1 // SPDX-License-Identifier: GPL-2.0 or MIT 2 /* Copyright 2019 Linaro, Ltd, Rob Herring <robh@kernel.org> */ 3 /* Copyright 2023 Collabora ltd. */ 4 5 #include <drm/drm_debugfs.h> 6 #include <drm/drm_drv.h> 7 #include <drm/drm_exec.h> 8 #include <drm/drm_gpuvm.h> 9 #include <drm/drm_managed.h> 10 #include <drm/gpu_scheduler.h> 11 #include <drm/panthor_drm.h> 12 13 #include <linux/atomic.h> 14 #include <linux/bitfield.h> 15 #include <linux/delay.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/interrupt.h> 18 #include <linux/io.h> 19 #include <linux/iopoll.h> 20 #include <linux/io-pgtable.h> 21 #include <linux/iommu.h> 22 #include <linux/kmemleak.h> 23 #include <linux/platform_device.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/rwsem.h> 26 #include <linux/sched.h> 27 #include <linux/shmem_fs.h> 28 #include <linux/sizes.h> 29 30 #include "panthor_device.h" 31 #include "panthor_gem.h" 32 #include "panthor_heap.h" 33 #include "panthor_mmu.h" 34 #include "panthor_regs.h" 35 #include "panthor_sched.h" 36 37 #define MAX_AS_SLOTS 32 38 39 struct panthor_vm; 40 41 /** 42 * struct panthor_as_slot - Address space slot 43 */ 44 struct panthor_as_slot { 45 /** @vm: VM bound to this slot. NULL is no VM is bound. */ 46 struct panthor_vm *vm; 47 }; 48 49 /** 50 * struct panthor_mmu - MMU related data 51 */ 52 struct panthor_mmu { 53 /** @irq: The MMU irq. */ 54 struct panthor_irq irq; 55 56 /** @as: Address space related fields. 57 * 58 * The GPU has a limited number of address spaces (AS) slots, forcing 59 * us to re-assign them to re-assign slots on-demand. 60 */ 61 struct { 62 /** @slots_lock: Lock protecting access to all other AS fields. */ 63 struct mutex slots_lock; 64 65 /** @alloc_mask: Bitmask encoding the allocated slots. */ 66 unsigned long alloc_mask; 67 68 /** @faulty_mask: Bitmask encoding the faulty slots. */ 69 unsigned long faulty_mask; 70 71 /** @slots: VMs currently bound to the AS slots. */ 72 struct panthor_as_slot slots[MAX_AS_SLOTS]; 73 74 /** 75 * @lru_list: List of least recently used VMs. 76 * 77 * We use this list to pick a VM to evict when all slots are 78 * used. 79 * 80 * There should be no more active VMs than there are AS slots, 81 * so this LRU is just here to keep VMs bound until there's 82 * a need to release a slot, thus avoid unnecessary TLB/cache 83 * flushes. 84 */ 85 struct list_head lru_list; 86 } as; 87 88 /** @vm: VMs management fields */ 89 struct { 90 /** @lock: Lock protecting access to list. */ 91 struct mutex lock; 92 93 /** @list: List containing all VMs. */ 94 struct list_head list; 95 96 /** @reset_in_progress: True if a reset is in progress. */ 97 bool reset_in_progress; 98 99 /** @wq: Workqueue used for the VM_BIND queues. */ 100 struct workqueue_struct *wq; 101 } vm; 102 }; 103 104 /** 105 * struct panthor_vm_pool - VM pool object 106 */ 107 struct panthor_vm_pool { 108 /** @xa: Array used for VM handle tracking. */ 109 struct xarray xa; 110 }; 111 112 /** 113 * struct panthor_vma - GPU mapping object 114 * 115 * This is used to track GEM mappings in GPU space. 116 */ 117 struct panthor_vma { 118 /** @base: Inherits from drm_gpuva. */ 119 struct drm_gpuva base; 120 121 /** @node: Used to implement deferred release of VMAs. */ 122 struct list_head node; 123 124 /** 125 * @flags: Combination of drm_panthor_vm_bind_op_flags. 126 * 127 * Only map related flags are accepted. 128 */ 129 u32 flags; 130 }; 131 132 /** 133 * struct panthor_vm_op_ctx - VM operation context 134 * 135 * With VM operations potentially taking place in a dma-signaling path, we 136 * need to make sure everything that might require resource allocation is 137 * pre-allocated upfront. This is what this operation context is far. 138 * 139 * We also collect resources that have been freed, so we can release them 140 * asynchronously, and let the VM_BIND scheduler process the next VM_BIND 141 * request. 142 */ 143 struct panthor_vm_op_ctx { 144 /** @rsvd_page_tables: Pages reserved for the MMU page table update. */ 145 struct { 146 /** @count: Number of pages reserved. */ 147 u32 count; 148 149 /** @ptr: Point to the first unused page in the @pages table. */ 150 u32 ptr; 151 152 /** 153 * @page: Array of pages that can be used for an MMU page table update. 154 * 155 * After an VM operation, there might be free pages left in this array. 156 * They should be returned to the pt_cache as part of the op_ctx cleanup. 157 */ 158 void **pages; 159 } rsvd_page_tables; 160 161 /** 162 * @preallocated_vmas: Pre-allocated VMAs to handle the remap case. 163 * 164 * Partial unmap requests or map requests overlapping existing mappings will 165 * trigger a remap call, which need to register up to three panthor_vma objects 166 * (one for the new mapping, and two for the previous and next mappings). 167 */ 168 struct panthor_vma *preallocated_vmas[3]; 169 170 /** @flags: Combination of drm_panthor_vm_bind_op_flags. */ 171 u32 flags; 172 173 /** @va: Virtual range targeted by the VM operation. */ 174 struct { 175 /** @addr: Start address. */ 176 u64 addr; 177 178 /** @range: Range size. */ 179 u64 range; 180 } va; 181 182 /** 183 * @returned_vmas: List of panthor_vma objects returned after a VM operation. 184 * 185 * For unmap operations, this will contain all VMAs that were covered by the 186 * specified VA range. 187 * 188 * For map operations, this will contain all VMAs that previously mapped to 189 * the specified VA range. 190 * 191 * Those VMAs, and the resources they point to will be released as part of 192 * the op_ctx cleanup operation. 193 */ 194 struct list_head returned_vmas; 195 196 /** @map: Fields specific to a map operation. */ 197 struct { 198 /** @vm_bo: Buffer object to map. */ 199 struct drm_gpuvm_bo *vm_bo; 200 201 /** @bo_offset: Offset in the buffer object. */ 202 u64 bo_offset; 203 204 /** 205 * @sgt: sg-table pointing to pages backing the GEM object. 206 * 207 * This is gathered at job creation time, such that we don't have 208 * to allocate in ::run_job(). 209 */ 210 struct sg_table *sgt; 211 212 /** 213 * @new_vma: The new VMA object that will be inserted to the VA tree. 214 */ 215 struct panthor_vma *new_vma; 216 } map; 217 }; 218 219 /** 220 * struct panthor_vm - VM object 221 * 222 * A VM is an object representing a GPU (or MCU) virtual address space. 223 * It embeds the MMU page table for this address space, a tree containing 224 * all the virtual mappings of GEM objects, and other things needed to manage 225 * the VM. 226 * 227 * Except for the MCU VM, which is managed by the kernel, all other VMs are 228 * created by userspace and mostly managed by userspace, using the 229 * %DRM_IOCTL_PANTHOR_VM_BIND ioctl. 230 * 231 * A portion of the virtual address space is reserved for kernel objects, 232 * like heap chunks, and userspace gets to decide how much of the virtual 233 * address space is left to the kernel (half of the virtual address space 234 * by default). 235 */ 236 struct panthor_vm { 237 /** 238 * @base: Inherit from drm_gpuvm. 239 * 240 * We delegate all the VA management to the common drm_gpuvm framework 241 * and only implement hooks to update the MMU page table. 242 */ 243 struct drm_gpuvm base; 244 245 /** 246 * @sched: Scheduler used for asynchronous VM_BIND request. 247 * 248 * We use a 1:1 scheduler here. 249 */ 250 struct drm_gpu_scheduler sched; 251 252 /** 253 * @entity: Scheduling entity representing the VM_BIND queue. 254 * 255 * There's currently one bind queue per VM. It doesn't make sense to 256 * allow more given the VM operations are serialized anyway. 257 */ 258 struct drm_sched_entity entity; 259 260 /** @ptdev: Device. */ 261 struct panthor_device *ptdev; 262 263 /** @memattr: Value to program to the AS_MEMATTR register. */ 264 u64 memattr; 265 266 /** @pgtbl_ops: Page table operations. */ 267 struct io_pgtable_ops *pgtbl_ops; 268 269 /** @root_page_table: Stores the root page table pointer. */ 270 void *root_page_table; 271 272 /** 273 * @op_lock: Lock used to serialize operations on a VM. 274 * 275 * The serialization of jobs queued to the VM_BIND queue is already 276 * taken care of by drm_sched, but we need to serialize synchronous 277 * and asynchronous VM_BIND request. This is what this lock is for. 278 */ 279 struct mutex op_lock; 280 281 /** 282 * @op_ctx: The context attached to the currently executing VM operation. 283 * 284 * NULL when no operation is in progress. 285 */ 286 struct panthor_vm_op_ctx *op_ctx; 287 288 /** 289 * @mm: Memory management object representing the auto-VA/kernel-VA. 290 * 291 * Used to auto-allocate VA space for kernel-managed objects (tiler 292 * heaps, ...). 293 * 294 * For the MCU VM, this is managing the VA range that's used to map 295 * all shared interfaces. 296 * 297 * For user VMs, the range is specified by userspace, and must not 298 * exceed half of the VA space addressable. 299 */ 300 struct drm_mm mm; 301 302 /** @mm_lock: Lock protecting the @mm field. */ 303 struct mutex mm_lock; 304 305 /** @kernel_auto_va: Automatic VA-range for kernel BOs. */ 306 struct { 307 /** @start: Start of the automatic VA-range for kernel BOs. */ 308 u64 start; 309 310 /** @size: Size of the automatic VA-range for kernel BOs. */ 311 u64 end; 312 } kernel_auto_va; 313 314 /** @as: Address space related fields. */ 315 struct { 316 /** 317 * @id: ID of the address space this VM is bound to. 318 * 319 * A value of -1 means the VM is inactive/not bound. 320 */ 321 int id; 322 323 /** @active_cnt: Number of active users of this VM. */ 324 refcount_t active_cnt; 325 326 /** 327 * @lru_node: Used to instead the VM in the panthor_mmu::as::lru_list. 328 * 329 * Active VMs should not be inserted in the LRU list. 330 */ 331 struct list_head lru_node; 332 } as; 333 334 /** 335 * @heaps: Tiler heap related fields. 336 */ 337 struct { 338 /** 339 * @pool: The heap pool attached to this VM. 340 * 341 * Will stay NULL until someone creates a heap context on this VM. 342 */ 343 struct panthor_heap_pool *pool; 344 345 /** @lock: Lock used to protect access to @pool. */ 346 struct mutex lock; 347 } heaps; 348 349 /** @node: Used to insert the VM in the panthor_mmu::vm::list. */ 350 struct list_head node; 351 352 /** @for_mcu: True if this is the MCU VM. */ 353 bool for_mcu; 354 355 /** 356 * @destroyed: True if the VM was destroyed. 357 * 358 * No further bind requests should be queued to a destroyed VM. 359 */ 360 bool destroyed; 361 362 /** 363 * @unusable: True if the VM has turned unusable because something 364 * bad happened during an asynchronous request. 365 * 366 * We don't try to recover from such failures, because this implies 367 * informing userspace about the specific operation that failed, and 368 * hoping the userspace driver can replay things from there. This all 369 * sounds very complicated for little gain. 370 * 371 * Instead, we should just flag the VM as unusable, and fail any 372 * further request targeting this VM. 373 * 374 * We also provide a way to query a VM state, so userspace can destroy 375 * it and create a new one. 376 * 377 * As an analogy, this would be mapped to a VK_ERROR_DEVICE_LOST 378 * situation, where the logical device needs to be re-created. 379 */ 380 bool unusable; 381 382 /** 383 * @unhandled_fault: Unhandled fault happened. 384 * 385 * This should be reported to the scheduler, and the queue/group be 386 * flagged as faulty as a result. 387 */ 388 bool unhandled_fault; 389 }; 390 391 /** 392 * struct panthor_vm_bind_job - VM bind job 393 */ 394 struct panthor_vm_bind_job { 395 /** @base: Inherit from drm_sched_job. */ 396 struct drm_sched_job base; 397 398 /** @refcount: Reference count. */ 399 struct kref refcount; 400 401 /** @cleanup_op_ctx_work: Work used to cleanup the VM operation context. */ 402 struct work_struct cleanup_op_ctx_work; 403 404 /** @vm: VM targeted by the VM operation. */ 405 struct panthor_vm *vm; 406 407 /** @ctx: Operation context. */ 408 struct panthor_vm_op_ctx ctx; 409 }; 410 411 /** 412 * @pt_cache: Cache used to allocate MMU page tables. 413 * 414 * The pre-allocation pattern forces us to over-allocate to plan for 415 * the worst case scenario, and return the pages we didn't use. 416 * 417 * Having a kmem_cache allows us to speed allocations. 418 */ 419 static struct kmem_cache *pt_cache; 420 421 /** 422 * alloc_pt() - Custom page table allocator 423 * @cookie: Cookie passed at page table allocation time. 424 * @size: Size of the page table. This size should be fixed, 425 * and determined at creation time based on the granule size. 426 * @gfp: GFP flags. 427 * 428 * We want a custom allocator so we can use a cache for page table 429 * allocations and amortize the cost of the over-reservation that's 430 * done to allow asynchronous VM operations. 431 * 432 * Return: non-NULL on success, NULL if the allocation failed for any 433 * reason. 434 */ 435 static void *alloc_pt(void *cookie, size_t size, gfp_t gfp) 436 { 437 struct panthor_vm *vm = cookie; 438 void *page; 439 440 /* Allocation of the root page table happening during init. */ 441 if (unlikely(!vm->root_page_table)) { 442 struct page *p; 443 444 drm_WARN_ON(&vm->ptdev->base, vm->op_ctx); 445 p = alloc_pages_node(dev_to_node(vm->ptdev->base.dev), 446 gfp | __GFP_ZERO, get_order(size)); 447 page = p ? page_address(p) : NULL; 448 vm->root_page_table = page; 449 return page; 450 } 451 452 /* We're not supposed to have anything bigger than 4k here, because we picked a 453 * 4k granule size at init time. 454 */ 455 if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K)) 456 return NULL; 457 458 /* We must have some op_ctx attached to the VM and it must have at least one 459 * free page. 460 */ 461 if (drm_WARN_ON(&vm->ptdev->base, !vm->op_ctx) || 462 drm_WARN_ON(&vm->ptdev->base, 463 vm->op_ctx->rsvd_page_tables.ptr >= vm->op_ctx->rsvd_page_tables.count)) 464 return NULL; 465 466 page = vm->op_ctx->rsvd_page_tables.pages[vm->op_ctx->rsvd_page_tables.ptr++]; 467 memset(page, 0, SZ_4K); 468 469 /* Page table entries don't use virtual addresses, which trips out 470 * kmemleak. kmemleak_alloc_phys() might work, but physical addresses 471 * are mixed with other fields, and I fear kmemleak won't detect that 472 * either. 473 * 474 * Let's just ignore memory passed to the page-table driver for now. 475 */ 476 kmemleak_ignore(page); 477 return page; 478 } 479 480 /** 481 * @free_pt() - Custom page table free function 482 * @cookie: Cookie passed at page table allocation time. 483 * @data: Page table to free. 484 * @size: Size of the page table. This size should be fixed, 485 * and determined at creation time based on the granule size. 486 */ 487 static void free_pt(void *cookie, void *data, size_t size) 488 { 489 struct panthor_vm *vm = cookie; 490 491 if (unlikely(vm->root_page_table == data)) { 492 free_pages((unsigned long)data, get_order(size)); 493 vm->root_page_table = NULL; 494 return; 495 } 496 497 if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K)) 498 return; 499 500 /* Return the page to the pt_cache. */ 501 kmem_cache_free(pt_cache, data); 502 } 503 504 static int wait_ready(struct panthor_device *ptdev, u32 as_nr) 505 { 506 int ret; 507 u32 val; 508 509 /* Wait for the MMU status to indicate there is no active command, in 510 * case one is pending. 511 */ 512 ret = readl_relaxed_poll_timeout_atomic(ptdev->iomem + AS_STATUS(as_nr), 513 val, !(val & AS_STATUS_AS_ACTIVE), 514 10, 100000); 515 516 if (ret) { 517 panthor_device_schedule_reset(ptdev); 518 drm_err(&ptdev->base, "AS_ACTIVE bit stuck\n"); 519 } 520 521 return ret; 522 } 523 524 static int write_cmd(struct panthor_device *ptdev, u32 as_nr, u32 cmd) 525 { 526 int status; 527 528 /* write AS_COMMAND when MMU is ready to accept another command */ 529 status = wait_ready(ptdev, as_nr); 530 if (!status) 531 gpu_write(ptdev, AS_COMMAND(as_nr), cmd); 532 533 return status; 534 } 535 536 static void lock_region(struct panthor_device *ptdev, u32 as_nr, 537 u64 region_start, u64 size) 538 { 539 u8 region_width; 540 u64 region; 541 u64 region_end = region_start + size; 542 543 if (!size) 544 return; 545 546 /* 547 * The locked region is a naturally aligned power of 2 block encoded as 548 * log2 minus(1). 549 * Calculate the desired start/end and look for the highest bit which 550 * differs. The smallest naturally aligned block must include this bit 551 * change, the desired region starts with this bit (and subsequent bits) 552 * zeroed and ends with the bit (and subsequent bits) set to one. 553 */ 554 region_width = max(fls64(region_start ^ (region_end - 1)), 555 const_ilog2(AS_LOCK_REGION_MIN_SIZE)) - 1; 556 557 /* 558 * Mask off the low bits of region_start (which would be ignored by 559 * the hardware anyway) 560 */ 561 region_start &= GENMASK_ULL(63, region_width); 562 563 region = region_width | region_start; 564 565 /* Lock the region that needs to be updated */ 566 gpu_write(ptdev, AS_LOCKADDR_LO(as_nr), lower_32_bits(region)); 567 gpu_write(ptdev, AS_LOCKADDR_HI(as_nr), upper_32_bits(region)); 568 write_cmd(ptdev, as_nr, AS_COMMAND_LOCK); 569 } 570 571 static int mmu_hw_do_operation_locked(struct panthor_device *ptdev, int as_nr, 572 u64 iova, u64 size, u32 op) 573 { 574 lockdep_assert_held(&ptdev->mmu->as.slots_lock); 575 576 if (as_nr < 0) 577 return 0; 578 579 /* 580 * If the AS number is greater than zero, then we can be sure 581 * the device is up and running, so we don't need to explicitly 582 * power it up 583 */ 584 585 if (op != AS_COMMAND_UNLOCK) 586 lock_region(ptdev, as_nr, iova, size); 587 588 /* Run the MMU operation */ 589 write_cmd(ptdev, as_nr, op); 590 591 /* Wait for the flush to complete */ 592 return wait_ready(ptdev, as_nr); 593 } 594 595 static int mmu_hw_do_operation(struct panthor_vm *vm, 596 u64 iova, u64 size, u32 op) 597 { 598 struct panthor_device *ptdev = vm->ptdev; 599 int ret; 600 601 mutex_lock(&ptdev->mmu->as.slots_lock); 602 ret = mmu_hw_do_operation_locked(ptdev, vm->as.id, iova, size, op); 603 mutex_unlock(&ptdev->mmu->as.slots_lock); 604 605 return ret; 606 } 607 608 static int panthor_mmu_as_enable(struct panthor_device *ptdev, u32 as_nr, 609 u64 transtab, u64 transcfg, u64 memattr) 610 { 611 int ret; 612 613 ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM); 614 if (ret) 615 return ret; 616 617 gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), lower_32_bits(transtab)); 618 gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), upper_32_bits(transtab)); 619 620 gpu_write(ptdev, AS_MEMATTR_LO(as_nr), lower_32_bits(memattr)); 621 gpu_write(ptdev, AS_MEMATTR_HI(as_nr), upper_32_bits(memattr)); 622 623 gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), lower_32_bits(transcfg)); 624 gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), upper_32_bits(transcfg)); 625 626 return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE); 627 } 628 629 static int panthor_mmu_as_disable(struct panthor_device *ptdev, u32 as_nr) 630 { 631 int ret; 632 633 ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM); 634 if (ret) 635 return ret; 636 637 gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), 0); 638 gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), 0); 639 640 gpu_write(ptdev, AS_MEMATTR_LO(as_nr), 0); 641 gpu_write(ptdev, AS_MEMATTR_HI(as_nr), 0); 642 643 gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), AS_TRANSCFG_ADRMODE_UNMAPPED); 644 gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), 0); 645 646 return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE); 647 } 648 649 static u32 panthor_mmu_fault_mask(struct panthor_device *ptdev, u32 value) 650 { 651 /* Bits 16 to 31 mean REQ_COMPLETE. */ 652 return value & GENMASK(15, 0); 653 } 654 655 static u32 panthor_mmu_as_fault_mask(struct panthor_device *ptdev, u32 as) 656 { 657 return BIT(as); 658 } 659 660 /** 661 * panthor_vm_has_unhandled_faults() - Check if a VM has unhandled faults 662 * @vm: VM to check. 663 * 664 * Return: true if the VM has unhandled faults, false otherwise. 665 */ 666 bool panthor_vm_has_unhandled_faults(struct panthor_vm *vm) 667 { 668 return vm->unhandled_fault; 669 } 670 671 /** 672 * panthor_vm_is_unusable() - Check if the VM is still usable 673 * @vm: VM to check. 674 * 675 * Return: true if the VM is unusable, false otherwise. 676 */ 677 bool panthor_vm_is_unusable(struct panthor_vm *vm) 678 { 679 return vm->unusable; 680 } 681 682 static void panthor_vm_release_as_locked(struct panthor_vm *vm) 683 { 684 struct panthor_device *ptdev = vm->ptdev; 685 686 lockdep_assert_held(&ptdev->mmu->as.slots_lock); 687 688 if (drm_WARN_ON(&ptdev->base, vm->as.id < 0)) 689 return; 690 691 ptdev->mmu->as.slots[vm->as.id].vm = NULL; 692 clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask); 693 refcount_set(&vm->as.active_cnt, 0); 694 list_del_init(&vm->as.lru_node); 695 vm->as.id = -1; 696 } 697 698 /** 699 * panthor_vm_active() - Flag a VM as active 700 * @VM: VM to flag as active. 701 * 702 * Assigns an address space to a VM so it can be used by the GPU/MCU. 703 * 704 * Return: 0 on success, a negative error code otherwise. 705 */ 706 int panthor_vm_active(struct panthor_vm *vm) 707 { 708 struct panthor_device *ptdev = vm->ptdev; 709 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 710 struct io_pgtable_cfg *cfg = &io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg; 711 int ret = 0, as, cookie; 712 u64 transtab, transcfg; 713 714 if (!drm_dev_enter(&ptdev->base, &cookie)) 715 return -ENODEV; 716 717 if (refcount_inc_not_zero(&vm->as.active_cnt)) 718 goto out_dev_exit; 719 720 mutex_lock(&ptdev->mmu->as.slots_lock); 721 722 if (refcount_inc_not_zero(&vm->as.active_cnt)) 723 goto out_unlock; 724 725 as = vm->as.id; 726 if (as >= 0) { 727 /* Unhandled pagefault on this AS, the MMU was disabled. We need to 728 * re-enable the MMU after clearing+unmasking the AS interrupts. 729 */ 730 if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) 731 goto out_enable_as; 732 733 goto out_make_active; 734 } 735 736 /* Check for a free AS */ 737 if (vm->for_mcu) { 738 drm_WARN_ON(&ptdev->base, ptdev->mmu->as.alloc_mask & BIT(0)); 739 as = 0; 740 } else { 741 as = ffz(ptdev->mmu->as.alloc_mask | BIT(0)); 742 } 743 744 if (!(BIT(as) & ptdev->gpu_info.as_present)) { 745 struct panthor_vm *lru_vm; 746 747 lru_vm = list_first_entry_or_null(&ptdev->mmu->as.lru_list, 748 struct panthor_vm, 749 as.lru_node); 750 if (drm_WARN_ON(&ptdev->base, !lru_vm)) { 751 ret = -EBUSY; 752 goto out_unlock; 753 } 754 755 drm_WARN_ON(&ptdev->base, refcount_read(&lru_vm->as.active_cnt)); 756 as = lru_vm->as.id; 757 panthor_vm_release_as_locked(lru_vm); 758 } 759 760 /* Assign the free or reclaimed AS to the FD */ 761 vm->as.id = as; 762 set_bit(as, &ptdev->mmu->as.alloc_mask); 763 ptdev->mmu->as.slots[as].vm = vm; 764 765 out_enable_as: 766 transtab = cfg->arm_lpae_s1_cfg.ttbr; 767 transcfg = AS_TRANSCFG_PTW_MEMATTR_WB | 768 AS_TRANSCFG_PTW_RA | 769 AS_TRANSCFG_ADRMODE_AARCH64_4K | 770 AS_TRANSCFG_INA_BITS(55 - va_bits); 771 if (ptdev->coherent) 772 transcfg |= AS_TRANSCFG_PTW_SH_OS; 773 774 /* If the VM is re-activated, we clear the fault. */ 775 vm->unhandled_fault = false; 776 777 /* Unhandled pagefault on this AS, clear the fault and re-enable interrupts 778 * before enabling the AS. 779 */ 780 if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) { 781 gpu_write(ptdev, MMU_INT_CLEAR, panthor_mmu_as_fault_mask(ptdev, as)); 782 ptdev->mmu->as.faulty_mask &= ~panthor_mmu_as_fault_mask(ptdev, as); 783 gpu_write(ptdev, MMU_INT_MASK, ~ptdev->mmu->as.faulty_mask); 784 } 785 786 ret = panthor_mmu_as_enable(vm->ptdev, vm->as.id, transtab, transcfg, vm->memattr); 787 788 out_make_active: 789 if (!ret) { 790 refcount_set(&vm->as.active_cnt, 1); 791 list_del_init(&vm->as.lru_node); 792 } 793 794 out_unlock: 795 mutex_unlock(&ptdev->mmu->as.slots_lock); 796 797 out_dev_exit: 798 drm_dev_exit(cookie); 799 return ret; 800 } 801 802 /** 803 * panthor_vm_idle() - Flag a VM idle 804 * @VM: VM to flag as idle. 805 * 806 * When we know the GPU is done with the VM (no more jobs to process), 807 * we can relinquish the AS slot attached to this VM, if any. 808 * 809 * We don't release the slot immediately, but instead place the VM in 810 * the LRU list, so it can be evicted if another VM needs an AS slot. 811 * This way, VMs keep attached to the AS they were given until we run 812 * out of free slot, limiting the number of MMU operations (TLB flush 813 * and other AS updates). 814 */ 815 void panthor_vm_idle(struct panthor_vm *vm) 816 { 817 struct panthor_device *ptdev = vm->ptdev; 818 819 if (!refcount_dec_and_mutex_lock(&vm->as.active_cnt, &ptdev->mmu->as.slots_lock)) 820 return; 821 822 if (!drm_WARN_ON(&ptdev->base, vm->as.id == -1 || !list_empty(&vm->as.lru_node))) 823 list_add_tail(&vm->as.lru_node, &ptdev->mmu->as.lru_list); 824 825 refcount_set(&vm->as.active_cnt, 0); 826 mutex_unlock(&ptdev->mmu->as.slots_lock); 827 } 828 829 static void panthor_vm_stop(struct panthor_vm *vm) 830 { 831 drm_sched_stop(&vm->sched, NULL); 832 } 833 834 static void panthor_vm_start(struct panthor_vm *vm) 835 { 836 drm_sched_start(&vm->sched, true); 837 } 838 839 /** 840 * panthor_vm_as() - Get the AS slot attached to a VM 841 * @vm: VM to get the AS slot of. 842 * 843 * Return: -1 if the VM is not assigned an AS slot yet, >= 0 otherwise. 844 */ 845 int panthor_vm_as(struct panthor_vm *vm) 846 { 847 return vm->as.id; 848 } 849 850 static size_t get_pgsize(u64 addr, size_t size, size_t *count) 851 { 852 /* 853 * io-pgtable only operates on multiple pages within a single table 854 * entry, so we need to split at boundaries of the table size, i.e. 855 * the next block size up. The distance from address A to the next 856 * boundary of block size B is logically B - A % B, but in unsigned 857 * two's complement where B is a power of two we get the equivalence 858 * B - A % B == (B - A) % B == (n * B - A) % B, and choose n = 0 :) 859 */ 860 size_t blk_offset = -addr % SZ_2M; 861 862 if (blk_offset || size < SZ_2M) { 863 *count = min_not_zero(blk_offset, size) / SZ_4K; 864 return SZ_4K; 865 } 866 blk_offset = -addr % SZ_1G ?: SZ_1G; 867 *count = min(blk_offset, size) / SZ_2M; 868 return SZ_2M; 869 } 870 871 static int panthor_vm_flush_range(struct panthor_vm *vm, u64 iova, u64 size) 872 { 873 struct panthor_device *ptdev = vm->ptdev; 874 int ret = 0, cookie; 875 876 if (vm->as.id < 0) 877 return 0; 878 879 /* If the device is unplugged, we just silently skip the flush. */ 880 if (!drm_dev_enter(&ptdev->base, &cookie)) 881 return 0; 882 883 ret = mmu_hw_do_operation(vm, iova, size, AS_COMMAND_FLUSH_PT); 884 885 drm_dev_exit(cookie); 886 return ret; 887 } 888 889 /** 890 * panthor_vm_flush_all() - Flush L2 caches for the entirety of a VM's AS 891 * @vm: VM whose cache to flush 892 * 893 * Return: 0 on success, a negative error code if flush failed. 894 */ 895 int panthor_vm_flush_all(struct panthor_vm *vm) 896 { 897 return panthor_vm_flush_range(vm, vm->base.mm_start, vm->base.mm_range); 898 } 899 900 static int panthor_vm_unmap_pages(struct panthor_vm *vm, u64 iova, u64 size) 901 { 902 struct panthor_device *ptdev = vm->ptdev; 903 struct io_pgtable_ops *ops = vm->pgtbl_ops; 904 u64 offset = 0; 905 906 drm_dbg(&ptdev->base, "unmap: as=%d, iova=%llx, len=%llx", vm->as.id, iova, size); 907 908 while (offset < size) { 909 size_t unmapped_sz = 0, pgcount; 910 size_t pgsize = get_pgsize(iova + offset, size - offset, &pgcount); 911 912 unmapped_sz = ops->unmap_pages(ops, iova + offset, pgsize, pgcount, NULL); 913 914 if (drm_WARN_ON(&ptdev->base, unmapped_sz != pgsize * pgcount)) { 915 drm_err(&ptdev->base, "failed to unmap range %llx-%llx (requested range %llx-%llx)\n", 916 iova + offset + unmapped_sz, 917 iova + offset + pgsize * pgcount, 918 iova, iova + size); 919 panthor_vm_flush_range(vm, iova, offset + unmapped_sz); 920 return -EINVAL; 921 } 922 offset += unmapped_sz; 923 } 924 925 return panthor_vm_flush_range(vm, iova, size); 926 } 927 928 static int 929 panthor_vm_map_pages(struct panthor_vm *vm, u64 iova, int prot, 930 struct sg_table *sgt, u64 offset, u64 size) 931 { 932 struct panthor_device *ptdev = vm->ptdev; 933 unsigned int count; 934 struct scatterlist *sgl; 935 struct io_pgtable_ops *ops = vm->pgtbl_ops; 936 u64 start_iova = iova; 937 int ret; 938 939 if (!size) 940 return 0; 941 942 for_each_sgtable_dma_sg(sgt, sgl, count) { 943 dma_addr_t paddr = sg_dma_address(sgl); 944 size_t len = sg_dma_len(sgl); 945 946 if (len <= offset) { 947 offset -= len; 948 continue; 949 } 950 951 paddr += offset; 952 len -= offset; 953 len = min_t(size_t, len, size); 954 size -= len; 955 956 drm_dbg(&ptdev->base, "map: as=%d, iova=%llx, paddr=%pad, len=%zx", 957 vm->as.id, iova, &paddr, len); 958 959 while (len) { 960 size_t pgcount, mapped = 0; 961 size_t pgsize = get_pgsize(iova | paddr, len, &pgcount); 962 963 ret = ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot, 964 GFP_KERNEL, &mapped); 965 iova += mapped; 966 paddr += mapped; 967 len -= mapped; 968 969 if (drm_WARN_ON(&ptdev->base, !ret && !mapped)) 970 ret = -ENOMEM; 971 972 if (ret) { 973 /* If something failed, unmap what we've already mapped before 974 * returning. The unmap call is not supposed to fail. 975 */ 976 drm_WARN_ON(&ptdev->base, 977 panthor_vm_unmap_pages(vm, start_iova, 978 iova - start_iova)); 979 return ret; 980 } 981 } 982 983 if (!size) 984 break; 985 } 986 987 return panthor_vm_flush_range(vm, start_iova, iova - start_iova); 988 } 989 990 static int flags_to_prot(u32 flags) 991 { 992 int prot = 0; 993 994 if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC) 995 prot |= IOMMU_NOEXEC; 996 997 if (!(flags & DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED)) 998 prot |= IOMMU_CACHE; 999 1000 if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_READONLY) 1001 prot |= IOMMU_READ; 1002 else 1003 prot |= IOMMU_READ | IOMMU_WRITE; 1004 1005 return prot; 1006 } 1007 1008 /** 1009 * panthor_vm_alloc_va() - Allocate a region in the auto-va space 1010 * @VM: VM to allocate a region on. 1011 * @va: start of the VA range. Can be PANTHOR_VM_KERNEL_AUTO_VA if the user 1012 * wants the VA to be automatically allocated from the auto-VA range. 1013 * @size: size of the VA range. 1014 * @va_node: drm_mm_node to initialize. Must be zero-initialized. 1015 * 1016 * Some GPU objects, like heap chunks, are fully managed by the kernel and 1017 * need to be mapped to the userspace VM, in the region reserved for kernel 1018 * objects. 1019 * 1020 * This function takes care of allocating a region in the kernel auto-VA space. 1021 * 1022 * Return: 0 on success, an error code otherwise. 1023 */ 1024 int 1025 panthor_vm_alloc_va(struct panthor_vm *vm, u64 va, u64 size, 1026 struct drm_mm_node *va_node) 1027 { 1028 int ret; 1029 1030 if (!size || (size & ~PAGE_MASK)) 1031 return -EINVAL; 1032 1033 if (va != PANTHOR_VM_KERNEL_AUTO_VA && (va & ~PAGE_MASK)) 1034 return -EINVAL; 1035 1036 mutex_lock(&vm->mm_lock); 1037 if (va != PANTHOR_VM_KERNEL_AUTO_VA) { 1038 va_node->start = va; 1039 va_node->size = size; 1040 ret = drm_mm_reserve_node(&vm->mm, va_node); 1041 } else { 1042 ret = drm_mm_insert_node_in_range(&vm->mm, va_node, size, 1043 size >= SZ_2M ? SZ_2M : SZ_4K, 1044 0, vm->kernel_auto_va.start, 1045 vm->kernel_auto_va.end, 1046 DRM_MM_INSERT_BEST); 1047 } 1048 mutex_unlock(&vm->mm_lock); 1049 1050 return ret; 1051 } 1052 1053 /** 1054 * panthor_vm_free_va() - Free a region allocated with panthor_vm_alloc_va() 1055 * @VM: VM to free the region on. 1056 * @va_node: Memory node representing the region to free. 1057 */ 1058 void panthor_vm_free_va(struct panthor_vm *vm, struct drm_mm_node *va_node) 1059 { 1060 mutex_lock(&vm->mm_lock); 1061 drm_mm_remove_node(va_node); 1062 mutex_unlock(&vm->mm_lock); 1063 } 1064 1065 static void panthor_vm_bo_put(struct drm_gpuvm_bo *vm_bo) 1066 { 1067 struct panthor_gem_object *bo = to_panthor_bo(vm_bo->obj); 1068 struct drm_gpuvm *vm = vm_bo->vm; 1069 bool unpin; 1070 1071 /* We must retain the GEM before calling drm_gpuvm_bo_put(), 1072 * otherwise the mutex might be destroyed while we hold it. 1073 * Same goes for the VM, since we take the VM resv lock. 1074 */ 1075 drm_gem_object_get(&bo->base.base); 1076 drm_gpuvm_get(vm); 1077 1078 /* We take the resv lock to protect against concurrent accesses to the 1079 * gpuvm evicted/extobj lists that are modified in 1080 * drm_gpuvm_bo_destroy(), which is called if drm_gpuvm_bo_put() 1081 * releases sthe last vm_bo reference. 1082 * We take the BO GPUVA list lock to protect the vm_bo removal from the 1083 * GEM vm_bo list. 1084 */ 1085 dma_resv_lock(drm_gpuvm_resv(vm), NULL); 1086 mutex_lock(&bo->gpuva_list_lock); 1087 unpin = drm_gpuvm_bo_put(vm_bo); 1088 mutex_unlock(&bo->gpuva_list_lock); 1089 dma_resv_unlock(drm_gpuvm_resv(vm)); 1090 1091 /* If the vm_bo object was destroyed, release the pin reference that 1092 * was hold by this object. 1093 */ 1094 if (unpin && !bo->base.base.import_attach) 1095 drm_gem_shmem_unpin(&bo->base); 1096 1097 drm_gpuvm_put(vm); 1098 drm_gem_object_put(&bo->base.base); 1099 } 1100 1101 static void panthor_vm_cleanup_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1102 struct panthor_vm *vm) 1103 { 1104 struct panthor_vma *vma, *tmp_vma; 1105 1106 u32 remaining_pt_count = op_ctx->rsvd_page_tables.count - 1107 op_ctx->rsvd_page_tables.ptr; 1108 1109 if (remaining_pt_count) { 1110 kmem_cache_free_bulk(pt_cache, remaining_pt_count, 1111 op_ctx->rsvd_page_tables.pages + 1112 op_ctx->rsvd_page_tables.ptr); 1113 } 1114 1115 kfree(op_ctx->rsvd_page_tables.pages); 1116 1117 if (op_ctx->map.vm_bo) 1118 panthor_vm_bo_put(op_ctx->map.vm_bo); 1119 1120 for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) 1121 kfree(op_ctx->preallocated_vmas[i]); 1122 1123 list_for_each_entry_safe(vma, tmp_vma, &op_ctx->returned_vmas, node) { 1124 list_del(&vma->node); 1125 panthor_vm_bo_put(vma->base.vm_bo); 1126 kfree(vma); 1127 } 1128 } 1129 1130 static struct panthor_vma * 1131 panthor_vm_op_ctx_get_vma(struct panthor_vm_op_ctx *op_ctx) 1132 { 1133 for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) { 1134 struct panthor_vma *vma = op_ctx->preallocated_vmas[i]; 1135 1136 if (vma) { 1137 op_ctx->preallocated_vmas[i] = NULL; 1138 return vma; 1139 } 1140 } 1141 1142 return NULL; 1143 } 1144 1145 static int 1146 panthor_vm_op_ctx_prealloc_vmas(struct panthor_vm_op_ctx *op_ctx) 1147 { 1148 u32 vma_count; 1149 1150 switch (op_ctx->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) { 1151 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: 1152 /* One VMA for the new mapping, and two more VMAs for the remap case 1153 * which might contain both a prev and next VA. 1154 */ 1155 vma_count = 3; 1156 break; 1157 1158 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP: 1159 /* Partial unmaps might trigger a remap with either a prev or a next VA, 1160 * but not both. 1161 */ 1162 vma_count = 1; 1163 break; 1164 1165 default: 1166 return 0; 1167 } 1168 1169 for (u32 i = 0; i < vma_count; i++) { 1170 struct panthor_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL); 1171 1172 if (!vma) 1173 return -ENOMEM; 1174 1175 op_ctx->preallocated_vmas[i] = vma; 1176 } 1177 1178 return 0; 1179 } 1180 1181 #define PANTHOR_VM_BIND_OP_MAP_FLAGS \ 1182 (DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \ 1183 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \ 1184 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED | \ 1185 DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) 1186 1187 static int panthor_vm_prepare_map_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1188 struct panthor_vm *vm, 1189 struct panthor_gem_object *bo, 1190 u64 offset, 1191 u64 size, u64 va, 1192 u32 flags) 1193 { 1194 struct drm_gpuvm_bo *preallocated_vm_bo; 1195 struct sg_table *sgt = NULL; 1196 u64 pt_count; 1197 int ret; 1198 1199 if (!bo) 1200 return -EINVAL; 1201 1202 if ((flags & ~PANTHOR_VM_BIND_OP_MAP_FLAGS) || 1203 (flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) != DRM_PANTHOR_VM_BIND_OP_TYPE_MAP) 1204 return -EINVAL; 1205 1206 /* Make sure the VA and size are aligned and in-bounds. */ 1207 if (size > bo->base.base.size || offset > bo->base.base.size - size) 1208 return -EINVAL; 1209 1210 /* If the BO has an exclusive VM attached, it can't be mapped to other VMs. */ 1211 if (bo->exclusive_vm_root_gem && 1212 bo->exclusive_vm_root_gem != panthor_vm_root_gem(vm)) 1213 return -EINVAL; 1214 1215 memset(op_ctx, 0, sizeof(*op_ctx)); 1216 INIT_LIST_HEAD(&op_ctx->returned_vmas); 1217 op_ctx->flags = flags; 1218 op_ctx->va.range = size; 1219 op_ctx->va.addr = va; 1220 1221 ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx); 1222 if (ret) 1223 goto err_cleanup; 1224 1225 if (!bo->base.base.import_attach) { 1226 /* Pre-reserve the BO pages, so the map operation doesn't have to 1227 * allocate. 1228 */ 1229 ret = drm_gem_shmem_pin(&bo->base); 1230 if (ret) 1231 goto err_cleanup; 1232 } 1233 1234 sgt = drm_gem_shmem_get_pages_sgt(&bo->base); 1235 if (IS_ERR(sgt)) { 1236 if (!bo->base.base.import_attach) 1237 drm_gem_shmem_unpin(&bo->base); 1238 1239 ret = PTR_ERR(sgt); 1240 goto err_cleanup; 1241 } 1242 1243 op_ctx->map.sgt = sgt; 1244 1245 preallocated_vm_bo = drm_gpuvm_bo_create(&vm->base, &bo->base.base); 1246 if (!preallocated_vm_bo) { 1247 if (!bo->base.base.import_attach) 1248 drm_gem_shmem_unpin(&bo->base); 1249 1250 ret = -ENOMEM; 1251 goto err_cleanup; 1252 } 1253 1254 mutex_lock(&bo->gpuva_list_lock); 1255 op_ctx->map.vm_bo = drm_gpuvm_bo_obtain_prealloc(preallocated_vm_bo); 1256 mutex_unlock(&bo->gpuva_list_lock); 1257 1258 /* If the a vm_bo for this <VM,BO> combination exists, it already 1259 * retains a pin ref, and we can release the one we took earlier. 1260 * 1261 * If our pre-allocated vm_bo is picked, it now retains the pin ref, 1262 * which will be released in panthor_vm_bo_put(). 1263 */ 1264 if (preallocated_vm_bo != op_ctx->map.vm_bo && 1265 !bo->base.base.import_attach) 1266 drm_gem_shmem_unpin(&bo->base); 1267 1268 op_ctx->map.bo_offset = offset; 1269 1270 /* L1, L2 and L3 page tables. 1271 * We could optimize L3 allocation by iterating over the sgt and merging 1272 * 2M contiguous blocks, but it's simpler to over-provision and return 1273 * the pages if they're not used. 1274 */ 1275 pt_count = ((ALIGN(va + size, 1ull << 39) - ALIGN_DOWN(va, 1ull << 39)) >> 39) + 1276 ((ALIGN(va + size, 1ull << 30) - ALIGN_DOWN(va, 1ull << 30)) >> 30) + 1277 ((ALIGN(va + size, 1ull << 21) - ALIGN_DOWN(va, 1ull << 21)) >> 21); 1278 1279 op_ctx->rsvd_page_tables.pages = kcalloc(pt_count, 1280 sizeof(*op_ctx->rsvd_page_tables.pages), 1281 GFP_KERNEL); 1282 if (!op_ctx->rsvd_page_tables.pages) { 1283 ret = -ENOMEM; 1284 goto err_cleanup; 1285 } 1286 1287 ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count, 1288 op_ctx->rsvd_page_tables.pages); 1289 op_ctx->rsvd_page_tables.count = ret; 1290 if (ret != pt_count) { 1291 ret = -ENOMEM; 1292 goto err_cleanup; 1293 } 1294 1295 /* Insert BO into the extobj list last, when we know nothing can fail. */ 1296 dma_resv_lock(panthor_vm_resv(vm), NULL); 1297 drm_gpuvm_bo_extobj_add(op_ctx->map.vm_bo); 1298 dma_resv_unlock(panthor_vm_resv(vm)); 1299 1300 return 0; 1301 1302 err_cleanup: 1303 panthor_vm_cleanup_op_ctx(op_ctx, vm); 1304 return ret; 1305 } 1306 1307 static int panthor_vm_prepare_unmap_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1308 struct panthor_vm *vm, 1309 u64 va, u64 size) 1310 { 1311 u32 pt_count = 0; 1312 int ret; 1313 1314 memset(op_ctx, 0, sizeof(*op_ctx)); 1315 INIT_LIST_HEAD(&op_ctx->returned_vmas); 1316 op_ctx->va.range = size; 1317 op_ctx->va.addr = va; 1318 op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP; 1319 1320 /* Pre-allocate L3 page tables to account for the split-2M-block 1321 * situation on unmap. 1322 */ 1323 if (va != ALIGN(va, SZ_2M)) 1324 pt_count++; 1325 1326 if (va + size != ALIGN(va + size, SZ_2M) && 1327 ALIGN(va + size, SZ_2M) != ALIGN(va, SZ_2M)) 1328 pt_count++; 1329 1330 ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx); 1331 if (ret) 1332 goto err_cleanup; 1333 1334 if (pt_count) { 1335 op_ctx->rsvd_page_tables.pages = kcalloc(pt_count, 1336 sizeof(*op_ctx->rsvd_page_tables.pages), 1337 GFP_KERNEL); 1338 if (!op_ctx->rsvd_page_tables.pages) { 1339 ret = -ENOMEM; 1340 goto err_cleanup; 1341 } 1342 1343 ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count, 1344 op_ctx->rsvd_page_tables.pages); 1345 if (ret != pt_count) { 1346 ret = -ENOMEM; 1347 goto err_cleanup; 1348 } 1349 op_ctx->rsvd_page_tables.count = pt_count; 1350 } 1351 1352 return 0; 1353 1354 err_cleanup: 1355 panthor_vm_cleanup_op_ctx(op_ctx, vm); 1356 return ret; 1357 } 1358 1359 static void panthor_vm_prepare_sync_only_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1360 struct panthor_vm *vm) 1361 { 1362 memset(op_ctx, 0, sizeof(*op_ctx)); 1363 INIT_LIST_HEAD(&op_ctx->returned_vmas); 1364 op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY; 1365 } 1366 1367 /** 1368 * panthor_vm_get_bo_for_va() - Get the GEM object mapped at a virtual address 1369 * @vm: VM to look into. 1370 * @va: Virtual address to search for. 1371 * @bo_offset: Offset of the GEM object mapped at this virtual address. 1372 * Only valid on success. 1373 * 1374 * The object returned by this function might no longer be mapped when the 1375 * function returns. It's the caller responsibility to ensure there's no 1376 * concurrent map/unmap operations making the returned value invalid, or 1377 * make sure it doesn't matter if the object is no longer mapped. 1378 * 1379 * Return: A valid pointer on success, an ERR_PTR() otherwise. 1380 */ 1381 struct panthor_gem_object * 1382 panthor_vm_get_bo_for_va(struct panthor_vm *vm, u64 va, u64 *bo_offset) 1383 { 1384 struct panthor_gem_object *bo = ERR_PTR(-ENOENT); 1385 struct drm_gpuva *gpuva; 1386 struct panthor_vma *vma; 1387 1388 /* Take the VM lock to prevent concurrent map/unmap operations. */ 1389 mutex_lock(&vm->op_lock); 1390 gpuva = drm_gpuva_find_first(&vm->base, va, 1); 1391 vma = gpuva ? container_of(gpuva, struct panthor_vma, base) : NULL; 1392 if (vma && vma->base.gem.obj) { 1393 drm_gem_object_get(vma->base.gem.obj); 1394 bo = to_panthor_bo(vma->base.gem.obj); 1395 *bo_offset = vma->base.gem.offset + (va - vma->base.va.addr); 1396 } 1397 mutex_unlock(&vm->op_lock); 1398 1399 return bo; 1400 } 1401 1402 #define PANTHOR_VM_MIN_KERNEL_VA_SIZE SZ_256M 1403 1404 static u64 1405 panthor_vm_create_get_user_va_range(const struct drm_panthor_vm_create *args, 1406 u64 full_va_range) 1407 { 1408 u64 user_va_range; 1409 1410 /* Make sure we have a minimum amount of VA space for kernel objects. */ 1411 if (full_va_range < PANTHOR_VM_MIN_KERNEL_VA_SIZE) 1412 return 0; 1413 1414 if (args->user_va_range) { 1415 /* Use the user provided value if != 0. */ 1416 user_va_range = args->user_va_range; 1417 } else if (TASK_SIZE_OF(current) < full_va_range) { 1418 /* If the task VM size is smaller than the GPU VA range, pick this 1419 * as our default user VA range, so userspace can CPU/GPU map buffers 1420 * at the same address. 1421 */ 1422 user_va_range = TASK_SIZE_OF(current); 1423 } else { 1424 /* If the GPU VA range is smaller than the task VM size, we 1425 * just have to live with the fact we won't be able to map 1426 * all buffers at the same GPU/CPU address. 1427 * 1428 * If the GPU VA range is bigger than 4G (more than 32-bit of 1429 * VA), we split the range in two, and assign half of it to 1430 * the user and the other half to the kernel, if it's not, we 1431 * keep the kernel VA space as small as possible. 1432 */ 1433 user_va_range = full_va_range > SZ_4G ? 1434 full_va_range / 2 : 1435 full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE; 1436 } 1437 1438 if (full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE < user_va_range) 1439 user_va_range = full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE; 1440 1441 return user_va_range; 1442 } 1443 1444 #define PANTHOR_VM_CREATE_FLAGS 0 1445 1446 static int 1447 panthor_vm_create_check_args(const struct panthor_device *ptdev, 1448 const struct drm_panthor_vm_create *args, 1449 u64 *kernel_va_start, u64 *kernel_va_range) 1450 { 1451 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 1452 u64 full_va_range = 1ull << va_bits; 1453 u64 user_va_range; 1454 1455 if (args->flags & ~PANTHOR_VM_CREATE_FLAGS) 1456 return -EINVAL; 1457 1458 user_va_range = panthor_vm_create_get_user_va_range(args, full_va_range); 1459 if (!user_va_range || (args->user_va_range && args->user_va_range > user_va_range)) 1460 return -EINVAL; 1461 1462 /* Pick a kernel VA range that's a power of two, to have a clear split. */ 1463 *kernel_va_range = rounddown_pow_of_two(full_va_range - user_va_range); 1464 *kernel_va_start = full_va_range - *kernel_va_range; 1465 return 0; 1466 } 1467 1468 /* 1469 * Only 32 VMs per open file. If that becomes a limiting factor, we can 1470 * increase this number. 1471 */ 1472 #define PANTHOR_MAX_VMS_PER_FILE 32 1473 1474 /** 1475 * panthor_vm_pool_create_vm() - Create a VM 1476 * @pool: The VM to create this VM on. 1477 * @kernel_va_start: Start of the region reserved for kernel objects. 1478 * @kernel_va_range: Size of the region reserved for kernel objects. 1479 * 1480 * Return: a positive VM ID on success, a negative error code otherwise. 1481 */ 1482 int panthor_vm_pool_create_vm(struct panthor_device *ptdev, 1483 struct panthor_vm_pool *pool, 1484 struct drm_panthor_vm_create *args) 1485 { 1486 u64 kernel_va_start, kernel_va_range; 1487 struct panthor_vm *vm; 1488 int ret; 1489 u32 id; 1490 1491 ret = panthor_vm_create_check_args(ptdev, args, &kernel_va_start, &kernel_va_range); 1492 if (ret) 1493 return ret; 1494 1495 vm = panthor_vm_create(ptdev, false, kernel_va_start, kernel_va_range, 1496 kernel_va_start, kernel_va_range); 1497 if (IS_ERR(vm)) 1498 return PTR_ERR(vm); 1499 1500 ret = xa_alloc(&pool->xa, &id, vm, 1501 XA_LIMIT(1, PANTHOR_MAX_VMS_PER_FILE), GFP_KERNEL); 1502 1503 if (ret) { 1504 panthor_vm_put(vm); 1505 return ret; 1506 } 1507 1508 args->user_va_range = kernel_va_start; 1509 return id; 1510 } 1511 1512 static void panthor_vm_destroy(struct panthor_vm *vm) 1513 { 1514 if (!vm) 1515 return; 1516 1517 vm->destroyed = true; 1518 1519 mutex_lock(&vm->heaps.lock); 1520 panthor_heap_pool_destroy(vm->heaps.pool); 1521 vm->heaps.pool = NULL; 1522 mutex_unlock(&vm->heaps.lock); 1523 1524 drm_WARN_ON(&vm->ptdev->base, 1525 panthor_vm_unmap_range(vm, vm->base.mm_start, vm->base.mm_range)); 1526 panthor_vm_put(vm); 1527 } 1528 1529 /** 1530 * panthor_vm_pool_destroy_vm() - Destroy a VM. 1531 * @pool: VM pool. 1532 * @handle: VM handle. 1533 * 1534 * This function doesn't free the VM object or its resources, it just kills 1535 * all mappings, and makes sure nothing can be mapped after that point. 1536 * 1537 * If there was any active jobs at the time this function is called, these 1538 * jobs should experience page faults and be killed as a result. 1539 * 1540 * The VM resources are freed when the last reference on the VM object is 1541 * dropped. 1542 */ 1543 int panthor_vm_pool_destroy_vm(struct panthor_vm_pool *pool, u32 handle) 1544 { 1545 struct panthor_vm *vm; 1546 1547 vm = xa_erase(&pool->xa, handle); 1548 1549 panthor_vm_destroy(vm); 1550 1551 return vm ? 0 : -EINVAL; 1552 } 1553 1554 /** 1555 * panthor_vm_pool_get_vm() - Retrieve VM object bound to a VM handle 1556 * @pool: VM pool to check. 1557 * @handle: Handle of the VM to retrieve. 1558 * 1559 * Return: A valid pointer if the VM exists, NULL otherwise. 1560 */ 1561 struct panthor_vm * 1562 panthor_vm_pool_get_vm(struct panthor_vm_pool *pool, u32 handle) 1563 { 1564 struct panthor_vm *vm; 1565 1566 vm = panthor_vm_get(xa_load(&pool->xa, handle)); 1567 1568 return vm; 1569 } 1570 1571 /** 1572 * panthor_vm_pool_destroy() - Destroy a VM pool. 1573 * @pfile: File. 1574 * 1575 * Destroy all VMs in the pool, and release the pool resources. 1576 * 1577 * Note that VMs can outlive the pool they were created from if other 1578 * objects hold a reference to there VMs. 1579 */ 1580 void panthor_vm_pool_destroy(struct panthor_file *pfile) 1581 { 1582 struct panthor_vm *vm; 1583 unsigned long i; 1584 1585 if (!pfile->vms) 1586 return; 1587 1588 xa_for_each(&pfile->vms->xa, i, vm) 1589 panthor_vm_destroy(vm); 1590 1591 xa_destroy(&pfile->vms->xa); 1592 kfree(pfile->vms); 1593 } 1594 1595 /** 1596 * panthor_vm_pool_create() - Create a VM pool 1597 * @pfile: File. 1598 * 1599 * Return: 0 on success, a negative error code otherwise. 1600 */ 1601 int panthor_vm_pool_create(struct panthor_file *pfile) 1602 { 1603 pfile->vms = kzalloc(sizeof(*pfile->vms), GFP_KERNEL); 1604 if (!pfile->vms) 1605 return -ENOMEM; 1606 1607 xa_init_flags(&pfile->vms->xa, XA_FLAGS_ALLOC1); 1608 return 0; 1609 } 1610 1611 /* dummy TLB ops, the real TLB flush happens in panthor_vm_flush_range() */ 1612 static void mmu_tlb_flush_all(void *cookie) 1613 { 1614 } 1615 1616 static void mmu_tlb_flush_walk(unsigned long iova, size_t size, size_t granule, void *cookie) 1617 { 1618 } 1619 1620 static const struct iommu_flush_ops mmu_tlb_ops = { 1621 .tlb_flush_all = mmu_tlb_flush_all, 1622 .tlb_flush_walk = mmu_tlb_flush_walk, 1623 }; 1624 1625 static const char *access_type_name(struct panthor_device *ptdev, 1626 u32 fault_status) 1627 { 1628 switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) { 1629 case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC: 1630 return "ATOMIC"; 1631 case AS_FAULTSTATUS_ACCESS_TYPE_READ: 1632 return "READ"; 1633 case AS_FAULTSTATUS_ACCESS_TYPE_WRITE: 1634 return "WRITE"; 1635 case AS_FAULTSTATUS_ACCESS_TYPE_EX: 1636 return "EXECUTE"; 1637 default: 1638 drm_WARN_ON(&ptdev->base, 1); 1639 return NULL; 1640 } 1641 } 1642 1643 static void panthor_mmu_irq_handler(struct panthor_device *ptdev, u32 status) 1644 { 1645 bool has_unhandled_faults = false; 1646 1647 status = panthor_mmu_fault_mask(ptdev, status); 1648 while (status) { 1649 u32 as = ffs(status | (status >> 16)) - 1; 1650 u32 mask = panthor_mmu_as_fault_mask(ptdev, as); 1651 u32 new_int_mask; 1652 u64 addr; 1653 u32 fault_status; 1654 u32 exception_type; 1655 u32 access_type; 1656 u32 source_id; 1657 1658 fault_status = gpu_read(ptdev, AS_FAULTSTATUS(as)); 1659 addr = gpu_read(ptdev, AS_FAULTADDRESS_LO(as)); 1660 addr |= (u64)gpu_read(ptdev, AS_FAULTADDRESS_HI(as)) << 32; 1661 1662 /* decode the fault status */ 1663 exception_type = fault_status & 0xFF; 1664 access_type = (fault_status >> 8) & 0x3; 1665 source_id = (fault_status >> 16); 1666 1667 mutex_lock(&ptdev->mmu->as.slots_lock); 1668 1669 ptdev->mmu->as.faulty_mask |= mask; 1670 new_int_mask = 1671 panthor_mmu_fault_mask(ptdev, ~ptdev->mmu->as.faulty_mask); 1672 1673 /* terminal fault, print info about the fault */ 1674 drm_err(&ptdev->base, 1675 "Unhandled Page fault in AS%d at VA 0x%016llX\n" 1676 "raw fault status: 0x%X\n" 1677 "decoded fault status: %s\n" 1678 "exception type 0x%X: %s\n" 1679 "access type 0x%X: %s\n" 1680 "source id 0x%X\n", 1681 as, addr, 1682 fault_status, 1683 (fault_status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"), 1684 exception_type, panthor_exception_name(ptdev, exception_type), 1685 access_type, access_type_name(ptdev, fault_status), 1686 source_id); 1687 1688 /* Ignore MMU interrupts on this AS until it's been 1689 * re-enabled. 1690 */ 1691 ptdev->mmu->irq.mask = new_int_mask; 1692 gpu_write(ptdev, MMU_INT_MASK, new_int_mask); 1693 1694 if (ptdev->mmu->as.slots[as].vm) 1695 ptdev->mmu->as.slots[as].vm->unhandled_fault = true; 1696 1697 /* Disable the MMU to kill jobs on this AS. */ 1698 panthor_mmu_as_disable(ptdev, as); 1699 mutex_unlock(&ptdev->mmu->as.slots_lock); 1700 1701 status &= ~mask; 1702 has_unhandled_faults = true; 1703 } 1704 1705 if (has_unhandled_faults) 1706 panthor_sched_report_mmu_fault(ptdev); 1707 } 1708 PANTHOR_IRQ_HANDLER(mmu, MMU, panthor_mmu_irq_handler); 1709 1710 /** 1711 * panthor_mmu_suspend() - Suspend the MMU logic 1712 * @ptdev: Device. 1713 * 1714 * All we do here is de-assign the AS slots on all active VMs, so things 1715 * get flushed to the main memory, and no further access to these VMs are 1716 * possible. 1717 * 1718 * We also suspend the MMU IRQ. 1719 */ 1720 void panthor_mmu_suspend(struct panthor_device *ptdev) 1721 { 1722 mutex_lock(&ptdev->mmu->as.slots_lock); 1723 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) { 1724 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm; 1725 1726 if (vm) { 1727 drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i)); 1728 panthor_vm_release_as_locked(vm); 1729 } 1730 } 1731 mutex_unlock(&ptdev->mmu->as.slots_lock); 1732 1733 panthor_mmu_irq_suspend(&ptdev->mmu->irq); 1734 } 1735 1736 /** 1737 * panthor_mmu_resume() - Resume the MMU logic 1738 * @ptdev: Device. 1739 * 1740 * Resume the IRQ. 1741 * 1742 * We don't re-enable previously active VMs. We assume other parts of the 1743 * driver will call panthor_vm_active() on the VMs they intend to use. 1744 */ 1745 void panthor_mmu_resume(struct panthor_device *ptdev) 1746 { 1747 mutex_lock(&ptdev->mmu->as.slots_lock); 1748 ptdev->mmu->as.alloc_mask = 0; 1749 ptdev->mmu->as.faulty_mask = 0; 1750 mutex_unlock(&ptdev->mmu->as.slots_lock); 1751 1752 panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0)); 1753 } 1754 1755 /** 1756 * panthor_mmu_pre_reset() - Prepare for a reset 1757 * @ptdev: Device. 1758 * 1759 * Suspend the IRQ, and make sure all VM_BIND queues are stopped, so we 1760 * don't get asked to do a VM operation while the GPU is down. 1761 * 1762 * We don't cleanly shutdown the AS slots here, because the reset might 1763 * come from an AS_ACTIVE_BIT stuck situation. 1764 */ 1765 void panthor_mmu_pre_reset(struct panthor_device *ptdev) 1766 { 1767 struct panthor_vm *vm; 1768 1769 panthor_mmu_irq_suspend(&ptdev->mmu->irq); 1770 1771 mutex_lock(&ptdev->mmu->vm.lock); 1772 ptdev->mmu->vm.reset_in_progress = true; 1773 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) 1774 panthor_vm_stop(vm); 1775 mutex_unlock(&ptdev->mmu->vm.lock); 1776 } 1777 1778 /** 1779 * panthor_mmu_post_reset() - Restore things after a reset 1780 * @ptdev: Device. 1781 * 1782 * Put the MMU logic back in action after a reset. That implies resuming the 1783 * IRQ and re-enabling the VM_BIND queues. 1784 */ 1785 void panthor_mmu_post_reset(struct panthor_device *ptdev) 1786 { 1787 struct panthor_vm *vm; 1788 1789 mutex_lock(&ptdev->mmu->as.slots_lock); 1790 1791 /* Now that the reset is effective, we can assume that none of the 1792 * AS slots are setup, and clear the faulty flags too. 1793 */ 1794 ptdev->mmu->as.alloc_mask = 0; 1795 ptdev->mmu->as.faulty_mask = 0; 1796 1797 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) { 1798 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm; 1799 1800 if (vm) 1801 panthor_vm_release_as_locked(vm); 1802 } 1803 1804 mutex_unlock(&ptdev->mmu->as.slots_lock); 1805 1806 panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0)); 1807 1808 /* Restart the VM_BIND queues. */ 1809 mutex_lock(&ptdev->mmu->vm.lock); 1810 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) { 1811 panthor_vm_start(vm); 1812 } 1813 ptdev->mmu->vm.reset_in_progress = false; 1814 mutex_unlock(&ptdev->mmu->vm.lock); 1815 } 1816 1817 static void panthor_vm_free(struct drm_gpuvm *gpuvm) 1818 { 1819 struct panthor_vm *vm = container_of(gpuvm, struct panthor_vm, base); 1820 struct panthor_device *ptdev = vm->ptdev; 1821 1822 mutex_lock(&vm->heaps.lock); 1823 if (drm_WARN_ON(&ptdev->base, vm->heaps.pool)) 1824 panthor_heap_pool_destroy(vm->heaps.pool); 1825 mutex_unlock(&vm->heaps.lock); 1826 mutex_destroy(&vm->heaps.lock); 1827 1828 mutex_lock(&ptdev->mmu->vm.lock); 1829 list_del(&vm->node); 1830 /* Restore the scheduler state so we can call drm_sched_entity_destroy() 1831 * and drm_sched_fini(). If get there, that means we have no job left 1832 * and no new jobs can be queued, so we can start the scheduler without 1833 * risking interfering with the reset. 1834 */ 1835 if (ptdev->mmu->vm.reset_in_progress) 1836 panthor_vm_start(vm); 1837 mutex_unlock(&ptdev->mmu->vm.lock); 1838 1839 drm_sched_entity_destroy(&vm->entity); 1840 drm_sched_fini(&vm->sched); 1841 1842 mutex_lock(&ptdev->mmu->as.slots_lock); 1843 if (vm->as.id >= 0) { 1844 int cookie; 1845 1846 if (drm_dev_enter(&ptdev->base, &cookie)) { 1847 panthor_mmu_as_disable(ptdev, vm->as.id); 1848 drm_dev_exit(cookie); 1849 } 1850 1851 ptdev->mmu->as.slots[vm->as.id].vm = NULL; 1852 clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask); 1853 list_del(&vm->as.lru_node); 1854 } 1855 mutex_unlock(&ptdev->mmu->as.slots_lock); 1856 1857 free_io_pgtable_ops(vm->pgtbl_ops); 1858 1859 drm_mm_takedown(&vm->mm); 1860 kfree(vm); 1861 } 1862 1863 /** 1864 * panthor_vm_put() - Release a reference on a VM 1865 * @vm: VM to release the reference on. Can be NULL. 1866 */ 1867 void panthor_vm_put(struct panthor_vm *vm) 1868 { 1869 drm_gpuvm_put(vm ? &vm->base : NULL); 1870 } 1871 1872 /** 1873 * panthor_vm_get() - Get a VM reference 1874 * @vm: VM to get the reference on. Can be NULL. 1875 * 1876 * Return: @vm value. 1877 */ 1878 struct panthor_vm *panthor_vm_get(struct panthor_vm *vm) 1879 { 1880 if (vm) 1881 drm_gpuvm_get(&vm->base); 1882 1883 return vm; 1884 } 1885 1886 /** 1887 * panthor_vm_get_heap_pool() - Get the heap pool attached to a VM 1888 * @vm: VM to query the heap pool on. 1889 * @create: True if the heap pool should be created when it doesn't exist. 1890 * 1891 * Heap pools are per-VM. This function allows one to retrieve the heap pool 1892 * attached to a VM. 1893 * 1894 * If no heap pool exists yet, and @create is true, we create one. 1895 * 1896 * The returned panthor_heap_pool should be released with panthor_heap_pool_put(). 1897 * 1898 * Return: A valid pointer on success, an ERR_PTR() otherwise. 1899 */ 1900 struct panthor_heap_pool *panthor_vm_get_heap_pool(struct panthor_vm *vm, bool create) 1901 { 1902 struct panthor_heap_pool *pool; 1903 1904 mutex_lock(&vm->heaps.lock); 1905 if (!vm->heaps.pool && create) { 1906 if (vm->destroyed) 1907 pool = ERR_PTR(-EINVAL); 1908 else 1909 pool = panthor_heap_pool_create(vm->ptdev, vm); 1910 1911 if (!IS_ERR(pool)) 1912 vm->heaps.pool = panthor_heap_pool_get(pool); 1913 } else { 1914 pool = panthor_heap_pool_get(vm->heaps.pool); 1915 if (!pool) 1916 pool = ERR_PTR(-ENOENT); 1917 } 1918 mutex_unlock(&vm->heaps.lock); 1919 1920 return pool; 1921 } 1922 1923 static u64 mair_to_memattr(u64 mair) 1924 { 1925 u64 memattr = 0; 1926 u32 i; 1927 1928 for (i = 0; i < 8; i++) { 1929 u8 in_attr = mair >> (8 * i), out_attr; 1930 u8 outer = in_attr >> 4, inner = in_attr & 0xf; 1931 1932 /* For caching to be enabled, inner and outer caching policy 1933 * have to be both write-back, if one of them is write-through 1934 * or non-cacheable, we just choose non-cacheable. Device 1935 * memory is also translated to non-cacheable. 1936 */ 1937 if (!(outer & 3) || !(outer & 4) || !(inner & 4)) { 1938 out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_NC | 1939 AS_MEMATTR_AARCH64_SH_MIDGARD_INNER | 1940 AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(false, false); 1941 } else { 1942 /* Use SH_CPU_INNER mode so SH_IS, which is used when 1943 * IOMMU_CACHE is set, actually maps to the standard 1944 * definition of inner-shareable and not Mali's 1945 * internal-shareable mode. 1946 */ 1947 out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_WB | 1948 AS_MEMATTR_AARCH64_SH_CPU_INNER | 1949 AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(inner & 1, inner & 2); 1950 } 1951 1952 memattr |= (u64)out_attr << (8 * i); 1953 } 1954 1955 return memattr; 1956 } 1957 1958 static void panthor_vma_link(struct panthor_vm *vm, 1959 struct panthor_vma *vma, 1960 struct drm_gpuvm_bo *vm_bo) 1961 { 1962 struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj); 1963 1964 mutex_lock(&bo->gpuva_list_lock); 1965 drm_gpuva_link(&vma->base, vm_bo); 1966 drm_WARN_ON(&vm->ptdev->base, drm_gpuvm_bo_put(vm_bo)); 1967 mutex_unlock(&bo->gpuva_list_lock); 1968 } 1969 1970 static void panthor_vma_unlink(struct panthor_vm *vm, 1971 struct panthor_vma *vma) 1972 { 1973 struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj); 1974 struct drm_gpuvm_bo *vm_bo = drm_gpuvm_bo_get(vma->base.vm_bo); 1975 1976 mutex_lock(&bo->gpuva_list_lock); 1977 drm_gpuva_unlink(&vma->base); 1978 mutex_unlock(&bo->gpuva_list_lock); 1979 1980 /* drm_gpuva_unlink() release the vm_bo, but we manually retained it 1981 * when entering this function, so we can implement deferred VMA 1982 * destruction. Re-assign it here. 1983 */ 1984 vma->base.vm_bo = vm_bo; 1985 list_add_tail(&vma->node, &vm->op_ctx->returned_vmas); 1986 } 1987 1988 static void panthor_vma_init(struct panthor_vma *vma, u32 flags) 1989 { 1990 INIT_LIST_HEAD(&vma->node); 1991 vma->flags = flags; 1992 } 1993 1994 #define PANTHOR_VM_MAP_FLAGS \ 1995 (DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \ 1996 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \ 1997 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED) 1998 1999 static int panthor_gpuva_sm_step_map(struct drm_gpuva_op *op, void *priv) 2000 { 2001 struct panthor_vm *vm = priv; 2002 struct panthor_vm_op_ctx *op_ctx = vm->op_ctx; 2003 struct panthor_vma *vma = panthor_vm_op_ctx_get_vma(op_ctx); 2004 int ret; 2005 2006 if (!vma) 2007 return -EINVAL; 2008 2009 panthor_vma_init(vma, op_ctx->flags & PANTHOR_VM_MAP_FLAGS); 2010 2011 ret = panthor_vm_map_pages(vm, op->map.va.addr, flags_to_prot(vma->flags), 2012 op_ctx->map.sgt, op->map.gem.offset, 2013 op->map.va.range); 2014 if (ret) 2015 return ret; 2016 2017 /* Ref owned by the mapping now, clear the obj field so we don't release the 2018 * pinning/obj ref behind GPUVA's back. 2019 */ 2020 drm_gpuva_map(&vm->base, &vma->base, &op->map); 2021 panthor_vma_link(vm, vma, op_ctx->map.vm_bo); 2022 op_ctx->map.vm_bo = NULL; 2023 return 0; 2024 } 2025 2026 static int panthor_gpuva_sm_step_remap(struct drm_gpuva_op *op, 2027 void *priv) 2028 { 2029 struct panthor_vma *unmap_vma = container_of(op->remap.unmap->va, struct panthor_vma, base); 2030 struct panthor_vm *vm = priv; 2031 struct panthor_vm_op_ctx *op_ctx = vm->op_ctx; 2032 struct panthor_vma *prev_vma = NULL, *next_vma = NULL; 2033 u64 unmap_start, unmap_range; 2034 int ret; 2035 2036 drm_gpuva_op_remap_to_unmap_range(&op->remap, &unmap_start, &unmap_range); 2037 ret = panthor_vm_unmap_pages(vm, unmap_start, unmap_range); 2038 if (ret) 2039 return ret; 2040 2041 if (op->remap.prev) { 2042 prev_vma = panthor_vm_op_ctx_get_vma(op_ctx); 2043 panthor_vma_init(prev_vma, unmap_vma->flags); 2044 } 2045 2046 if (op->remap.next) { 2047 next_vma = panthor_vm_op_ctx_get_vma(op_ctx); 2048 panthor_vma_init(next_vma, unmap_vma->flags); 2049 } 2050 2051 drm_gpuva_remap(prev_vma ? &prev_vma->base : NULL, 2052 next_vma ? &next_vma->base : NULL, 2053 &op->remap); 2054 2055 if (prev_vma) { 2056 /* panthor_vma_link() transfers the vm_bo ownership to 2057 * the VMA object. Since the vm_bo we're passing is still 2058 * owned by the old mapping which will be released when this 2059 * mapping is destroyed, we need to grab a ref here. 2060 */ 2061 panthor_vma_link(vm, prev_vma, 2062 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo)); 2063 } 2064 2065 if (next_vma) { 2066 panthor_vma_link(vm, next_vma, 2067 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo)); 2068 } 2069 2070 panthor_vma_unlink(vm, unmap_vma); 2071 return 0; 2072 } 2073 2074 static int panthor_gpuva_sm_step_unmap(struct drm_gpuva_op *op, 2075 void *priv) 2076 { 2077 struct panthor_vma *unmap_vma = container_of(op->unmap.va, struct panthor_vma, base); 2078 struct panthor_vm *vm = priv; 2079 int ret; 2080 2081 ret = panthor_vm_unmap_pages(vm, unmap_vma->base.va.addr, 2082 unmap_vma->base.va.range); 2083 if (drm_WARN_ON(&vm->ptdev->base, ret)) 2084 return ret; 2085 2086 drm_gpuva_unmap(&op->unmap); 2087 panthor_vma_unlink(vm, unmap_vma); 2088 return 0; 2089 } 2090 2091 static const struct drm_gpuvm_ops panthor_gpuvm_ops = { 2092 .vm_free = panthor_vm_free, 2093 .sm_step_map = panthor_gpuva_sm_step_map, 2094 .sm_step_remap = panthor_gpuva_sm_step_remap, 2095 .sm_step_unmap = panthor_gpuva_sm_step_unmap, 2096 }; 2097 2098 /** 2099 * panthor_vm_resv() - Get the dma_resv object attached to a VM. 2100 * @vm: VM to get the dma_resv of. 2101 * 2102 * Return: A dma_resv object. 2103 */ 2104 struct dma_resv *panthor_vm_resv(struct panthor_vm *vm) 2105 { 2106 return drm_gpuvm_resv(&vm->base); 2107 } 2108 2109 struct drm_gem_object *panthor_vm_root_gem(struct panthor_vm *vm) 2110 { 2111 if (!vm) 2112 return NULL; 2113 2114 return vm->base.r_obj; 2115 } 2116 2117 static int 2118 panthor_vm_exec_op(struct panthor_vm *vm, struct panthor_vm_op_ctx *op, 2119 bool flag_vm_unusable_on_failure) 2120 { 2121 u32 op_type = op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK; 2122 int ret; 2123 2124 if (op_type == DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY) 2125 return 0; 2126 2127 mutex_lock(&vm->op_lock); 2128 vm->op_ctx = op; 2129 switch (op_type) { 2130 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: 2131 if (vm->unusable) { 2132 ret = -EINVAL; 2133 break; 2134 } 2135 2136 ret = drm_gpuvm_sm_map(&vm->base, vm, op->va.addr, op->va.range, 2137 op->map.vm_bo->obj, op->map.bo_offset); 2138 break; 2139 2140 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP: 2141 ret = drm_gpuvm_sm_unmap(&vm->base, vm, op->va.addr, op->va.range); 2142 break; 2143 2144 default: 2145 ret = -EINVAL; 2146 break; 2147 } 2148 2149 if (ret && flag_vm_unusable_on_failure) 2150 vm->unusable = true; 2151 2152 vm->op_ctx = NULL; 2153 mutex_unlock(&vm->op_lock); 2154 2155 return ret; 2156 } 2157 2158 static struct dma_fence * 2159 panthor_vm_bind_run_job(struct drm_sched_job *sched_job) 2160 { 2161 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base); 2162 bool cookie; 2163 int ret; 2164 2165 /* Not only we report an error whose result is propagated to the 2166 * drm_sched finished fence, but we also flag the VM as unusable, because 2167 * a failure in the async VM_BIND results in an inconsistent state. VM needs 2168 * to be destroyed and recreated. 2169 */ 2170 cookie = dma_fence_begin_signalling(); 2171 ret = panthor_vm_exec_op(job->vm, &job->ctx, true); 2172 dma_fence_end_signalling(cookie); 2173 2174 return ret ? ERR_PTR(ret) : NULL; 2175 } 2176 2177 static void panthor_vm_bind_job_release(struct kref *kref) 2178 { 2179 struct panthor_vm_bind_job *job = container_of(kref, struct panthor_vm_bind_job, refcount); 2180 2181 if (job->base.s_fence) 2182 drm_sched_job_cleanup(&job->base); 2183 2184 panthor_vm_cleanup_op_ctx(&job->ctx, job->vm); 2185 panthor_vm_put(job->vm); 2186 kfree(job); 2187 } 2188 2189 /** 2190 * panthor_vm_bind_job_put() - Release a VM_BIND job reference 2191 * @sched_job: Job to release the reference on. 2192 */ 2193 void panthor_vm_bind_job_put(struct drm_sched_job *sched_job) 2194 { 2195 struct panthor_vm_bind_job *job = 2196 container_of(sched_job, struct panthor_vm_bind_job, base); 2197 2198 if (sched_job) 2199 kref_put(&job->refcount, panthor_vm_bind_job_release); 2200 } 2201 2202 static void 2203 panthor_vm_bind_free_job(struct drm_sched_job *sched_job) 2204 { 2205 struct panthor_vm_bind_job *job = 2206 container_of(sched_job, struct panthor_vm_bind_job, base); 2207 2208 drm_sched_job_cleanup(sched_job); 2209 2210 /* Do the heavy cleanups asynchronously, so we're out of the 2211 * dma-signaling path and can acquire dma-resv locks safely. 2212 */ 2213 queue_work(panthor_cleanup_wq, &job->cleanup_op_ctx_work); 2214 } 2215 2216 static enum drm_gpu_sched_stat 2217 panthor_vm_bind_timedout_job(struct drm_sched_job *sched_job) 2218 { 2219 WARN(1, "VM_BIND ops are synchronous for now, there should be no timeout!"); 2220 return DRM_GPU_SCHED_STAT_NOMINAL; 2221 } 2222 2223 static const struct drm_sched_backend_ops panthor_vm_bind_ops = { 2224 .run_job = panthor_vm_bind_run_job, 2225 .free_job = panthor_vm_bind_free_job, 2226 .timedout_job = panthor_vm_bind_timedout_job, 2227 }; 2228 2229 /** 2230 * panthor_vm_create() - Create a VM 2231 * @ptdev: Device. 2232 * @for_mcu: True if this is the FW MCU VM. 2233 * @kernel_va_start: Start of the range reserved for kernel BO mapping. 2234 * @kernel_va_size: Size of the range reserved for kernel BO mapping. 2235 * @auto_kernel_va_start: Start of the auto-VA kernel range. 2236 * @auto_kernel_va_size: Size of the auto-VA kernel range. 2237 * 2238 * Return: A valid pointer on success, an ERR_PTR() otherwise. 2239 */ 2240 struct panthor_vm * 2241 panthor_vm_create(struct panthor_device *ptdev, bool for_mcu, 2242 u64 kernel_va_start, u64 kernel_va_size, 2243 u64 auto_kernel_va_start, u64 auto_kernel_va_size) 2244 { 2245 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 2246 u32 pa_bits = GPU_MMU_FEATURES_PA_BITS(ptdev->gpu_info.mmu_features); 2247 u64 full_va_range = 1ull << va_bits; 2248 struct drm_gem_object *dummy_gem; 2249 struct drm_gpu_scheduler *sched; 2250 struct io_pgtable_cfg pgtbl_cfg; 2251 u64 mair, min_va, va_range; 2252 struct panthor_vm *vm; 2253 int ret; 2254 2255 vm = kzalloc(sizeof(*vm), GFP_KERNEL); 2256 if (!vm) 2257 return ERR_PTR(-ENOMEM); 2258 2259 /* We allocate a dummy GEM for the VM. */ 2260 dummy_gem = drm_gpuvm_resv_object_alloc(&ptdev->base); 2261 if (!dummy_gem) { 2262 ret = -ENOMEM; 2263 goto err_free_vm; 2264 } 2265 2266 mutex_init(&vm->heaps.lock); 2267 vm->for_mcu = for_mcu; 2268 vm->ptdev = ptdev; 2269 mutex_init(&vm->op_lock); 2270 2271 if (for_mcu) { 2272 /* CSF MCU is a cortex M7, and can only address 4G */ 2273 min_va = 0; 2274 va_range = SZ_4G; 2275 } else { 2276 min_va = 0; 2277 va_range = full_va_range; 2278 } 2279 2280 mutex_init(&vm->mm_lock); 2281 drm_mm_init(&vm->mm, kernel_va_start, kernel_va_size); 2282 vm->kernel_auto_va.start = auto_kernel_va_start; 2283 vm->kernel_auto_va.end = vm->kernel_auto_va.start + auto_kernel_va_size - 1; 2284 2285 INIT_LIST_HEAD(&vm->node); 2286 INIT_LIST_HEAD(&vm->as.lru_node); 2287 vm->as.id = -1; 2288 refcount_set(&vm->as.active_cnt, 0); 2289 2290 pgtbl_cfg = (struct io_pgtable_cfg) { 2291 .pgsize_bitmap = SZ_4K | SZ_2M, 2292 .ias = va_bits, 2293 .oas = pa_bits, 2294 .coherent_walk = ptdev->coherent, 2295 .tlb = &mmu_tlb_ops, 2296 .iommu_dev = ptdev->base.dev, 2297 .alloc = alloc_pt, 2298 .free = free_pt, 2299 }; 2300 2301 vm->pgtbl_ops = alloc_io_pgtable_ops(ARM_64_LPAE_S1, &pgtbl_cfg, vm); 2302 if (!vm->pgtbl_ops) { 2303 ret = -EINVAL; 2304 goto err_mm_takedown; 2305 } 2306 2307 /* Bind operations are synchronous for now, no timeout needed. */ 2308 ret = drm_sched_init(&vm->sched, &panthor_vm_bind_ops, ptdev->mmu->vm.wq, 2309 1, 1, 0, 2310 MAX_SCHEDULE_TIMEOUT, NULL, NULL, 2311 "panthor-vm-bind", ptdev->base.dev); 2312 if (ret) 2313 goto err_free_io_pgtable; 2314 2315 sched = &vm->sched; 2316 ret = drm_sched_entity_init(&vm->entity, 0, &sched, 1, NULL); 2317 if (ret) 2318 goto err_sched_fini; 2319 2320 mair = io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg.arm_lpae_s1_cfg.mair; 2321 vm->memattr = mair_to_memattr(mair); 2322 2323 mutex_lock(&ptdev->mmu->vm.lock); 2324 list_add_tail(&vm->node, &ptdev->mmu->vm.list); 2325 2326 /* If a reset is in progress, stop the scheduler. */ 2327 if (ptdev->mmu->vm.reset_in_progress) 2328 panthor_vm_stop(vm); 2329 mutex_unlock(&ptdev->mmu->vm.lock); 2330 2331 /* We intentionally leave the reserved range to zero, because we want kernel VMAs 2332 * to be handled the same way user VMAs are. 2333 */ 2334 drm_gpuvm_init(&vm->base, for_mcu ? "panthor-MCU-VM" : "panthor-GPU-VM", 2335 DRM_GPUVM_RESV_PROTECTED, &ptdev->base, dummy_gem, 2336 min_va, va_range, 0, 0, &panthor_gpuvm_ops); 2337 drm_gem_object_put(dummy_gem); 2338 return vm; 2339 2340 err_sched_fini: 2341 drm_sched_fini(&vm->sched); 2342 2343 err_free_io_pgtable: 2344 free_io_pgtable_ops(vm->pgtbl_ops); 2345 2346 err_mm_takedown: 2347 drm_mm_takedown(&vm->mm); 2348 drm_gem_object_put(dummy_gem); 2349 2350 err_free_vm: 2351 kfree(vm); 2352 return ERR_PTR(ret); 2353 } 2354 2355 static int 2356 panthor_vm_bind_prepare_op_ctx(struct drm_file *file, 2357 struct panthor_vm *vm, 2358 const struct drm_panthor_vm_bind_op *op, 2359 struct panthor_vm_op_ctx *op_ctx) 2360 { 2361 struct drm_gem_object *gem; 2362 int ret; 2363 2364 /* Aligned on page size. */ 2365 if ((op->va | op->size) & ~PAGE_MASK) 2366 return -EINVAL; 2367 2368 switch (op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) { 2369 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: 2370 gem = drm_gem_object_lookup(file, op->bo_handle); 2371 ret = panthor_vm_prepare_map_op_ctx(op_ctx, vm, 2372 gem ? to_panthor_bo(gem) : NULL, 2373 op->bo_offset, 2374 op->size, 2375 op->va, 2376 op->flags); 2377 drm_gem_object_put(gem); 2378 return ret; 2379 2380 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP: 2381 if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) 2382 return -EINVAL; 2383 2384 if (op->bo_handle || op->bo_offset) 2385 return -EINVAL; 2386 2387 return panthor_vm_prepare_unmap_op_ctx(op_ctx, vm, op->va, op->size); 2388 2389 case DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY: 2390 if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) 2391 return -EINVAL; 2392 2393 if (op->bo_handle || op->bo_offset) 2394 return -EINVAL; 2395 2396 if (op->va || op->size) 2397 return -EINVAL; 2398 2399 if (!op->syncs.count) 2400 return -EINVAL; 2401 2402 panthor_vm_prepare_sync_only_op_ctx(op_ctx, vm); 2403 return 0; 2404 2405 default: 2406 return -EINVAL; 2407 } 2408 } 2409 2410 static void panthor_vm_bind_job_cleanup_op_ctx_work(struct work_struct *work) 2411 { 2412 struct panthor_vm_bind_job *job = 2413 container_of(work, struct panthor_vm_bind_job, cleanup_op_ctx_work); 2414 2415 panthor_vm_bind_job_put(&job->base); 2416 } 2417 2418 /** 2419 * panthor_vm_bind_job_create() - Create a VM_BIND job 2420 * @file: File. 2421 * @vm: VM targeted by the VM_BIND job. 2422 * @op: VM operation data. 2423 * 2424 * Return: A valid pointer on success, an ERR_PTR() otherwise. 2425 */ 2426 struct drm_sched_job * 2427 panthor_vm_bind_job_create(struct drm_file *file, 2428 struct panthor_vm *vm, 2429 const struct drm_panthor_vm_bind_op *op) 2430 { 2431 struct panthor_vm_bind_job *job; 2432 int ret; 2433 2434 if (!vm) 2435 return ERR_PTR(-EINVAL); 2436 2437 if (vm->destroyed || vm->unusable) 2438 return ERR_PTR(-EINVAL); 2439 2440 job = kzalloc(sizeof(*job), GFP_KERNEL); 2441 if (!job) 2442 return ERR_PTR(-ENOMEM); 2443 2444 ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &job->ctx); 2445 if (ret) { 2446 kfree(job); 2447 return ERR_PTR(ret); 2448 } 2449 2450 INIT_WORK(&job->cleanup_op_ctx_work, panthor_vm_bind_job_cleanup_op_ctx_work); 2451 kref_init(&job->refcount); 2452 job->vm = panthor_vm_get(vm); 2453 2454 ret = drm_sched_job_init(&job->base, &vm->entity, 1, vm); 2455 if (ret) 2456 goto err_put_job; 2457 2458 return &job->base; 2459 2460 err_put_job: 2461 panthor_vm_bind_job_put(&job->base); 2462 return ERR_PTR(ret); 2463 } 2464 2465 /** 2466 * panthor_vm_bind_job_prepare_resvs() - Prepare VM_BIND job dma_resvs 2467 * @exec: The locking/preparation context. 2468 * @sched_job: The job to prepare resvs on. 2469 * 2470 * Locks and prepare the VM resv. 2471 * 2472 * If this is a map operation, locks and prepares the GEM resv. 2473 * 2474 * Return: 0 on success, a negative error code otherwise. 2475 */ 2476 int panthor_vm_bind_job_prepare_resvs(struct drm_exec *exec, 2477 struct drm_sched_job *sched_job) 2478 { 2479 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base); 2480 int ret; 2481 2482 /* Acquire the VM lock an reserve a slot for this VM bind job. */ 2483 ret = drm_gpuvm_prepare_vm(&job->vm->base, exec, 1); 2484 if (ret) 2485 return ret; 2486 2487 if (job->ctx.map.vm_bo) { 2488 /* Lock/prepare the GEM being mapped. */ 2489 ret = drm_exec_prepare_obj(exec, job->ctx.map.vm_bo->obj, 1); 2490 if (ret) 2491 return ret; 2492 } 2493 2494 return 0; 2495 } 2496 2497 /** 2498 * panthor_vm_bind_job_update_resvs() - Update the resv objects touched by a job 2499 * @exec: drm_exec context. 2500 * @sched_job: Job to update the resvs on. 2501 */ 2502 void panthor_vm_bind_job_update_resvs(struct drm_exec *exec, 2503 struct drm_sched_job *sched_job) 2504 { 2505 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base); 2506 2507 /* Explicit sync => we just register our job finished fence as bookkeep. */ 2508 drm_gpuvm_resv_add_fence(&job->vm->base, exec, 2509 &sched_job->s_fence->finished, 2510 DMA_RESV_USAGE_BOOKKEEP, 2511 DMA_RESV_USAGE_BOOKKEEP); 2512 } 2513 2514 void panthor_vm_update_resvs(struct panthor_vm *vm, struct drm_exec *exec, 2515 struct dma_fence *fence, 2516 enum dma_resv_usage private_usage, 2517 enum dma_resv_usage extobj_usage) 2518 { 2519 drm_gpuvm_resv_add_fence(&vm->base, exec, fence, private_usage, extobj_usage); 2520 } 2521 2522 /** 2523 * panthor_vm_bind_exec_sync_op() - Execute a VM_BIND operation synchronously. 2524 * @file: File. 2525 * @vm: VM targeted by the VM operation. 2526 * @op: Data describing the VM operation. 2527 * 2528 * Return: 0 on success, a negative error code otherwise. 2529 */ 2530 int panthor_vm_bind_exec_sync_op(struct drm_file *file, 2531 struct panthor_vm *vm, 2532 struct drm_panthor_vm_bind_op *op) 2533 { 2534 struct panthor_vm_op_ctx op_ctx; 2535 int ret; 2536 2537 /* No sync objects allowed on synchronous operations. */ 2538 if (op->syncs.count) 2539 return -EINVAL; 2540 2541 if (!op->size) 2542 return 0; 2543 2544 ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &op_ctx); 2545 if (ret) 2546 return ret; 2547 2548 ret = panthor_vm_exec_op(vm, &op_ctx, false); 2549 panthor_vm_cleanup_op_ctx(&op_ctx, vm); 2550 2551 return ret; 2552 } 2553 2554 /** 2555 * panthor_vm_map_bo_range() - Map a GEM object range to a VM 2556 * @vm: VM to map the GEM to. 2557 * @bo: GEM object to map. 2558 * @offset: Offset in the GEM object. 2559 * @size: Size to map. 2560 * @va: Virtual address to map the object to. 2561 * @flags: Combination of drm_panthor_vm_bind_op_flags flags. 2562 * Only map-related flags are valid. 2563 * 2564 * Internal use only. For userspace requests, use 2565 * panthor_vm_bind_exec_sync_op() instead. 2566 * 2567 * Return: 0 on success, a negative error code otherwise. 2568 */ 2569 int panthor_vm_map_bo_range(struct panthor_vm *vm, struct panthor_gem_object *bo, 2570 u64 offset, u64 size, u64 va, u32 flags) 2571 { 2572 struct panthor_vm_op_ctx op_ctx; 2573 int ret; 2574 2575 ret = panthor_vm_prepare_map_op_ctx(&op_ctx, vm, bo, offset, size, va, flags); 2576 if (ret) 2577 return ret; 2578 2579 ret = panthor_vm_exec_op(vm, &op_ctx, false); 2580 panthor_vm_cleanup_op_ctx(&op_ctx, vm); 2581 2582 return ret; 2583 } 2584 2585 /** 2586 * panthor_vm_unmap_range() - Unmap a portion of the VA space 2587 * @vm: VM to unmap the region from. 2588 * @va: Virtual address to unmap. Must be 4k aligned. 2589 * @size: Size of the region to unmap. Must be 4k aligned. 2590 * 2591 * Internal use only. For userspace requests, use 2592 * panthor_vm_bind_exec_sync_op() instead. 2593 * 2594 * Return: 0 on success, a negative error code otherwise. 2595 */ 2596 int panthor_vm_unmap_range(struct panthor_vm *vm, u64 va, u64 size) 2597 { 2598 struct panthor_vm_op_ctx op_ctx; 2599 int ret; 2600 2601 ret = panthor_vm_prepare_unmap_op_ctx(&op_ctx, vm, va, size); 2602 if (ret) 2603 return ret; 2604 2605 ret = panthor_vm_exec_op(vm, &op_ctx, false); 2606 panthor_vm_cleanup_op_ctx(&op_ctx, vm); 2607 2608 return ret; 2609 } 2610 2611 /** 2612 * panthor_vm_prepare_mapped_bos_resvs() - Prepare resvs on VM BOs. 2613 * @exec: Locking/preparation context. 2614 * @vm: VM targeted by the GPU job. 2615 * @slot_count: Number of slots to reserve. 2616 * 2617 * GPU jobs assume all BOs bound to the VM at the time the job is submitted 2618 * are available when the job is executed. In order to guarantee that, we 2619 * need to reserve a slot on all BOs mapped to a VM and update this slot with 2620 * the job fence after its submission. 2621 * 2622 * Return: 0 on success, a negative error code otherwise. 2623 */ 2624 int panthor_vm_prepare_mapped_bos_resvs(struct drm_exec *exec, struct panthor_vm *vm, 2625 u32 slot_count) 2626 { 2627 int ret; 2628 2629 /* Acquire the VM lock and reserve a slot for this GPU job. */ 2630 ret = drm_gpuvm_prepare_vm(&vm->base, exec, slot_count); 2631 if (ret) 2632 return ret; 2633 2634 return drm_gpuvm_prepare_objects(&vm->base, exec, slot_count); 2635 } 2636 2637 /** 2638 * panthor_mmu_unplug() - Unplug the MMU logic 2639 * @ptdev: Device. 2640 * 2641 * No access to the MMU regs should be done after this function is called. 2642 * We suspend the IRQ and disable all VMs to guarantee that. 2643 */ 2644 void panthor_mmu_unplug(struct panthor_device *ptdev) 2645 { 2646 panthor_mmu_irq_suspend(&ptdev->mmu->irq); 2647 2648 mutex_lock(&ptdev->mmu->as.slots_lock); 2649 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) { 2650 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm; 2651 2652 if (vm) { 2653 drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i)); 2654 panthor_vm_release_as_locked(vm); 2655 } 2656 } 2657 mutex_unlock(&ptdev->mmu->as.slots_lock); 2658 } 2659 2660 static void panthor_mmu_release_wq(struct drm_device *ddev, void *res) 2661 { 2662 destroy_workqueue(res); 2663 } 2664 2665 /** 2666 * panthor_mmu_init() - Initialize the MMU logic. 2667 * @ptdev: Device. 2668 * 2669 * Return: 0 on success, a negative error code otherwise. 2670 */ 2671 int panthor_mmu_init(struct panthor_device *ptdev) 2672 { 2673 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 2674 struct panthor_mmu *mmu; 2675 int ret, irq; 2676 2677 mmu = drmm_kzalloc(&ptdev->base, sizeof(*mmu), GFP_KERNEL); 2678 if (!mmu) 2679 return -ENOMEM; 2680 2681 INIT_LIST_HEAD(&mmu->as.lru_list); 2682 2683 ret = drmm_mutex_init(&ptdev->base, &mmu->as.slots_lock); 2684 if (ret) 2685 return ret; 2686 2687 INIT_LIST_HEAD(&mmu->vm.list); 2688 ret = drmm_mutex_init(&ptdev->base, &mmu->vm.lock); 2689 if (ret) 2690 return ret; 2691 2692 ptdev->mmu = mmu; 2693 2694 irq = platform_get_irq_byname(to_platform_device(ptdev->base.dev), "mmu"); 2695 if (irq <= 0) 2696 return -ENODEV; 2697 2698 ret = panthor_request_mmu_irq(ptdev, &mmu->irq, irq, 2699 panthor_mmu_fault_mask(ptdev, ~0)); 2700 if (ret) 2701 return ret; 2702 2703 mmu->vm.wq = alloc_workqueue("panthor-vm-bind", WQ_UNBOUND, 0); 2704 if (!mmu->vm.wq) 2705 return -ENOMEM; 2706 2707 /* On 32-bit kernels, the VA space is limited by the io_pgtable_ops abstraction, 2708 * which passes iova as an unsigned long. Patch the mmu_features to reflect this 2709 * limitation. 2710 */ 2711 if (sizeof(unsigned long) * 8 < va_bits) { 2712 ptdev->gpu_info.mmu_features &= ~GENMASK(7, 0); 2713 ptdev->gpu_info.mmu_features |= sizeof(unsigned long) * 8; 2714 } 2715 2716 return drmm_add_action_or_reset(&ptdev->base, panthor_mmu_release_wq, mmu->vm.wq); 2717 } 2718 2719 #ifdef CONFIG_DEBUG_FS 2720 static int show_vm_gpuvas(struct panthor_vm *vm, struct seq_file *m) 2721 { 2722 int ret; 2723 2724 mutex_lock(&vm->op_lock); 2725 ret = drm_debugfs_gpuva_info(m, &vm->base); 2726 mutex_unlock(&vm->op_lock); 2727 2728 return ret; 2729 } 2730 2731 static int show_each_vm(struct seq_file *m, void *arg) 2732 { 2733 struct drm_info_node *node = (struct drm_info_node *)m->private; 2734 struct drm_device *ddev = node->minor->dev; 2735 struct panthor_device *ptdev = container_of(ddev, struct panthor_device, base); 2736 int (*show)(struct panthor_vm *, struct seq_file *) = node->info_ent->data; 2737 struct panthor_vm *vm; 2738 int ret = 0; 2739 2740 mutex_lock(&ptdev->mmu->vm.lock); 2741 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) { 2742 ret = show(vm, m); 2743 if (ret < 0) 2744 break; 2745 2746 seq_puts(m, "\n"); 2747 } 2748 mutex_unlock(&ptdev->mmu->vm.lock); 2749 2750 return ret; 2751 } 2752 2753 static struct drm_info_list panthor_mmu_debugfs_list[] = { 2754 DRM_DEBUGFS_GPUVA_INFO(show_each_vm, show_vm_gpuvas), 2755 }; 2756 2757 /** 2758 * panthor_mmu_debugfs_init() - Initialize MMU debugfs entries 2759 * @minor: Minor. 2760 */ 2761 void panthor_mmu_debugfs_init(struct drm_minor *minor) 2762 { 2763 drm_debugfs_create_files(panthor_mmu_debugfs_list, 2764 ARRAY_SIZE(panthor_mmu_debugfs_list), 2765 minor->debugfs_root, minor); 2766 } 2767 #endif /* CONFIG_DEBUG_FS */ 2768 2769 /** 2770 * panthor_mmu_pt_cache_init() - Initialize the page table cache. 2771 * 2772 * Return: 0 on success, a negative error code otherwise. 2773 */ 2774 int panthor_mmu_pt_cache_init(void) 2775 { 2776 pt_cache = kmem_cache_create("panthor-mmu-pt", SZ_4K, SZ_4K, 0, NULL); 2777 if (!pt_cache) 2778 return -ENOMEM; 2779 2780 return 0; 2781 } 2782 2783 /** 2784 * panthor_mmu_pt_cache_fini() - Destroy the page table cache. 2785 */ 2786 void panthor_mmu_pt_cache_fini(void) 2787 { 2788 kmem_cache_destroy(pt_cache); 2789 } 2790