1 // SPDX-License-Identifier: GPL-2.0 or MIT
2 /* Copyright 2019 Linaro, Ltd, Rob Herring <robh@kernel.org> */
3 /* Copyright 2023 Collabora ltd. */
4
5 #include <drm/drm_debugfs.h>
6 #include <drm/drm_drv.h>
7 #include <drm/drm_exec.h>
8 #include <drm/drm_gpuvm.h>
9 #include <drm/drm_managed.h>
10 #include <drm/gpu_scheduler.h>
11 #include <drm/panthor_drm.h>
12
13 #include <linux/atomic.h>
14 #include <linux/bitfield.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/io-pgtable.h>
21 #include <linux/iommu.h>
22 #include <linux/kmemleak.h>
23 #include <linux/platform_device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/rwsem.h>
26 #include <linux/sched.h>
27 #include <linux/shmem_fs.h>
28 #include <linux/sizes.h>
29
30 #include "panthor_device.h"
31 #include "panthor_gem.h"
32 #include "panthor_heap.h"
33 #include "panthor_mmu.h"
34 #include "panthor_regs.h"
35 #include "panthor_sched.h"
36
37 #define MAX_AS_SLOTS 32
38
39 struct panthor_vm;
40
41 /**
42 * struct panthor_as_slot - Address space slot
43 */
44 struct panthor_as_slot {
45 /** @vm: VM bound to this slot. NULL is no VM is bound. */
46 struct panthor_vm *vm;
47 };
48
49 /**
50 * struct panthor_mmu - MMU related data
51 */
52 struct panthor_mmu {
53 /** @irq: The MMU irq. */
54 struct panthor_irq irq;
55
56 /** @as: Address space related fields.
57 *
58 * The GPU has a limited number of address spaces (AS) slots, forcing
59 * us to re-assign them to re-assign slots on-demand.
60 */
61 struct {
62 /** @slots_lock: Lock protecting access to all other AS fields. */
63 struct mutex slots_lock;
64
65 /** @alloc_mask: Bitmask encoding the allocated slots. */
66 unsigned long alloc_mask;
67
68 /** @faulty_mask: Bitmask encoding the faulty slots. */
69 unsigned long faulty_mask;
70
71 /** @slots: VMs currently bound to the AS slots. */
72 struct panthor_as_slot slots[MAX_AS_SLOTS];
73
74 /**
75 * @lru_list: List of least recently used VMs.
76 *
77 * We use this list to pick a VM to evict when all slots are
78 * used.
79 *
80 * There should be no more active VMs than there are AS slots,
81 * so this LRU is just here to keep VMs bound until there's
82 * a need to release a slot, thus avoid unnecessary TLB/cache
83 * flushes.
84 */
85 struct list_head lru_list;
86 } as;
87
88 /** @vm: VMs management fields */
89 struct {
90 /** @lock: Lock protecting access to list. */
91 struct mutex lock;
92
93 /** @list: List containing all VMs. */
94 struct list_head list;
95
96 /** @reset_in_progress: True if a reset is in progress. */
97 bool reset_in_progress;
98
99 /** @wq: Workqueue used for the VM_BIND queues. */
100 struct workqueue_struct *wq;
101 } vm;
102 };
103
104 /**
105 * struct panthor_vm_pool - VM pool object
106 */
107 struct panthor_vm_pool {
108 /** @xa: Array used for VM handle tracking. */
109 struct xarray xa;
110 };
111
112 /**
113 * struct panthor_vma - GPU mapping object
114 *
115 * This is used to track GEM mappings in GPU space.
116 */
117 struct panthor_vma {
118 /** @base: Inherits from drm_gpuva. */
119 struct drm_gpuva base;
120
121 /** @node: Used to implement deferred release of VMAs. */
122 struct list_head node;
123
124 /**
125 * @flags: Combination of drm_panthor_vm_bind_op_flags.
126 *
127 * Only map related flags are accepted.
128 */
129 u32 flags;
130 };
131
132 /**
133 * struct panthor_vm_op_ctx - VM operation context
134 *
135 * With VM operations potentially taking place in a dma-signaling path, we
136 * need to make sure everything that might require resource allocation is
137 * pre-allocated upfront. This is what this operation context is far.
138 *
139 * We also collect resources that have been freed, so we can release them
140 * asynchronously, and let the VM_BIND scheduler process the next VM_BIND
141 * request.
142 */
143 struct panthor_vm_op_ctx {
144 /** @rsvd_page_tables: Pages reserved for the MMU page table update. */
145 struct {
146 /** @count: Number of pages reserved. */
147 u32 count;
148
149 /** @ptr: Point to the first unused page in the @pages table. */
150 u32 ptr;
151
152 /**
153 * @page: Array of pages that can be used for an MMU page table update.
154 *
155 * After an VM operation, there might be free pages left in this array.
156 * They should be returned to the pt_cache as part of the op_ctx cleanup.
157 */
158 void **pages;
159 } rsvd_page_tables;
160
161 /**
162 * @preallocated_vmas: Pre-allocated VMAs to handle the remap case.
163 *
164 * Partial unmap requests or map requests overlapping existing mappings will
165 * trigger a remap call, which need to register up to three panthor_vma objects
166 * (one for the new mapping, and two for the previous and next mappings).
167 */
168 struct panthor_vma *preallocated_vmas[3];
169
170 /** @flags: Combination of drm_panthor_vm_bind_op_flags. */
171 u32 flags;
172
173 /** @va: Virtual range targeted by the VM operation. */
174 struct {
175 /** @addr: Start address. */
176 u64 addr;
177
178 /** @range: Range size. */
179 u64 range;
180 } va;
181
182 /**
183 * @returned_vmas: List of panthor_vma objects returned after a VM operation.
184 *
185 * For unmap operations, this will contain all VMAs that were covered by the
186 * specified VA range.
187 *
188 * For map operations, this will contain all VMAs that previously mapped to
189 * the specified VA range.
190 *
191 * Those VMAs, and the resources they point to will be released as part of
192 * the op_ctx cleanup operation.
193 */
194 struct list_head returned_vmas;
195
196 /** @map: Fields specific to a map operation. */
197 struct {
198 /** @vm_bo: Buffer object to map. */
199 struct drm_gpuvm_bo *vm_bo;
200
201 /** @bo_offset: Offset in the buffer object. */
202 u64 bo_offset;
203
204 /**
205 * @sgt: sg-table pointing to pages backing the GEM object.
206 *
207 * This is gathered at job creation time, such that we don't have
208 * to allocate in ::run_job().
209 */
210 struct sg_table *sgt;
211
212 /**
213 * @new_vma: The new VMA object that will be inserted to the VA tree.
214 */
215 struct panthor_vma *new_vma;
216 } map;
217 };
218
219 /**
220 * struct panthor_vm - VM object
221 *
222 * A VM is an object representing a GPU (or MCU) virtual address space.
223 * It embeds the MMU page table for this address space, a tree containing
224 * all the virtual mappings of GEM objects, and other things needed to manage
225 * the VM.
226 *
227 * Except for the MCU VM, which is managed by the kernel, all other VMs are
228 * created by userspace and mostly managed by userspace, using the
229 * %DRM_IOCTL_PANTHOR_VM_BIND ioctl.
230 *
231 * A portion of the virtual address space is reserved for kernel objects,
232 * like heap chunks, and userspace gets to decide how much of the virtual
233 * address space is left to the kernel (half of the virtual address space
234 * by default).
235 */
236 struct panthor_vm {
237 /**
238 * @base: Inherit from drm_gpuvm.
239 *
240 * We delegate all the VA management to the common drm_gpuvm framework
241 * and only implement hooks to update the MMU page table.
242 */
243 struct drm_gpuvm base;
244
245 /**
246 * @sched: Scheduler used for asynchronous VM_BIND request.
247 *
248 * We use a 1:1 scheduler here.
249 */
250 struct drm_gpu_scheduler sched;
251
252 /**
253 * @entity: Scheduling entity representing the VM_BIND queue.
254 *
255 * There's currently one bind queue per VM. It doesn't make sense to
256 * allow more given the VM operations are serialized anyway.
257 */
258 struct drm_sched_entity entity;
259
260 /** @ptdev: Device. */
261 struct panthor_device *ptdev;
262
263 /** @memattr: Value to program to the AS_MEMATTR register. */
264 u64 memattr;
265
266 /** @pgtbl_ops: Page table operations. */
267 struct io_pgtable_ops *pgtbl_ops;
268
269 /** @root_page_table: Stores the root page table pointer. */
270 void *root_page_table;
271
272 /**
273 * @op_lock: Lock used to serialize operations on a VM.
274 *
275 * The serialization of jobs queued to the VM_BIND queue is already
276 * taken care of by drm_sched, but we need to serialize synchronous
277 * and asynchronous VM_BIND request. This is what this lock is for.
278 */
279 struct mutex op_lock;
280
281 /**
282 * @op_ctx: The context attached to the currently executing VM operation.
283 *
284 * NULL when no operation is in progress.
285 */
286 struct panthor_vm_op_ctx *op_ctx;
287
288 /**
289 * @mm: Memory management object representing the auto-VA/kernel-VA.
290 *
291 * Used to auto-allocate VA space for kernel-managed objects (tiler
292 * heaps, ...).
293 *
294 * For the MCU VM, this is managing the VA range that's used to map
295 * all shared interfaces.
296 *
297 * For user VMs, the range is specified by userspace, and must not
298 * exceed half of the VA space addressable.
299 */
300 struct drm_mm mm;
301
302 /** @mm_lock: Lock protecting the @mm field. */
303 struct mutex mm_lock;
304
305 /** @kernel_auto_va: Automatic VA-range for kernel BOs. */
306 struct {
307 /** @start: Start of the automatic VA-range for kernel BOs. */
308 u64 start;
309
310 /** @size: Size of the automatic VA-range for kernel BOs. */
311 u64 end;
312 } kernel_auto_va;
313
314 /** @as: Address space related fields. */
315 struct {
316 /**
317 * @id: ID of the address space this VM is bound to.
318 *
319 * A value of -1 means the VM is inactive/not bound.
320 */
321 int id;
322
323 /** @active_cnt: Number of active users of this VM. */
324 refcount_t active_cnt;
325
326 /**
327 * @lru_node: Used to instead the VM in the panthor_mmu::as::lru_list.
328 *
329 * Active VMs should not be inserted in the LRU list.
330 */
331 struct list_head lru_node;
332 } as;
333
334 /**
335 * @heaps: Tiler heap related fields.
336 */
337 struct {
338 /**
339 * @pool: The heap pool attached to this VM.
340 *
341 * Will stay NULL until someone creates a heap context on this VM.
342 */
343 struct panthor_heap_pool *pool;
344
345 /** @lock: Lock used to protect access to @pool. */
346 struct mutex lock;
347 } heaps;
348
349 /** @node: Used to insert the VM in the panthor_mmu::vm::list. */
350 struct list_head node;
351
352 /** @for_mcu: True if this is the MCU VM. */
353 bool for_mcu;
354
355 /**
356 * @destroyed: True if the VM was destroyed.
357 *
358 * No further bind requests should be queued to a destroyed VM.
359 */
360 bool destroyed;
361
362 /**
363 * @unusable: True if the VM has turned unusable because something
364 * bad happened during an asynchronous request.
365 *
366 * We don't try to recover from such failures, because this implies
367 * informing userspace about the specific operation that failed, and
368 * hoping the userspace driver can replay things from there. This all
369 * sounds very complicated for little gain.
370 *
371 * Instead, we should just flag the VM as unusable, and fail any
372 * further request targeting this VM.
373 *
374 * We also provide a way to query a VM state, so userspace can destroy
375 * it and create a new one.
376 *
377 * As an analogy, this would be mapped to a VK_ERROR_DEVICE_LOST
378 * situation, where the logical device needs to be re-created.
379 */
380 bool unusable;
381
382 /**
383 * @unhandled_fault: Unhandled fault happened.
384 *
385 * This should be reported to the scheduler, and the queue/group be
386 * flagged as faulty as a result.
387 */
388 bool unhandled_fault;
389 };
390
391 /**
392 * struct panthor_vm_bind_job - VM bind job
393 */
394 struct panthor_vm_bind_job {
395 /** @base: Inherit from drm_sched_job. */
396 struct drm_sched_job base;
397
398 /** @refcount: Reference count. */
399 struct kref refcount;
400
401 /** @cleanup_op_ctx_work: Work used to cleanup the VM operation context. */
402 struct work_struct cleanup_op_ctx_work;
403
404 /** @vm: VM targeted by the VM operation. */
405 struct panthor_vm *vm;
406
407 /** @ctx: Operation context. */
408 struct panthor_vm_op_ctx ctx;
409 };
410
411 /**
412 * @pt_cache: Cache used to allocate MMU page tables.
413 *
414 * The pre-allocation pattern forces us to over-allocate to plan for
415 * the worst case scenario, and return the pages we didn't use.
416 *
417 * Having a kmem_cache allows us to speed allocations.
418 */
419 static struct kmem_cache *pt_cache;
420
421 /**
422 * alloc_pt() - Custom page table allocator
423 * @cookie: Cookie passed at page table allocation time.
424 * @size: Size of the page table. This size should be fixed,
425 * and determined at creation time based on the granule size.
426 * @gfp: GFP flags.
427 *
428 * We want a custom allocator so we can use a cache for page table
429 * allocations and amortize the cost of the over-reservation that's
430 * done to allow asynchronous VM operations.
431 *
432 * Return: non-NULL on success, NULL if the allocation failed for any
433 * reason.
434 */
alloc_pt(void * cookie,size_t size,gfp_t gfp)435 static void *alloc_pt(void *cookie, size_t size, gfp_t gfp)
436 {
437 struct panthor_vm *vm = cookie;
438 void *page;
439
440 /* Allocation of the root page table happening during init. */
441 if (unlikely(!vm->root_page_table)) {
442 struct page *p;
443
444 drm_WARN_ON(&vm->ptdev->base, vm->op_ctx);
445 p = alloc_pages_node(dev_to_node(vm->ptdev->base.dev),
446 gfp | __GFP_ZERO, get_order(size));
447 page = p ? page_address(p) : NULL;
448 vm->root_page_table = page;
449 return page;
450 }
451
452 /* We're not supposed to have anything bigger than 4k here, because we picked a
453 * 4k granule size at init time.
454 */
455 if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K))
456 return NULL;
457
458 /* We must have some op_ctx attached to the VM and it must have at least one
459 * free page.
460 */
461 if (drm_WARN_ON(&vm->ptdev->base, !vm->op_ctx) ||
462 drm_WARN_ON(&vm->ptdev->base,
463 vm->op_ctx->rsvd_page_tables.ptr >= vm->op_ctx->rsvd_page_tables.count))
464 return NULL;
465
466 page = vm->op_ctx->rsvd_page_tables.pages[vm->op_ctx->rsvd_page_tables.ptr++];
467 memset(page, 0, SZ_4K);
468
469 /* Page table entries don't use virtual addresses, which trips out
470 * kmemleak. kmemleak_alloc_phys() might work, but physical addresses
471 * are mixed with other fields, and I fear kmemleak won't detect that
472 * either.
473 *
474 * Let's just ignore memory passed to the page-table driver for now.
475 */
476 kmemleak_ignore(page);
477 return page;
478 }
479
480 /**
481 * @free_pt() - Custom page table free function
482 * @cookie: Cookie passed at page table allocation time.
483 * @data: Page table to free.
484 * @size: Size of the page table. This size should be fixed,
485 * and determined at creation time based on the granule size.
486 */
free_pt(void * cookie,void * data,size_t size)487 static void free_pt(void *cookie, void *data, size_t size)
488 {
489 struct panthor_vm *vm = cookie;
490
491 if (unlikely(vm->root_page_table == data)) {
492 free_pages((unsigned long)data, get_order(size));
493 vm->root_page_table = NULL;
494 return;
495 }
496
497 if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K))
498 return;
499
500 /* Return the page to the pt_cache. */
501 kmem_cache_free(pt_cache, data);
502 }
503
wait_ready(struct panthor_device * ptdev,u32 as_nr)504 static int wait_ready(struct panthor_device *ptdev, u32 as_nr)
505 {
506 int ret;
507 u32 val;
508
509 /* Wait for the MMU status to indicate there is no active command, in
510 * case one is pending.
511 */
512 ret = readl_relaxed_poll_timeout_atomic(ptdev->iomem + AS_STATUS(as_nr),
513 val, !(val & AS_STATUS_AS_ACTIVE),
514 10, 100000);
515
516 if (ret) {
517 panthor_device_schedule_reset(ptdev);
518 drm_err(&ptdev->base, "AS_ACTIVE bit stuck\n");
519 }
520
521 return ret;
522 }
523
write_cmd(struct panthor_device * ptdev,u32 as_nr,u32 cmd)524 static int write_cmd(struct panthor_device *ptdev, u32 as_nr, u32 cmd)
525 {
526 int status;
527
528 /* write AS_COMMAND when MMU is ready to accept another command */
529 status = wait_ready(ptdev, as_nr);
530 if (!status)
531 gpu_write(ptdev, AS_COMMAND(as_nr), cmd);
532
533 return status;
534 }
535
lock_region(struct panthor_device * ptdev,u32 as_nr,u64 region_start,u64 size)536 static void lock_region(struct panthor_device *ptdev, u32 as_nr,
537 u64 region_start, u64 size)
538 {
539 u8 region_width;
540 u64 region;
541 u64 region_end = region_start + size;
542
543 if (!size)
544 return;
545
546 /*
547 * The locked region is a naturally aligned power of 2 block encoded as
548 * log2 minus(1).
549 * Calculate the desired start/end and look for the highest bit which
550 * differs. The smallest naturally aligned block must include this bit
551 * change, the desired region starts with this bit (and subsequent bits)
552 * zeroed and ends with the bit (and subsequent bits) set to one.
553 */
554 region_width = max(fls64(region_start ^ (region_end - 1)),
555 const_ilog2(AS_LOCK_REGION_MIN_SIZE)) - 1;
556
557 /*
558 * Mask off the low bits of region_start (which would be ignored by
559 * the hardware anyway)
560 */
561 region_start &= GENMASK_ULL(63, region_width);
562
563 region = region_width | region_start;
564
565 /* Lock the region that needs to be updated */
566 gpu_write(ptdev, AS_LOCKADDR_LO(as_nr), lower_32_bits(region));
567 gpu_write(ptdev, AS_LOCKADDR_HI(as_nr), upper_32_bits(region));
568 write_cmd(ptdev, as_nr, AS_COMMAND_LOCK);
569 }
570
mmu_hw_do_operation_locked(struct panthor_device * ptdev,int as_nr,u64 iova,u64 size,u32 op)571 static int mmu_hw_do_operation_locked(struct panthor_device *ptdev, int as_nr,
572 u64 iova, u64 size, u32 op)
573 {
574 lockdep_assert_held(&ptdev->mmu->as.slots_lock);
575
576 if (as_nr < 0)
577 return 0;
578
579 /*
580 * If the AS number is greater than zero, then we can be sure
581 * the device is up and running, so we don't need to explicitly
582 * power it up
583 */
584
585 if (op != AS_COMMAND_UNLOCK)
586 lock_region(ptdev, as_nr, iova, size);
587
588 /* Run the MMU operation */
589 write_cmd(ptdev, as_nr, op);
590
591 /* Wait for the flush to complete */
592 return wait_ready(ptdev, as_nr);
593 }
594
mmu_hw_do_operation(struct panthor_vm * vm,u64 iova,u64 size,u32 op)595 static int mmu_hw_do_operation(struct panthor_vm *vm,
596 u64 iova, u64 size, u32 op)
597 {
598 struct panthor_device *ptdev = vm->ptdev;
599 int ret;
600
601 mutex_lock(&ptdev->mmu->as.slots_lock);
602 ret = mmu_hw_do_operation_locked(ptdev, vm->as.id, iova, size, op);
603 mutex_unlock(&ptdev->mmu->as.slots_lock);
604
605 return ret;
606 }
607
panthor_mmu_as_enable(struct panthor_device * ptdev,u32 as_nr,u64 transtab,u64 transcfg,u64 memattr)608 static int panthor_mmu_as_enable(struct panthor_device *ptdev, u32 as_nr,
609 u64 transtab, u64 transcfg, u64 memattr)
610 {
611 int ret;
612
613 ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
614 if (ret)
615 return ret;
616
617 gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), lower_32_bits(transtab));
618 gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), upper_32_bits(transtab));
619
620 gpu_write(ptdev, AS_MEMATTR_LO(as_nr), lower_32_bits(memattr));
621 gpu_write(ptdev, AS_MEMATTR_HI(as_nr), upper_32_bits(memattr));
622
623 gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), lower_32_bits(transcfg));
624 gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), upper_32_bits(transcfg));
625
626 return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE);
627 }
628
panthor_mmu_as_disable(struct panthor_device * ptdev,u32 as_nr)629 static int panthor_mmu_as_disable(struct panthor_device *ptdev, u32 as_nr)
630 {
631 int ret;
632
633 ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
634 if (ret)
635 return ret;
636
637 gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), 0);
638 gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), 0);
639
640 gpu_write(ptdev, AS_MEMATTR_LO(as_nr), 0);
641 gpu_write(ptdev, AS_MEMATTR_HI(as_nr), 0);
642
643 gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), AS_TRANSCFG_ADRMODE_UNMAPPED);
644 gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), 0);
645
646 return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE);
647 }
648
panthor_mmu_fault_mask(struct panthor_device * ptdev,u32 value)649 static u32 panthor_mmu_fault_mask(struct panthor_device *ptdev, u32 value)
650 {
651 /* Bits 16 to 31 mean REQ_COMPLETE. */
652 return value & GENMASK(15, 0);
653 }
654
panthor_mmu_as_fault_mask(struct panthor_device * ptdev,u32 as)655 static u32 panthor_mmu_as_fault_mask(struct panthor_device *ptdev, u32 as)
656 {
657 return BIT(as);
658 }
659
660 /**
661 * panthor_vm_has_unhandled_faults() - Check if a VM has unhandled faults
662 * @vm: VM to check.
663 *
664 * Return: true if the VM has unhandled faults, false otherwise.
665 */
panthor_vm_has_unhandled_faults(struct panthor_vm * vm)666 bool panthor_vm_has_unhandled_faults(struct panthor_vm *vm)
667 {
668 return vm->unhandled_fault;
669 }
670
671 /**
672 * panthor_vm_is_unusable() - Check if the VM is still usable
673 * @vm: VM to check.
674 *
675 * Return: true if the VM is unusable, false otherwise.
676 */
panthor_vm_is_unusable(struct panthor_vm * vm)677 bool panthor_vm_is_unusable(struct panthor_vm *vm)
678 {
679 return vm->unusable;
680 }
681
panthor_vm_release_as_locked(struct panthor_vm * vm)682 static void panthor_vm_release_as_locked(struct panthor_vm *vm)
683 {
684 struct panthor_device *ptdev = vm->ptdev;
685
686 lockdep_assert_held(&ptdev->mmu->as.slots_lock);
687
688 if (drm_WARN_ON(&ptdev->base, vm->as.id < 0))
689 return;
690
691 ptdev->mmu->as.slots[vm->as.id].vm = NULL;
692 clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask);
693 refcount_set(&vm->as.active_cnt, 0);
694 list_del_init(&vm->as.lru_node);
695 vm->as.id = -1;
696 }
697
698 /**
699 * panthor_vm_active() - Flag a VM as active
700 * @VM: VM to flag as active.
701 *
702 * Assigns an address space to a VM so it can be used by the GPU/MCU.
703 *
704 * Return: 0 on success, a negative error code otherwise.
705 */
panthor_vm_active(struct panthor_vm * vm)706 int panthor_vm_active(struct panthor_vm *vm)
707 {
708 struct panthor_device *ptdev = vm->ptdev;
709 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
710 struct io_pgtable_cfg *cfg = &io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg;
711 int ret = 0, as, cookie;
712 u64 transtab, transcfg;
713
714 if (!drm_dev_enter(&ptdev->base, &cookie))
715 return -ENODEV;
716
717 if (refcount_inc_not_zero(&vm->as.active_cnt))
718 goto out_dev_exit;
719
720 mutex_lock(&ptdev->mmu->as.slots_lock);
721
722 if (refcount_inc_not_zero(&vm->as.active_cnt))
723 goto out_unlock;
724
725 as = vm->as.id;
726 if (as >= 0) {
727 /* Unhandled pagefault on this AS, the MMU was disabled. We need to
728 * re-enable the MMU after clearing+unmasking the AS interrupts.
729 */
730 if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as))
731 goto out_enable_as;
732
733 goto out_make_active;
734 }
735
736 /* Check for a free AS */
737 if (vm->for_mcu) {
738 drm_WARN_ON(&ptdev->base, ptdev->mmu->as.alloc_mask & BIT(0));
739 as = 0;
740 } else {
741 as = ffz(ptdev->mmu->as.alloc_mask | BIT(0));
742 }
743
744 if (!(BIT(as) & ptdev->gpu_info.as_present)) {
745 struct panthor_vm *lru_vm;
746
747 lru_vm = list_first_entry_or_null(&ptdev->mmu->as.lru_list,
748 struct panthor_vm,
749 as.lru_node);
750 if (drm_WARN_ON(&ptdev->base, !lru_vm)) {
751 ret = -EBUSY;
752 goto out_unlock;
753 }
754
755 drm_WARN_ON(&ptdev->base, refcount_read(&lru_vm->as.active_cnt));
756 as = lru_vm->as.id;
757 panthor_vm_release_as_locked(lru_vm);
758 }
759
760 /* Assign the free or reclaimed AS to the FD */
761 vm->as.id = as;
762 set_bit(as, &ptdev->mmu->as.alloc_mask);
763 ptdev->mmu->as.slots[as].vm = vm;
764
765 out_enable_as:
766 transtab = cfg->arm_lpae_s1_cfg.ttbr;
767 transcfg = AS_TRANSCFG_PTW_MEMATTR_WB |
768 AS_TRANSCFG_PTW_RA |
769 AS_TRANSCFG_ADRMODE_AARCH64_4K |
770 AS_TRANSCFG_INA_BITS(55 - va_bits);
771 if (ptdev->coherent)
772 transcfg |= AS_TRANSCFG_PTW_SH_OS;
773
774 /* If the VM is re-activated, we clear the fault. */
775 vm->unhandled_fault = false;
776
777 /* Unhandled pagefault on this AS, clear the fault and re-enable interrupts
778 * before enabling the AS.
779 */
780 if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) {
781 gpu_write(ptdev, MMU_INT_CLEAR, panthor_mmu_as_fault_mask(ptdev, as));
782 ptdev->mmu->as.faulty_mask &= ~panthor_mmu_as_fault_mask(ptdev, as);
783 gpu_write(ptdev, MMU_INT_MASK, ~ptdev->mmu->as.faulty_mask);
784 }
785
786 ret = panthor_mmu_as_enable(vm->ptdev, vm->as.id, transtab, transcfg, vm->memattr);
787
788 out_make_active:
789 if (!ret) {
790 refcount_set(&vm->as.active_cnt, 1);
791 list_del_init(&vm->as.lru_node);
792 }
793
794 out_unlock:
795 mutex_unlock(&ptdev->mmu->as.slots_lock);
796
797 out_dev_exit:
798 drm_dev_exit(cookie);
799 return ret;
800 }
801
802 /**
803 * panthor_vm_idle() - Flag a VM idle
804 * @VM: VM to flag as idle.
805 *
806 * When we know the GPU is done with the VM (no more jobs to process),
807 * we can relinquish the AS slot attached to this VM, if any.
808 *
809 * We don't release the slot immediately, but instead place the VM in
810 * the LRU list, so it can be evicted if another VM needs an AS slot.
811 * This way, VMs keep attached to the AS they were given until we run
812 * out of free slot, limiting the number of MMU operations (TLB flush
813 * and other AS updates).
814 */
panthor_vm_idle(struct panthor_vm * vm)815 void panthor_vm_idle(struct panthor_vm *vm)
816 {
817 struct panthor_device *ptdev = vm->ptdev;
818
819 if (!refcount_dec_and_mutex_lock(&vm->as.active_cnt, &ptdev->mmu->as.slots_lock))
820 return;
821
822 if (!drm_WARN_ON(&ptdev->base, vm->as.id == -1 || !list_empty(&vm->as.lru_node)))
823 list_add_tail(&vm->as.lru_node, &ptdev->mmu->as.lru_list);
824
825 refcount_set(&vm->as.active_cnt, 0);
826 mutex_unlock(&ptdev->mmu->as.slots_lock);
827 }
828
panthor_vm_page_size(struct panthor_vm * vm)829 u32 panthor_vm_page_size(struct panthor_vm *vm)
830 {
831 const struct io_pgtable *pgt = io_pgtable_ops_to_pgtable(vm->pgtbl_ops);
832 u32 pg_shift = ffs(pgt->cfg.pgsize_bitmap) - 1;
833
834 return 1u << pg_shift;
835 }
836
panthor_vm_stop(struct panthor_vm * vm)837 static void panthor_vm_stop(struct panthor_vm *vm)
838 {
839 drm_sched_stop(&vm->sched, NULL);
840 }
841
panthor_vm_start(struct panthor_vm * vm)842 static void panthor_vm_start(struct panthor_vm *vm)
843 {
844 drm_sched_start(&vm->sched);
845 }
846
847 /**
848 * panthor_vm_as() - Get the AS slot attached to a VM
849 * @vm: VM to get the AS slot of.
850 *
851 * Return: -1 if the VM is not assigned an AS slot yet, >= 0 otherwise.
852 */
panthor_vm_as(struct panthor_vm * vm)853 int panthor_vm_as(struct panthor_vm *vm)
854 {
855 return vm->as.id;
856 }
857
get_pgsize(u64 addr,size_t size,size_t * count)858 static size_t get_pgsize(u64 addr, size_t size, size_t *count)
859 {
860 /*
861 * io-pgtable only operates on multiple pages within a single table
862 * entry, so we need to split at boundaries of the table size, i.e.
863 * the next block size up. The distance from address A to the next
864 * boundary of block size B is logically B - A % B, but in unsigned
865 * two's complement where B is a power of two we get the equivalence
866 * B - A % B == (B - A) % B == (n * B - A) % B, and choose n = 0 :)
867 */
868 size_t blk_offset = -addr % SZ_2M;
869
870 if (blk_offset || size < SZ_2M) {
871 *count = min_not_zero(blk_offset, size) / SZ_4K;
872 return SZ_4K;
873 }
874 blk_offset = -addr % SZ_1G ?: SZ_1G;
875 *count = min(blk_offset, size) / SZ_2M;
876 return SZ_2M;
877 }
878
panthor_vm_flush_range(struct panthor_vm * vm,u64 iova,u64 size)879 static int panthor_vm_flush_range(struct panthor_vm *vm, u64 iova, u64 size)
880 {
881 struct panthor_device *ptdev = vm->ptdev;
882 int ret = 0, cookie;
883
884 if (vm->as.id < 0)
885 return 0;
886
887 /* If the device is unplugged, we just silently skip the flush. */
888 if (!drm_dev_enter(&ptdev->base, &cookie))
889 return 0;
890
891 ret = mmu_hw_do_operation(vm, iova, size, AS_COMMAND_FLUSH_PT);
892
893 drm_dev_exit(cookie);
894 return ret;
895 }
896
897 /**
898 * panthor_vm_flush_all() - Flush L2 caches for the entirety of a VM's AS
899 * @vm: VM whose cache to flush
900 *
901 * Return: 0 on success, a negative error code if flush failed.
902 */
panthor_vm_flush_all(struct panthor_vm * vm)903 int panthor_vm_flush_all(struct panthor_vm *vm)
904 {
905 return panthor_vm_flush_range(vm, vm->base.mm_start, vm->base.mm_range);
906 }
907
panthor_vm_unmap_pages(struct panthor_vm * vm,u64 iova,u64 size)908 static int panthor_vm_unmap_pages(struct panthor_vm *vm, u64 iova, u64 size)
909 {
910 struct panthor_device *ptdev = vm->ptdev;
911 struct io_pgtable_ops *ops = vm->pgtbl_ops;
912 u64 offset = 0;
913
914 drm_dbg(&ptdev->base, "unmap: as=%d, iova=%llx, len=%llx", vm->as.id, iova, size);
915
916 while (offset < size) {
917 size_t unmapped_sz = 0, pgcount;
918 size_t pgsize = get_pgsize(iova + offset, size - offset, &pgcount);
919
920 unmapped_sz = ops->unmap_pages(ops, iova + offset, pgsize, pgcount, NULL);
921
922 if (drm_WARN_ON(&ptdev->base, unmapped_sz != pgsize * pgcount)) {
923 drm_err(&ptdev->base, "failed to unmap range %llx-%llx (requested range %llx-%llx)\n",
924 iova + offset + unmapped_sz,
925 iova + offset + pgsize * pgcount,
926 iova, iova + size);
927 panthor_vm_flush_range(vm, iova, offset + unmapped_sz);
928 return -EINVAL;
929 }
930 offset += unmapped_sz;
931 }
932
933 return panthor_vm_flush_range(vm, iova, size);
934 }
935
936 static int
panthor_vm_map_pages(struct panthor_vm * vm,u64 iova,int prot,struct sg_table * sgt,u64 offset,u64 size)937 panthor_vm_map_pages(struct panthor_vm *vm, u64 iova, int prot,
938 struct sg_table *sgt, u64 offset, u64 size)
939 {
940 struct panthor_device *ptdev = vm->ptdev;
941 unsigned int count;
942 struct scatterlist *sgl;
943 struct io_pgtable_ops *ops = vm->pgtbl_ops;
944 u64 start_iova = iova;
945 int ret;
946
947 if (!size)
948 return 0;
949
950 for_each_sgtable_dma_sg(sgt, sgl, count) {
951 dma_addr_t paddr = sg_dma_address(sgl);
952 size_t len = sg_dma_len(sgl);
953
954 if (len <= offset) {
955 offset -= len;
956 continue;
957 }
958
959 paddr += offset;
960 len -= offset;
961 len = min_t(size_t, len, size);
962 size -= len;
963
964 drm_dbg(&ptdev->base, "map: as=%d, iova=%llx, paddr=%pad, len=%zx",
965 vm->as.id, iova, &paddr, len);
966
967 while (len) {
968 size_t pgcount, mapped = 0;
969 size_t pgsize = get_pgsize(iova | paddr, len, &pgcount);
970
971 ret = ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot,
972 GFP_KERNEL, &mapped);
973 iova += mapped;
974 paddr += mapped;
975 len -= mapped;
976
977 if (drm_WARN_ON(&ptdev->base, !ret && !mapped))
978 ret = -ENOMEM;
979
980 if (ret) {
981 /* If something failed, unmap what we've already mapped before
982 * returning. The unmap call is not supposed to fail.
983 */
984 drm_WARN_ON(&ptdev->base,
985 panthor_vm_unmap_pages(vm, start_iova,
986 iova - start_iova));
987 return ret;
988 }
989 }
990
991 if (!size)
992 break;
993 }
994
995 return panthor_vm_flush_range(vm, start_iova, iova - start_iova);
996 }
997
flags_to_prot(u32 flags)998 static int flags_to_prot(u32 flags)
999 {
1000 int prot = 0;
1001
1002 if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC)
1003 prot |= IOMMU_NOEXEC;
1004
1005 if (!(flags & DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED))
1006 prot |= IOMMU_CACHE;
1007
1008 if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_READONLY)
1009 prot |= IOMMU_READ;
1010 else
1011 prot |= IOMMU_READ | IOMMU_WRITE;
1012
1013 return prot;
1014 }
1015
1016 /**
1017 * panthor_vm_alloc_va() - Allocate a region in the auto-va space
1018 * @VM: VM to allocate a region on.
1019 * @va: start of the VA range. Can be PANTHOR_VM_KERNEL_AUTO_VA if the user
1020 * wants the VA to be automatically allocated from the auto-VA range.
1021 * @size: size of the VA range.
1022 * @va_node: drm_mm_node to initialize. Must be zero-initialized.
1023 *
1024 * Some GPU objects, like heap chunks, are fully managed by the kernel and
1025 * need to be mapped to the userspace VM, in the region reserved for kernel
1026 * objects.
1027 *
1028 * This function takes care of allocating a region in the kernel auto-VA space.
1029 *
1030 * Return: 0 on success, an error code otherwise.
1031 */
1032 int
panthor_vm_alloc_va(struct panthor_vm * vm,u64 va,u64 size,struct drm_mm_node * va_node)1033 panthor_vm_alloc_va(struct panthor_vm *vm, u64 va, u64 size,
1034 struct drm_mm_node *va_node)
1035 {
1036 ssize_t vm_pgsz = panthor_vm_page_size(vm);
1037 int ret;
1038
1039 if (!size || !IS_ALIGNED(size, vm_pgsz))
1040 return -EINVAL;
1041
1042 if (va != PANTHOR_VM_KERNEL_AUTO_VA && !IS_ALIGNED(va, vm_pgsz))
1043 return -EINVAL;
1044
1045 mutex_lock(&vm->mm_lock);
1046 if (va != PANTHOR_VM_KERNEL_AUTO_VA) {
1047 va_node->start = va;
1048 va_node->size = size;
1049 ret = drm_mm_reserve_node(&vm->mm, va_node);
1050 } else {
1051 ret = drm_mm_insert_node_in_range(&vm->mm, va_node, size,
1052 size >= SZ_2M ? SZ_2M : SZ_4K,
1053 0, vm->kernel_auto_va.start,
1054 vm->kernel_auto_va.end,
1055 DRM_MM_INSERT_BEST);
1056 }
1057 mutex_unlock(&vm->mm_lock);
1058
1059 return ret;
1060 }
1061
1062 /**
1063 * panthor_vm_free_va() - Free a region allocated with panthor_vm_alloc_va()
1064 * @VM: VM to free the region on.
1065 * @va_node: Memory node representing the region to free.
1066 */
panthor_vm_free_va(struct panthor_vm * vm,struct drm_mm_node * va_node)1067 void panthor_vm_free_va(struct panthor_vm *vm, struct drm_mm_node *va_node)
1068 {
1069 mutex_lock(&vm->mm_lock);
1070 drm_mm_remove_node(va_node);
1071 mutex_unlock(&vm->mm_lock);
1072 }
1073
panthor_vm_bo_put(struct drm_gpuvm_bo * vm_bo)1074 static void panthor_vm_bo_put(struct drm_gpuvm_bo *vm_bo)
1075 {
1076 struct panthor_gem_object *bo = to_panthor_bo(vm_bo->obj);
1077 struct drm_gpuvm *vm = vm_bo->vm;
1078 bool unpin;
1079
1080 /* We must retain the GEM before calling drm_gpuvm_bo_put(),
1081 * otherwise the mutex might be destroyed while we hold it.
1082 * Same goes for the VM, since we take the VM resv lock.
1083 */
1084 drm_gem_object_get(&bo->base.base);
1085 drm_gpuvm_get(vm);
1086
1087 /* We take the resv lock to protect against concurrent accesses to the
1088 * gpuvm evicted/extobj lists that are modified in
1089 * drm_gpuvm_bo_destroy(), which is called if drm_gpuvm_bo_put()
1090 * releases sthe last vm_bo reference.
1091 * We take the BO GPUVA list lock to protect the vm_bo removal from the
1092 * GEM vm_bo list.
1093 */
1094 dma_resv_lock(drm_gpuvm_resv(vm), NULL);
1095 mutex_lock(&bo->gpuva_list_lock);
1096 unpin = drm_gpuvm_bo_put(vm_bo);
1097 mutex_unlock(&bo->gpuva_list_lock);
1098 dma_resv_unlock(drm_gpuvm_resv(vm));
1099
1100 /* If the vm_bo object was destroyed, release the pin reference that
1101 * was hold by this object.
1102 */
1103 if (unpin && !bo->base.base.import_attach)
1104 drm_gem_shmem_unpin(&bo->base);
1105
1106 drm_gpuvm_put(vm);
1107 drm_gem_object_put(&bo->base.base);
1108 }
1109
panthor_vm_cleanup_op_ctx(struct panthor_vm_op_ctx * op_ctx,struct panthor_vm * vm)1110 static void panthor_vm_cleanup_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1111 struct panthor_vm *vm)
1112 {
1113 struct panthor_vma *vma, *tmp_vma;
1114
1115 u32 remaining_pt_count = op_ctx->rsvd_page_tables.count -
1116 op_ctx->rsvd_page_tables.ptr;
1117
1118 if (remaining_pt_count) {
1119 kmem_cache_free_bulk(pt_cache, remaining_pt_count,
1120 op_ctx->rsvd_page_tables.pages +
1121 op_ctx->rsvd_page_tables.ptr);
1122 }
1123
1124 kfree(op_ctx->rsvd_page_tables.pages);
1125
1126 if (op_ctx->map.vm_bo)
1127 panthor_vm_bo_put(op_ctx->map.vm_bo);
1128
1129 for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++)
1130 kfree(op_ctx->preallocated_vmas[i]);
1131
1132 list_for_each_entry_safe(vma, tmp_vma, &op_ctx->returned_vmas, node) {
1133 list_del(&vma->node);
1134 panthor_vm_bo_put(vma->base.vm_bo);
1135 kfree(vma);
1136 }
1137 }
1138
1139 static struct panthor_vma *
panthor_vm_op_ctx_get_vma(struct panthor_vm_op_ctx * op_ctx)1140 panthor_vm_op_ctx_get_vma(struct panthor_vm_op_ctx *op_ctx)
1141 {
1142 for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) {
1143 struct panthor_vma *vma = op_ctx->preallocated_vmas[i];
1144
1145 if (vma) {
1146 op_ctx->preallocated_vmas[i] = NULL;
1147 return vma;
1148 }
1149 }
1150
1151 return NULL;
1152 }
1153
1154 static int
panthor_vm_op_ctx_prealloc_vmas(struct panthor_vm_op_ctx * op_ctx)1155 panthor_vm_op_ctx_prealloc_vmas(struct panthor_vm_op_ctx *op_ctx)
1156 {
1157 u32 vma_count;
1158
1159 switch (op_ctx->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) {
1160 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
1161 /* One VMA for the new mapping, and two more VMAs for the remap case
1162 * which might contain both a prev and next VA.
1163 */
1164 vma_count = 3;
1165 break;
1166
1167 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
1168 /* Partial unmaps might trigger a remap with either a prev or a next VA,
1169 * but not both.
1170 */
1171 vma_count = 1;
1172 break;
1173
1174 default:
1175 return 0;
1176 }
1177
1178 for (u32 i = 0; i < vma_count; i++) {
1179 struct panthor_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
1180
1181 if (!vma)
1182 return -ENOMEM;
1183
1184 op_ctx->preallocated_vmas[i] = vma;
1185 }
1186
1187 return 0;
1188 }
1189
1190 #define PANTHOR_VM_BIND_OP_MAP_FLAGS \
1191 (DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \
1192 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \
1193 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED | \
1194 DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
1195
panthor_vm_prepare_map_op_ctx(struct panthor_vm_op_ctx * op_ctx,struct panthor_vm * vm,struct panthor_gem_object * bo,u64 offset,u64 size,u64 va,u32 flags)1196 static int panthor_vm_prepare_map_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1197 struct panthor_vm *vm,
1198 struct panthor_gem_object *bo,
1199 u64 offset,
1200 u64 size, u64 va,
1201 u32 flags)
1202 {
1203 struct drm_gpuvm_bo *preallocated_vm_bo;
1204 struct sg_table *sgt = NULL;
1205 u64 pt_count;
1206 int ret;
1207
1208 if (!bo)
1209 return -EINVAL;
1210
1211 if ((flags & ~PANTHOR_VM_BIND_OP_MAP_FLAGS) ||
1212 (flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) != DRM_PANTHOR_VM_BIND_OP_TYPE_MAP)
1213 return -EINVAL;
1214
1215 /* Make sure the VA and size are aligned and in-bounds. */
1216 if (size > bo->base.base.size || offset > bo->base.base.size - size)
1217 return -EINVAL;
1218
1219 /* If the BO has an exclusive VM attached, it can't be mapped to other VMs. */
1220 if (bo->exclusive_vm_root_gem &&
1221 bo->exclusive_vm_root_gem != panthor_vm_root_gem(vm))
1222 return -EINVAL;
1223
1224 memset(op_ctx, 0, sizeof(*op_ctx));
1225 INIT_LIST_HEAD(&op_ctx->returned_vmas);
1226 op_ctx->flags = flags;
1227 op_ctx->va.range = size;
1228 op_ctx->va.addr = va;
1229
1230 ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx);
1231 if (ret)
1232 goto err_cleanup;
1233
1234 if (!bo->base.base.import_attach) {
1235 /* Pre-reserve the BO pages, so the map operation doesn't have to
1236 * allocate.
1237 */
1238 ret = drm_gem_shmem_pin(&bo->base);
1239 if (ret)
1240 goto err_cleanup;
1241 }
1242
1243 sgt = drm_gem_shmem_get_pages_sgt(&bo->base);
1244 if (IS_ERR(sgt)) {
1245 if (!bo->base.base.import_attach)
1246 drm_gem_shmem_unpin(&bo->base);
1247
1248 ret = PTR_ERR(sgt);
1249 goto err_cleanup;
1250 }
1251
1252 op_ctx->map.sgt = sgt;
1253
1254 preallocated_vm_bo = drm_gpuvm_bo_create(&vm->base, &bo->base.base);
1255 if (!preallocated_vm_bo) {
1256 if (!bo->base.base.import_attach)
1257 drm_gem_shmem_unpin(&bo->base);
1258
1259 ret = -ENOMEM;
1260 goto err_cleanup;
1261 }
1262
1263 /* drm_gpuvm_bo_obtain_prealloc() will call drm_gpuvm_bo_put() on our
1264 * pre-allocated BO if the <BO,VM> association exists. Given we
1265 * only have one ref on preallocated_vm_bo, drm_gpuvm_bo_destroy() will
1266 * be called immediately, and we have to hold the VM resv lock when
1267 * calling this function.
1268 */
1269 dma_resv_lock(panthor_vm_resv(vm), NULL);
1270 mutex_lock(&bo->gpuva_list_lock);
1271 op_ctx->map.vm_bo = drm_gpuvm_bo_obtain_prealloc(preallocated_vm_bo);
1272 mutex_unlock(&bo->gpuva_list_lock);
1273 dma_resv_unlock(panthor_vm_resv(vm));
1274
1275 /* If the a vm_bo for this <VM,BO> combination exists, it already
1276 * retains a pin ref, and we can release the one we took earlier.
1277 *
1278 * If our pre-allocated vm_bo is picked, it now retains the pin ref,
1279 * which will be released in panthor_vm_bo_put().
1280 */
1281 if (preallocated_vm_bo != op_ctx->map.vm_bo &&
1282 !bo->base.base.import_attach)
1283 drm_gem_shmem_unpin(&bo->base);
1284
1285 op_ctx->map.bo_offset = offset;
1286
1287 /* L1, L2 and L3 page tables.
1288 * We could optimize L3 allocation by iterating over the sgt and merging
1289 * 2M contiguous blocks, but it's simpler to over-provision and return
1290 * the pages if they're not used.
1291 */
1292 pt_count = ((ALIGN(va + size, 1ull << 39) - ALIGN_DOWN(va, 1ull << 39)) >> 39) +
1293 ((ALIGN(va + size, 1ull << 30) - ALIGN_DOWN(va, 1ull << 30)) >> 30) +
1294 ((ALIGN(va + size, 1ull << 21) - ALIGN_DOWN(va, 1ull << 21)) >> 21);
1295
1296 op_ctx->rsvd_page_tables.pages = kcalloc(pt_count,
1297 sizeof(*op_ctx->rsvd_page_tables.pages),
1298 GFP_KERNEL);
1299 if (!op_ctx->rsvd_page_tables.pages) {
1300 ret = -ENOMEM;
1301 goto err_cleanup;
1302 }
1303
1304 ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count,
1305 op_ctx->rsvd_page_tables.pages);
1306 op_ctx->rsvd_page_tables.count = ret;
1307 if (ret != pt_count) {
1308 ret = -ENOMEM;
1309 goto err_cleanup;
1310 }
1311
1312 /* Insert BO into the extobj list last, when we know nothing can fail. */
1313 dma_resv_lock(panthor_vm_resv(vm), NULL);
1314 drm_gpuvm_bo_extobj_add(op_ctx->map.vm_bo);
1315 dma_resv_unlock(panthor_vm_resv(vm));
1316
1317 return 0;
1318
1319 err_cleanup:
1320 panthor_vm_cleanup_op_ctx(op_ctx, vm);
1321 return ret;
1322 }
1323
panthor_vm_prepare_unmap_op_ctx(struct panthor_vm_op_ctx * op_ctx,struct panthor_vm * vm,u64 va,u64 size)1324 static int panthor_vm_prepare_unmap_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1325 struct panthor_vm *vm,
1326 u64 va, u64 size)
1327 {
1328 u32 pt_count = 0;
1329 int ret;
1330
1331 memset(op_ctx, 0, sizeof(*op_ctx));
1332 INIT_LIST_HEAD(&op_ctx->returned_vmas);
1333 op_ctx->va.range = size;
1334 op_ctx->va.addr = va;
1335 op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP;
1336
1337 /* Pre-allocate L3 page tables to account for the split-2M-block
1338 * situation on unmap.
1339 */
1340 if (va != ALIGN(va, SZ_2M))
1341 pt_count++;
1342
1343 if (va + size != ALIGN(va + size, SZ_2M) &&
1344 ALIGN(va + size, SZ_2M) != ALIGN(va, SZ_2M))
1345 pt_count++;
1346
1347 ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx);
1348 if (ret)
1349 goto err_cleanup;
1350
1351 if (pt_count) {
1352 op_ctx->rsvd_page_tables.pages = kcalloc(pt_count,
1353 sizeof(*op_ctx->rsvd_page_tables.pages),
1354 GFP_KERNEL);
1355 if (!op_ctx->rsvd_page_tables.pages) {
1356 ret = -ENOMEM;
1357 goto err_cleanup;
1358 }
1359
1360 ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count,
1361 op_ctx->rsvd_page_tables.pages);
1362 if (ret != pt_count) {
1363 ret = -ENOMEM;
1364 goto err_cleanup;
1365 }
1366 op_ctx->rsvd_page_tables.count = pt_count;
1367 }
1368
1369 return 0;
1370
1371 err_cleanup:
1372 panthor_vm_cleanup_op_ctx(op_ctx, vm);
1373 return ret;
1374 }
1375
panthor_vm_prepare_sync_only_op_ctx(struct panthor_vm_op_ctx * op_ctx,struct panthor_vm * vm)1376 static void panthor_vm_prepare_sync_only_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1377 struct panthor_vm *vm)
1378 {
1379 memset(op_ctx, 0, sizeof(*op_ctx));
1380 INIT_LIST_HEAD(&op_ctx->returned_vmas);
1381 op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY;
1382 }
1383
1384 /**
1385 * panthor_vm_get_bo_for_va() - Get the GEM object mapped at a virtual address
1386 * @vm: VM to look into.
1387 * @va: Virtual address to search for.
1388 * @bo_offset: Offset of the GEM object mapped at this virtual address.
1389 * Only valid on success.
1390 *
1391 * The object returned by this function might no longer be mapped when the
1392 * function returns. It's the caller responsibility to ensure there's no
1393 * concurrent map/unmap operations making the returned value invalid, or
1394 * make sure it doesn't matter if the object is no longer mapped.
1395 *
1396 * Return: A valid pointer on success, an ERR_PTR() otherwise.
1397 */
1398 struct panthor_gem_object *
panthor_vm_get_bo_for_va(struct panthor_vm * vm,u64 va,u64 * bo_offset)1399 panthor_vm_get_bo_for_va(struct panthor_vm *vm, u64 va, u64 *bo_offset)
1400 {
1401 struct panthor_gem_object *bo = ERR_PTR(-ENOENT);
1402 struct drm_gpuva *gpuva;
1403 struct panthor_vma *vma;
1404
1405 /* Take the VM lock to prevent concurrent map/unmap operations. */
1406 mutex_lock(&vm->op_lock);
1407 gpuva = drm_gpuva_find_first(&vm->base, va, 1);
1408 vma = gpuva ? container_of(gpuva, struct panthor_vma, base) : NULL;
1409 if (vma && vma->base.gem.obj) {
1410 drm_gem_object_get(vma->base.gem.obj);
1411 bo = to_panthor_bo(vma->base.gem.obj);
1412 *bo_offset = vma->base.gem.offset + (va - vma->base.va.addr);
1413 }
1414 mutex_unlock(&vm->op_lock);
1415
1416 return bo;
1417 }
1418
1419 #define PANTHOR_VM_MIN_KERNEL_VA_SIZE SZ_256M
1420
1421 static u64
panthor_vm_create_get_user_va_range(const struct drm_panthor_vm_create * args,u64 full_va_range)1422 panthor_vm_create_get_user_va_range(const struct drm_panthor_vm_create *args,
1423 u64 full_va_range)
1424 {
1425 u64 user_va_range;
1426
1427 /* Make sure we have a minimum amount of VA space for kernel objects. */
1428 if (full_va_range < PANTHOR_VM_MIN_KERNEL_VA_SIZE)
1429 return 0;
1430
1431 if (args->user_va_range) {
1432 /* Use the user provided value if != 0. */
1433 user_va_range = args->user_va_range;
1434 } else if (TASK_SIZE_OF(current) < full_va_range) {
1435 /* If the task VM size is smaller than the GPU VA range, pick this
1436 * as our default user VA range, so userspace can CPU/GPU map buffers
1437 * at the same address.
1438 */
1439 user_va_range = TASK_SIZE_OF(current);
1440 } else {
1441 /* If the GPU VA range is smaller than the task VM size, we
1442 * just have to live with the fact we won't be able to map
1443 * all buffers at the same GPU/CPU address.
1444 *
1445 * If the GPU VA range is bigger than 4G (more than 32-bit of
1446 * VA), we split the range in two, and assign half of it to
1447 * the user and the other half to the kernel, if it's not, we
1448 * keep the kernel VA space as small as possible.
1449 */
1450 user_va_range = full_va_range > SZ_4G ?
1451 full_va_range / 2 :
1452 full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE;
1453 }
1454
1455 if (full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE < user_va_range)
1456 user_va_range = full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE;
1457
1458 return user_va_range;
1459 }
1460
1461 #define PANTHOR_VM_CREATE_FLAGS 0
1462
1463 static int
panthor_vm_create_check_args(const struct panthor_device * ptdev,const struct drm_panthor_vm_create * args,u64 * kernel_va_start,u64 * kernel_va_range)1464 panthor_vm_create_check_args(const struct panthor_device *ptdev,
1465 const struct drm_panthor_vm_create *args,
1466 u64 *kernel_va_start, u64 *kernel_va_range)
1467 {
1468 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
1469 u64 full_va_range = 1ull << va_bits;
1470 u64 user_va_range;
1471
1472 if (args->flags & ~PANTHOR_VM_CREATE_FLAGS)
1473 return -EINVAL;
1474
1475 user_va_range = panthor_vm_create_get_user_va_range(args, full_va_range);
1476 if (!user_va_range || (args->user_va_range && args->user_va_range > user_va_range))
1477 return -EINVAL;
1478
1479 /* Pick a kernel VA range that's a power of two, to have a clear split. */
1480 *kernel_va_range = rounddown_pow_of_two(full_va_range - user_va_range);
1481 *kernel_va_start = full_va_range - *kernel_va_range;
1482 return 0;
1483 }
1484
1485 /*
1486 * Only 32 VMs per open file. If that becomes a limiting factor, we can
1487 * increase this number.
1488 */
1489 #define PANTHOR_MAX_VMS_PER_FILE 32
1490
1491 /**
1492 * panthor_vm_pool_create_vm() - Create a VM
1493 * @pool: The VM to create this VM on.
1494 * @kernel_va_start: Start of the region reserved for kernel objects.
1495 * @kernel_va_range: Size of the region reserved for kernel objects.
1496 *
1497 * Return: a positive VM ID on success, a negative error code otherwise.
1498 */
panthor_vm_pool_create_vm(struct panthor_device * ptdev,struct panthor_vm_pool * pool,struct drm_panthor_vm_create * args)1499 int panthor_vm_pool_create_vm(struct panthor_device *ptdev,
1500 struct panthor_vm_pool *pool,
1501 struct drm_panthor_vm_create *args)
1502 {
1503 u64 kernel_va_start, kernel_va_range;
1504 struct panthor_vm *vm;
1505 int ret;
1506 u32 id;
1507
1508 ret = panthor_vm_create_check_args(ptdev, args, &kernel_va_start, &kernel_va_range);
1509 if (ret)
1510 return ret;
1511
1512 vm = panthor_vm_create(ptdev, false, kernel_va_start, kernel_va_range,
1513 kernel_va_start, kernel_va_range);
1514 if (IS_ERR(vm))
1515 return PTR_ERR(vm);
1516
1517 ret = xa_alloc(&pool->xa, &id, vm,
1518 XA_LIMIT(1, PANTHOR_MAX_VMS_PER_FILE), GFP_KERNEL);
1519
1520 if (ret) {
1521 panthor_vm_put(vm);
1522 return ret;
1523 }
1524
1525 args->user_va_range = kernel_va_start;
1526 return id;
1527 }
1528
panthor_vm_destroy(struct panthor_vm * vm)1529 static void panthor_vm_destroy(struct panthor_vm *vm)
1530 {
1531 if (!vm)
1532 return;
1533
1534 vm->destroyed = true;
1535
1536 mutex_lock(&vm->heaps.lock);
1537 panthor_heap_pool_destroy(vm->heaps.pool);
1538 vm->heaps.pool = NULL;
1539 mutex_unlock(&vm->heaps.lock);
1540
1541 drm_WARN_ON(&vm->ptdev->base,
1542 panthor_vm_unmap_range(vm, vm->base.mm_start, vm->base.mm_range));
1543 panthor_vm_put(vm);
1544 }
1545
1546 /**
1547 * panthor_vm_pool_destroy_vm() - Destroy a VM.
1548 * @pool: VM pool.
1549 * @handle: VM handle.
1550 *
1551 * This function doesn't free the VM object or its resources, it just kills
1552 * all mappings, and makes sure nothing can be mapped after that point.
1553 *
1554 * If there was any active jobs at the time this function is called, these
1555 * jobs should experience page faults and be killed as a result.
1556 *
1557 * The VM resources are freed when the last reference on the VM object is
1558 * dropped.
1559 */
panthor_vm_pool_destroy_vm(struct panthor_vm_pool * pool,u32 handle)1560 int panthor_vm_pool_destroy_vm(struct panthor_vm_pool *pool, u32 handle)
1561 {
1562 struct panthor_vm *vm;
1563
1564 vm = xa_erase(&pool->xa, handle);
1565
1566 panthor_vm_destroy(vm);
1567
1568 return vm ? 0 : -EINVAL;
1569 }
1570
1571 /**
1572 * panthor_vm_pool_get_vm() - Retrieve VM object bound to a VM handle
1573 * @pool: VM pool to check.
1574 * @handle: Handle of the VM to retrieve.
1575 *
1576 * Return: A valid pointer if the VM exists, NULL otherwise.
1577 */
1578 struct panthor_vm *
panthor_vm_pool_get_vm(struct panthor_vm_pool * pool,u32 handle)1579 panthor_vm_pool_get_vm(struct panthor_vm_pool *pool, u32 handle)
1580 {
1581 struct panthor_vm *vm;
1582
1583 vm = panthor_vm_get(xa_load(&pool->xa, handle));
1584
1585 return vm;
1586 }
1587
1588 /**
1589 * panthor_vm_pool_destroy() - Destroy a VM pool.
1590 * @pfile: File.
1591 *
1592 * Destroy all VMs in the pool, and release the pool resources.
1593 *
1594 * Note that VMs can outlive the pool they were created from if other
1595 * objects hold a reference to there VMs.
1596 */
panthor_vm_pool_destroy(struct panthor_file * pfile)1597 void panthor_vm_pool_destroy(struct panthor_file *pfile)
1598 {
1599 struct panthor_vm *vm;
1600 unsigned long i;
1601
1602 if (!pfile->vms)
1603 return;
1604
1605 xa_for_each(&pfile->vms->xa, i, vm)
1606 panthor_vm_destroy(vm);
1607
1608 xa_destroy(&pfile->vms->xa);
1609 kfree(pfile->vms);
1610 }
1611
1612 /**
1613 * panthor_vm_pool_create() - Create a VM pool
1614 * @pfile: File.
1615 *
1616 * Return: 0 on success, a negative error code otherwise.
1617 */
panthor_vm_pool_create(struct panthor_file * pfile)1618 int panthor_vm_pool_create(struct panthor_file *pfile)
1619 {
1620 pfile->vms = kzalloc(sizeof(*pfile->vms), GFP_KERNEL);
1621 if (!pfile->vms)
1622 return -ENOMEM;
1623
1624 xa_init_flags(&pfile->vms->xa, XA_FLAGS_ALLOC1);
1625 return 0;
1626 }
1627
1628 /* dummy TLB ops, the real TLB flush happens in panthor_vm_flush_range() */
mmu_tlb_flush_all(void * cookie)1629 static void mmu_tlb_flush_all(void *cookie)
1630 {
1631 }
1632
mmu_tlb_flush_walk(unsigned long iova,size_t size,size_t granule,void * cookie)1633 static void mmu_tlb_flush_walk(unsigned long iova, size_t size, size_t granule, void *cookie)
1634 {
1635 }
1636
1637 static const struct iommu_flush_ops mmu_tlb_ops = {
1638 .tlb_flush_all = mmu_tlb_flush_all,
1639 .tlb_flush_walk = mmu_tlb_flush_walk,
1640 };
1641
access_type_name(struct panthor_device * ptdev,u32 fault_status)1642 static const char *access_type_name(struct panthor_device *ptdev,
1643 u32 fault_status)
1644 {
1645 switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) {
1646 case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC:
1647 return "ATOMIC";
1648 case AS_FAULTSTATUS_ACCESS_TYPE_READ:
1649 return "READ";
1650 case AS_FAULTSTATUS_ACCESS_TYPE_WRITE:
1651 return "WRITE";
1652 case AS_FAULTSTATUS_ACCESS_TYPE_EX:
1653 return "EXECUTE";
1654 default:
1655 drm_WARN_ON(&ptdev->base, 1);
1656 return NULL;
1657 }
1658 }
1659
panthor_mmu_irq_handler(struct panthor_device * ptdev,u32 status)1660 static void panthor_mmu_irq_handler(struct panthor_device *ptdev, u32 status)
1661 {
1662 bool has_unhandled_faults = false;
1663
1664 status = panthor_mmu_fault_mask(ptdev, status);
1665 while (status) {
1666 u32 as = ffs(status | (status >> 16)) - 1;
1667 u32 mask = panthor_mmu_as_fault_mask(ptdev, as);
1668 u32 new_int_mask;
1669 u64 addr;
1670 u32 fault_status;
1671 u32 exception_type;
1672 u32 access_type;
1673 u32 source_id;
1674
1675 fault_status = gpu_read(ptdev, AS_FAULTSTATUS(as));
1676 addr = gpu_read(ptdev, AS_FAULTADDRESS_LO(as));
1677 addr |= (u64)gpu_read(ptdev, AS_FAULTADDRESS_HI(as)) << 32;
1678
1679 /* decode the fault status */
1680 exception_type = fault_status & 0xFF;
1681 access_type = (fault_status >> 8) & 0x3;
1682 source_id = (fault_status >> 16);
1683
1684 mutex_lock(&ptdev->mmu->as.slots_lock);
1685
1686 ptdev->mmu->as.faulty_mask |= mask;
1687 new_int_mask =
1688 panthor_mmu_fault_mask(ptdev, ~ptdev->mmu->as.faulty_mask);
1689
1690 /* terminal fault, print info about the fault */
1691 drm_err(&ptdev->base,
1692 "Unhandled Page fault in AS%d at VA 0x%016llX\n"
1693 "raw fault status: 0x%X\n"
1694 "decoded fault status: %s\n"
1695 "exception type 0x%X: %s\n"
1696 "access type 0x%X: %s\n"
1697 "source id 0x%X\n",
1698 as, addr,
1699 fault_status,
1700 (fault_status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"),
1701 exception_type, panthor_exception_name(ptdev, exception_type),
1702 access_type, access_type_name(ptdev, fault_status),
1703 source_id);
1704
1705 /* Ignore MMU interrupts on this AS until it's been
1706 * re-enabled.
1707 */
1708 ptdev->mmu->irq.mask = new_int_mask;
1709 gpu_write(ptdev, MMU_INT_MASK, new_int_mask);
1710
1711 if (ptdev->mmu->as.slots[as].vm)
1712 ptdev->mmu->as.slots[as].vm->unhandled_fault = true;
1713
1714 /* Disable the MMU to kill jobs on this AS. */
1715 panthor_mmu_as_disable(ptdev, as);
1716 mutex_unlock(&ptdev->mmu->as.slots_lock);
1717
1718 status &= ~mask;
1719 has_unhandled_faults = true;
1720 }
1721
1722 if (has_unhandled_faults)
1723 panthor_sched_report_mmu_fault(ptdev);
1724 }
1725 PANTHOR_IRQ_HANDLER(mmu, MMU, panthor_mmu_irq_handler);
1726
1727 /**
1728 * panthor_mmu_suspend() - Suspend the MMU logic
1729 * @ptdev: Device.
1730 *
1731 * All we do here is de-assign the AS slots on all active VMs, so things
1732 * get flushed to the main memory, and no further access to these VMs are
1733 * possible.
1734 *
1735 * We also suspend the MMU IRQ.
1736 */
panthor_mmu_suspend(struct panthor_device * ptdev)1737 void panthor_mmu_suspend(struct panthor_device *ptdev)
1738 {
1739 mutex_lock(&ptdev->mmu->as.slots_lock);
1740 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
1741 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
1742
1743 if (vm) {
1744 drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i));
1745 panthor_vm_release_as_locked(vm);
1746 }
1747 }
1748 mutex_unlock(&ptdev->mmu->as.slots_lock);
1749
1750 panthor_mmu_irq_suspend(&ptdev->mmu->irq);
1751 }
1752
1753 /**
1754 * panthor_mmu_resume() - Resume the MMU logic
1755 * @ptdev: Device.
1756 *
1757 * Resume the IRQ.
1758 *
1759 * We don't re-enable previously active VMs. We assume other parts of the
1760 * driver will call panthor_vm_active() on the VMs they intend to use.
1761 */
panthor_mmu_resume(struct panthor_device * ptdev)1762 void panthor_mmu_resume(struct panthor_device *ptdev)
1763 {
1764 mutex_lock(&ptdev->mmu->as.slots_lock);
1765 ptdev->mmu->as.alloc_mask = 0;
1766 ptdev->mmu->as.faulty_mask = 0;
1767 mutex_unlock(&ptdev->mmu->as.slots_lock);
1768
1769 panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0));
1770 }
1771
1772 /**
1773 * panthor_mmu_pre_reset() - Prepare for a reset
1774 * @ptdev: Device.
1775 *
1776 * Suspend the IRQ, and make sure all VM_BIND queues are stopped, so we
1777 * don't get asked to do a VM operation while the GPU is down.
1778 *
1779 * We don't cleanly shutdown the AS slots here, because the reset might
1780 * come from an AS_ACTIVE_BIT stuck situation.
1781 */
panthor_mmu_pre_reset(struct panthor_device * ptdev)1782 void panthor_mmu_pre_reset(struct panthor_device *ptdev)
1783 {
1784 struct panthor_vm *vm;
1785
1786 panthor_mmu_irq_suspend(&ptdev->mmu->irq);
1787
1788 mutex_lock(&ptdev->mmu->vm.lock);
1789 ptdev->mmu->vm.reset_in_progress = true;
1790 list_for_each_entry(vm, &ptdev->mmu->vm.list, node)
1791 panthor_vm_stop(vm);
1792 mutex_unlock(&ptdev->mmu->vm.lock);
1793 }
1794
1795 /**
1796 * panthor_mmu_post_reset() - Restore things after a reset
1797 * @ptdev: Device.
1798 *
1799 * Put the MMU logic back in action after a reset. That implies resuming the
1800 * IRQ and re-enabling the VM_BIND queues.
1801 */
panthor_mmu_post_reset(struct panthor_device * ptdev)1802 void panthor_mmu_post_reset(struct panthor_device *ptdev)
1803 {
1804 struct panthor_vm *vm;
1805
1806 mutex_lock(&ptdev->mmu->as.slots_lock);
1807
1808 /* Now that the reset is effective, we can assume that none of the
1809 * AS slots are setup, and clear the faulty flags too.
1810 */
1811 ptdev->mmu->as.alloc_mask = 0;
1812 ptdev->mmu->as.faulty_mask = 0;
1813
1814 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
1815 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
1816
1817 if (vm)
1818 panthor_vm_release_as_locked(vm);
1819 }
1820
1821 mutex_unlock(&ptdev->mmu->as.slots_lock);
1822
1823 panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0));
1824
1825 /* Restart the VM_BIND queues. */
1826 mutex_lock(&ptdev->mmu->vm.lock);
1827 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) {
1828 panthor_vm_start(vm);
1829 }
1830 ptdev->mmu->vm.reset_in_progress = false;
1831 mutex_unlock(&ptdev->mmu->vm.lock);
1832 }
1833
panthor_vm_free(struct drm_gpuvm * gpuvm)1834 static void panthor_vm_free(struct drm_gpuvm *gpuvm)
1835 {
1836 struct panthor_vm *vm = container_of(gpuvm, struct panthor_vm, base);
1837 struct panthor_device *ptdev = vm->ptdev;
1838
1839 mutex_lock(&vm->heaps.lock);
1840 if (drm_WARN_ON(&ptdev->base, vm->heaps.pool))
1841 panthor_heap_pool_destroy(vm->heaps.pool);
1842 mutex_unlock(&vm->heaps.lock);
1843 mutex_destroy(&vm->heaps.lock);
1844
1845 mutex_lock(&ptdev->mmu->vm.lock);
1846 list_del(&vm->node);
1847 /* Restore the scheduler state so we can call drm_sched_entity_destroy()
1848 * and drm_sched_fini(). If get there, that means we have no job left
1849 * and no new jobs can be queued, so we can start the scheduler without
1850 * risking interfering with the reset.
1851 */
1852 if (ptdev->mmu->vm.reset_in_progress)
1853 panthor_vm_start(vm);
1854 mutex_unlock(&ptdev->mmu->vm.lock);
1855
1856 drm_sched_entity_destroy(&vm->entity);
1857 drm_sched_fini(&vm->sched);
1858
1859 mutex_lock(&ptdev->mmu->as.slots_lock);
1860 if (vm->as.id >= 0) {
1861 int cookie;
1862
1863 if (drm_dev_enter(&ptdev->base, &cookie)) {
1864 panthor_mmu_as_disable(ptdev, vm->as.id);
1865 drm_dev_exit(cookie);
1866 }
1867
1868 ptdev->mmu->as.slots[vm->as.id].vm = NULL;
1869 clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask);
1870 list_del(&vm->as.lru_node);
1871 }
1872 mutex_unlock(&ptdev->mmu->as.slots_lock);
1873
1874 free_io_pgtable_ops(vm->pgtbl_ops);
1875
1876 drm_mm_takedown(&vm->mm);
1877 kfree(vm);
1878 }
1879
1880 /**
1881 * panthor_vm_put() - Release a reference on a VM
1882 * @vm: VM to release the reference on. Can be NULL.
1883 */
panthor_vm_put(struct panthor_vm * vm)1884 void panthor_vm_put(struct panthor_vm *vm)
1885 {
1886 drm_gpuvm_put(vm ? &vm->base : NULL);
1887 }
1888
1889 /**
1890 * panthor_vm_get() - Get a VM reference
1891 * @vm: VM to get the reference on. Can be NULL.
1892 *
1893 * Return: @vm value.
1894 */
panthor_vm_get(struct panthor_vm * vm)1895 struct panthor_vm *panthor_vm_get(struct panthor_vm *vm)
1896 {
1897 if (vm)
1898 drm_gpuvm_get(&vm->base);
1899
1900 return vm;
1901 }
1902
1903 /**
1904 * panthor_vm_get_heap_pool() - Get the heap pool attached to a VM
1905 * @vm: VM to query the heap pool on.
1906 * @create: True if the heap pool should be created when it doesn't exist.
1907 *
1908 * Heap pools are per-VM. This function allows one to retrieve the heap pool
1909 * attached to a VM.
1910 *
1911 * If no heap pool exists yet, and @create is true, we create one.
1912 *
1913 * The returned panthor_heap_pool should be released with panthor_heap_pool_put().
1914 *
1915 * Return: A valid pointer on success, an ERR_PTR() otherwise.
1916 */
panthor_vm_get_heap_pool(struct panthor_vm * vm,bool create)1917 struct panthor_heap_pool *panthor_vm_get_heap_pool(struct panthor_vm *vm, bool create)
1918 {
1919 struct panthor_heap_pool *pool;
1920
1921 mutex_lock(&vm->heaps.lock);
1922 if (!vm->heaps.pool && create) {
1923 if (vm->destroyed)
1924 pool = ERR_PTR(-EINVAL);
1925 else
1926 pool = panthor_heap_pool_create(vm->ptdev, vm);
1927
1928 if (!IS_ERR(pool))
1929 vm->heaps.pool = panthor_heap_pool_get(pool);
1930 } else {
1931 pool = panthor_heap_pool_get(vm->heaps.pool);
1932 if (!pool)
1933 pool = ERR_PTR(-ENOENT);
1934 }
1935 mutex_unlock(&vm->heaps.lock);
1936
1937 return pool;
1938 }
1939
mair_to_memattr(u64 mair)1940 static u64 mair_to_memattr(u64 mair)
1941 {
1942 u64 memattr = 0;
1943 u32 i;
1944
1945 for (i = 0; i < 8; i++) {
1946 u8 in_attr = mair >> (8 * i), out_attr;
1947 u8 outer = in_attr >> 4, inner = in_attr & 0xf;
1948
1949 /* For caching to be enabled, inner and outer caching policy
1950 * have to be both write-back, if one of them is write-through
1951 * or non-cacheable, we just choose non-cacheable. Device
1952 * memory is also translated to non-cacheable.
1953 */
1954 if (!(outer & 3) || !(outer & 4) || !(inner & 4)) {
1955 out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_NC |
1956 AS_MEMATTR_AARCH64_SH_MIDGARD_INNER |
1957 AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(false, false);
1958 } else {
1959 /* Use SH_CPU_INNER mode so SH_IS, which is used when
1960 * IOMMU_CACHE is set, actually maps to the standard
1961 * definition of inner-shareable and not Mali's
1962 * internal-shareable mode.
1963 */
1964 out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_WB |
1965 AS_MEMATTR_AARCH64_SH_CPU_INNER |
1966 AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(inner & 1, inner & 2);
1967 }
1968
1969 memattr |= (u64)out_attr << (8 * i);
1970 }
1971
1972 return memattr;
1973 }
1974
panthor_vma_link(struct panthor_vm * vm,struct panthor_vma * vma,struct drm_gpuvm_bo * vm_bo)1975 static void panthor_vma_link(struct panthor_vm *vm,
1976 struct panthor_vma *vma,
1977 struct drm_gpuvm_bo *vm_bo)
1978 {
1979 struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj);
1980
1981 mutex_lock(&bo->gpuva_list_lock);
1982 drm_gpuva_link(&vma->base, vm_bo);
1983 drm_WARN_ON(&vm->ptdev->base, drm_gpuvm_bo_put(vm_bo));
1984 mutex_unlock(&bo->gpuva_list_lock);
1985 }
1986
panthor_vma_unlink(struct panthor_vm * vm,struct panthor_vma * vma)1987 static void panthor_vma_unlink(struct panthor_vm *vm,
1988 struct panthor_vma *vma)
1989 {
1990 struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj);
1991 struct drm_gpuvm_bo *vm_bo = drm_gpuvm_bo_get(vma->base.vm_bo);
1992
1993 mutex_lock(&bo->gpuva_list_lock);
1994 drm_gpuva_unlink(&vma->base);
1995 mutex_unlock(&bo->gpuva_list_lock);
1996
1997 /* drm_gpuva_unlink() release the vm_bo, but we manually retained it
1998 * when entering this function, so we can implement deferred VMA
1999 * destruction. Re-assign it here.
2000 */
2001 vma->base.vm_bo = vm_bo;
2002 list_add_tail(&vma->node, &vm->op_ctx->returned_vmas);
2003 }
2004
panthor_vma_init(struct panthor_vma * vma,u32 flags)2005 static void panthor_vma_init(struct panthor_vma *vma, u32 flags)
2006 {
2007 INIT_LIST_HEAD(&vma->node);
2008 vma->flags = flags;
2009 }
2010
2011 #define PANTHOR_VM_MAP_FLAGS \
2012 (DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \
2013 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \
2014 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED)
2015
panthor_gpuva_sm_step_map(struct drm_gpuva_op * op,void * priv)2016 static int panthor_gpuva_sm_step_map(struct drm_gpuva_op *op, void *priv)
2017 {
2018 struct panthor_vm *vm = priv;
2019 struct panthor_vm_op_ctx *op_ctx = vm->op_ctx;
2020 struct panthor_vma *vma = panthor_vm_op_ctx_get_vma(op_ctx);
2021 int ret;
2022
2023 if (!vma)
2024 return -EINVAL;
2025
2026 panthor_vma_init(vma, op_ctx->flags & PANTHOR_VM_MAP_FLAGS);
2027
2028 ret = panthor_vm_map_pages(vm, op->map.va.addr, flags_to_prot(vma->flags),
2029 op_ctx->map.sgt, op->map.gem.offset,
2030 op->map.va.range);
2031 if (ret)
2032 return ret;
2033
2034 /* Ref owned by the mapping now, clear the obj field so we don't release the
2035 * pinning/obj ref behind GPUVA's back.
2036 */
2037 drm_gpuva_map(&vm->base, &vma->base, &op->map);
2038 panthor_vma_link(vm, vma, op_ctx->map.vm_bo);
2039 op_ctx->map.vm_bo = NULL;
2040 return 0;
2041 }
2042
panthor_gpuva_sm_step_remap(struct drm_gpuva_op * op,void * priv)2043 static int panthor_gpuva_sm_step_remap(struct drm_gpuva_op *op,
2044 void *priv)
2045 {
2046 struct panthor_vma *unmap_vma = container_of(op->remap.unmap->va, struct panthor_vma, base);
2047 struct panthor_vm *vm = priv;
2048 struct panthor_vm_op_ctx *op_ctx = vm->op_ctx;
2049 struct panthor_vma *prev_vma = NULL, *next_vma = NULL;
2050 u64 unmap_start, unmap_range;
2051 int ret;
2052
2053 drm_gpuva_op_remap_to_unmap_range(&op->remap, &unmap_start, &unmap_range);
2054 ret = panthor_vm_unmap_pages(vm, unmap_start, unmap_range);
2055 if (ret)
2056 return ret;
2057
2058 if (op->remap.prev) {
2059 prev_vma = panthor_vm_op_ctx_get_vma(op_ctx);
2060 panthor_vma_init(prev_vma, unmap_vma->flags);
2061 }
2062
2063 if (op->remap.next) {
2064 next_vma = panthor_vm_op_ctx_get_vma(op_ctx);
2065 panthor_vma_init(next_vma, unmap_vma->flags);
2066 }
2067
2068 drm_gpuva_remap(prev_vma ? &prev_vma->base : NULL,
2069 next_vma ? &next_vma->base : NULL,
2070 &op->remap);
2071
2072 if (prev_vma) {
2073 /* panthor_vma_link() transfers the vm_bo ownership to
2074 * the VMA object. Since the vm_bo we're passing is still
2075 * owned by the old mapping which will be released when this
2076 * mapping is destroyed, we need to grab a ref here.
2077 */
2078 panthor_vma_link(vm, prev_vma,
2079 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo));
2080 }
2081
2082 if (next_vma) {
2083 panthor_vma_link(vm, next_vma,
2084 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo));
2085 }
2086
2087 panthor_vma_unlink(vm, unmap_vma);
2088 return 0;
2089 }
2090
panthor_gpuva_sm_step_unmap(struct drm_gpuva_op * op,void * priv)2091 static int panthor_gpuva_sm_step_unmap(struct drm_gpuva_op *op,
2092 void *priv)
2093 {
2094 struct panthor_vma *unmap_vma = container_of(op->unmap.va, struct panthor_vma, base);
2095 struct panthor_vm *vm = priv;
2096 int ret;
2097
2098 ret = panthor_vm_unmap_pages(vm, unmap_vma->base.va.addr,
2099 unmap_vma->base.va.range);
2100 if (drm_WARN_ON(&vm->ptdev->base, ret))
2101 return ret;
2102
2103 drm_gpuva_unmap(&op->unmap);
2104 panthor_vma_unlink(vm, unmap_vma);
2105 return 0;
2106 }
2107
2108 static const struct drm_gpuvm_ops panthor_gpuvm_ops = {
2109 .vm_free = panthor_vm_free,
2110 .sm_step_map = panthor_gpuva_sm_step_map,
2111 .sm_step_remap = panthor_gpuva_sm_step_remap,
2112 .sm_step_unmap = panthor_gpuva_sm_step_unmap,
2113 };
2114
2115 /**
2116 * panthor_vm_resv() - Get the dma_resv object attached to a VM.
2117 * @vm: VM to get the dma_resv of.
2118 *
2119 * Return: A dma_resv object.
2120 */
panthor_vm_resv(struct panthor_vm * vm)2121 struct dma_resv *panthor_vm_resv(struct panthor_vm *vm)
2122 {
2123 return drm_gpuvm_resv(&vm->base);
2124 }
2125
panthor_vm_root_gem(struct panthor_vm * vm)2126 struct drm_gem_object *panthor_vm_root_gem(struct panthor_vm *vm)
2127 {
2128 if (!vm)
2129 return NULL;
2130
2131 return vm->base.r_obj;
2132 }
2133
2134 static int
panthor_vm_exec_op(struct panthor_vm * vm,struct panthor_vm_op_ctx * op,bool flag_vm_unusable_on_failure)2135 panthor_vm_exec_op(struct panthor_vm *vm, struct panthor_vm_op_ctx *op,
2136 bool flag_vm_unusable_on_failure)
2137 {
2138 u32 op_type = op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK;
2139 int ret;
2140
2141 if (op_type == DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY)
2142 return 0;
2143
2144 mutex_lock(&vm->op_lock);
2145 vm->op_ctx = op;
2146 switch (op_type) {
2147 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
2148 if (vm->unusable) {
2149 ret = -EINVAL;
2150 break;
2151 }
2152
2153 ret = drm_gpuvm_sm_map(&vm->base, vm, op->va.addr, op->va.range,
2154 op->map.vm_bo->obj, op->map.bo_offset);
2155 break;
2156
2157 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
2158 ret = drm_gpuvm_sm_unmap(&vm->base, vm, op->va.addr, op->va.range);
2159 break;
2160
2161 default:
2162 ret = -EINVAL;
2163 break;
2164 }
2165
2166 if (ret && flag_vm_unusable_on_failure)
2167 vm->unusable = true;
2168
2169 vm->op_ctx = NULL;
2170 mutex_unlock(&vm->op_lock);
2171
2172 return ret;
2173 }
2174
2175 static struct dma_fence *
panthor_vm_bind_run_job(struct drm_sched_job * sched_job)2176 panthor_vm_bind_run_job(struct drm_sched_job *sched_job)
2177 {
2178 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2179 bool cookie;
2180 int ret;
2181
2182 /* Not only we report an error whose result is propagated to the
2183 * drm_sched finished fence, but we also flag the VM as unusable, because
2184 * a failure in the async VM_BIND results in an inconsistent state. VM needs
2185 * to be destroyed and recreated.
2186 */
2187 cookie = dma_fence_begin_signalling();
2188 ret = panthor_vm_exec_op(job->vm, &job->ctx, true);
2189 dma_fence_end_signalling(cookie);
2190
2191 return ret ? ERR_PTR(ret) : NULL;
2192 }
2193
panthor_vm_bind_job_release(struct kref * kref)2194 static void panthor_vm_bind_job_release(struct kref *kref)
2195 {
2196 struct panthor_vm_bind_job *job = container_of(kref, struct panthor_vm_bind_job, refcount);
2197
2198 if (job->base.s_fence)
2199 drm_sched_job_cleanup(&job->base);
2200
2201 panthor_vm_cleanup_op_ctx(&job->ctx, job->vm);
2202 panthor_vm_put(job->vm);
2203 kfree(job);
2204 }
2205
2206 /**
2207 * panthor_vm_bind_job_put() - Release a VM_BIND job reference
2208 * @sched_job: Job to release the reference on.
2209 */
panthor_vm_bind_job_put(struct drm_sched_job * sched_job)2210 void panthor_vm_bind_job_put(struct drm_sched_job *sched_job)
2211 {
2212 struct panthor_vm_bind_job *job =
2213 container_of(sched_job, struct panthor_vm_bind_job, base);
2214
2215 if (sched_job)
2216 kref_put(&job->refcount, panthor_vm_bind_job_release);
2217 }
2218
2219 static void
panthor_vm_bind_free_job(struct drm_sched_job * sched_job)2220 panthor_vm_bind_free_job(struct drm_sched_job *sched_job)
2221 {
2222 struct panthor_vm_bind_job *job =
2223 container_of(sched_job, struct panthor_vm_bind_job, base);
2224
2225 drm_sched_job_cleanup(sched_job);
2226
2227 /* Do the heavy cleanups asynchronously, so we're out of the
2228 * dma-signaling path and can acquire dma-resv locks safely.
2229 */
2230 queue_work(panthor_cleanup_wq, &job->cleanup_op_ctx_work);
2231 }
2232
2233 static enum drm_gpu_sched_stat
panthor_vm_bind_timedout_job(struct drm_sched_job * sched_job)2234 panthor_vm_bind_timedout_job(struct drm_sched_job *sched_job)
2235 {
2236 WARN(1, "VM_BIND ops are synchronous for now, there should be no timeout!");
2237 return DRM_GPU_SCHED_STAT_NOMINAL;
2238 }
2239
2240 static const struct drm_sched_backend_ops panthor_vm_bind_ops = {
2241 .run_job = panthor_vm_bind_run_job,
2242 .free_job = panthor_vm_bind_free_job,
2243 .timedout_job = panthor_vm_bind_timedout_job,
2244 };
2245
2246 /**
2247 * panthor_vm_create() - Create a VM
2248 * @ptdev: Device.
2249 * @for_mcu: True if this is the FW MCU VM.
2250 * @kernel_va_start: Start of the range reserved for kernel BO mapping.
2251 * @kernel_va_size: Size of the range reserved for kernel BO mapping.
2252 * @auto_kernel_va_start: Start of the auto-VA kernel range.
2253 * @auto_kernel_va_size: Size of the auto-VA kernel range.
2254 *
2255 * Return: A valid pointer on success, an ERR_PTR() otherwise.
2256 */
2257 struct panthor_vm *
panthor_vm_create(struct panthor_device * ptdev,bool for_mcu,u64 kernel_va_start,u64 kernel_va_size,u64 auto_kernel_va_start,u64 auto_kernel_va_size)2258 panthor_vm_create(struct panthor_device *ptdev, bool for_mcu,
2259 u64 kernel_va_start, u64 kernel_va_size,
2260 u64 auto_kernel_va_start, u64 auto_kernel_va_size)
2261 {
2262 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
2263 u32 pa_bits = GPU_MMU_FEATURES_PA_BITS(ptdev->gpu_info.mmu_features);
2264 u64 full_va_range = 1ull << va_bits;
2265 struct drm_gem_object *dummy_gem;
2266 struct drm_gpu_scheduler *sched;
2267 struct io_pgtable_cfg pgtbl_cfg;
2268 u64 mair, min_va, va_range;
2269 struct panthor_vm *vm;
2270 int ret;
2271
2272 vm = kzalloc(sizeof(*vm), GFP_KERNEL);
2273 if (!vm)
2274 return ERR_PTR(-ENOMEM);
2275
2276 /* We allocate a dummy GEM for the VM. */
2277 dummy_gem = drm_gpuvm_resv_object_alloc(&ptdev->base);
2278 if (!dummy_gem) {
2279 ret = -ENOMEM;
2280 goto err_free_vm;
2281 }
2282
2283 mutex_init(&vm->heaps.lock);
2284 vm->for_mcu = for_mcu;
2285 vm->ptdev = ptdev;
2286 mutex_init(&vm->op_lock);
2287
2288 if (for_mcu) {
2289 /* CSF MCU is a cortex M7, and can only address 4G */
2290 min_va = 0;
2291 va_range = SZ_4G;
2292 } else {
2293 min_va = 0;
2294 va_range = full_va_range;
2295 }
2296
2297 mutex_init(&vm->mm_lock);
2298 drm_mm_init(&vm->mm, kernel_va_start, kernel_va_size);
2299 vm->kernel_auto_va.start = auto_kernel_va_start;
2300 vm->kernel_auto_va.end = vm->kernel_auto_va.start + auto_kernel_va_size - 1;
2301
2302 INIT_LIST_HEAD(&vm->node);
2303 INIT_LIST_HEAD(&vm->as.lru_node);
2304 vm->as.id = -1;
2305 refcount_set(&vm->as.active_cnt, 0);
2306
2307 pgtbl_cfg = (struct io_pgtable_cfg) {
2308 .pgsize_bitmap = SZ_4K | SZ_2M,
2309 .ias = va_bits,
2310 .oas = pa_bits,
2311 .coherent_walk = ptdev->coherent,
2312 .tlb = &mmu_tlb_ops,
2313 .iommu_dev = ptdev->base.dev,
2314 .alloc = alloc_pt,
2315 .free = free_pt,
2316 };
2317
2318 vm->pgtbl_ops = alloc_io_pgtable_ops(ARM_64_LPAE_S1, &pgtbl_cfg, vm);
2319 if (!vm->pgtbl_ops) {
2320 ret = -EINVAL;
2321 goto err_mm_takedown;
2322 }
2323
2324 /* Bind operations are synchronous for now, no timeout needed. */
2325 ret = drm_sched_init(&vm->sched, &panthor_vm_bind_ops, ptdev->mmu->vm.wq,
2326 1, 1, 0,
2327 MAX_SCHEDULE_TIMEOUT, NULL, NULL,
2328 "panthor-vm-bind", ptdev->base.dev);
2329 if (ret)
2330 goto err_free_io_pgtable;
2331
2332 sched = &vm->sched;
2333 ret = drm_sched_entity_init(&vm->entity, 0, &sched, 1, NULL);
2334 if (ret)
2335 goto err_sched_fini;
2336
2337 mair = io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg.arm_lpae_s1_cfg.mair;
2338 vm->memattr = mair_to_memattr(mair);
2339
2340 mutex_lock(&ptdev->mmu->vm.lock);
2341 list_add_tail(&vm->node, &ptdev->mmu->vm.list);
2342
2343 /* If a reset is in progress, stop the scheduler. */
2344 if (ptdev->mmu->vm.reset_in_progress)
2345 panthor_vm_stop(vm);
2346 mutex_unlock(&ptdev->mmu->vm.lock);
2347
2348 /* We intentionally leave the reserved range to zero, because we want kernel VMAs
2349 * to be handled the same way user VMAs are.
2350 */
2351 drm_gpuvm_init(&vm->base, for_mcu ? "panthor-MCU-VM" : "panthor-GPU-VM",
2352 DRM_GPUVM_RESV_PROTECTED, &ptdev->base, dummy_gem,
2353 min_va, va_range, 0, 0, &panthor_gpuvm_ops);
2354 drm_gem_object_put(dummy_gem);
2355 return vm;
2356
2357 err_sched_fini:
2358 drm_sched_fini(&vm->sched);
2359
2360 err_free_io_pgtable:
2361 free_io_pgtable_ops(vm->pgtbl_ops);
2362
2363 err_mm_takedown:
2364 drm_mm_takedown(&vm->mm);
2365 drm_gem_object_put(dummy_gem);
2366
2367 err_free_vm:
2368 kfree(vm);
2369 return ERR_PTR(ret);
2370 }
2371
2372 static int
panthor_vm_bind_prepare_op_ctx(struct drm_file * file,struct panthor_vm * vm,const struct drm_panthor_vm_bind_op * op,struct panthor_vm_op_ctx * op_ctx)2373 panthor_vm_bind_prepare_op_ctx(struct drm_file *file,
2374 struct panthor_vm *vm,
2375 const struct drm_panthor_vm_bind_op *op,
2376 struct panthor_vm_op_ctx *op_ctx)
2377 {
2378 ssize_t vm_pgsz = panthor_vm_page_size(vm);
2379 struct drm_gem_object *gem;
2380 int ret;
2381
2382 /* Aligned on page size. */
2383 if (!IS_ALIGNED(op->va | op->size, vm_pgsz))
2384 return -EINVAL;
2385
2386 switch (op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) {
2387 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
2388 gem = drm_gem_object_lookup(file, op->bo_handle);
2389 ret = panthor_vm_prepare_map_op_ctx(op_ctx, vm,
2390 gem ? to_panthor_bo(gem) : NULL,
2391 op->bo_offset,
2392 op->size,
2393 op->va,
2394 op->flags);
2395 drm_gem_object_put(gem);
2396 return ret;
2397
2398 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
2399 if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
2400 return -EINVAL;
2401
2402 if (op->bo_handle || op->bo_offset)
2403 return -EINVAL;
2404
2405 return panthor_vm_prepare_unmap_op_ctx(op_ctx, vm, op->va, op->size);
2406
2407 case DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY:
2408 if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
2409 return -EINVAL;
2410
2411 if (op->bo_handle || op->bo_offset)
2412 return -EINVAL;
2413
2414 if (op->va || op->size)
2415 return -EINVAL;
2416
2417 if (!op->syncs.count)
2418 return -EINVAL;
2419
2420 panthor_vm_prepare_sync_only_op_ctx(op_ctx, vm);
2421 return 0;
2422
2423 default:
2424 return -EINVAL;
2425 }
2426 }
2427
panthor_vm_bind_job_cleanup_op_ctx_work(struct work_struct * work)2428 static void panthor_vm_bind_job_cleanup_op_ctx_work(struct work_struct *work)
2429 {
2430 struct panthor_vm_bind_job *job =
2431 container_of(work, struct panthor_vm_bind_job, cleanup_op_ctx_work);
2432
2433 panthor_vm_bind_job_put(&job->base);
2434 }
2435
2436 /**
2437 * panthor_vm_bind_job_create() - Create a VM_BIND job
2438 * @file: File.
2439 * @vm: VM targeted by the VM_BIND job.
2440 * @op: VM operation data.
2441 *
2442 * Return: A valid pointer on success, an ERR_PTR() otherwise.
2443 */
2444 struct drm_sched_job *
panthor_vm_bind_job_create(struct drm_file * file,struct panthor_vm * vm,const struct drm_panthor_vm_bind_op * op)2445 panthor_vm_bind_job_create(struct drm_file *file,
2446 struct panthor_vm *vm,
2447 const struct drm_panthor_vm_bind_op *op)
2448 {
2449 struct panthor_vm_bind_job *job;
2450 int ret;
2451
2452 if (!vm)
2453 return ERR_PTR(-EINVAL);
2454
2455 if (vm->destroyed || vm->unusable)
2456 return ERR_PTR(-EINVAL);
2457
2458 job = kzalloc(sizeof(*job), GFP_KERNEL);
2459 if (!job)
2460 return ERR_PTR(-ENOMEM);
2461
2462 ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &job->ctx);
2463 if (ret) {
2464 kfree(job);
2465 return ERR_PTR(ret);
2466 }
2467
2468 INIT_WORK(&job->cleanup_op_ctx_work, panthor_vm_bind_job_cleanup_op_ctx_work);
2469 kref_init(&job->refcount);
2470 job->vm = panthor_vm_get(vm);
2471
2472 ret = drm_sched_job_init(&job->base, &vm->entity, 1, vm);
2473 if (ret)
2474 goto err_put_job;
2475
2476 return &job->base;
2477
2478 err_put_job:
2479 panthor_vm_bind_job_put(&job->base);
2480 return ERR_PTR(ret);
2481 }
2482
2483 /**
2484 * panthor_vm_bind_job_prepare_resvs() - Prepare VM_BIND job dma_resvs
2485 * @exec: The locking/preparation context.
2486 * @sched_job: The job to prepare resvs on.
2487 *
2488 * Locks and prepare the VM resv.
2489 *
2490 * If this is a map operation, locks and prepares the GEM resv.
2491 *
2492 * Return: 0 on success, a negative error code otherwise.
2493 */
panthor_vm_bind_job_prepare_resvs(struct drm_exec * exec,struct drm_sched_job * sched_job)2494 int panthor_vm_bind_job_prepare_resvs(struct drm_exec *exec,
2495 struct drm_sched_job *sched_job)
2496 {
2497 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2498 int ret;
2499
2500 /* Acquire the VM lock an reserve a slot for this VM bind job. */
2501 ret = drm_gpuvm_prepare_vm(&job->vm->base, exec, 1);
2502 if (ret)
2503 return ret;
2504
2505 if (job->ctx.map.vm_bo) {
2506 /* Lock/prepare the GEM being mapped. */
2507 ret = drm_exec_prepare_obj(exec, job->ctx.map.vm_bo->obj, 1);
2508 if (ret)
2509 return ret;
2510 }
2511
2512 return 0;
2513 }
2514
2515 /**
2516 * panthor_vm_bind_job_update_resvs() - Update the resv objects touched by a job
2517 * @exec: drm_exec context.
2518 * @sched_job: Job to update the resvs on.
2519 */
panthor_vm_bind_job_update_resvs(struct drm_exec * exec,struct drm_sched_job * sched_job)2520 void panthor_vm_bind_job_update_resvs(struct drm_exec *exec,
2521 struct drm_sched_job *sched_job)
2522 {
2523 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2524
2525 /* Explicit sync => we just register our job finished fence as bookkeep. */
2526 drm_gpuvm_resv_add_fence(&job->vm->base, exec,
2527 &sched_job->s_fence->finished,
2528 DMA_RESV_USAGE_BOOKKEEP,
2529 DMA_RESV_USAGE_BOOKKEEP);
2530 }
2531
panthor_vm_update_resvs(struct panthor_vm * vm,struct drm_exec * exec,struct dma_fence * fence,enum dma_resv_usage private_usage,enum dma_resv_usage extobj_usage)2532 void panthor_vm_update_resvs(struct panthor_vm *vm, struct drm_exec *exec,
2533 struct dma_fence *fence,
2534 enum dma_resv_usage private_usage,
2535 enum dma_resv_usage extobj_usage)
2536 {
2537 drm_gpuvm_resv_add_fence(&vm->base, exec, fence, private_usage, extobj_usage);
2538 }
2539
2540 /**
2541 * panthor_vm_bind_exec_sync_op() - Execute a VM_BIND operation synchronously.
2542 * @file: File.
2543 * @vm: VM targeted by the VM operation.
2544 * @op: Data describing the VM operation.
2545 *
2546 * Return: 0 on success, a negative error code otherwise.
2547 */
panthor_vm_bind_exec_sync_op(struct drm_file * file,struct panthor_vm * vm,struct drm_panthor_vm_bind_op * op)2548 int panthor_vm_bind_exec_sync_op(struct drm_file *file,
2549 struct panthor_vm *vm,
2550 struct drm_panthor_vm_bind_op *op)
2551 {
2552 struct panthor_vm_op_ctx op_ctx;
2553 int ret;
2554
2555 /* No sync objects allowed on synchronous operations. */
2556 if (op->syncs.count)
2557 return -EINVAL;
2558
2559 if (!op->size)
2560 return 0;
2561
2562 ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &op_ctx);
2563 if (ret)
2564 return ret;
2565
2566 ret = panthor_vm_exec_op(vm, &op_ctx, false);
2567 panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2568
2569 return ret;
2570 }
2571
2572 /**
2573 * panthor_vm_map_bo_range() - Map a GEM object range to a VM
2574 * @vm: VM to map the GEM to.
2575 * @bo: GEM object to map.
2576 * @offset: Offset in the GEM object.
2577 * @size: Size to map.
2578 * @va: Virtual address to map the object to.
2579 * @flags: Combination of drm_panthor_vm_bind_op_flags flags.
2580 * Only map-related flags are valid.
2581 *
2582 * Internal use only. For userspace requests, use
2583 * panthor_vm_bind_exec_sync_op() instead.
2584 *
2585 * Return: 0 on success, a negative error code otherwise.
2586 */
panthor_vm_map_bo_range(struct panthor_vm * vm,struct panthor_gem_object * bo,u64 offset,u64 size,u64 va,u32 flags)2587 int panthor_vm_map_bo_range(struct panthor_vm *vm, struct panthor_gem_object *bo,
2588 u64 offset, u64 size, u64 va, u32 flags)
2589 {
2590 struct panthor_vm_op_ctx op_ctx;
2591 int ret;
2592
2593 ret = panthor_vm_prepare_map_op_ctx(&op_ctx, vm, bo, offset, size, va, flags);
2594 if (ret)
2595 return ret;
2596
2597 ret = panthor_vm_exec_op(vm, &op_ctx, false);
2598 panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2599
2600 return ret;
2601 }
2602
2603 /**
2604 * panthor_vm_unmap_range() - Unmap a portion of the VA space
2605 * @vm: VM to unmap the region from.
2606 * @va: Virtual address to unmap. Must be 4k aligned.
2607 * @size: Size of the region to unmap. Must be 4k aligned.
2608 *
2609 * Internal use only. For userspace requests, use
2610 * panthor_vm_bind_exec_sync_op() instead.
2611 *
2612 * Return: 0 on success, a negative error code otherwise.
2613 */
panthor_vm_unmap_range(struct panthor_vm * vm,u64 va,u64 size)2614 int panthor_vm_unmap_range(struct panthor_vm *vm, u64 va, u64 size)
2615 {
2616 struct panthor_vm_op_ctx op_ctx;
2617 int ret;
2618
2619 ret = panthor_vm_prepare_unmap_op_ctx(&op_ctx, vm, va, size);
2620 if (ret)
2621 return ret;
2622
2623 ret = panthor_vm_exec_op(vm, &op_ctx, false);
2624 panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2625
2626 return ret;
2627 }
2628
2629 /**
2630 * panthor_vm_prepare_mapped_bos_resvs() - Prepare resvs on VM BOs.
2631 * @exec: Locking/preparation context.
2632 * @vm: VM targeted by the GPU job.
2633 * @slot_count: Number of slots to reserve.
2634 *
2635 * GPU jobs assume all BOs bound to the VM at the time the job is submitted
2636 * are available when the job is executed. In order to guarantee that, we
2637 * need to reserve a slot on all BOs mapped to a VM and update this slot with
2638 * the job fence after its submission.
2639 *
2640 * Return: 0 on success, a negative error code otherwise.
2641 */
panthor_vm_prepare_mapped_bos_resvs(struct drm_exec * exec,struct panthor_vm * vm,u32 slot_count)2642 int panthor_vm_prepare_mapped_bos_resvs(struct drm_exec *exec, struct panthor_vm *vm,
2643 u32 slot_count)
2644 {
2645 int ret;
2646
2647 /* Acquire the VM lock and reserve a slot for this GPU job. */
2648 ret = drm_gpuvm_prepare_vm(&vm->base, exec, slot_count);
2649 if (ret)
2650 return ret;
2651
2652 return drm_gpuvm_prepare_objects(&vm->base, exec, slot_count);
2653 }
2654
2655 /**
2656 * panthor_mmu_unplug() - Unplug the MMU logic
2657 * @ptdev: Device.
2658 *
2659 * No access to the MMU regs should be done after this function is called.
2660 * We suspend the IRQ and disable all VMs to guarantee that.
2661 */
panthor_mmu_unplug(struct panthor_device * ptdev)2662 void panthor_mmu_unplug(struct panthor_device *ptdev)
2663 {
2664 panthor_mmu_irq_suspend(&ptdev->mmu->irq);
2665
2666 mutex_lock(&ptdev->mmu->as.slots_lock);
2667 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
2668 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
2669
2670 if (vm) {
2671 drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i));
2672 panthor_vm_release_as_locked(vm);
2673 }
2674 }
2675 mutex_unlock(&ptdev->mmu->as.slots_lock);
2676 }
2677
panthor_mmu_release_wq(struct drm_device * ddev,void * res)2678 static void panthor_mmu_release_wq(struct drm_device *ddev, void *res)
2679 {
2680 destroy_workqueue(res);
2681 }
2682
2683 /**
2684 * panthor_mmu_init() - Initialize the MMU logic.
2685 * @ptdev: Device.
2686 *
2687 * Return: 0 on success, a negative error code otherwise.
2688 */
panthor_mmu_init(struct panthor_device * ptdev)2689 int panthor_mmu_init(struct panthor_device *ptdev)
2690 {
2691 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
2692 struct panthor_mmu *mmu;
2693 int ret, irq;
2694
2695 mmu = drmm_kzalloc(&ptdev->base, sizeof(*mmu), GFP_KERNEL);
2696 if (!mmu)
2697 return -ENOMEM;
2698
2699 INIT_LIST_HEAD(&mmu->as.lru_list);
2700
2701 ret = drmm_mutex_init(&ptdev->base, &mmu->as.slots_lock);
2702 if (ret)
2703 return ret;
2704
2705 INIT_LIST_HEAD(&mmu->vm.list);
2706 ret = drmm_mutex_init(&ptdev->base, &mmu->vm.lock);
2707 if (ret)
2708 return ret;
2709
2710 ptdev->mmu = mmu;
2711
2712 irq = platform_get_irq_byname(to_platform_device(ptdev->base.dev), "mmu");
2713 if (irq <= 0)
2714 return -ENODEV;
2715
2716 ret = panthor_request_mmu_irq(ptdev, &mmu->irq, irq,
2717 panthor_mmu_fault_mask(ptdev, ~0));
2718 if (ret)
2719 return ret;
2720
2721 mmu->vm.wq = alloc_workqueue("panthor-vm-bind", WQ_UNBOUND, 0);
2722 if (!mmu->vm.wq)
2723 return -ENOMEM;
2724
2725 /* On 32-bit kernels, the VA space is limited by the io_pgtable_ops abstraction,
2726 * which passes iova as an unsigned long. Patch the mmu_features to reflect this
2727 * limitation.
2728 */
2729 if (sizeof(unsigned long) * 8 < va_bits) {
2730 ptdev->gpu_info.mmu_features &= ~GENMASK(7, 0);
2731 ptdev->gpu_info.mmu_features |= sizeof(unsigned long) * 8;
2732 }
2733
2734 return drmm_add_action_or_reset(&ptdev->base, panthor_mmu_release_wq, mmu->vm.wq);
2735 }
2736
2737 #ifdef CONFIG_DEBUG_FS
show_vm_gpuvas(struct panthor_vm * vm,struct seq_file * m)2738 static int show_vm_gpuvas(struct panthor_vm *vm, struct seq_file *m)
2739 {
2740 int ret;
2741
2742 mutex_lock(&vm->op_lock);
2743 ret = drm_debugfs_gpuva_info(m, &vm->base);
2744 mutex_unlock(&vm->op_lock);
2745
2746 return ret;
2747 }
2748
show_each_vm(struct seq_file * m,void * arg)2749 static int show_each_vm(struct seq_file *m, void *arg)
2750 {
2751 struct drm_info_node *node = (struct drm_info_node *)m->private;
2752 struct drm_device *ddev = node->minor->dev;
2753 struct panthor_device *ptdev = container_of(ddev, struct panthor_device, base);
2754 int (*show)(struct panthor_vm *, struct seq_file *) = node->info_ent->data;
2755 struct panthor_vm *vm;
2756 int ret = 0;
2757
2758 mutex_lock(&ptdev->mmu->vm.lock);
2759 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) {
2760 ret = show(vm, m);
2761 if (ret < 0)
2762 break;
2763
2764 seq_puts(m, "\n");
2765 }
2766 mutex_unlock(&ptdev->mmu->vm.lock);
2767
2768 return ret;
2769 }
2770
2771 static struct drm_info_list panthor_mmu_debugfs_list[] = {
2772 DRM_DEBUGFS_GPUVA_INFO(show_each_vm, show_vm_gpuvas),
2773 };
2774
2775 /**
2776 * panthor_mmu_debugfs_init() - Initialize MMU debugfs entries
2777 * @minor: Minor.
2778 */
panthor_mmu_debugfs_init(struct drm_minor * minor)2779 void panthor_mmu_debugfs_init(struct drm_minor *minor)
2780 {
2781 drm_debugfs_create_files(panthor_mmu_debugfs_list,
2782 ARRAY_SIZE(panthor_mmu_debugfs_list),
2783 minor->debugfs_root, minor);
2784 }
2785 #endif /* CONFIG_DEBUG_FS */
2786
2787 /**
2788 * panthor_mmu_pt_cache_init() - Initialize the page table cache.
2789 *
2790 * Return: 0 on success, a negative error code otherwise.
2791 */
panthor_mmu_pt_cache_init(void)2792 int panthor_mmu_pt_cache_init(void)
2793 {
2794 pt_cache = kmem_cache_create("panthor-mmu-pt", SZ_4K, SZ_4K, 0, NULL);
2795 if (!pt_cache)
2796 return -ENOMEM;
2797
2798 return 0;
2799 }
2800
2801 /**
2802 * panthor_mmu_pt_cache_fini() - Destroy the page table cache.
2803 */
panthor_mmu_pt_cache_fini(void)2804 void panthor_mmu_pt_cache_fini(void)
2805 {
2806 kmem_cache_destroy(pt_cache);
2807 }
2808