unlock;
724 
725 	as = vm->as.id;
726 	if (as >= 0) {
727 		/* Unhandled pagefault on this AS, the MMU was disabled. We need to
728 		 * re-enable the MMU after clearing+unmasking the AS interrupts.
729 		 */
730 		if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as))
731 			goto out_enable_as;
732 
733 		goto out_make_active;
734 	}
735 
736 	/* Check for a free AS */
737 	if (vm->for_mcu) {
738 		drm_WARN_ON(&ptdev->base, ptdev->mmu->as.alloc_mask & BIT(0));
739 		as = 0;
740 	} else {
741 		as = ffz(ptdev->mmu->as.alloc_mask | BIT(0));
742 	}
743 
744 	if (!(BIT(as) & ptdev->gpu_info.as_present)) {
745 		struct panthor_vm *lru_vm;
746 
747 		lru_vm = list_first_entry_or_null(&ptdev->mmu->as.lru_list,
748 						  struct panthor_vm,
749 						  as.lru_node);
750 		if (drm_WARN_ON(&ptdev->base, !lru_vm)) {
751 			ret = -EBUSY;
752 			goto out_unlock;
753 		}
754 
755 		drm_WARN_ON(&ptdev->base, refcount_read(&lru_vm->as.active_cnt));
756 		as = lru_vm->as.id;
757 		panthor_vm_release_as_locked(lru_vm);
758 	}
759 
760 	/* Assign the free or reclaimed AS to the FD */
761 	vm->as.id = as;
762 	set_bit(as, &ptdev->mmu->as.alloc_mask);
763 	ptdev->mmu->as.slots[as].vm = vm;
764 
765 out_enable_as:
766 	transtab = cfg->arm_lpae_s1_cfg.ttbr;
767 	transcfg = AS_TRANSCFG_PTW_MEMATTR_WB |
768 		   AS_TRANSCFG_PTW_RA |
769 		   AS_TRANSCFG_ADRMODE_AARCH64_4K |
770 		   AS_TRANSCFG_INA_BITS(55 - va_bits);
771 	if (ptdev->coherent)
772 		transcfg |= AS_TRANSCFG_PTW_SH_OS;
773 
774 	/* If the VM is re-activated, we clear the fault. */
775 	vm->unhandled_fault = false;
776 
777 	/* Unhandled pagefault on this AS, clear the fault and re-enable interrupts
778 	 * before enabling the AS.
779 	 */
780 	if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) {
781 		gpu_write(ptdev, MMU_INT_CLEAR, panthor_mmu_as_fault_mask(ptdev, as));
782 		ptdev->mmu->as.faulty_mask &= ~panthor_mmu_as_fault_mask(ptdev, as);
783 		gpu_write(ptdev, MMU_INT_MASK, ~ptdev->mmu->as.faulty_mask);
784 	}
785 
786 	ret = panthor_mmu_as_enable(vm->ptdev, vm->as.id, transtab, transcfg, vm->memattr);
787 
788 out_make_active:
789 	if (!ret) {
790 		refcount_set(&vm->as.active_cnt, 1);
791 		list_del_init(&vm->as.lru_node);
792 	}
793 
794 out_unlock:
795 	mutex_unlock(&ptdev->mmu->as.slots_lock);
796 
797 out_dev_exit:
798 	drm_dev_exit(cookie);
799 	return ret;
800 }
801 
802 /**
803  * panthor_vm_idle() - Flag a VM idle
804  * @VM: VM to flag as idle.
805  *
806  * When we know the GPU is done with the VM (no more jobs to process),
807  * we can relinquish the AS slot attached to this VM, if any.
808  *
809  * We don't release the slot immediately, but instead place the VM in
810  * the LRU list, so it can be evicted if another VM needs an AS slot.
811  * This way, VMs keep attached to the AS they were given until we run
812  * out of free slot, limiting the number of MMU operations (TLB flush
813  * and other AS updates).
814  */
815 void panthor_vm_idle(struct panthor_vm *vm)
816 {
817 	struct panthor_device *ptdev = vm->ptdev;
818 
819 	if (!refcount_dec_and_mutex_lock(&vm->as.active_cnt, &ptdev->mmu->as.slots_lock))
820 		return;
821 
822 	if (!drm_WARN_ON(&ptdev->base, vm->as.id == -1 || !list_empty(&vm->as.lru_node)))
823 		list_add_tail(&vm->as.lru_node, &ptdev->mmu->as.lru_list);
824 
825 	refcount_set(&vm->as.active_cnt, 0);
826 	mutex_unlock(&ptdev->mmu->as.slots_lock);
827 }
828 
829 u32 panthor_vm_page_size(struct panthor_vm *vm)
830 {
831 	const struct io_pgtable *pgt = io_pgtable_ops_to_pgtable(vm->pgtbl_ops);
832 	u32 pg_shift = ffs(pgt->cfg.pgsize_bitmap) - 1;
833 
834 	return 1u << pg_shift;
835 }
836 
837 static void panthor_vm_stop(struct panthor_vm *vm)
838 {
839 	drm_sched_stop(&vm->sched, NULL);
840 }
841 
842 static void panthor_vm_start(struct panthor_vm *vm)
843 {
844 	drm_sched_start(&vm->sched, 0);
845 }
846 
847 /**
848  * panthor_vm_as() - Get the AS slot attached to a VM
849  * @vm: VM to get the AS slot of.
850  *
851  * Return: -1 if the VM is not assigned an AS slot yet, >= 0 otherwise.
852  */
853 int panthor_vm_as(struct panthor_vm *vm)
854 {
855 	return vm->as.id;
856 }
857 
858 static size_t get_pgsize(u64 addr, size_t size, size_t *count)
859 {
860 	/*
861 	 * io-pgtable only operates on multiple pages within a single table
862 	 * entry, so we need to split at boundaries of the table size, i.e.
863 	 * the next block size up. The distance from address A to the next
864 	 * boundary of block size B is logically B - A % B, but in unsigned
865 	 * two's complement where B is a power of two we get the equivalence
866 	 * B - A % B == (B - A) % B == (n * B - A) % B, and choose n = 0 :)
867 	 */
868 	size_t blk_offset = -addr % SZ_2M;
869 
870 	if (blk_offset || size < SZ_2M) {
871 		*count = min_not_zero(blk_offset, size) / SZ_4K;
872 		return SZ_4K;
873 	}
874 	blk_offset = -addr % SZ_1G ?: SZ_1G;
875 	*count = min(blk_offset, size) / SZ_2M;
876 	return SZ_2M;
877 }
878 
879 static int panthor_vm_flush_range(struct panthor_vm *vm, u64 iova, u64 size)
880 {
881 	struct panthor_device *ptdev = vm->ptdev;
882 	int ret = 0, cookie;
883 
884 	if (vm->as.id < 0)
885 		return 0;
886 
887 	/* If the device is unplugged, we just silently skip the flush. */
888 	if (!drm_dev_enter(&ptdev->base, &cookie))
889 		return 0;
890 
891 	ret = mmu_hw_do_operation(vm, iova, size, AS_COMMAND_FLUSH_PT);
892 
893 	drm_dev_exit(cookie);
894 	return ret;
895 }
896 
897 /**
898  * panthor_vm_flush_all() - Flush L2 caches for the entirety of a VM's AS
899  * @vm: VM whose cache to flush
900  *
901  * Return: 0 on success, a negative error code if flush failed.
902  */
903 int panthor_vm_flush_all(struct panthor_vm *vm)
904 {
905 	return panthor_vm_flush_range(vm, vm->base.mm_start, vm->base.mm_range);
906 }
907 
908 static int panthor_vm_unmap_pages(struct panthor_vm *vm, u64 iova, u64 size)
909 {
910 	struct panthor_device *ptdev = vm->ptdev;
911 	struct io_pgtable_ops *ops = vm->pgtbl_ops;
912 	u64 offset = 0;
913 
914 	drm_dbg(&ptdev->base, "unmap: as=%d, iova=%llx, len=%llx", vm->as.id, iova, size);
915 
916 	while (offset < size) {
917 		size_t unmapped_sz = 0, pgcount;
918 		size_t pgsize = get_pgsize(iova + offset, size - offset, &pgcount);
919 
920 		unmapped_sz = ops->unmap_pages(ops, iova + offset, pgsize, pgcount, NULL);
921 
922 		if (drm_WARN_ON(&ptdev->base, unmapped_sz != pgsize * pgcount)) {
923 			drm_err(&ptdev->base, "failed to unmap range %llx-%llx (requested range %llx-%llx)\n",
924 				iova + offset + unmapped_sz,
925 				iova + offset + pgsize * pgcount,
926 				iova, iova + size);
927 			panthor_vm_flush_range(vm, iova, offset + unmapped_sz);
928 			return  -EINVAL;
929 		}
930 		offset += unmapped_sz;
931 	}
932 
933 	return panthor_vm_flush_range(vm, iova, size);
934 }
935 
936 static int
937 panthor_vm_map_pages(struct panthor_vm *vm, u64 iova, int prot,
938 		     struct sg_table *sgt, u64 offset, u64 size)
939 {
940 	struct panthor_device *ptdev = vm->ptdev;
941 	unsigned int count;
942 	struct scatterlist *sgl;
943 	struct io_pgtable_ops *ops = vm->pgtbl_ops;
944 	u64 start_iova = iova;
945 	int ret;
946 
947 	if (!size)
948 		return 0;
949 
950 	for_each_sgtable_dma_sg(sgt, sgl, count) {
951 		dma_addr_t paddr = sg_dma_address(sgl);
952 		size_t len = sg_dma_len(sgl);
953 
954 		if (len <= offset) {
955 			offset -= len;
956 			continue;
957 		}
958 
959 		paddr += offset;
960 		len -= offset;
961 		len = min_t(size_t, len, size);
962 		size -= len;
963 
964 		drm_dbg(&ptdev->base, "map: as=%d, iova=%llx, paddr=%pad, len=%zx",
965 			vm->as.id, iova, &paddr, len);
966 
967 		while (len) {
968 			size_t pgcount, mapped = 0;
969 			size_t pgsize = get_pgsize(iova | paddr, len, &pgcount);
970 
971 			ret = ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot,
972 					     GFP_KERNEL, &mapped);
973 			iova += mapped;
974 			paddr += mapped;
975 			len -= mapped;
976 
977 			if (drm_WARN_ON(&ptdev->base, !ret && !mapped))
978 				ret = -ENOMEM;
979 
980 			if (ret) {
981 				/* If something failed, unmap what we've already mapped before
982 				 * returning. The unmap call is not supposed to fail.
983 				 */
984 				drm_WARN_ON(&ptdev->base,
985 					    panthor_vm_unmap_pages(vm, start_iova,
986 								   iova - start_iova));
987 				return ret;
988 			}
989 		}
990 
991 		if (!size)
992 			break;
993 
994 		offset = 0;
995 	}
996 
997 	return panthor_vm_flush_range(vm, start_iova, iova - start_iova);
998 }
999 
1000 static int flags_to_prot(u32 flags)
1001 {
1002 	int prot = 0;
1003 
1004 	if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC)
1005 		prot |= IOMMU_NOEXEC;
1006 
1007 	if (!(flags & DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED))
1008 		prot |= IOMMU_CACHE;
1009 
1010 	if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_READONLY)
1011 		prot |= IOMMU_READ;
1012 	else
1013 		prot |= IOMMU_READ | IOMMU_WRITE;
1014 
1015 	return prot;
1016 }
1017 
1018 /**
1019  * panthor_vm_alloc_va() - Allocate a region in the auto-va space
1020  * @VM: VM to allocate a region on.
1021  * @va: start of the VA range. Can be PANTHOR_VM_KERNEL_AUTO_VA if the user
1022  * wants the VA to be automatically allocated from the auto-VA range.
1023  * @size: size of the VA range.
1024  * @va_node: drm_mm_node to initialize. Must be zero-initialized.
1025  *
1026  * Some GPU objects, like heap chunks, are fully managed by the kernel and
1027  * need to be mapped to the userspace VM, in the region reserved for kernel
1028  * objects.
1029  *
1030  * This function takes care of allocating a region in the kernel auto-VA space.
1031  *
1032  * Return: 0 on success, an error code otherwise.
1033  */
1034 int
1035 panthor_vm_alloc_va(struct panthor_vm *vm, u64 va, u64 size,
1036 		    struct drm_mm_node *va_node)
1037 {
1038 	ssize_t vm_pgsz = panthor_vm_page_size(vm);
1039 	int ret;
1040 
1041 	if (!size || !IS_ALIGNED(size, vm_pgsz))
1042 		return -EINVAL;
1043 
1044 	if (va != PANTHOR_VM_KERNEL_AUTO_VA && !IS_ALIGNED(va, vm_pgsz))
1045 		return -EINVAL;
1046 
1047 	mutex_lock(&vm->mm_lock);
1048 	if (va != PANTHOR_VM_KERNEL_AUTO_VA) {
1049 		va_node->start = va;
1050 		va_node->size = size;
1051 		ret = drm_mm_reserve_node(&vm->mm, va_node);
1052 	} else {
1053 		ret = drm_mm_insert_node_in_range(&vm->mm, va_node, size,
1054 						  size >= SZ_2M ? SZ_2M : SZ_4K,
1055 						  0, vm->kernel_auto_va.start,
1056 						  vm->kernel_auto_va.end,
1057 						  DRM_MM_INSERT_BEST);
1058 	}
1059 	mutex_unlock(&vm->mm_lock);
1060 
1061 	return ret;
1062 }
1063 
1064 /**
1065  * panthor_vm_free_va() - Free a region allocated with panthor_vm_alloc_va()
1066  * @VM: VM to free the region on.
1067  * @va_node: Memory node representing the region to free.
1068  */
1069 void panthor_vm_free_va(struct panthor_vm *vm, struct drm_mm_node *va_node)
1070 {
1071 	mutex_lock(&vm->mm_lock);
1072 	drm_mm_remove_node(va_node);
1073 	mutex_unlock(&vm->mm_lock);
1074 }
1075 
1076 static void panthor_vm_bo_put(struct drm_gpuvm_bo *vm_bo)
1077 {
1078 	struct panthor_gem_object *bo = to_panthor_bo(vm_bo->obj);
1079 	struct drm_gpuvm *vm = vm_bo->vm;
1080 	bool unpin;
1081 
1082 	/* We must retain the GEM before calling drm_gpuvm_bo_put(),
1083 	 * otherwise the mutex might be destroyed while we hold it.
1084 	 * Same goes for the VM, since we take the VM resv lock.
1085 	 */
1086 	drm_gem_object_get(&bo->base.base);
1087 	drm_gpuvm_get(vm);
1088 
1089 	/* We take the resv lock to protect against concurrent accesses to the
1090 	 * gpuvm evicted/extobj lists that are modified in
1091 	 * drm_gpuvm_bo_destroy(), which is called if drm_gpuvm_bo_put()
1092 	 * releases sthe last vm_bo reference.
1093 	 * We take the BO GPUVA list lock to protect the vm_bo removal from the
1094 	 * GEM vm_bo list.
1095 	 */
1096 	dma_resv_lock(drm_gpuvm_resv(vm), NULL);
1097 	mutex_lock(&bo->gpuva_list_lock);
1098 	unpin = drm_gpuvm_bo_put(vm_bo);
1099 	mutex_unlock(&bo->gpuva_list_lock);
1100 	dma_resv_unlock(drm_gpuvm_resv(vm));
1101 
1102 	/* If the vm_bo object was destroyed, release the pin reference that
1103 	 * was hold by this object.
1104 	 */
1105 	if (unpin && !bo->base.base.import_attach)
1106 		drm_gem_shmem_unpin(&bo->base);
1107 
1108 	drm_gpuvm_put(vm);
1109 	drm_gem_object_put(&bo->base.base);
1110 }
1111 
1112 static void panthor_vm_cleanup_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1113 				      struct panthor_vm *vm)
1114 {
1115 	struct panthor_vma *vma, *tmp_vma;
1116 
1117 	u32 remaining_pt_count = op_ctx->rsvd_page_tables.count -
1118 				 op_ctx->rsvd_page_tables.ptr;
1119 
1120 	if (remaining_pt_count) {
1121 		kmem_cache_free_bulk(pt_cache, remaining_pt_count,
1122 				     op_ctx->rsvd_page_tables.pages +
1123 				     op_ctx->rsvd_page_tables.ptr);
1124 	}
1125 
1126 	kfree(op_ctx->rsvd_page_tables.pages);
1127 
1128 	if (op_ctx->map.vm_bo)
1129 		panthor_vm_bo_put(op_ctx->map.vm_bo);
1130 
1131 	for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++)
1132 		kfree(op_ctx->preallocated_vmas[i]);
1133 
1134 	list_for_each_entry_safe(vma, tmp_vma, &op_ctx->returned_vmas, node) {
1135 		list_del(&vma->node);
1136 		panthor_vm_bo_put(vma->base.vm_bo);
1137 		kfree(vma);
1138 	}
1139 }
1140 
1141 static struct panthor_vma *
1142 panthor_vm_op_ctx_get_vma(struct panthor_vm_op_ctx *op_ctx)
1143 {
1144 	for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) {
1145 		struct panthor_vma *vma = op_ctx->preallocated_vmas[i];
1146 
1147 		if (vma) {
1148 			op_ctx->preallocated_vmas[i] = NULL;
1149 			return vma;
1150 		}
1151 	}
1152 
1153 	return NULL;
1154 }
1155 
1156 static int
1157 panthor_vm_op_ctx_prealloc_vmas(struct panthor_vm_op_ctx *op_ctx)
1158 {
1159 	u32 vma_count;
1160 
1161 	switch (op_ctx->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) {
1162 	case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
1163 		/* One VMA for the new mapping, and two more VMAs for the remap case
1164 		 * which might contain both a prev and next VA.
1165 		 */
1166 		vma_count = 3;
1167 		break;
1168 
1169 	case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
1170 		/* Partial unmaps might trigger a remap with either a prev or a next VA,
1171 		 * but not both.
1172 		 */
1173 		vma_count = 1;
1174 		break;
1175 
1176 	default:
1177 		return 0;
1178 	}
1179 
1180 	for (u32 i = 0; i < vma_count; i++) {
1181 		struct panthor_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
1182 
1183 		if (!vma)
1184 			return -ENOMEM;
1185 
1186 		op_ctx->preallocated_vmas[i] = vma;
1187 	}
1188 
1189 	return 0;
1190 }
1191 
1192 #define PANTHOR_VM_BIND_OP_MAP_FLAGS \
1193 	(DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \
1194 	 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \
1195 	 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED | \
1196 	 DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
1197 
1198 static int panthor_vm_prepare_map_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1199 					 struct panthor_vm *vm,
1200 					 struct panthor_gem_object *bo,
1201 					 u64 offset,
1202 					 u64 size, u64 va,
1203 					 u32 flags)
1204 {
1205 	struct drm_gpuvm_bo *preallocated_vm_bo;
1206 	struct sg_table *sgt = NULL;
1207 	u64 pt_count;
1208 	int ret;
1209 
1210 	if (!bo)
1211 		return -EINVAL;
1212 
1213 	if ((flags & ~PANTHOR_VM_BIND_OP_MAP_FLAGS) ||
1214 	    (flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) != DRM_PANTHOR_VM_BIND_OP_TYPE_MAP)
1215 		return -EINVAL;
1216 
1217 	/* Make sure the VA and size are aligned and in-bounds. */
1218 	if (size > bo->base.base.size || offset > bo->base.base.size - size)
1219 		return -EINVAL;
1220 
1221 	/* If the BO has an exclusive VM attached, it can't be mapped to other VMs. */
1222 	if (bo->exclusive_vm_root_gem &&
1223 	    bo->exclusive_vm_root_gem != panthor_vm_root_gem(vm))
1224 		return -EINVAL;
1225 
1226 	memset(op_ctx, 0, sizeof(*op_ctx));
1227 	INIT_LIST_HEAD(&op_ctx->returned_vmas);
1228 	op_ctx->flags = flags;
1229 	op_ctx->va.range = size;
1230 	op_ctx->va.addr = va;
1231 
1232 	ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx);
1233 	if (ret)
1234 		goto err_cleanup;
1235 
1236 	if (!bo->base.base.import_attach) {
1237 		/* Pre-reserve the BO pages, so the map operation doesn't have to
1238 		 * allocate.
1239 		 */
1240 		ret = drm_gem_shmem_pin(&bo->base);
1241 		if (ret)
1242 			goto err_cleanup;
1243 	}
1244 
1245 	sgt = drm_gem_shmem_get_pages_sgt(&bo->base);
1246 	if (IS_ERR(sgt)) {
1247 		if (!bo->base.base.import_attach)
1248 			drm_gem_shmem_unpin(&bo->base);
1249 
1250 		ret = PTR_ERR(sgt);
1251 		goto err_cleanup;
1252 	}
1253 
1254 	op_ctx->map.sgt = sgt;
1255 
1256 	preallocated_vm_bo = drm_gpuvm_bo_create(&vm->base, &bo->base.base);
1257 	if (!preallocated_vm_bo) {
1258 		if (!bo->base.base.import_attach)
1259 			drm_gem_shmem_unpin(&bo->base);
1260 
1261 		ret = -ENOMEM;
1262 		goto err_cleanup;
1263 	}
1264 
1265 	/* drm_gpuvm_bo_obtain_prealloc() will call drm_gpuvm_bo_put() on our
1266 	 * pre-allocated BO if the <BO,VM> association exists. Given we
1267 	 * only have one ref on preallocated_vm_bo, drm_gpuvm_bo_destroy() will
1268 	 * be called immediately, and we have to hold the VM resv lock when
1269 	 * calling this function.
1270 	 */
1271 	dma_resv_lock(panthor_vm_resv(vm), NULL);
1272 	mutex_lock(&bo->gpuva_list_lock);
1273 	op_ctx->map.vm_bo = drm_gpuvm_bo_obtain_prealloc(preallocated_vm_bo);
1274 	mutex_unlock(&bo->gpuva_list_lock);
1275 	dma_resv_unlock(panthor_vm_resv(vm));
1276 
1277 	/* If the a vm_bo for this <VM,BO> combination exists, it already
1278 	 * retains a pin ref, and we can release the one we took earlier.
1279 	 *
1280 	 * If our pre-allocated vm_bo is picked, it now retains the pin ref,
1281 	 * which will be released in panthor_vm_bo_put().
1282 	 */
1283 	if (preallocated_vm_bo != op_ctx->map.vm_bo &&
1284 	    !bo->base.base.import_attach)
1285 		drm_gem_shmem_unpin(&bo->base);
1286 
1287 	op_ctx->map.bo_offset = offset;
1288 
1289 	/* L1, L2 and L3 page tables.
1290 	 * We could optimize L3 allocation by iterating over the sgt and merging
1291 	 * 2M contiguous blocks, but it's simpler to over-provision and return
1292 	 * the pages if they're not used.
1293 	 */
1294 	pt_count = ((ALIGN(va + size, 1ull << 39) - ALIGN_DOWN(va, 1ull << 39)) >> 39) +
1295 		   ((ALIGN(va + size, 1ull << 30) - ALIGN_DOWN(va, 1ull << 30)) >> 30) +
1296 		   ((ALIGN(va + size, 1ull << 21) - ALIGN_DOWN(va, 1ull << 21)) >> 21);
1297 
1298 	op_ctx->rsvd_page_tables.pages = kcalloc(pt_count,
1299 						 sizeof(*op_ctx->rsvd_page_tables.pages),
1300 						 GFP_KERNEL);
1301 	if (!op_ctx->rsvd_page_tables.pages) {
1302 		ret = -ENOMEM;
1303 		goto err_cleanup;
1304 	}
1305 
1306 	ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count,
1307 				    op_ctx->rsvd_page_tables.pages);
1308 	op_ctx->rsvd_page_tables.count = ret;
1309 	if (ret != pt_count) {
1310 		ret = -ENOMEM;
1311 		goto err_cleanup;
1312 	}
1313 
1314 	/* Insert BO into the extobj list last, when we know nothing can fail. */
1315 	dma_resv_lock(panthor_vm_resv(vm), NULL);
1316 	drm_gpuvm_bo_extobj_add(op_ctx->map.vm_bo);
1317 	dma_resv_unlock(panthor_vm_resv(vm));
1318 
1319 	return 0;
1320 
1321 err_cleanup:
1322 	panthor_vm_cleanup_op_ctx(op_ctx, vm);
1323 	return ret;
1324 }
1325 
1326 static int panthor_vm_prepare_unmap_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1327 					   struct panthor_vm *vm,
1328 					   u64 va, u64 size)
1329 {
1330 	u32 pt_count = 0;
1331 	int ret;
1332 
1333 	memset(op_ctx, 0, sizeof(*op_ctx));
1334 	INIT_LIST_HEAD(&op_ctx->returned_vmas);
1335 	op_ctx->va.range = size;
1336 	op_ctx->va.addr = va;
1337 	op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP;
1338 
1339 	/* Pre-allocate L3 page tables to account for the split-2M-block
1340 	 * situation on unmap.
1341 	 */
1342 	if (va != ALIGN(va, SZ_2M))
1343 		pt_count++;
1344 
1345 	if (va + size != ALIGN(va + size, SZ_2M) &&
1346 	    ALIGN(va + size, SZ_2M) != ALIGN(va, SZ_2M))
1347 		pt_count++;
1348 
1349 	ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx);
1350 	if (ret)
1351 		goto err_cleanup;
1352 
1353 	if (pt_count) {
1354 		op_ctx->rsvd_page_tables.pages = kcalloc(pt_count,
1355 							 sizeof(*op_ctx->rsvd_page_tables.pages),
1356 							 GFP_KERNEL);
1357 		if (!op_ctx->rsvd_page_tables.pages) {
1358 			ret = -ENOMEM;
1359 			goto err_cleanup;
1360 		}
1361 
1362 		ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count,
1363 					    op_ctx->rsvd_page_tables.pages);
1364 		if (ret != pt_count) {
1365 			ret = -ENOMEM;
1366 			goto err_cleanup;
1367 		}
1368 		op_ctx->rsvd_page_tables.count = pt_count;
1369 	}
1370 
1371 	return 0;
1372 
1373 err_cleanup:
1374 	panthor_vm_cleanup_op_ctx(op_ctx, vm);
1375 	return ret;
1376 }
1377 
1378 static void panthor_vm_prepare_sync_only_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1379 						struct panthor_vm *vm)
1380 {
1381 	memset(op_ctx, 0, sizeof(*op_ctx));
1382 	INIT_LIST_HEAD(&op_ctx->returned_vmas);
1383 	op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY;
1384 }
1385 
1386 /**
1387  * panthor_vm_get_bo_for_va() - Get the GEM object mapped at a virtual address
1388  * @vm: VM to look into.
1389  * @va: Virtual address to search for.
1390  * @bo_offset: Offset of the GEM object mapped at this virtual address.
1391  * Only valid on success.
1392  *
1393  * The object returned by this function might no longer be mapped when the
1394  * function returns. It's the caller responsibility to ensure there's no
1395  * concurrent map/unmap operations making the returned value invalid, or
1396  * make sure it doesn't matter if the object is no longer mapped.
1397  *
1398  * Return: A valid pointer on success, an ERR_PTR() otherwise.
1399  */
1400 struct panthor_gem_object *
1401 panthor_vm_get_bo_for_va(struct panthor_vm *vm, u64 va, u64 *bo_offset)
1402 {
1403 	struct panthor_gem_object *bo = ERR_PTR(-ENOENT);
1404 	struct drm_gpuva *gpuva;
1405 	struct panthor_vma *vma;
1406 
1407 	/* Take the VM lock to prevent concurrent map/unmap operations. */
1408 	mutex_lock(&vm->op_lock);
1409 	gpuva = drm_gpuva_find_first(&vm->base, va, 1);
1410 	vma = gpuva ? container_of(gpuva, struct panthor_vma, base) : NULL;
1411 	if (vma && vma->base.gem.obj) {
1412 		drm_gem_object_get(vma->base.gem.obj);
1413 		bo = to_panthor_bo(vma->base.gem.obj);
1414 		*bo_offset = vma->base.gem.offset + (va - vma->base.va.addr);
1415 	}
1416 	mutex_unlock(&vm->op_lock);
1417 
1418 	return bo;
1419 }
1420 
1421 #define PANTHOR_VM_MIN_KERNEL_VA_SIZE	SZ_256M
1422 
1423 static u64
1424 panthor_vm_create_get_user_va_range(const struct drm_panthor_vm_create *args,
1425 				    u64 full_va_range)
1426 {
1427 	u64 user_va_range;
1428 
1429 	/* Make sure we have a minimum amount of VA space for kernel objects. */
1430 	if (full_va_range < PANTHOR_VM_MIN_KERNEL_VA_SIZE)
1431 		return 0;
1432 
1433 	if (args->user_va_range) {
1434 		/* Use the user provided value if != 0. */
1435 		user_va_range = args->user_va_range;
1436 	} else if (TASK_SIZE_OF(current) < full_va_range) {
1437 		/* If the task VM size is smaller than the GPU VA range, pick this
1438 		 * as our default user VA range, so userspace can CPU/GPU map buffers
1439 		 * at the same address.
1440 		 */
1441 		user_va_range = TASK_SIZE_OF(current);
1442 	} else {
1443 		/* If the GPU VA range is smaller than the task VM size, we
1444 		 * just have to live with the fact we won't be able to map
1445 		 * all buffers at the same GPU/CPU address.
1446 		 *
1447 		 * If the GPU VA range is bigger than 4G (more than 32-bit of
1448 		 * VA), we split the range in two, and assign half of it to
1449 		 * the user and the other half to the kernel, if it's not, we
1450 		 * keep the kernel VA space as small as possible.
1451 		 */
1452 		user_va_range = full_va_range > SZ_4G ?
1453 				full_va_range / 2 :
1454 				full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE;
1455 	}
1456 
1457 	if (full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE < user_va_range)
1458 		user_va_range = full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE;
1459 
1460 	return user_va_range;
1461 }
1462 
1463 #define PANTHOR_VM_CREATE_FLAGS		0
1464 
1465 static int
1466 panthor_vm_create_check_args(const struct panthor_device *ptdev,
1467 			     const struct drm_panthor_vm_create *args,
1468 			     u64 *kernel_va_start, u64 *kernel_va_range)
1469 {
1470 	u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
1471 	u64 full_va_range = 1ull << va_bits;
1472 	u64 user_va_range;
1473 
1474 	if (args->flags & ~PANTHOR_VM_CREATE_FLAGS)
1475 		return -EINVAL;
1476 
1477 	user_va_range = panthor_vm_create_get_user_va_range(args, full_va_range);
1478 	if (!user_va_range || (args->user_va_range && args->user_va_range > user_va_range))
1479 		return -EINVAL;
1480 
1481 	/* Pick a kernel VA range that's a power of two, to have a clear split. */
1482 	*kernel_va_range = rounddown_pow_of_two(full_va_range - user_va_range);
1483 	*kernel_va_start = full_va_range - *kernel_va_range;
1484 	return 0;
1485 }
1486 
1487 /*
1488  * Only 32 VMs per open file. If that becomes a limiting factor, we can
1489  * increase this number.
1490  */
1491 #define PANTHOR_MAX_VMS_PER_FILE	32
1492 
1493 /**
1494  * panthor_vm_pool_create_vm() - Create a VM
1495  * @pool: The VM to create this VM on.
1496  * @kernel_va_start: Start of the region reserved for kernel objects.
1497  * @kernel_va_range: Size of the region reserved for kernel objects.
1498  *
1499  * Return: a positive VM ID on success, a negative error code otherwise.
1500  */
1501 int panthor_vm_pool_create_vm(struct panthor_device *ptdev,
1502 			      struct panthor_vm_pool *pool,
1503 			      struct drm_panthor_vm_create *args)
1504 {
1505 	u64 kernel_va_start, kernel_va_range;
1506 	struct panthor_vm *vm;
1507 	int ret;
1508 	u32 id;
1509 
1510 	ret = panthor_vm_create_check_args(ptdev, args, &kernel_va_start, &kernel_va_range);
1511 	if (ret)
1512 		return ret;
1513 
1514 	vm = panthor_vm_create(ptdev, false, kernel_va_start, kernel_va_range,
1515 			       kernel_va_start, kernel_va_range);
1516 	if (IS_ERR(vm))
1517 		return PTR_ERR(vm);
1518 
1519 	ret = xa_alloc(&pool->xa, &id, vm,
1520 		       XA_LIMIT(1, PANTHOR_MAX_VMS_PER_FILE), GFP_KERNEL);
1521 
1522 	if (ret) {
1523 		panthor_vm_put(vm);
1524 		return ret;
1525 	}
1526 
1527 	args->user_va_range = kernel_va_start;
1528 	return id;
1529 }
1530 
1531 static void panthor_vm_destroy(struct panthor_vm *vm)
1532 {
1533 	if (!vm)
1534 		return;
1535 
1536 	vm->destroyed = true;
1537 
1538 	mutex_lock(&vm->heaps.lock);
1539 	panthor_heap_pool_destroy(vm->heaps.pool);
1540 	vm->heaps.pool = NULL;
1541 	mutex_unlock(&vm->heaps.lock);
1542 
1543 	drm_WARN_ON(&vm->ptdev->base,
1544 		    panthor_vm_unmap_range(vm, vm->base.mm_start, vm->base.mm_range));
1545 	panthor_vm_put(vm);
1546 }
1547 
1548 /**
1549  * panthor_vm_pool_destroy_vm() - Destroy a VM.
1550  * @pool: VM pool.
1551  * @handle: VM handle.
1552  *
1553  * This function doesn't free the VM object or its resources, it just kills
1554  * all mappings, and makes sure nothing can be mapped after that point.
1555  *
1556  * If there was any active jobs at the time this function is called, these
1557  * jobs should experience page faults and be killed as a result.
1558  *
1559  * The VM resources are freed when the last reference on the VM object is
1560  * dropped.
1561  */
1562 int panthor_vm_pool_destroy_vm(struct panthor_vm_pool *pool, u32 handle)
1563 {
1564 	struct panthor_vm *vm;
1565 
1566 	vm = xa_erase(&pool->xa, handle);
1567 
1568 	panthor_vm_destroy(vm);
1569 
1570 	return vm ? 0 : -EINVAL;
1571 }
1572 
1573 /**
1574  * panthor_vm_pool_get_vm() - Retrieve VM object bound to a VM handle
1575  * @pool: VM pool to check.
1576  * @handle: Handle of the VM to retrieve.
1577  *
1578  * Return: A valid pointer if the VM exists, NULL otherwise.
1579  */
1580 struct panthor_vm *
1581 panthor_vm_pool_get_vm(struct panthor_vm_pool *pool, u32 handle)
1582 {
1583 	struct panthor_vm *vm;
1584 
1585 	xa_lock(&pool->xa);
1586 	vm = panthor_vm_get(xa_load(&pool->xa, handle));
1587 	xa_unlock(&pool->xa);
1588 
1589 	return vm;
1590 }
1591 
1592 /**
1593  * panthor_vm_pool_destroy() - Destroy a VM pool.
1594  * @pfile: File.
1595  *
1596  * Destroy all VMs in the pool, and release the pool resources.
1597  *
1598  * Note that VMs can outlive the pool they were created from if other
1599  * objects hold a reference to there VMs.
1600  */
1601 void panthor_vm_pool_destroy(struct panthor_file *pfile)
1602 {
1603 	struct panthor_vm *vm;
1604 	unsigned long i;
1605 
1606 	if (!pfile->vms)
1607 		return;
1608 
1609 	xa_for_each(&pfile->vms->xa, i, vm)
1610 		panthor_vm_destroy(vm);
1611 
1612 	xa_destroy(&pfile->vms->xa);
1613 	kfree(pfile->vms);
1614 }
1615 
1616 /**
1617  * panthor_vm_pool_create() - Create a VM pool
1618  * @pfile: File.
1619  *
1620  * Return: 0 on success, a negative error code otherwise.
1621  */
1622 int panthor_vm_pool_create(struct panthor_file *pfile)
1623 {
1624 	pfile->vms = kzalloc(sizeof(*pfile->vms), GFP_KERNEL);
1625 	if (!pfile->vms)
1626 		return -ENOMEM;
1627 
1628 	xa_init_flags(&pfile->vms->xa, XA_FLAGS_ALLOC1);
1629 	return 0;
1630 }
1631 
1632 /* dummy TLB ops, the real TLB flush happens in panthor_vm_flush_range() */
1633 static void mmu_tlb_flush_all(void *cookie)
1634 {
1635 }
1636 
1637 static void mmu_tlb_flush_walk(unsigned long iova, size_t size, size_t granule, void *cookie)
1638 {
1639 }
1640 
1641 static const struct iommu_flush_ops mmu_tlb_ops = {
1642 	.tlb_flush_all = mmu_tlb_flush_all,
1643 	.tlb_flush_walk = mmu_tlb_flush_walk,
1644 };
1645 
1646 static const char *access_type_name(struct panthor_device *ptdev,
1647 				    u32 fault_status)
1648 {
1649 	switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) {
1650 	case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC:
1651 		return "ATOMIC";
1652 	case AS_FAULTSTATUS_ACCESS_TYPE_READ:
1653 		return "READ";
1654 	case AS_FAULTSTATUS_ACCESS_TYPE_WRITE:
1655 		return "WRITE";
1656 	case AS_FAULTSTATUS_ACCESS_TYPE_EX:
1657 		return "EXECUTE";
1658 	default:
1659 		drm_WARN_ON(&ptdev->base, 1);
1660 		return NULL;
1661 	}
1662 }
1663 
1664 static void panthor_mmu_irq_handler(struct panthor_device *ptdev, u32 status)
1665 {
1666 	bool has_unhandled_faults = false;
1667 
1668 	status = panthor_mmu_fault_mask(ptdev, status);
1669 	while (status) {
1670 		u32 as = ffs(status | (status >> 16)) - 1;
1671 		u32 mask = panthor_mmu_as_fault_mask(ptdev, as);
1672 		u32 new_int_mask;
1673 		u64 addr;
1674 		u32 fault_status;
1675 		u32 exception_type;
1676 		u32 access_type;
1677 		u32 source_id;
1678 
1679 		fault_status = gpu_read(ptdev, AS_FAULTSTATUS(as));
1680 		addr = gpu_read(ptdev, AS_FAULTADDRESS_LO(as));
1681 		addr |= (u64)gpu_read(ptdev, AS_FAULTADDRESS_HI(as)) << 32;
1682 
1683 		/* decode the fault status */
1684 		exception_type = fault_status & 0xFF;
1685 		access_type = (fault_status >> 8) & 0x3;
1686 		source_id = (fault_status >> 16);
1687 
1688 		mutex_lock(&ptdev->mmu->as.slots_lock);
1689 
1690 		ptdev->mmu->as.faulty_mask |= mask;
1691 		new_int_mask =
1692 			panthor_mmu_fault_mask(ptdev, ~ptdev->mmu->as.faulty_mask);
1693 
1694 		/* terminal fault, print info about the fault */
1695 		drm_err(&ptdev->base,
1696 			"Unhandled Page fault in AS%d at VA 0x%016llX\n"
1697 			"raw fault status: 0x%X\n"
1698 			"decoded fault status: %s\n"
1699 			"exception type 0x%X: %s\n"
1700 			"access type 0x%X: %s\n"
1701 			"source id 0x%X\n",
1702 			as, addr,
1703 			fault_status,
1704 			(fault_status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"),
1705 			exception_type, panthor_exception_name(ptdev, exception_type),
1706 			access_type, access_type_name(ptdev, fault_status),
1707 			source_id);
1708 
1709 		/* Ignore MMU interrupts on this AS until it's been
1710 		 * re-enabled.
1711 		 */
1712 		ptdev->mmu->irq.mask = new_int_mask;
1713 		gpu_write(ptdev, MMU_INT_MASK, new_int_mask);
1714 
1715 		if (ptdev->mmu->as.slots[as].vm)
1716 			ptdev->mmu->as.slots[as].vm->unhandled_fault = true;
1717 
1718 		/* Disable the MMU to kill jobs on this AS. */
1719 		panthor_mmu_as_disable(ptdev, as);
1720 		mutex_unlock(&ptdev->mmu->as.slots_lock);
1721 
1722 		status &= ~mask;
1723 		has_unhandled_faults = true;
1724 	}
1725 
1726 	if (has_unhandled_faults)
1727 		panthor_sched_report_mmu_fault(ptdev);
1728 }
1729 PANTHOR_IRQ_HANDLER(mmu, MMU, panthor_mmu_irq_handler);
1730 
1731 /**
1732  * panthor_mmu_suspend() - Suspend the MMU logic
1733  * @ptdev: Device.
1734  *
1735  * All we do here is de-assign the AS slots on all active VMs, so things
1736  * get flushed to the main memory, and no further access to these VMs are
1737  * possible.
1738  *
1739  * We also suspend the MMU IRQ.
1740  */
1741 void panthor_mmu_suspend(struct panthor_device *ptdev)
1742 {
1743 	mutex_lock(&ptdev->mmu->as.slots_lock);
1744 	for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
1745 		struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
1746 
1747 		if (vm) {
1748 			drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i));
1749 			panthor_vm_release_as_locked(vm);
1750 		}
1751 	}
1752 	mutex_unlock(&ptdev->mmu->as.slots_lock);
1753 
1754 	panthor_mmu_irq_suspend(&ptdev->mmu->irq);
1755 }
1756 
1757 /**
1758  * panthor_mmu_resume() - Resume the MMU logic
1759  * @ptdev: Device.
1760  *
1761  * Resume the IRQ.
1762  *
1763  * We don't re-enable previously active VMs. We assume other parts of the
1764  * driver will call panthor_vm_active() on the VMs they intend to use.
1765  */
1766 void panthor_mmu_resume(struct panthor_device *ptdev)
1767 {
1768 	mutex_lock(&ptdev->mmu->as.slots_lock);
1769 	ptdev->mmu->as.alloc_mask = 0;
1770 	ptdev->mmu->as.faulty_mask = 0;
1771 	mutex_unlock(&ptdev->mmu->as.slots_lock);
1772 
1773 	panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0));
1774 }
1775 
1776 /**
1777  * panthor_mmu_pre_reset() - Prepare for a reset
1778  * @ptdev: Device.
1779  *
1780  * Suspend the IRQ, and make sure all VM_BIND queues are stopped, so we
1781  * don't get asked to do a VM operation while the GPU is down.
1782  *
1783  * We don't cleanly shutdown the AS slots here, because the reset might
1784  * come from an AS_ACTIVE_BIT stuck situation.
1785  */
1786 void panthor_mmu_pre_reset(struct panthor_device *ptdev)
1787 {
1788 	struct panthor_vm *vm;
1789 
1790 	panthor_mmu_irq_suspend(&ptdev->mmu->irq);
1791 
1792 	mutex_lock(&ptdev->mmu->vm.lock);
1793 	ptdev->mmu->vm.reset_in_progress = true;
1794 	list_for_each_entry(vm, &ptdev->mmu->vm.list, node)
1795 		panthor_vm_stop(vm);
1796 	mutex_unlock(&ptdev->mmu->vm.lock);
1797 }
1798 
1799 /**
1800  * panthor_mmu_post_reset() - Restore things after a reset
1801  * @ptdev: Device.
1802  *
1803  * Put the MMU logic back in action after a reset. That implies resuming the
1804  * IRQ and re-enabling the VM_BIND queues.
1805  */
1806 void panthor_mmu_post_reset(struct panthor_device *ptdev)
1807 {
1808 	struct panthor_vm *vm;
1809 
1810 	mutex_lock(&ptdev->mmu->as.slots_lock);
1811 
1812 	/* Now that the reset is effective, we can assume that none of the
1813 	 * AS slots are setup, and clear the faulty flags too.
1814 	 */
1815 	ptdev->mmu->as.alloc_mask = 0;
1816 	ptdev->mmu->as.faulty_mask = 0;
1817 
1818 	for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
1819 		struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
1820 
1821 		if (vm)
1822 			panthor_vm_release_as_locked(vm);
1823 	}
1824 
1825 	mutex_unlock(&ptdev->mmu->as.slots_lock);
1826 
1827 	panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0));
1828 
1829 	/* Restart the VM_BIND queues. */
1830 	mutex_lock(&ptdev->mmu->vm.lock);
1831 	list_for_each_entry(vm, &ptdev->mmu->vm.list, node) {
1832 		panthor_vm_start(vm);
1833 	}
1834 	ptdev->mmu->vm.reset_in_progress = false;
1835 	mutex_unlock(&ptdev->mmu->vm.lock);
1836 }
1837 
1838 static void panthor_vm_free(struct drm_gpuvm *gpuvm)
1839 {
1840 	struct panthor_vm *vm = container_of(gpuvm, struct panthor_vm, base);
1841 	struct panthor_device *ptdev = vm->ptdev;
1842 
1843 	mutex_lock(&vm->heaps.lock);
1844 	if (drm_WARN_ON(&ptdev->base, vm->heaps.pool))
1845 		panthor_heap_pool_destroy(vm->heaps.pool);
1846 	mutex_unlock(&vm->heaps.lock);
1847 	mutex_destroy(&vm->heaps.lock);
1848 
1849 	mutex_lock(&ptdev->mmu->vm.lock);
1850 	list_del(&vm->node);
1851 	/* Restore the scheduler state so we can call drm_sched_entity_destroy()
1852 	 * and drm_sched_fini(). If get there, that means we have no job left
1853 	 * and no new jobs can be queued, so we can start the scheduler without
1854 	 * risking interfering with the reset.
1855 	 */
1856 	if (ptdev->mmu->vm.reset_in_progress)
1857 		panthor_vm_start(vm);
1858 	mutex_unlock(&ptdev->mmu->vm.lock);
1859 
1860 	drm_sched_entity_destroy(&vm->entity);
1861 	drm_sched_fini(&vm->sched);
1862 
1863 	mutex_lock(&ptdev->mmu->as.slots_lock);
1864 	if (vm->as.id >= 0) {
1865 		int cookie;
1866 
1867 		if (drm_dev_enter(&ptdev->base, &cookie)) {
1868 			panthor_mmu_as_disable(ptdev, vm->as.id);
1869 			drm_dev_exit(cookie);
1870 		}
1871 
1872 		ptdev->mmu->as.slots[vm->as.id].vm = NULL;
1873 		clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask);
1874 		list_del(&vm->as.lru_node);
1875 	}
1876 	mutex_unlock(&ptdev->mmu->as.slots_lock);
1877 
1878 	free_io_pgtable_ops(vm->pgtbl_ops);
1879 
1880 	drm_mm_takedown(&vm->mm);
1881 	kfree(vm);
1882 }
1883 
1884 /**
1885  * panthor_vm_put() - Release a reference on a VM
1886  * @vm: VM to release the reference on. Can be NULL.
1887  */
1888 void panthor_vm_put(struct panthor_vm *vm)
1889 {
1890 	drm_gpuvm_put(vm ? &vm->base : NULL);
1891 }
1892 
1893 /**
1894  * panthor_vm_get() - Get a VM reference
1895  * @vm: VM to get the reference on. Can be NULL.
1896  *
1897  * Return: @vm value.
1898  */
1899 struct panthor_vm *panthor_vm_get(struct panthor_vm *vm)
1900 {
1901 	if (vm)
1902 		drm_gpuvm_get(&vm->base);
1903 
1904 	return vm;
1905 }
1906 
1907 /**
1908  * panthor_vm_get_heap_pool() - Get the heap pool attached to a VM
1909  * @vm: VM to query the heap pool on.
1910  * @create: True if the heap pool should be created when it doesn't exist.
1911  *
1912  * Heap pools are per-VM. This function allows one to retrieve the heap pool
1913  * attached to a VM.
1914  *
1915  * If no heap pool exists yet, and @create is true, we create one.
1916  *
1917  * The returned panthor_heap_pool should be released with panthor_heap_pool_put().
1918  *
1919  * Return: A valid pointer on success, an ERR_PTR() otherwise.
1920  */
1921 struct panthor_heap_pool *panthor_vm_get_heap_pool(struct panthor_vm *vm, bool create)
1922 {
1923 	struct panthor_heap_pool *pool;
1924 
1925 	mutex_lock(&vm->heaps.lock);
1926 	if (!vm->heaps.pool && create) {
1927 		if (vm->destroyed)
1928 			pool = ERR_PTR(-EINVAL);
1929 		else
1930 			pool = panthor_heap_pool_create(vm->ptdev, vm);
1931 
1932 		if (!IS_ERR(pool))
1933 			vm->heaps.pool = panthor_heap_pool_get(pool);
1934 	} else {
1935 		pool = panthor_heap_pool_get(vm->heaps.pool);
1936 		if (!pool)
1937 			pool = ERR_PTR(-ENOENT);
1938 	}
1939 	mutex_unlock(&vm->heaps.lock);
1940 
1941 	return pool;
1942 }
1943 
1944 static u64 mair_to_memattr(u64 mair, bool coherent)
1945 {
1946 	u64 memattr = 0;
1947 	u32 i;
1948 
1949 	for (i = 0; i < 8; i++) {
1950 		u8 in_attr = mair >> (8 * i), out_attr;
1951 		u8 outer = in_attr >> 4, inner = in_attr & 0xf;
1952 
1953 		/* For caching to be enabled, inner and outer caching policy
1954 		 * have to be both write-back, if one of them is write-through
1955 		 * or non-cacheable, we just choose non-cacheable. Device
1956 		 * memory is also translated to non-cacheable.
1957 		 */
1958 		if (!(outer & 3) || !(outer & 4) || !(inner & 4)) {
1959 			out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_NC |
1960 				   AS_MEMATTR_AARCH64_SH_MIDGARD_INNER |
1961 				   AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(false, false);
1962 		} else {
1963 			out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_WB |
1964 				   AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(inner & 1, inner & 2);
1965 			/* Use SH_MIDGARD_INNER mode when device isn't coherent,
1966 			 * so SH_IS, which is used when IOMMU_CACHE is set, maps
1967 			 * to Mali's internal-shareable mode. As per the Mali
1968 			 * Spec, inner and outer-shareable modes aren't allowed
1969 			 * for WB memory when coherency is disabled.
1970 			 * Use SH_CPU_INNER mode when coherency is enabled, so
1971 			 * that SH_IS actually maps to the standard definition of
1972 			 * inner-shareable.
1973 			 */
1974 			if (!coherent)
1975 				out_attr |= AS_MEMATTR_AARCH64_SH_MIDGARD_INNER;
1976 			else
1977 				out_attr |= AS_MEMATTR_AARCH64_SH_CPU_INNER;
1978 		}
1979 
1980 		memattr |= (u64)out_attr << (8 * i);
1981 	}
1982 
1983 	return memattr;
1984 }
1985 
1986 static void panthor_vma_link(struct panthor_vm *vm,
1987 			     struct panthor_vma *vma,
1988 			     struct drm_gpuvm_bo *vm_bo)
1989 {
1990 	struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj);
1991 
1992 	mutex_lock(&bo->gpuva_list_lock);
1993 	drm_gpuva_link(&vma->base, vm_bo);
1994 	drm_WARN_ON(&vm->ptdev->base, drm_gpuvm_bo_put(vm_bo));
1995 	mutex_unlock(&bo->gpuva_list_lock);
1996 }
1997 
1998 static void panthor_vma_unlink(struct panthor_vm *vm,
1999 			       struct panthor_vma *vma)
2000 {
2001 	struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj);
2002 	struct drm_gpuvm_bo *vm_bo = drm_gpuvm_bo_get(vma->base.vm_bo);
2003 
2004 	mutex_lock(&bo->gpuva_list_lock);
2005 	drm_gpuva_unlink(&vma->base);
2006 	mutex_unlock(&bo->gpuva_list_lock);
2007 
2008 	/* drm_gpuva_unlink() release the vm_bo, but we manually retained it
2009 	 * when entering this function, so we can implement deferred VMA
2010 	 * destruction. Re-assign it here.
2011 	 */
2012 	vma->base.vm_bo = vm_bo;
2013 	list_add_tail(&vma->node, &vm->op_ctx->returned_vmas);
2014 }
2015 
2016 static void panthor_vma_init(struct panthor_vma *vma, u32 flags)
2017 {
2018 	INIT_LIST_HEAD(&vma->node);
2019 	vma->flags = flags;
2020 }
2021 
2022 #define PANTHOR_VM_MAP_FLAGS \
2023 	(DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \
2024 	 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \
2025 	 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED)
2026 
2027 static int panthor_gpuva_sm_step_map(struct drm_gpuva_op *op, void *priv)
2028 {
2029 	struct panthor_vm *vm = priv;
2030 	struct panthor_vm_op_ctx *op_ctx = vm->op_ctx;
2031 	struct panthor_vma *vma = panthor_vm_op_ctx_get_vma(op_ctx);
2032 	int ret;
2033 
2034 	if (!vma)
2035 		return -EINVAL;
2036 
2037 	panthor_vma_init(vma, op_ctx->flags & PANTHOR_VM_MAP_FLAGS);
2038 
2039 	ret = panthor_vm_map_pages(vm, op->map.va.addr, flags_to_prot(vma->flags),
2040 				   op_ctx->map.sgt, op->map.gem.offset,
2041 				   op->map.va.range);
2042 	if (ret)
2043 		return ret;
2044 
2045 	/* Ref owned by the mapping now, clear the obj field so we don't release the
2046 	 * pinning/obj ref behind GPUVA's back.
2047 	 */
2048 	drm_gpuva_map(&vm->base, &vma->base, &op->map);
2049 	panthor_vma_link(vm, vma, op_ctx->map.vm_bo);
2050 	op_ctx->map.vm_bo = NULL;
2051 	return 0;
2052 }
2053 
2054 static int panthor_gpuva_sm_step_remap(struct drm_gpuva_op *op,
2055 				       void *priv)
2056 {
2057 	struct panthor_vma *unmap_vma = container_of(op->remap.unmap->va, struct panthor_vma, base);
2058 	struct panthor_vm *vm = priv;
2059 	struct panthor_vm_op_ctx *op_ctx = vm->op_ctx;
2060 	struct panthor_vma *prev_vma = NULL, *next_vma = NULL;
2061 	u64 unmap_start, unmap_range;
2062 	int ret;
2063 
2064 	drm_gpuva_op_remap_to_unmap_range(&op->remap, &unmap_start, &unmap_range);
2065 	ret = panthor_vm_unmap_pages(vm, unmap_start, unmap_range);
2066 	if (ret)
2067 		return ret;
2068 
2069 	if (op->remap.prev) {
2070 		prev_vma = panthor_vm_op_ctx_get_vma(op_ctx);
2071 		panthor_vma_init(prev_vma, unmap_vma->flags);
2072 	}
2073 
2074 	if (op->remap.next) {
2075 		next_vma = panthor_vm_op_ctx_get_vma(op_ctx);
2076 		panthor_vma_init(next_vma, unmap_vma->flags);
2077 	}
2078 
2079 	drm_gpuva_remap(prev_vma ? &prev_vma->base : NULL,
2080 			next_vma ? &next_vma->base : NULL,
2081 			&op->remap);
2082 
2083 	if (prev_vma) {
2084 		/* panthor_vma_link() transfers the vm_bo ownership to
2085 		 * the VMA object. Since the vm_bo we're passing is still
2086 		 * owned by the old mapping which will be released when this
2087 		 * mapping is destroyed, we need to grab a ref here.
2088 		 */
2089 		panthor_vma_link(vm, prev_vma,
2090 				 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo));
2091 	}
2092 
2093 	if (next_vma) {
2094 		panthor_vma_link(vm, next_vma,
2095 				 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo));
2096 	}
2097 
2098 	panthor_vma_unlink(vm, unmap_vma);
2099 	return 0;
2100 }
2101 
2102 static int panthor_gpuva_sm_step_unmap(struct drm_gpuva_op *op,
2103 				       void *priv)
2104 {
2105 	struct panthor_vma *unmap_vma = container_of(op->unmap.va, struct panthor_vma, base);
2106 	struct panthor_vm *vm = priv;
2107 	int ret;
2108 
2109 	ret = panthor_vm_unmap_pages(vm, unmap_vma->base.va.addr,
2110 				     unmap_vma->base.va.range);
2111 	if (drm_WARN_ON(&vm->ptdev->base, ret))
2112 		return ret;
2113 
2114 	drm_gpuva_unmap(&op->unmap);
2115 	panthor_vma_unlink(vm, unmap_vma);
2116 	return 0;
2117 }
2118 
2119 static const struct drm_gpuvm_ops panthor_gpuvm_ops = {
2120 	.vm_free = panthor_vm_free,
2121 	.sm_step_map = panthor_gpuva_sm_step_map,
2122 	.sm_step_remap = panthor_gpuva_sm_step_remap,
2123 	.sm_step_unmap = panthor_gpuva_sm_step_unmap,
2124 };
2125 
2126 /**
2127  * panthor_vm_resv() - Get the dma_resv object attached to a VM.
2128  * @vm: VM to get the dma_resv of.
2129  *
2130  * Return: A dma_resv object.
2131  */
2132 struct dma_resv *panthor_vm_resv(struct panthor_vm *vm)
2133 {
2134 	return drm_gpuvm_resv(&vm->base);
2135 }
2136 
2137 struct drm_gem_object *panthor_vm_root_gem(struct panthor_vm *vm)
2138 {
2139 	if (!vm)
2140 		return NULL;
2141 
2142 	return vm->base.r_obj;
2143 }
2144 
2145 static int
2146 panthor_vm_exec_op(struct panthor_vm *vm, struct panthor_vm_op_ctx *op,
2147 		   bool flag_vm_unusable_on_failure)
2148 {
2149 	u32 op_type = op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK;
2150 	int ret;
2151 
2152 	if (op_type == DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY)
2153 		return 0;
2154 
2155 	mutex_lock(&vm->op_lock);
2156 	vm->op_ctx = op;
2157 	switch (op_type) {
2158 	case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
2159 		if (vm->unusable) {
2160 			ret = -EINVAL;
2161 			break;
2162 		}
2163 
2164 		ret = drm_gpuvm_sm_map(&vm->base, vm, op->va.addr, op->va.range,
2165 				       op->map.vm_bo->obj, op->map.bo_offset);
2166 		break;
2167 
2168 	case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
2169 		ret = drm_gpuvm_sm_unmap(&vm->base, vm, op->va.addr, op->va.range);
2170 		break;
2171 
2172 	default:
2173 		ret = -EINVAL;
2174 		break;
2175 	}
2176 
2177 	if (ret && flag_vm_unusable_on_failure)
2178 		vm->unusable = true;
2179 
2180 	vm->op_ctx = NULL;
2181 	mutex_unlock(&vm->op_lock);
2182 
2183 	return ret;
2184 }
2185 
2186 static struct dma_fence *
2187 panthor_vm_bind_run_job(struct drm_sched_job *sched_job)
2188 {
2189 	struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2190 	bool cookie;
2191 	int ret;
2192 
2193 	/* Not only we report an error whose result is propagated to the
2194 	 * drm_sched finished fence, but we also flag the VM as unusable, because
2195 	 * a failure in the async VM_BIND results in an inconsistent state. VM needs
2196 	 * to be destroyed and recreated.
2197 	 */
2198 	cookie = dma_fence_begin_signalling();
2199 	ret = panthor_vm_exec_op(job->vm, &job->ctx, true);
2200 	dma_fence_end_signalling(cookie);
2201 
2202 	return ret ? ERR_PTR(ret) : NULL;
2203 }
2204 
2205 static void panthor_vm_bind_job_release(struct kref *kref)
2206 {
2207 	struct panthor_vm_bind_job *job = container_of(kref, struct panthor_vm_bind_job, refcount);
2208 
2209 	if (job->base.s_fence)
2210 		drm_sched_job_cleanup(&job->base);
2211 
2212 	panthor_vm_cleanup_op_ctx(&job->ctx, job->vm);
2213 	panthor_vm_put(job->vm);
2214 	kfree(job);
2215 }
2216 
2217 /**
2218  * panthor_vm_bind_job_put() - Release a VM_BIND job reference
2219  * @sched_job: Job to release the reference on.
2220  */
2221 void panthor_vm_bind_job_put(struct drm_sched_job *sched_job)
2222 {
2223 	struct panthor_vm_bind_job *job =
2224 		container_of(sched_job, struct panthor_vm_bind_job, base);
2225 
2226 	if (sched_job)
2227 		kref_put(&job->refcount, panthor_vm_bind_job_release);
2228 }
2229 
2230 static void
2231 panthor_vm_bind_free_job(struct drm_sched_job *sched_job)
2232 {
2233 	struct panthor_vm_bind_job *job =
2234 		container_of(sched_job, struct panthor_vm_bind_job, base);
2235 
2236 	drm_sched_job_cleanup(sched_job);
2237 
2238 	/* Do the heavy cleanups asynchronously, so we're out of the
2239 	 * dma-signaling path and can acquire dma-resv locks safely.
2240 	 */
2241 	queue_work(panthor_cleanup_wq, &job->cleanup_op_ctx_work);
2242 }
2243 
2244 static enum drm_gpu_sched_stat
2245 panthor_vm_bind_timedout_job(struct drm_sched_job *sched_job)
2246 {
2247 	WARN(1, "VM_BIND ops are synchronous for now, there should be no timeout!");
2248 	return DRM_GPU_SCHED_STAT_NOMINAL;
2249 }
2250 
2251 static const struct drm_sched_backend_ops panthor_vm_bind_ops = {
2252 	.run_job = panthor_vm_bind_run_job,
2253 	.free_job = panthor_vm_bind_free_job,
2254 	.timedout_job = panthor_vm_bind_timedout_job,
2255 };
2256 
2257 /**
2258  * panthor_vm_create() - Create a VM
2259  * @ptdev: Device.
2260  * @for_mcu: True if this is the FW MCU VM.
2261  * @kernel_va_start: Start of the range reserved for kernel BO mapping.
2262  * @kernel_va_size: Size of the range reserved for kernel BO mapping.
2263  * @auto_kernel_va_start: Start of the auto-VA kernel range.
2264  * @auto_kernel_va_size: Size of the auto-VA kernel range.
2265  *
2266  * Return: A valid pointer on success, an ERR_PTR() otherwise.
2267  */
2268 struct panthor_vm *
2269 panthor_vm_create(struct panthor_device *ptdev, bool for_mcu,
2270 		  u64 kernel_va_start, u64 kernel_va_size,
2271 		  u64 auto_kernel_va_start, u64 auto_kernel_va_size)
2272 {
2273 	u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
2274 	u32 pa_bits = GPU_MMU_FEATURES_PA_BITS(ptdev->gpu_info.mmu_features);
2275 	u64 full_va_range = 1ull << va_bits;
2276 	struct drm_gem_object *dummy_gem;
2277 	struct drm_gpu_scheduler *sched;
2278 	struct io_pgtable_cfg pgtbl_cfg;
2279 	u64 mair, min_va, va_range;
2280 	struct panthor_vm *vm;
2281 	int ret;
2282 
2283 	vm = kzalloc(sizeof(*vm), GFP_KERNEL);
2284 	if (!vm)
2285 		return ERR_PTR(-ENOMEM);
2286 
2287 	/* We allocate a dummy GEM for the VM. */
2288 	dummy_gem = drm_gpuvm_resv_object_alloc(&ptdev->base);
2289 	if (!dummy_gem) {
2290 		ret = -ENOMEM;
2291 		goto err_free_vm;
2292 	}
2293 
2294 	mutex_init(&vm->heaps.lock);
2295 	vm->for_mcu = for_mcu;
2296 	vm->ptdev = ptdev;
2297 	mutex_init(&vm->op_lock);
2298 
2299 	if (for_mcu) {
2300 		/* CSF MCU is a cortex M7, and can only address 4G */
2301 		min_va = 0;
2302 		va_range = SZ_4G;
2303 	} else {
2304 		min_va = 0;
2305 		va_range = full_va_range;
2306 	}
2307 
2308 	mutex_init(&vm->mm_lock);
2309 	drm_mm_init(&vm->mm, kernel_va_start, kernel_va_size);
2310 	vm->kernel_auto_va.start = auto_kernel_va_start;
2311 	vm->kernel_auto_va.end = vm->kernel_auto_va.start + auto_kernel_va_size - 1;
2312 
2313 	INIT_LIST_HEAD(&vm->node);
2314 	INIT_LIST_HEAD(&vm->as.lru_node);
2315 	vm->as.id = -1;
2316 	refcount_set(&vm->as.active_cnt, 0);
2317 
2318 	pgtbl_cfg = (struct io_pgtable_cfg) {
2319 		.pgsize_bitmap	= SZ_4K | SZ_2M,
2320 		.ias		= va_bits,
2321 		.oas		= pa_bits,
2322 		.coherent_walk	= ptdev->coherent,
2323 		.tlb		= &mmu_tlb_ops,
2324 		.iommu_dev	= ptdev->base.dev,
2325 		.alloc		= alloc_pt,
2326 		.free		= free_pt,
2327 	};
2328 
2329 	vm->pgtbl_ops = alloc_io_pgtable_ops(ARM_64_LPAE_S1, &pgtbl_cfg, vm);
2330 	if (!vm->pgtbl_ops) {
2331 		ret = -EINVAL;
2332 		goto err_mm_takedown;
2333 	}
2334 
2335 	/* Bind operations are synchronous for now, no timeout needed. */
2336 	ret = drm_sched_init(&vm->sched, &panthor_vm_bind_ops, ptdev->mmu->vm.wq,
2337 			     1, 1, 0,
2338 			     MAX_SCHEDULE_TIMEOUT, NULL, NULL,
2339 			     "panthor-vm-bind", ptdev->base.dev);
2340 	if (ret)
2341 		goto err_free_io_pgtable;
2342 
2343 	sched = &vm->sched;
2344 	ret = drm_sched_entity_init(&vm->entity, 0, &sched, 1, NULL);
2345 	if (ret)
2346 		goto err_sched_fini;
2347 
2348 	mair = io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg.arm_lpae_s1_cfg.mair;
2349 	vm->memattr = mair_to_memattr(mair, ptdev->coherent);
2350 
2351 	mutex_lock(&ptdev->mmu->vm.lock);
2352 	list_add_tail(&vm->node, &ptdev->mmu->vm.list);
2353 
2354 	/* If a reset is in progress, stop the scheduler. */
2355 	if (ptdev->mmu->vm.reset_in_progress)
2356 		panthor_vm_stop(vm);
2357 	mutex_unlock(&ptdev->mmu->vm.lock);
2358 
2359 	/* We intentionally leave the reserved range to zero, because we want kernel VMAs
2360 	 * to be handled the same way user VMAs are.
2361 	 */
2362 	drm_gpuvm_init(&vm->base, for_mcu ? "panthor-MCU-VM" : "panthor-GPU-VM",
2363 		       DRM_GPUVM_RESV_PROTECTED, &ptdev->base, dummy_gem,
2364 		       min_va, va_range, 0, 0, &panthor_gpuvm_ops);
2365 	drm_gem_object_put(dummy_gem);
2366 	return vm;
2367 
2368 err_sched_fini:
2369 	drm_sched_fini(&vm->sched);
2370 
2371 err_free_io_pgtable:
2372 	free_io_pgtable_ops(vm->pgtbl_ops);
2373 
2374 err_mm_takedown:
2375 	drm_mm_takedown(&vm->mm);
2376 	drm_gem_object_put(dummy_gem);
2377 
2378 err_free_vm:
2379 	kfree(vm);
2380 	return ERR_PTR(ret);
2381 }
2382 
2383 static int
2384 panthor_vm_bind_prepare_op_ctx(struct drm_file *file,
2385 			       struct panthor_vm *vm,
2386 			       const struct drm_panthor_vm_bind_op *op,
2387 			       struct panthor_vm_op_ctx *op_ctx)
2388 {
2389 	ssize_t vm_pgsz = panthor_vm_page_size(vm);
2390 	struct drm_gem_object *gem;
2391 	int ret;
2392 
2393 	/* Aligned on page size. */
2394 	if (!IS_ALIGNED(op->va | op->size, vm_pgsz))
2395 		return -EINVAL;
2396 
2397 	switch (op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) {
2398 	case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
2399 		gem = drm_gem_object_lookup(file, op->bo_handle);
2400 		ret = panthor_vm_prepare_map_op_ctx(op_ctx, vm,
2401 						    gem ? to_panthor_bo(gem) : NULL,
2402 						    op->bo_offset,
2403 						    op->size,
2404 						    op->va,
2405 						    op->flags);
2406 		drm_gem_object_put(gem);
2407 		return ret;
2408 
2409 	case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
2410 		if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
2411 			return -EINVAL;
2412 
2413 		if (op->bo_handle || op->bo_offset)
2414 			return -EINVAL;
2415 
2416 		return panthor_vm_prepare_unmap_op_ctx(op_ctx, vm, op->va, op->size);
2417 
2418 	case DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY:
2419 		if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
2420 			return -EINVAL;
2421 
2422 		if (op->bo_handle || op->bo_offset)
2423 			return -EINVAL;
2424 
2425 		if (op->va || op->size)
2426 			return -EINVAL;
2427 
2428 		if (!op->syncs.count)
2429 			return -EINVAL;
2430 
2431 		panthor_vm_prepare_sync_only_op_ctx(op_ctx, vm);
2432 		return 0;
2433 
2434 	default:
2435 		return -EINVAL;
2436 	}
2437 }
2438 
2439 static void panthor_vm_bind_job_cleanup_op_ctx_work(struct work_struct *work)
2440 {
2441 	struct panthor_vm_bind_job *job =
2442 		container_of(work, struct panthor_vm_bind_job, cleanup_op_ctx_work);
2443 
2444 	panthor_vm_bind_job_put(&job->base);
2445 }
2446 
2447 /**
2448  * panthor_vm_bind_job_create() - Create a VM_BIND job
2449  * @file: File.
2450  * @vm: VM targeted by the VM_BIND job.
2451  * @op: VM operation data.
2452  *
2453  * Return: A valid pointer on success, an ERR_PTR() otherwise.
2454  */
2455 struct drm_sched_job *
2456 panthor_vm_bind_job_create(struct drm_file *file,
2457 			   struct panthor_vm *vm,
2458 			   const struct drm_panthor_vm_bind_op *op)
2459 {
2460 	struct panthor_vm_bind_job *job;
2461 	int ret;
2462 
2463 	if (!vm)
2464 		return ERR_PTR(-EINVAL);
2465 
2466 	if (vm->destroyed || vm->unusable)
2467 		return ERR_PTR(-EINVAL);
2468 
2469 	job = kzalloc(sizeof(*job), GFP_KERNEL);
2470 	if (!job)
2471 		return ERR_PTR(-ENOMEM);
2472 
2473 	ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &job->ctx);
2474 	if (ret) {
2475 		kfree(job);
2476 		return ERR_PTR(ret);
2477 	}
2478 
2479 	INIT_WORK(&job->cleanup_op_ctx_work, panthor_vm_bind_job_cleanup_op_ctx_work);
2480 	kref_init(&job->refcount);
2481 	job->vm = panthor_vm_get(vm);
2482 
2483 	ret = drm_sched_job_init(&job->base, &vm->entity, 1, vm);
2484 	if (ret)
2485 		goto err_put_job;
2486 
2487 	return &job->base;
2488 
2489 err_put_job:
2490 	panthor_vm_bind_job_put(&job->base);
2491 	return ERR_PTR(ret);
2492 }
2493 
2494 /**
2495  * panthor_vm_bind_job_prepare_resvs() - Prepare VM_BIND job dma_resvs
2496  * @exec: The locking/preparation context.
2497  * @sched_job: The job to prepare resvs on.
2498  *
2499  * Locks and prepare the VM resv.
2500  *
2501  * If this is a map operation, locks and prepares the GEM resv.
2502  *
2503  * Return: 0 on success, a negative error code otherwise.
2504  */
2505 int panthor_vm_bind_job_prepare_resvs(struct drm_exec *exec,
2506 				      struct drm_sched_job *sched_job)
2507 {
2508 	struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2509 	int ret;
2510 
2511 	/* Acquire the VM lock an reserve a slot for this VM bind job. */
2512 	ret = drm_gpuvm_prepare_vm(&job->vm->base, exec, 1);
2513 	if (ret)
2514 		return ret;
2515 
2516 	if (job->ctx.map.vm_bo) {
2517 		/* Lock/prepare the GEM being mapped. */
2518 		ret = drm_exec_prepare_obj(exec, job->ctx.map.vm_bo->obj, 1);
2519 		if (ret)
2520 			return ret;
2521 	}
2522 
2523 	return 0;
2524 }
2525 
2526 /**
2527  * panthor_vm_bind_job_update_resvs() - Update the resv objects touched by a job
2528  * @exec: drm_exec context.
2529  * @sched_job: Job to update the resvs on.
2530  */
2531 void panthor_vm_bind_job_update_resvs(struct drm_exec *exec,
2532 				      struct drm_sched_job *sched_job)
2533 {
2534 	struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2535 
2536 	/* Explicit sync => we just register our job finished fence as bookkeep. */
2537 	drm_gpuvm_resv_add_fence(&job->vm->base, exec,
2538 				 &sched_job->s_fence->finished,
2539 				 DMA_RESV_USAGE_BOOKKEEP,
2540 				 DMA_RESV_USAGE_BOOKKEEP);
2541 }
2542 
2543 void panthor_vm_update_resvs(struct panthor_vm *vm, struct drm_exec *exec,
2544 			     struct dma_fence *fence,
2545 			     enum dma_resv_usage private_usage,
2546 			     enum dma_resv_usage extobj_usage)
2547 {
2548 	drm_gpuvm_resv_add_fence(&vm->base, exec, fence, private_usage, extobj_usage);
2549 }
2550 
2551 /**
2552  * panthor_vm_bind_exec_sync_op() - Execute a VM_BIND operation synchronously.
2553  * @file: File.
2554  * @vm: VM targeted by the VM operation.
2555  * @op: Data describing the VM operation.
2556  *
2557  * Return: 0 on success, a negative error code otherwise.
2558  */
2559 int panthor_vm_bind_exec_sync_op(struct drm_file *file,
2560 				 struct panthor_vm *vm,
2561 				 struct drm_panthor_vm_bind_op *op)
2562 {
2563 	struct panthor_vm_op_ctx op_ctx;
2564 	int ret;
2565 
2566 	/* No sync objects allowed on synchronous operations. */
2567 	if (op->syncs.count)
2568 		return -EINVAL;
2569 
2570 	if (!op->size)
2571 		return 0;
2572 
2573 	ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &op_ctx);
2574 	if (ret)
2575 		return ret;
2576 
2577 	ret = panthor_vm_exec_op(vm, &op_ctx, false);
2578 	panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2579 
2580 	return ret;
2581 }
2582 
2583 /**
2584  * panthor_vm_map_bo_range() - Map a GEM object range to a VM
2585  * @vm: VM to map the GEM to.
2586  * @bo: GEM object to map.
2587  * @offset: Offset in the GEM object.
2588  * @size: Size to map.
2589  * @va: Virtual address to map the object to.
2590  * @flags: Combination of drm_panthor_vm_bind_op_flags flags.
2591  * Only map-related flags are valid.
2592  *
2593  * Internal use only. For userspace requests, use
2594  * panthor_vm_bind_exec_sync_op() instead.
2595  *
2596  * Return: 0 on success, a negative error code otherwise.
2597  */
2598 int panthor_vm_map_bo_range(struct panthor_vm *vm, struct panthor_gem_object *bo,
2599 			    u64 offset, u64 size, u64 va, u32 flags)
2600 {
2601 	struct panthor_vm_op_ctx op_ctx;
2602 	int ret;
2603 
2604 	ret = panthor_vm_prepare_map_op_ctx(&op_ctx, vm, bo, offset, size, va, flags);
2605 	if (ret)
2606 		return ret;
2607 
2608 	ret = panthor_vm_exec_op(vm, &op_ctx, false);
2609 	panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2610 
2611 	return ret;
2612 }
2613 
2614 /**
2615  * panthor_vm_unmap_range() - Unmap a portion of the VA space
2616  * @vm: VM to unmap the region from.
2617  * @va: Virtual address to unmap. Must be 4k aligned.
2618  * @size: Size of the region to unmap. Must be 4k aligned.
2619  *
2620  * Internal use only. For userspace requests, use
2621  * panthor_vm_bind_exec_sync_op() instead.
2622  *
2623  * Return: 0 on success, a negative error code otherwise.
2624  */
2625 int panthor_vm_unmap_range(struct panthor_vm *vm, u64 va, u64 size)
2626 {
2627 	struct panthor_vm_op_ctx op_ctx;
2628 	int ret;
2629 
2630 	ret = panthor_vm_prepare_unmap_op_ctx(&op_ctx, vm, va, size);
2631 	if (ret)
2632 		return ret;
2633 
2634 	ret = panthor_vm_exec_op(vm, &op_ctx, false);
2635 	panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2636 
2637 	return ret;
2638 }
2639 
2640 /**
2641  * panthor_vm_prepare_mapped_bos_resvs() - Prepare resvs on VM BOs.
2642  * @exec: Locking/preparation context.
2643  * @vm: VM targeted by the GPU job.
2644  * @slot_count: Number of slots to reserve.
2645  *
2646  * GPU jobs assume all BOs bound to the VM at the time the job is submitted
2647  * are available when the job is executed. In order to guarantee that, we
2648  * need to reserve a slot on all BOs mapped to a VM and update this slot with
2649  * the job fence after its submission.
2650  *
2651  * Return: 0 on success, a negative error code otherwise.
2652  */
2653 int panthor_vm_prepare_mapped_bos_resvs(struct drm_exec *exec, struct panthor_vm *vm,
2654 					u32 slot_count)
2655 {
2656 	int ret;
2657 
2658 	/* Acquire the VM lock and reserve a slot for this GPU job. */
2659 	ret = drm_gpuvm_prepare_vm(&vm->base, exec, slot_count);
2660 	if (ret)
2661 		return ret;
2662 
2663 	return drm_gpuvm_prepare_objects(&vm->base, exec, slot_count);
2664 }
2665 
2666 /**
2667  * panthor_mmu_unplug() - Unplug the MMU logic
2668  * @ptdev: Device.
2669  *
2670  * No access to the MMU regs should be done after this function is called.
2671  * We suspend the IRQ and disable all VMs to guarantee that.
2672  */
2673 void panthor_mmu_unplug(struct panthor_device *ptdev)
2674 {
2675 	if (!IS_ENABLED(CONFIG_PM) || pm_runtime_active(ptdev->base.dev))
2676 		panthor_mmu_irq_suspend(&ptdev->mmu->irq);
2677 
2678 	mutex_lock(&ptdev->mmu->as.slots_lock);
2679 	for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
2680 		struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
2681 
2682 		if (vm) {
2683 			drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i));
2684 			panthor_vm_release_as_locked(vm);
2685 		}
2686 	}
2687 	mutex_unlock(&ptdev->mmu->as.slots_lock);
2688 }
2689 
2690 static void panthor_mmu_release_wq(struct drm_device *ddev, void *res)
2691 {
2692 	destroy_workqueue(res);
2693 }
2694 
2695 /**
2696  * panthor_mmu_init() - Initialize the MMU logic.
2697  * @ptdev: Device.
2698  *
2699  * Return: 0 on success, a negative error code otherwise.
2700  */
2701 int panthor_mmu_init(struct panthor_device *ptdev)
2702 {
2703 	u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
2704 	struct panthor_mmu *mmu;
2705 	int ret, irq;
2706 
2707 	mmu = drmm_kzalloc(&ptdev->base, sizeof(*mmu), GFP_KERNEL);
2708 	if (!mmu)
2709 		return -ENOMEM;
2710 
2711 	INIT_LIST_HEAD(&mmu->as.lru_list);
2712 
2713 	ret = drmm_mutex_init(&ptdev->base, &mmu->as.slots_lock);
2714 	if (ret)
2715 		return ret;
2716 
2717 	INIT_LIST_HEAD(&mmu->vm.list);
2718 	ret = drmm_mutex_init(&ptdev->base, &mmu->vm.lock);
2719 	if (ret)
2720 		return ret;
2721 
2722 	ptdev->mmu = mmu;
2723 
2724 	irq = platform_get_irq_byname(to_platform_device(ptdev->base.dev), "mmu");
2725 	if (irq <= 0)
2726 		return -ENODEV;
2727 
2728 	ret = panthor_request_mmu_irq(ptdev, &mmu->irq, irq,
2729 				      panthor_mmu_fault_mask(ptdev, ~0));
2730 	if (ret)
2731 		return ret;
2732 
2733 	mmu->vm.wq = alloc_workqueue("panthor-vm-bind", WQ_UNBOUND, 0);
2734 	if (!mmu->vm.wq)
2735 		return -ENOMEM;
2736 
2737 	/* On 32-bit kernels, the VA space is limited by the io_pgtable_ops abstraction,
2738 	 * which passes iova as an unsigned long. Patch the mmu_features to reflect this
2739 	 * limitation.
2740 	 */
2741 	if (va_bits > BITS_PER_LONG) {
2742 		ptdev->gpu_info.mmu_features &= ~GENMASK(7, 0);
2743 		ptdev->gpu_info.mmu_features |= BITS_PER_LONG;
2744 	}
2745 
2746 	return drmm_add_action_or_reset(&ptdev->base, panthor_mmu_release_wq, mmu->vm.wq);
2747 }
2748 
2749 #ifdef CONFIG_DEBUG_FS
2750 static int show_vm_gpuvas(struct panthor_vm *vm, struct seq_file *m)
2751 {
2752 	int ret;
2753 
2754 	mutex_lock(&vm->op_lock);
2755 	ret = drm_debugfs_gpuva_info(m, &vm->base);
2756 	mutex_unlock(&vm->op_lock);
2757 
2758 	return ret;
2759 }
2760 
2761 static int show_each_vm(struct seq_file *m, void *arg)
2762 {
2763 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2764 	struct drm_device *ddev = node->minor->dev;
2765 	struct panthor_device *ptdev = container_of(ddev, struct panthor_device, base);
2766 	int (*show)(struct panthor_vm *, struct seq_file *) = node->info_ent->data;
2767 	struct panthor_vm *vm;
2768 	int ret = 0;
2769 
2770 	mutex_lock(&ptdev->mmu->vm.lock);
2771 	list_for_each_entry(vm, &ptdev->mmu->vm.list, node) {
2772 		ret = show(vm, m);
2773 		if (ret < 0)
2774 			break;
2775 
2776 		seq_puts(m, "\n");
2777 	}
2778 	mutex_unlock(&ptdev->mmu->vm.lock);
2779 
2780 	return ret;
2781 }
2782 
2783 static struct drm_info_list panthor_mmu_debugfs_list[] = {
2784 	DRM_DEBUGFS_GPUVA_INFO(show_each_vm, show_vm_gpuvas),
2785 };
2786 
2787 /**
2788  * panthor_mmu_debugfs_init() - Initialize MMU debugfs entries
2789  * @minor: Minor.
2790  */
2791 void panthor_mmu_debugfs_init(struct drm_minor *minor)
2792 {
2793 	drm_debugfs_create_files(panthor_mmu_debugfs_list,
2794 				 ARRAY_SIZE(panthor_mmu_debugfs_list),
2795 				 minor->debugfs_root, minor);
2796 }
2797 #endif /* CONFIG_DEBUG_FS */
2798 
2799 /**
2800  * panthor_mmu_pt_cache_init() - Initialize the page table cache.
2801  *
2802  * Return: 0 on success, a negative error code otherwise.
2803  */
2804 int panthor_mmu_pt_cache_init(void)
2805 {
2806 	pt_cache = kmem_cache_create("panthor-mmu-pt", SZ_4K, SZ_4K, 0, NULL);
2807 	if (!pt_cache)
2808 		return -ENOMEM;
2809 
2810 	return 0;
2811 }
2812 
2813 /**
2814  * panthor_mmu_pt_cache_fini() - Destroy the page table cache.
2815  */
2816 void panthor_mmu_pt_cache_fini(void)
2817 {
2818 	kmem_cache_destroy(pt_cache);
2819 }
2820