1 // SPDX-License-Identifier: GPL-2.0 or MIT 2 /* Copyright 2019 Linaro, Ltd, Rob Herring <robh@kernel.org> */ 3 /* Copyright 2023 Collabora ltd. */ 4 5 #include <drm/drm_debugfs.h> 6 #include <drm/drm_drv.h> 7 #include <drm/drm_exec.h> 8 #include <drm/drm_gpuvm.h> 9 #include <drm/drm_managed.h> 10 #include <drm/gpu_scheduler.h> 11 #include <drm/panthor_drm.h> 12 13 #include <linux/atomic.h> 14 #include <linux/bitfield.h> 15 #include <linux/delay.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/interrupt.h> 18 #include <linux/io.h> 19 #include <linux/iopoll.h> 20 #include <linux/io-pgtable.h> 21 #include <linux/iommu.h> 22 #include <linux/kmemleak.h> 23 #include <linux/platform_device.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/rwsem.h> 26 #include <linux/sched.h> 27 #include <linux/shmem_fs.h> 28 #include <linux/sizes.h> 29 30 #include "panthor_device.h" 31 #include "panthor_gem.h" 32 #include "panthor_heap.h" 33 #include "panthor_mmu.h" 34 #include "panthor_regs.h" 35 #include "panthor_sched.h" 36 37 #define MAX_AS_SLOTS 32 38 39 struct panthor_vm; 40 41 /** 42 * struct panthor_as_slot - Address space slot 43 */ 44 struct panthor_as_slot { 45 /** @vm: VM bound to this slot. NULL is no VM is bound. */ 46 struct panthor_vm *vm; 47 }; 48 49 /** 50 * struct panthor_mmu - MMU related data 51 */ 52 struct panthor_mmu { 53 /** @irq: The MMU irq. */ 54 struct panthor_irq irq; 55 56 /** 57 * @as: Address space related fields. 58 * 59 * The GPU has a limited number of address spaces (AS) slots, forcing 60 * us to re-assign them to re-assign slots on-demand. 61 */ 62 struct { 63 /** @as.slots_lock: Lock protecting access to all other AS fields. */ 64 struct mutex slots_lock; 65 66 /** @as.alloc_mask: Bitmask encoding the allocated slots. */ 67 unsigned long alloc_mask; 68 69 /** @as.faulty_mask: Bitmask encoding the faulty slots. */ 70 unsigned long faulty_mask; 71 72 /** @as.slots: VMs currently bound to the AS slots. */ 73 struct panthor_as_slot slots[MAX_AS_SLOTS]; 74 75 /** 76 * @as.lru_list: List of least recently used VMs. 77 * 78 * We use this list to pick a VM to evict when all slots are 79 * used. 80 * 81 * There should be no more active VMs than there are AS slots, 82 * so this LRU is just here to keep VMs bound until there's 83 * a need to release a slot, thus avoid unnecessary TLB/cache 84 * flushes. 85 */ 86 struct list_head lru_list; 87 } as; 88 89 /** @vm: VMs management fields */ 90 struct { 91 /** @vm.lock: Lock protecting access to list. */ 92 struct mutex lock; 93 94 /** @vm.list: List containing all VMs. */ 95 struct list_head list; 96 97 /** @vm.reset_in_progress: True if a reset is in progress. */ 98 bool reset_in_progress; 99 100 /** @vm.wq: Workqueue used for the VM_BIND queues. */ 101 struct workqueue_struct *wq; 102 } vm; 103 }; 104 105 /** 106 * struct panthor_vm_pool - VM pool object 107 */ 108 struct panthor_vm_pool { 109 /** @xa: Array used for VM handle tracking. */ 110 struct xarray xa; 111 }; 112 113 /** 114 * struct panthor_vma - GPU mapping object 115 * 116 * This is used to track GEM mappings in GPU space. 117 */ 118 struct panthor_vma { 119 /** @base: Inherits from drm_gpuva. */ 120 struct drm_gpuva base; 121 122 /** @node: Used to implement deferred release of VMAs. */ 123 struct list_head node; 124 125 /** 126 * @flags: Combination of drm_panthor_vm_bind_op_flags. 127 * 128 * Only map related flags are accepted. 129 */ 130 u32 flags; 131 }; 132 133 /** 134 * struct panthor_vm_op_ctx - VM operation context 135 * 136 * With VM operations potentially taking place in a dma-signaling path, we 137 * need to make sure everything that might require resource allocation is 138 * pre-allocated upfront. This is what this operation context is far. 139 * 140 * We also collect resources that have been freed, so we can release them 141 * asynchronously, and let the VM_BIND scheduler process the next VM_BIND 142 * request. 143 */ 144 struct panthor_vm_op_ctx { 145 /** @rsvd_page_tables: Pages reserved for the MMU page table update. */ 146 struct { 147 /** @rsvd_page_tables.count: Number of pages reserved. */ 148 u32 count; 149 150 /** @rsvd_page_tables.ptr: Point to the first unused page in the @pages table. */ 151 u32 ptr; 152 153 /** 154 * @rsvd_page_tables.pages: Array of pages to be used for an MMU page table update. 155 * 156 * After an VM operation, there might be free pages left in this array. 157 * They should be returned to the pt_cache as part of the op_ctx cleanup. 158 */ 159 void **pages; 160 } rsvd_page_tables; 161 162 /** 163 * @preallocated_vmas: Pre-allocated VMAs to handle the remap case. 164 * 165 * Partial unmap requests or map requests overlapping existing mappings will 166 * trigger a remap call, which need to register up to three panthor_vma objects 167 * (one for the new mapping, and two for the previous and next mappings). 168 */ 169 struct panthor_vma *preallocated_vmas[3]; 170 171 /** @flags: Combination of drm_panthor_vm_bind_op_flags. */ 172 u32 flags; 173 174 /** @va: Virtual range targeted by the VM operation. */ 175 struct { 176 /** @va.addr: Start address. */ 177 u64 addr; 178 179 /** @va.range: Range size. */ 180 u64 range; 181 } va; 182 183 /** 184 * @returned_vmas: List of panthor_vma objects returned after a VM operation. 185 * 186 * For unmap operations, this will contain all VMAs that were covered by the 187 * specified VA range. 188 * 189 * For map operations, this will contain all VMAs that previously mapped to 190 * the specified VA range. 191 * 192 * Those VMAs, and the resources they point to will be released as part of 193 * the op_ctx cleanup operation. 194 */ 195 struct list_head returned_vmas; 196 197 /** @map: Fields specific to a map operation. */ 198 struct { 199 /** @map.vm_bo: Buffer object to map. */ 200 struct drm_gpuvm_bo *vm_bo; 201 202 /** @map.bo_offset: Offset in the buffer object. */ 203 u64 bo_offset; 204 205 /** 206 * @map.sgt: sg-table pointing to pages backing the GEM object. 207 * 208 * This is gathered at job creation time, such that we don't have 209 * to allocate in ::run_job(). 210 */ 211 struct sg_table *sgt; 212 213 /** 214 * @map.new_vma: The new VMA object that will be inserted to the VA tree. 215 */ 216 struct panthor_vma *new_vma; 217 } map; 218 }; 219 220 /** 221 * struct panthor_vm - VM object 222 * 223 * A VM is an object representing a GPU (or MCU) virtual address space. 224 * It embeds the MMU page table for this address space, a tree containing 225 * all the virtual mappings of GEM objects, and other things needed to manage 226 * the VM. 227 * 228 * Except for the MCU VM, which is managed by the kernel, all other VMs are 229 * created by userspace and mostly managed by userspace, using the 230 * %DRM_IOCTL_PANTHOR_VM_BIND ioctl. 231 * 232 * A portion of the virtual address space is reserved for kernel objects, 233 * like heap chunks, and userspace gets to decide how much of the virtual 234 * address space is left to the kernel (half of the virtual address space 235 * by default). 236 */ 237 struct panthor_vm { 238 /** 239 * @base: Inherit from drm_gpuvm. 240 * 241 * We delegate all the VA management to the common drm_gpuvm framework 242 * and only implement hooks to update the MMU page table. 243 */ 244 struct drm_gpuvm base; 245 246 /** 247 * @sched: Scheduler used for asynchronous VM_BIND request. 248 * 249 * We use a 1:1 scheduler here. 250 */ 251 struct drm_gpu_scheduler sched; 252 253 /** 254 * @entity: Scheduling entity representing the VM_BIND queue. 255 * 256 * There's currently one bind queue per VM. It doesn't make sense to 257 * allow more given the VM operations are serialized anyway. 258 */ 259 struct drm_sched_entity entity; 260 261 /** @ptdev: Device. */ 262 struct panthor_device *ptdev; 263 264 /** @memattr: Value to program to the AS_MEMATTR register. */ 265 u64 memattr; 266 267 /** @pgtbl_ops: Page table operations. */ 268 struct io_pgtable_ops *pgtbl_ops; 269 270 /** @root_page_table: Stores the root page table pointer. */ 271 void *root_page_table; 272 273 /** 274 * @op_lock: Lock used to serialize operations on a VM. 275 * 276 * The serialization of jobs queued to the VM_BIND queue is already 277 * taken care of by drm_sched, but we need to serialize synchronous 278 * and asynchronous VM_BIND request. This is what this lock is for. 279 */ 280 struct mutex op_lock; 281 282 /** 283 * @op_ctx: The context attached to the currently executing VM operation. 284 * 285 * NULL when no operation is in progress. 286 */ 287 struct panthor_vm_op_ctx *op_ctx; 288 289 /** 290 * @mm: Memory management object representing the auto-VA/kernel-VA. 291 * 292 * Used to auto-allocate VA space for kernel-managed objects (tiler 293 * heaps, ...). 294 * 295 * For the MCU VM, this is managing the VA range that's used to map 296 * all shared interfaces. 297 * 298 * For user VMs, the range is specified by userspace, and must not 299 * exceed half of the VA space addressable. 300 */ 301 struct drm_mm mm; 302 303 /** @mm_lock: Lock protecting the @mm field. */ 304 struct mutex mm_lock; 305 306 /** @kernel_auto_va: Automatic VA-range for kernel BOs. */ 307 struct { 308 /** @kernel_auto_va.start: Start of the automatic VA-range for kernel BOs. */ 309 u64 start; 310 311 /** @kernel_auto_va.size: Size of the automatic VA-range for kernel BOs. */ 312 u64 end; 313 } kernel_auto_va; 314 315 /** @as: Address space related fields. */ 316 struct { 317 /** 318 * @as.id: ID of the address space this VM is bound to. 319 * 320 * A value of -1 means the VM is inactive/not bound. 321 */ 322 int id; 323 324 /** @as.active_cnt: Number of active users of this VM. */ 325 refcount_t active_cnt; 326 327 /** 328 * @as.lru_node: Used to instead the VM in the panthor_mmu::as::lru_list. 329 * 330 * Active VMs should not be inserted in the LRU list. 331 */ 332 struct list_head lru_node; 333 } as; 334 335 /** 336 * @heaps: Tiler heap related fields. 337 */ 338 struct { 339 /** 340 * @heaps.pool: The heap pool attached to this VM. 341 * 342 * Will stay NULL until someone creates a heap context on this VM. 343 */ 344 struct panthor_heap_pool *pool; 345 346 /** @heaps.lock: Lock used to protect access to @pool. */ 347 struct mutex lock; 348 } heaps; 349 350 /** @node: Used to insert the VM in the panthor_mmu::vm::list. */ 351 struct list_head node; 352 353 /** @for_mcu: True if this is the MCU VM. */ 354 bool for_mcu; 355 356 /** 357 * @destroyed: True if the VM was destroyed. 358 * 359 * No further bind requests should be queued to a destroyed VM. 360 */ 361 bool destroyed; 362 363 /** 364 * @unusable: True if the VM has turned unusable because something 365 * bad happened during an asynchronous request. 366 * 367 * We don't try to recover from such failures, because this implies 368 * informing userspace about the specific operation that failed, and 369 * hoping the userspace driver can replay things from there. This all 370 * sounds very complicated for little gain. 371 * 372 * Instead, we should just flag the VM as unusable, and fail any 373 * further request targeting this VM. 374 * 375 * We also provide a way to query a VM state, so userspace can destroy 376 * it and create a new one. 377 * 378 * As an analogy, this would be mapped to a VK_ERROR_DEVICE_LOST 379 * situation, where the logical device needs to be re-created. 380 */ 381 bool unusable; 382 383 /** 384 * @unhandled_fault: Unhandled fault happened. 385 * 386 * This should be reported to the scheduler, and the queue/group be 387 * flagged as faulty as a result. 388 */ 389 bool unhandled_fault; 390 }; 391 392 /** 393 * struct panthor_vm_bind_job - VM bind job 394 */ 395 struct panthor_vm_bind_job { 396 /** @base: Inherit from drm_sched_job. */ 397 struct drm_sched_job base; 398 399 /** @refcount: Reference count. */ 400 struct kref refcount; 401 402 /** @cleanup_op_ctx_work: Work used to cleanup the VM operation context. */ 403 struct work_struct cleanup_op_ctx_work; 404 405 /** @vm: VM targeted by the VM operation. */ 406 struct panthor_vm *vm; 407 408 /** @ctx: Operation context. */ 409 struct panthor_vm_op_ctx ctx; 410 }; 411 412 /* 413 * @pt_cache: Cache used to allocate MMU page tables. 414 * 415 * The pre-allocation pattern forces us to over-allocate to plan for 416 * the worst case scenario, and return the pages we didn't use. 417 * 418 * Having a kmem_cache allows us to speed allocations. 419 */ 420 static struct kmem_cache *pt_cache; 421 422 /** 423 * alloc_pt() - Custom page table allocator 424 * @cookie: Cookie passed at page table allocation time. 425 * @size: Size of the page table. This size should be fixed, 426 * and determined at creation time based on the granule size. 427 * @gfp: GFP flags. 428 * 429 * We want a custom allocator so we can use a cache for page table 430 * allocations and amortize the cost of the over-reservation that's 431 * done to allow asynchronous VM operations. 432 * 433 * Return: non-NULL on success, NULL if the allocation failed for any 434 * reason. 435 */ 436 static void *alloc_pt(void *cookie, size_t size, gfp_t gfp) 437 { 438 struct panthor_vm *vm = cookie; 439 void *page; 440 441 /* Allocation of the root page table happening during init. */ 442 if (unlikely(!vm->root_page_table)) { 443 struct page *p; 444 445 drm_WARN_ON(&vm->ptdev->base, vm->op_ctx); 446 p = alloc_pages_node(dev_to_node(vm->ptdev->base.dev), 447 gfp | __GFP_ZERO, get_order(size)); 448 page = p ? page_address(p) : NULL; 449 vm->root_page_table = page; 450 return page; 451 } 452 453 /* We're not supposed to have anything bigger than 4k here, because we picked a 454 * 4k granule size at init time. 455 */ 456 if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K)) 457 return NULL; 458 459 /* We must have some op_ctx attached to the VM and it must have at least one 460 * free page. 461 */ 462 if (drm_WARN_ON(&vm->ptdev->base, !vm->op_ctx) || 463 drm_WARN_ON(&vm->ptdev->base, 464 vm->op_ctx->rsvd_page_tables.ptr >= vm->op_ctx->rsvd_page_tables.count)) 465 return NULL; 466 467 page = vm->op_ctx->rsvd_page_tables.pages[vm->op_ctx->rsvd_page_tables.ptr++]; 468 memset(page, 0, SZ_4K); 469 470 /* Page table entries don't use virtual addresses, which trips out 471 * kmemleak. kmemleak_alloc_phys() might work, but physical addresses 472 * are mixed with other fields, and I fear kmemleak won't detect that 473 * either. 474 * 475 * Let's just ignore memory passed to the page-table driver for now. 476 */ 477 kmemleak_ignore(page); 478 return page; 479 } 480 481 /** 482 * free_pt() - Custom page table free function 483 * @cookie: Cookie passed at page table allocation time. 484 * @data: Page table to free. 485 * @size: Size of the page table. This size should be fixed, 486 * and determined at creation time based on the granule size. 487 */ 488 static void free_pt(void *cookie, void *data, size_t size) 489 { 490 struct panthor_vm *vm = cookie; 491 492 if (unlikely(vm->root_page_table == data)) { 493 free_pages((unsigned long)data, get_order(size)); 494 vm->root_page_table = NULL; 495 return; 496 } 497 498 if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K)) 499 return; 500 501 /* Return the page to the pt_cache. */ 502 kmem_cache_free(pt_cache, data); 503 } 504 505 static int wait_ready(struct panthor_device *ptdev, u32 as_nr) 506 { 507 int ret; 508 u32 val; 509 510 /* Wait for the MMU status to indicate there is no active command, in 511 * case one is pending. 512 */ 513 ret = gpu_read_relaxed_poll_timeout_atomic(ptdev, AS_STATUS(as_nr), val, 514 !(val & AS_STATUS_AS_ACTIVE), 515 10, 100000); 516 517 if (ret) { 518 panthor_device_schedule_reset(ptdev); 519 drm_err(&ptdev->base, "AS_ACTIVE bit stuck\n"); 520 } 521 522 return ret; 523 } 524 525 static int write_cmd(struct panthor_device *ptdev, u32 as_nr, u32 cmd) 526 { 527 int status; 528 529 /* write AS_COMMAND when MMU is ready to accept another command */ 530 status = wait_ready(ptdev, as_nr); 531 if (!status) 532 gpu_write(ptdev, AS_COMMAND(as_nr), cmd); 533 534 return status; 535 } 536 537 static void lock_region(struct panthor_device *ptdev, u32 as_nr, 538 u64 region_start, u64 size) 539 { 540 u8 region_width; 541 u64 region; 542 u64 region_end = region_start + size; 543 544 if (!size) 545 return; 546 547 /* 548 * The locked region is a naturally aligned power of 2 block encoded as 549 * log2 minus(1). 550 * Calculate the desired start/end and look for the highest bit which 551 * differs. The smallest naturally aligned block must include this bit 552 * change, the desired region starts with this bit (and subsequent bits) 553 * zeroed and ends with the bit (and subsequent bits) set to one. 554 */ 555 region_width = max(fls64(region_start ^ (region_end - 1)), 556 const_ilog2(AS_LOCK_REGION_MIN_SIZE)) - 1; 557 558 /* 559 * Mask off the low bits of region_start (which would be ignored by 560 * the hardware anyway) 561 */ 562 region_start &= GENMASK_ULL(63, region_width); 563 564 region = region_width | region_start; 565 566 /* Lock the region that needs to be updated */ 567 gpu_write64(ptdev, AS_LOCKADDR(as_nr), region); 568 write_cmd(ptdev, as_nr, AS_COMMAND_LOCK); 569 } 570 571 static int mmu_hw_do_operation_locked(struct panthor_device *ptdev, int as_nr, 572 u64 iova, u64 size, u32 op) 573 { 574 lockdep_assert_held(&ptdev->mmu->as.slots_lock); 575 576 if (as_nr < 0) 577 return 0; 578 579 /* 580 * If the AS number is greater than zero, then we can be sure 581 * the device is up and running, so we don't need to explicitly 582 * power it up 583 */ 584 585 if (op != AS_COMMAND_UNLOCK) 586 lock_region(ptdev, as_nr, iova, size); 587 588 /* Run the MMU operation */ 589 write_cmd(ptdev, as_nr, op); 590 591 /* Wait for the flush to complete */ 592 return wait_ready(ptdev, as_nr); 593 } 594 595 static int mmu_hw_do_operation(struct panthor_vm *vm, 596 u64 iova, u64 size, u32 op) 597 { 598 struct panthor_device *ptdev = vm->ptdev; 599 int ret; 600 601 mutex_lock(&ptdev->mmu->as.slots_lock); 602 ret = mmu_hw_do_operation_locked(ptdev, vm->as.id, iova, size, op); 603 mutex_unlock(&ptdev->mmu->as.slots_lock); 604 605 return ret; 606 } 607 608 static int panthor_mmu_as_enable(struct panthor_device *ptdev, u32 as_nr, 609 u64 transtab, u64 transcfg, u64 memattr) 610 { 611 int ret; 612 613 ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM); 614 if (ret) 615 return ret; 616 617 gpu_write64(ptdev, AS_TRANSTAB(as_nr), transtab); 618 gpu_write64(ptdev, AS_MEMATTR(as_nr), memattr); 619 gpu_write64(ptdev, AS_TRANSCFG(as_nr), transcfg); 620 621 return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE); 622 } 623 624 static int panthor_mmu_as_disable(struct panthor_device *ptdev, u32 as_nr) 625 { 626 int ret; 627 628 ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM); 629 if (ret) 630 return ret; 631 632 gpu_write64(ptdev, AS_TRANSTAB(as_nr), 0); 633 gpu_write64(ptdev, AS_MEMATTR(as_nr), 0); 634 gpu_write64(ptdev, AS_TRANSCFG(as_nr), AS_TRANSCFG_ADRMODE_UNMAPPED); 635 636 return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE); 637 } 638 639 static u32 panthor_mmu_fault_mask(struct panthor_device *ptdev, u32 value) 640 { 641 /* Bits 16 to 31 mean REQ_COMPLETE. */ 642 return value & GENMASK(15, 0); 643 } 644 645 static u32 panthor_mmu_as_fault_mask(struct panthor_device *ptdev, u32 as) 646 { 647 return BIT(as); 648 } 649 650 /** 651 * panthor_vm_has_unhandled_faults() - Check if a VM has unhandled faults 652 * @vm: VM to check. 653 * 654 * Return: true if the VM has unhandled faults, false otherwise. 655 */ 656 bool panthor_vm_has_unhandled_faults(struct panthor_vm *vm) 657 { 658 return vm->unhandled_fault; 659 } 660 661 /** 662 * panthor_vm_is_unusable() - Check if the VM is still usable 663 * @vm: VM to check. 664 * 665 * Return: true if the VM is unusable, false otherwise. 666 */ 667 bool panthor_vm_is_unusable(struct panthor_vm *vm) 668 { 669 return vm->unusable; 670 } 671 672 static void panthor_vm_release_as_locked(struct panthor_vm *vm) 673 { 674 struct panthor_device *ptdev = vm->ptdev; 675 676 lockdep_assert_held(&ptdev->mmu->as.slots_lock); 677 678 if (drm_WARN_ON(&ptdev->base, vm->as.id < 0)) 679 return; 680 681 ptdev->mmu->as.slots[vm->as.id].vm = NULL; 682 clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask); 683 refcount_set(&vm->as.active_cnt, 0); 684 list_del_init(&vm->as.lru_node); 685 vm->as.id = -1; 686 } 687 688 /** 689 * panthor_vm_active() - Flag a VM as active 690 * @vm: VM to flag as active. 691 * 692 * Assigns an address space to a VM so it can be used by the GPU/MCU. 693 * 694 * Return: 0 on success, a negative error code otherwise. 695 */ 696 int panthor_vm_active(struct panthor_vm *vm) 697 { 698 struct panthor_device *ptdev = vm->ptdev; 699 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 700 struct io_pgtable_cfg *cfg = &io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg; 701 int ret = 0, as, cookie; 702 u64 transtab, transcfg; 703 704 if (!drm_dev_enter(&ptdev->base, &cookie)) 705 return -ENODEV; 706 707 if (refcount_inc_not_zero(&vm->as.active_cnt)) 708 goto out_dev_exit; 709 710 mutex_lock(&ptdev->mmu->as.slots_lock); 711 712 if (refcount_inc_not_zero(&vm->as.active_cnt)) 713 goto out_unlock; 714 715 as = vm->as.id; 716 if (as >= 0) { 717 /* Unhandled pagefault on this AS, the MMU was disabled. We need to 718 * re-enable the MMU after clearing+unmasking the AS interrupts. 719 */ 720 if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) 721 goto out_enable_as; 722 723 goto out_make_active; 724 } 725 726 /* Check for a free AS */ 727 if (vm->for_mcu) { 728 drm_WARN_ON(&ptdev->base, ptdev->mmu->as.alloc_mask & BIT(0)); 729 as = 0; 730 } else { 731 as = ffz(ptdev->mmu->as.alloc_mask | BIT(0)); 732 } 733 734 if (!(BIT(as) & ptdev->gpu_info.as_present)) { 735 struct panthor_vm *lru_vm; 736 737 lru_vm = list_first_entry_or_null(&ptdev->mmu->as.lru_list, 738 struct panthor_vm, 739 as.lru_node); 740 if (drm_WARN_ON(&ptdev->base, !lru_vm)) { 741 ret = -EBUSY; 742 goto out_unlock; 743 } 744 745 drm_WARN_ON(&ptdev->base, refcount_read(&lru_vm->as.active_cnt)); 746 as = lru_vm->as.id; 747 panthor_vm_release_as_locked(lru_vm); 748 } 749 750 /* Assign the free or reclaimed AS to the FD */ 751 vm->as.id = as; 752 set_bit(as, &ptdev->mmu->as.alloc_mask); 753 ptdev->mmu->as.slots[as].vm = vm; 754 755 out_enable_as: 756 transtab = cfg->arm_lpae_s1_cfg.ttbr; 757 transcfg = AS_TRANSCFG_PTW_MEMATTR_WB | 758 AS_TRANSCFG_PTW_RA | 759 AS_TRANSCFG_ADRMODE_AARCH64_4K | 760 AS_TRANSCFG_INA_BITS(55 - va_bits); 761 if (ptdev->coherent) 762 transcfg |= AS_TRANSCFG_PTW_SH_OS; 763 764 /* If the VM is re-activated, we clear the fault. */ 765 vm->unhandled_fault = false; 766 767 /* Unhandled pagefault on this AS, clear the fault and re-enable interrupts 768 * before enabling the AS. 769 */ 770 if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) { 771 gpu_write(ptdev, MMU_INT_CLEAR, panthor_mmu_as_fault_mask(ptdev, as)); 772 ptdev->mmu->as.faulty_mask &= ~panthor_mmu_as_fault_mask(ptdev, as); 773 ptdev->mmu->irq.mask |= panthor_mmu_as_fault_mask(ptdev, as); 774 gpu_write(ptdev, MMU_INT_MASK, ~ptdev->mmu->as.faulty_mask); 775 } 776 777 ret = panthor_mmu_as_enable(vm->ptdev, vm->as.id, transtab, transcfg, vm->memattr); 778 779 out_make_active: 780 if (!ret) { 781 refcount_set(&vm->as.active_cnt, 1); 782 list_del_init(&vm->as.lru_node); 783 } 784 785 out_unlock: 786 mutex_unlock(&ptdev->mmu->as.slots_lock); 787 788 out_dev_exit: 789 drm_dev_exit(cookie); 790 return ret; 791 } 792 793 /** 794 * panthor_vm_idle() - Flag a VM idle 795 * @vm: VM to flag as idle. 796 * 797 * When we know the GPU is done with the VM (no more jobs to process), 798 * we can relinquish the AS slot attached to this VM, if any. 799 * 800 * We don't release the slot immediately, but instead place the VM in 801 * the LRU list, so it can be evicted if another VM needs an AS slot. 802 * This way, VMs keep attached to the AS they were given until we run 803 * out of free slot, limiting the number of MMU operations (TLB flush 804 * and other AS updates). 805 */ 806 void panthor_vm_idle(struct panthor_vm *vm) 807 { 808 struct panthor_device *ptdev = vm->ptdev; 809 810 if (!refcount_dec_and_mutex_lock(&vm->as.active_cnt, &ptdev->mmu->as.slots_lock)) 811 return; 812 813 if (!drm_WARN_ON(&ptdev->base, vm->as.id == -1 || !list_empty(&vm->as.lru_node))) 814 list_add_tail(&vm->as.lru_node, &ptdev->mmu->as.lru_list); 815 816 refcount_set(&vm->as.active_cnt, 0); 817 mutex_unlock(&ptdev->mmu->as.slots_lock); 818 } 819 820 u32 panthor_vm_page_size(struct panthor_vm *vm) 821 { 822 const struct io_pgtable *pgt = io_pgtable_ops_to_pgtable(vm->pgtbl_ops); 823 u32 pg_shift = ffs(pgt->cfg.pgsize_bitmap) - 1; 824 825 return 1u << pg_shift; 826 } 827 828 static void panthor_vm_stop(struct panthor_vm *vm) 829 { 830 drm_sched_stop(&vm->sched, NULL); 831 } 832 833 static void panthor_vm_start(struct panthor_vm *vm) 834 { 835 drm_sched_start(&vm->sched, 0); 836 } 837 838 /** 839 * panthor_vm_as() - Get the AS slot attached to a VM 840 * @vm: VM to get the AS slot of. 841 * 842 * Return: -1 if the VM is not assigned an AS slot yet, >= 0 otherwise. 843 */ 844 int panthor_vm_as(struct panthor_vm *vm) 845 { 846 return vm->as.id; 847 } 848 849 static size_t get_pgsize(u64 addr, size_t size, size_t *count) 850 { 851 /* 852 * io-pgtable only operates on multiple pages within a single table 853 * entry, so we need to split at boundaries of the table size, i.e. 854 * the next block size up. The distance from address A to the next 855 * boundary of block size B is logically B - A % B, but in unsigned 856 * two's complement where B is a power of two we get the equivalence 857 * B - A % B == (B - A) % B == (n * B - A) % B, and choose n = 0 :) 858 */ 859 size_t blk_offset = -addr % SZ_2M; 860 861 if (blk_offset || size < SZ_2M) { 862 *count = min_not_zero(blk_offset, size) / SZ_4K; 863 return SZ_4K; 864 } 865 blk_offset = -addr % SZ_1G ?: SZ_1G; 866 *count = min(blk_offset, size) / SZ_2M; 867 return SZ_2M; 868 } 869 870 static int panthor_vm_flush_range(struct panthor_vm *vm, u64 iova, u64 size) 871 { 872 struct panthor_device *ptdev = vm->ptdev; 873 int ret = 0, cookie; 874 875 if (vm->as.id < 0) 876 return 0; 877 878 /* If the device is unplugged, we just silently skip the flush. */ 879 if (!drm_dev_enter(&ptdev->base, &cookie)) 880 return 0; 881 882 ret = mmu_hw_do_operation(vm, iova, size, AS_COMMAND_FLUSH_PT); 883 884 drm_dev_exit(cookie); 885 return ret; 886 } 887 888 /** 889 * panthor_vm_flush_all() - Flush L2 caches for the entirety of a VM's AS 890 * @vm: VM whose cache to flush 891 * 892 * Return: 0 on success, a negative error code if flush failed. 893 */ 894 int panthor_vm_flush_all(struct panthor_vm *vm) 895 { 896 return panthor_vm_flush_range(vm, vm->base.mm_start, vm->base.mm_range); 897 } 898 899 static int panthor_vm_unmap_pages(struct panthor_vm *vm, u64 iova, u64 size) 900 { 901 struct panthor_device *ptdev = vm->ptdev; 902 struct io_pgtable_ops *ops = vm->pgtbl_ops; 903 u64 offset = 0; 904 905 drm_dbg(&ptdev->base, "unmap: as=%d, iova=%llx, len=%llx", vm->as.id, iova, size); 906 907 while (offset < size) { 908 size_t unmapped_sz = 0, pgcount; 909 size_t pgsize = get_pgsize(iova + offset, size - offset, &pgcount); 910 911 unmapped_sz = ops->unmap_pages(ops, iova + offset, pgsize, pgcount, NULL); 912 913 if (drm_WARN_ON(&ptdev->base, unmapped_sz != pgsize * pgcount)) { 914 drm_err(&ptdev->base, "failed to unmap range %llx-%llx (requested range %llx-%llx)\n", 915 iova + offset + unmapped_sz, 916 iova + offset + pgsize * pgcount, 917 iova, iova + size); 918 panthor_vm_flush_range(vm, iova, offset + unmapped_sz); 919 return -EINVAL; 920 } 921 offset += unmapped_sz; 922 } 923 924 return panthor_vm_flush_range(vm, iova, size); 925 } 926 927 static int 928 panthor_vm_map_pages(struct panthor_vm *vm, u64 iova, int prot, 929 struct sg_table *sgt, u64 offset, u64 size) 930 { 931 struct panthor_device *ptdev = vm->ptdev; 932 unsigned int count; 933 struct scatterlist *sgl; 934 struct io_pgtable_ops *ops = vm->pgtbl_ops; 935 u64 start_iova = iova; 936 int ret; 937 938 if (!size) 939 return 0; 940 941 for_each_sgtable_dma_sg(sgt, sgl, count) { 942 dma_addr_t paddr = sg_dma_address(sgl); 943 size_t len = sg_dma_len(sgl); 944 945 if (len <= offset) { 946 offset -= len; 947 continue; 948 } 949 950 paddr += offset; 951 len -= offset; 952 len = min_t(size_t, len, size); 953 size -= len; 954 955 drm_dbg(&ptdev->base, "map: as=%d, iova=%llx, paddr=%pad, len=%zx", 956 vm->as.id, iova, &paddr, len); 957 958 while (len) { 959 size_t pgcount, mapped = 0; 960 size_t pgsize = get_pgsize(iova | paddr, len, &pgcount); 961 962 ret = ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot, 963 GFP_KERNEL, &mapped); 964 iova += mapped; 965 paddr += mapped; 966 len -= mapped; 967 968 if (drm_WARN_ON(&ptdev->base, !ret && !mapped)) 969 ret = -ENOMEM; 970 971 if (ret) { 972 /* If something failed, unmap what we've already mapped before 973 * returning. The unmap call is not supposed to fail. 974 */ 975 drm_WARN_ON(&ptdev->base, 976 panthor_vm_unmap_pages(vm, start_iova, 977 iova - start_iova)); 978 return ret; 979 } 980 } 981 982 if (!size) 983 break; 984 985 offset = 0; 986 } 987 988 return panthor_vm_flush_range(vm, start_iova, iova - start_iova); 989 } 990 991 static int flags_to_prot(u32 flags) 992 { 993 int prot = 0; 994 995 if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC) 996 prot |= IOMMU_NOEXEC; 997 998 if (!(flags & DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED)) 999 prot |= IOMMU_CACHE; 1000 1001 if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_READONLY) 1002 prot |= IOMMU_READ; 1003 else 1004 prot |= IOMMU_READ | IOMMU_WRITE; 1005 1006 return prot; 1007 } 1008 1009 /** 1010 * panthor_vm_alloc_va() - Allocate a region in the auto-va space 1011 * @vm: VM to allocate a region on. 1012 * @va: start of the VA range. Can be PANTHOR_VM_KERNEL_AUTO_VA if the user 1013 * wants the VA to be automatically allocated from the auto-VA range. 1014 * @size: size of the VA range. 1015 * @va_node: drm_mm_node to initialize. Must be zero-initialized. 1016 * 1017 * Some GPU objects, like heap chunks, are fully managed by the kernel and 1018 * need to be mapped to the userspace VM, in the region reserved for kernel 1019 * objects. 1020 * 1021 * This function takes care of allocating a region in the kernel auto-VA space. 1022 * 1023 * Return: 0 on success, an error code otherwise. 1024 */ 1025 int 1026 panthor_vm_alloc_va(struct panthor_vm *vm, u64 va, u64 size, 1027 struct drm_mm_node *va_node) 1028 { 1029 ssize_t vm_pgsz = panthor_vm_page_size(vm); 1030 int ret; 1031 1032 if (!size || !IS_ALIGNED(size, vm_pgsz)) 1033 return -EINVAL; 1034 1035 if (va != PANTHOR_VM_KERNEL_AUTO_VA && !IS_ALIGNED(va, vm_pgsz)) 1036 return -EINVAL; 1037 1038 mutex_lock(&vm->mm_lock); 1039 if (va != PANTHOR_VM_KERNEL_AUTO_VA) { 1040 va_node->start = va; 1041 va_node->size = size; 1042 ret = drm_mm_reserve_node(&vm->mm, va_node); 1043 } else { 1044 ret = drm_mm_insert_node_in_range(&vm->mm, va_node, size, 1045 size >= SZ_2M ? SZ_2M : SZ_4K, 1046 0, vm->kernel_auto_va.start, 1047 vm->kernel_auto_va.end, 1048 DRM_MM_INSERT_BEST); 1049 } 1050 mutex_unlock(&vm->mm_lock); 1051 1052 return ret; 1053 } 1054 1055 /** 1056 * panthor_vm_free_va() - Free a region allocated with panthor_vm_alloc_va() 1057 * @vm: VM to free the region on. 1058 * @va_node: Memory node representing the region to free. 1059 */ 1060 void panthor_vm_free_va(struct panthor_vm *vm, struct drm_mm_node *va_node) 1061 { 1062 mutex_lock(&vm->mm_lock); 1063 drm_mm_remove_node(va_node); 1064 mutex_unlock(&vm->mm_lock); 1065 } 1066 1067 static void panthor_vm_bo_put(struct drm_gpuvm_bo *vm_bo) 1068 { 1069 struct panthor_gem_object *bo = to_panthor_bo(vm_bo->obj); 1070 struct drm_gpuvm *vm = vm_bo->vm; 1071 bool unpin; 1072 1073 /* We must retain the GEM before calling drm_gpuvm_bo_put(), 1074 * otherwise the mutex might be destroyed while we hold it. 1075 * Same goes for the VM, since we take the VM resv lock. 1076 */ 1077 drm_gem_object_get(&bo->base.base); 1078 drm_gpuvm_get(vm); 1079 1080 /* We take the resv lock to protect against concurrent accesses to the 1081 * gpuvm evicted/extobj lists that are modified in 1082 * drm_gpuvm_bo_destroy(), which is called if drm_gpuvm_bo_put() 1083 * releases sthe last vm_bo reference. 1084 * We take the BO GPUVA list lock to protect the vm_bo removal from the 1085 * GEM vm_bo list. 1086 */ 1087 dma_resv_lock(drm_gpuvm_resv(vm), NULL); 1088 mutex_lock(&bo->gpuva_list_lock); 1089 unpin = drm_gpuvm_bo_put(vm_bo); 1090 mutex_unlock(&bo->gpuva_list_lock); 1091 dma_resv_unlock(drm_gpuvm_resv(vm)); 1092 1093 /* If the vm_bo object was destroyed, release the pin reference that 1094 * was hold by this object. 1095 */ 1096 if (unpin && !drm_gem_is_imported(&bo->base.base)) 1097 drm_gem_shmem_unpin(&bo->base); 1098 1099 drm_gpuvm_put(vm); 1100 drm_gem_object_put(&bo->base.base); 1101 } 1102 1103 static void panthor_vm_cleanup_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1104 struct panthor_vm *vm) 1105 { 1106 struct panthor_vma *vma, *tmp_vma; 1107 1108 u32 remaining_pt_count = op_ctx->rsvd_page_tables.count - 1109 op_ctx->rsvd_page_tables.ptr; 1110 1111 if (remaining_pt_count) { 1112 kmem_cache_free_bulk(pt_cache, remaining_pt_count, 1113 op_ctx->rsvd_page_tables.pages + 1114 op_ctx->rsvd_page_tables.ptr); 1115 } 1116 1117 kfree(op_ctx->rsvd_page_tables.pages); 1118 1119 if (op_ctx->map.vm_bo) 1120 panthor_vm_bo_put(op_ctx->map.vm_bo); 1121 1122 for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) 1123 kfree(op_ctx->preallocated_vmas[i]); 1124 1125 list_for_each_entry_safe(vma, tmp_vma, &op_ctx->returned_vmas, node) { 1126 list_del(&vma->node); 1127 panthor_vm_bo_put(vma->base.vm_bo); 1128 kfree(vma); 1129 } 1130 } 1131 1132 static struct panthor_vma * 1133 panthor_vm_op_ctx_get_vma(struct panthor_vm_op_ctx *op_ctx) 1134 { 1135 for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) { 1136 struct panthor_vma *vma = op_ctx->preallocated_vmas[i]; 1137 1138 if (vma) { 1139 op_ctx->preallocated_vmas[i] = NULL; 1140 return vma; 1141 } 1142 } 1143 1144 return NULL; 1145 } 1146 1147 static int 1148 panthor_vm_op_ctx_prealloc_vmas(struct panthor_vm_op_ctx *op_ctx) 1149 { 1150 u32 vma_count; 1151 1152 switch (op_ctx->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) { 1153 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: 1154 /* One VMA for the new mapping, and two more VMAs for the remap case 1155 * which might contain both a prev and next VA. 1156 */ 1157 vma_count = 3; 1158 break; 1159 1160 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP: 1161 /* Partial unmaps might trigger a remap with either a prev or a next VA, 1162 * but not both. 1163 */ 1164 vma_count = 1; 1165 break; 1166 1167 default: 1168 return 0; 1169 } 1170 1171 for (u32 i = 0; i < vma_count; i++) { 1172 struct panthor_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL); 1173 1174 if (!vma) 1175 return -ENOMEM; 1176 1177 op_ctx->preallocated_vmas[i] = vma; 1178 } 1179 1180 return 0; 1181 } 1182 1183 #define PANTHOR_VM_BIND_OP_MAP_FLAGS \ 1184 (DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \ 1185 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \ 1186 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED | \ 1187 DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) 1188 1189 static int panthor_vm_prepare_map_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1190 struct panthor_vm *vm, 1191 struct panthor_gem_object *bo, 1192 u64 offset, 1193 u64 size, u64 va, 1194 u32 flags) 1195 { 1196 struct drm_gpuvm_bo *preallocated_vm_bo; 1197 struct sg_table *sgt = NULL; 1198 u64 pt_count; 1199 int ret; 1200 1201 if (!bo) 1202 return -EINVAL; 1203 1204 if ((flags & ~PANTHOR_VM_BIND_OP_MAP_FLAGS) || 1205 (flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) != DRM_PANTHOR_VM_BIND_OP_TYPE_MAP) 1206 return -EINVAL; 1207 1208 /* Make sure the VA and size are aligned and in-bounds. */ 1209 if (size > bo->base.base.size || offset > bo->base.base.size - size) 1210 return -EINVAL; 1211 1212 /* If the BO has an exclusive VM attached, it can't be mapped to other VMs. */ 1213 if (bo->exclusive_vm_root_gem && 1214 bo->exclusive_vm_root_gem != panthor_vm_root_gem(vm)) 1215 return -EINVAL; 1216 1217 memset(op_ctx, 0, sizeof(*op_ctx)); 1218 INIT_LIST_HEAD(&op_ctx->returned_vmas); 1219 op_ctx->flags = flags; 1220 op_ctx->va.range = size; 1221 op_ctx->va.addr = va; 1222 1223 ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx); 1224 if (ret) 1225 goto err_cleanup; 1226 1227 if (!drm_gem_is_imported(&bo->base.base)) { 1228 /* Pre-reserve the BO pages, so the map operation doesn't have to 1229 * allocate. 1230 */ 1231 ret = drm_gem_shmem_pin(&bo->base); 1232 if (ret) 1233 goto err_cleanup; 1234 } 1235 1236 sgt = drm_gem_shmem_get_pages_sgt(&bo->base); 1237 if (IS_ERR(sgt)) { 1238 if (!drm_gem_is_imported(&bo->base.base)) 1239 drm_gem_shmem_unpin(&bo->base); 1240 1241 ret = PTR_ERR(sgt); 1242 goto err_cleanup; 1243 } 1244 1245 op_ctx->map.sgt = sgt; 1246 1247 preallocated_vm_bo = drm_gpuvm_bo_create(&vm->base, &bo->base.base); 1248 if (!preallocated_vm_bo) { 1249 if (!drm_gem_is_imported(&bo->base.base)) 1250 drm_gem_shmem_unpin(&bo->base); 1251 1252 ret = -ENOMEM; 1253 goto err_cleanup; 1254 } 1255 1256 /* drm_gpuvm_bo_obtain_prealloc() will call drm_gpuvm_bo_put() on our 1257 * pre-allocated BO if the <BO,VM> association exists. Given we 1258 * only have one ref on preallocated_vm_bo, drm_gpuvm_bo_destroy() will 1259 * be called immediately, and we have to hold the VM resv lock when 1260 * calling this function. 1261 */ 1262 dma_resv_lock(panthor_vm_resv(vm), NULL); 1263 mutex_lock(&bo->gpuva_list_lock); 1264 op_ctx->map.vm_bo = drm_gpuvm_bo_obtain_prealloc(preallocated_vm_bo); 1265 mutex_unlock(&bo->gpuva_list_lock); 1266 dma_resv_unlock(panthor_vm_resv(vm)); 1267 1268 /* If the a vm_bo for this <VM,BO> combination exists, it already 1269 * retains a pin ref, and we can release the one we took earlier. 1270 * 1271 * If our pre-allocated vm_bo is picked, it now retains the pin ref, 1272 * which will be released in panthor_vm_bo_put(). 1273 */ 1274 if (preallocated_vm_bo != op_ctx->map.vm_bo && 1275 !drm_gem_is_imported(&bo->base.base)) 1276 drm_gem_shmem_unpin(&bo->base); 1277 1278 op_ctx->map.bo_offset = offset; 1279 1280 /* L1, L2 and L3 page tables. 1281 * We could optimize L3 allocation by iterating over the sgt and merging 1282 * 2M contiguous blocks, but it's simpler to over-provision and return 1283 * the pages if they're not used. 1284 */ 1285 pt_count = ((ALIGN(va + size, 1ull << 39) - ALIGN_DOWN(va, 1ull << 39)) >> 39) + 1286 ((ALIGN(va + size, 1ull << 30) - ALIGN_DOWN(va, 1ull << 30)) >> 30) + 1287 ((ALIGN(va + size, 1ull << 21) - ALIGN_DOWN(va, 1ull << 21)) >> 21); 1288 1289 op_ctx->rsvd_page_tables.pages = kcalloc(pt_count, 1290 sizeof(*op_ctx->rsvd_page_tables.pages), 1291 GFP_KERNEL); 1292 if (!op_ctx->rsvd_page_tables.pages) { 1293 ret = -ENOMEM; 1294 goto err_cleanup; 1295 } 1296 1297 ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count, 1298 op_ctx->rsvd_page_tables.pages); 1299 op_ctx->rsvd_page_tables.count = ret; 1300 if (ret != pt_count) { 1301 ret = -ENOMEM; 1302 goto err_cleanup; 1303 } 1304 1305 /* Insert BO into the extobj list last, when we know nothing can fail. */ 1306 dma_resv_lock(panthor_vm_resv(vm), NULL); 1307 drm_gpuvm_bo_extobj_add(op_ctx->map.vm_bo); 1308 dma_resv_unlock(panthor_vm_resv(vm)); 1309 1310 return 0; 1311 1312 err_cleanup: 1313 panthor_vm_cleanup_op_ctx(op_ctx, vm); 1314 return ret; 1315 } 1316 1317 static int panthor_vm_prepare_unmap_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1318 struct panthor_vm *vm, 1319 u64 va, u64 size) 1320 { 1321 u32 pt_count = 0; 1322 int ret; 1323 1324 memset(op_ctx, 0, sizeof(*op_ctx)); 1325 INIT_LIST_HEAD(&op_ctx->returned_vmas); 1326 op_ctx->va.range = size; 1327 op_ctx->va.addr = va; 1328 op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP; 1329 1330 /* Pre-allocate L3 page tables to account for the split-2M-block 1331 * situation on unmap. 1332 */ 1333 if (va != ALIGN(va, SZ_2M)) 1334 pt_count++; 1335 1336 if (va + size != ALIGN(va + size, SZ_2M) && 1337 ALIGN(va + size, SZ_2M) != ALIGN(va, SZ_2M)) 1338 pt_count++; 1339 1340 ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx); 1341 if (ret) 1342 goto err_cleanup; 1343 1344 if (pt_count) { 1345 op_ctx->rsvd_page_tables.pages = kcalloc(pt_count, 1346 sizeof(*op_ctx->rsvd_page_tables.pages), 1347 GFP_KERNEL); 1348 if (!op_ctx->rsvd_page_tables.pages) { 1349 ret = -ENOMEM; 1350 goto err_cleanup; 1351 } 1352 1353 ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count, 1354 op_ctx->rsvd_page_tables.pages); 1355 if (ret != pt_count) { 1356 ret = -ENOMEM; 1357 goto err_cleanup; 1358 } 1359 op_ctx->rsvd_page_tables.count = pt_count; 1360 } 1361 1362 return 0; 1363 1364 err_cleanup: 1365 panthor_vm_cleanup_op_ctx(op_ctx, vm); 1366 return ret; 1367 } 1368 1369 static void panthor_vm_prepare_sync_only_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1370 struct panthor_vm *vm) 1371 { 1372 memset(op_ctx, 0, sizeof(*op_ctx)); 1373 INIT_LIST_HEAD(&op_ctx->returned_vmas); 1374 op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY; 1375 } 1376 1377 /** 1378 * panthor_vm_get_bo_for_va() - Get the GEM object mapped at a virtual address 1379 * @vm: VM to look into. 1380 * @va: Virtual address to search for. 1381 * @bo_offset: Offset of the GEM object mapped at this virtual address. 1382 * Only valid on success. 1383 * 1384 * The object returned by this function might no longer be mapped when the 1385 * function returns. It's the caller responsibility to ensure there's no 1386 * concurrent map/unmap operations making the returned value invalid, or 1387 * make sure it doesn't matter if the object is no longer mapped. 1388 * 1389 * Return: A valid pointer on success, an ERR_PTR() otherwise. 1390 */ 1391 struct panthor_gem_object * 1392 panthor_vm_get_bo_for_va(struct panthor_vm *vm, u64 va, u64 *bo_offset) 1393 { 1394 struct panthor_gem_object *bo = ERR_PTR(-ENOENT); 1395 struct drm_gpuva *gpuva; 1396 struct panthor_vma *vma; 1397 1398 /* Take the VM lock to prevent concurrent map/unmap operations. */ 1399 mutex_lock(&vm->op_lock); 1400 gpuva = drm_gpuva_find_first(&vm->base, va, 1); 1401 vma = gpuva ? container_of(gpuva, struct panthor_vma, base) : NULL; 1402 if (vma && vma->base.gem.obj) { 1403 drm_gem_object_get(vma->base.gem.obj); 1404 bo = to_panthor_bo(vma->base.gem.obj); 1405 *bo_offset = vma->base.gem.offset + (va - vma->base.va.addr); 1406 } 1407 mutex_unlock(&vm->op_lock); 1408 1409 return bo; 1410 } 1411 1412 #define PANTHOR_VM_MIN_KERNEL_VA_SIZE SZ_256M 1413 1414 static u64 1415 panthor_vm_create_get_user_va_range(const struct drm_panthor_vm_create *args, 1416 u64 full_va_range) 1417 { 1418 u64 user_va_range; 1419 1420 /* Make sure we have a minimum amount of VA space for kernel objects. */ 1421 if (full_va_range < PANTHOR_VM_MIN_KERNEL_VA_SIZE) 1422 return 0; 1423 1424 if (args->user_va_range) { 1425 /* Use the user provided value if != 0. */ 1426 user_va_range = args->user_va_range; 1427 } else if (TASK_SIZE_OF(current) < full_va_range) { 1428 /* If the task VM size is smaller than the GPU VA range, pick this 1429 * as our default user VA range, so userspace can CPU/GPU map buffers 1430 * at the same address. 1431 */ 1432 user_va_range = TASK_SIZE_OF(current); 1433 } else { 1434 /* If the GPU VA range is smaller than the task VM size, we 1435 * just have to live with the fact we won't be able to map 1436 * all buffers at the same GPU/CPU address. 1437 * 1438 * If the GPU VA range is bigger than 4G (more than 32-bit of 1439 * VA), we split the range in two, and assign half of it to 1440 * the user and the other half to the kernel, if it's not, we 1441 * keep the kernel VA space as small as possible. 1442 */ 1443 user_va_range = full_va_range > SZ_4G ? 1444 full_va_range / 2 : 1445 full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE; 1446 } 1447 1448 if (full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE < user_va_range) 1449 user_va_range = full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE; 1450 1451 return user_va_range; 1452 } 1453 1454 #define PANTHOR_VM_CREATE_FLAGS 0 1455 1456 static int 1457 panthor_vm_create_check_args(const struct panthor_device *ptdev, 1458 const struct drm_panthor_vm_create *args, 1459 u64 *kernel_va_start, u64 *kernel_va_range) 1460 { 1461 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 1462 u64 full_va_range = 1ull << va_bits; 1463 u64 user_va_range; 1464 1465 if (args->flags & ~PANTHOR_VM_CREATE_FLAGS) 1466 return -EINVAL; 1467 1468 user_va_range = panthor_vm_create_get_user_va_range(args, full_va_range); 1469 if (!user_va_range || (args->user_va_range && args->user_va_range > user_va_range)) 1470 return -EINVAL; 1471 1472 /* Pick a kernel VA range that's a power of two, to have a clear split. */ 1473 *kernel_va_range = rounddown_pow_of_two(full_va_range - user_va_range); 1474 *kernel_va_start = full_va_range - *kernel_va_range; 1475 return 0; 1476 } 1477 1478 /* 1479 * Only 32 VMs per open file. If that becomes a limiting factor, we can 1480 * increase this number. 1481 */ 1482 #define PANTHOR_MAX_VMS_PER_FILE 32 1483 1484 /** 1485 * panthor_vm_pool_create_vm() - Create a VM 1486 * @ptdev: The panthor device 1487 * @pool: The VM to create this VM on. 1488 * @args: VM creation args. 1489 * 1490 * Return: a positive VM ID on success, a negative error code otherwise. 1491 */ 1492 int panthor_vm_pool_create_vm(struct panthor_device *ptdev, 1493 struct panthor_vm_pool *pool, 1494 struct drm_panthor_vm_create *args) 1495 { 1496 u64 kernel_va_start, kernel_va_range; 1497 struct panthor_vm *vm; 1498 int ret; 1499 u32 id; 1500 1501 ret = panthor_vm_create_check_args(ptdev, args, &kernel_va_start, &kernel_va_range); 1502 if (ret) 1503 return ret; 1504 1505 vm = panthor_vm_create(ptdev, false, kernel_va_start, kernel_va_range, 1506 kernel_va_start, kernel_va_range); 1507 if (IS_ERR(vm)) 1508 return PTR_ERR(vm); 1509 1510 ret = xa_alloc(&pool->xa, &id, vm, 1511 XA_LIMIT(1, PANTHOR_MAX_VMS_PER_FILE), GFP_KERNEL); 1512 1513 if (ret) { 1514 panthor_vm_put(vm); 1515 return ret; 1516 } 1517 1518 args->user_va_range = kernel_va_start; 1519 return id; 1520 } 1521 1522 static void panthor_vm_destroy(struct panthor_vm *vm) 1523 { 1524 if (!vm) 1525 return; 1526 1527 vm->destroyed = true; 1528 1529 mutex_lock(&vm->heaps.lock); 1530 panthor_heap_pool_destroy(vm->heaps.pool); 1531 vm->heaps.pool = NULL; 1532 mutex_unlock(&vm->heaps.lock); 1533 1534 drm_WARN_ON(&vm->ptdev->base, 1535 panthor_vm_unmap_range(vm, vm->base.mm_start, vm->base.mm_range)); 1536 panthor_vm_put(vm); 1537 } 1538 1539 /** 1540 * panthor_vm_pool_destroy_vm() - Destroy a VM. 1541 * @pool: VM pool. 1542 * @handle: VM handle. 1543 * 1544 * This function doesn't free the VM object or its resources, it just kills 1545 * all mappings, and makes sure nothing can be mapped after that point. 1546 * 1547 * If there was any active jobs at the time this function is called, these 1548 * jobs should experience page faults and be killed as a result. 1549 * 1550 * The VM resources are freed when the last reference on the VM object is 1551 * dropped. 1552 * 1553 * Return: %0 for success, negative errno value for failure 1554 */ 1555 int panthor_vm_pool_destroy_vm(struct panthor_vm_pool *pool, u32 handle) 1556 { 1557 struct panthor_vm *vm; 1558 1559 vm = xa_erase(&pool->xa, handle); 1560 1561 panthor_vm_destroy(vm); 1562 1563 return vm ? 0 : -EINVAL; 1564 } 1565 1566 /** 1567 * panthor_vm_pool_get_vm() - Retrieve VM object bound to a VM handle 1568 * @pool: VM pool to check. 1569 * @handle: Handle of the VM to retrieve. 1570 * 1571 * Return: A valid pointer if the VM exists, NULL otherwise. 1572 */ 1573 struct panthor_vm * 1574 panthor_vm_pool_get_vm(struct panthor_vm_pool *pool, u32 handle) 1575 { 1576 struct panthor_vm *vm; 1577 1578 xa_lock(&pool->xa); 1579 vm = panthor_vm_get(xa_load(&pool->xa, handle)); 1580 xa_unlock(&pool->xa); 1581 1582 return vm; 1583 } 1584 1585 /** 1586 * panthor_vm_pool_destroy() - Destroy a VM pool. 1587 * @pfile: File. 1588 * 1589 * Destroy all VMs in the pool, and release the pool resources. 1590 * 1591 * Note that VMs can outlive the pool they were created from if other 1592 * objects hold a reference to there VMs. 1593 */ 1594 void panthor_vm_pool_destroy(struct panthor_file *pfile) 1595 { 1596 struct panthor_vm *vm; 1597 unsigned long i; 1598 1599 if (!pfile->vms) 1600 return; 1601 1602 xa_for_each(&pfile->vms->xa, i, vm) 1603 panthor_vm_destroy(vm); 1604 1605 xa_destroy(&pfile->vms->xa); 1606 kfree(pfile->vms); 1607 } 1608 1609 /** 1610 * panthor_vm_pool_create() - Create a VM pool 1611 * @pfile: File. 1612 * 1613 * Return: 0 on success, a negative error code otherwise. 1614 */ 1615 int panthor_vm_pool_create(struct panthor_file *pfile) 1616 { 1617 pfile->vms = kzalloc(sizeof(*pfile->vms), GFP_KERNEL); 1618 if (!pfile->vms) 1619 return -ENOMEM; 1620 1621 xa_init_flags(&pfile->vms->xa, XA_FLAGS_ALLOC1); 1622 return 0; 1623 } 1624 1625 /* dummy TLB ops, the real TLB flush happens in panthor_vm_flush_range() */ 1626 static void mmu_tlb_flush_all(void *cookie) 1627 { 1628 } 1629 1630 static void mmu_tlb_flush_walk(unsigned long iova, size_t size, size_t granule, void *cookie) 1631 { 1632 } 1633 1634 static const struct iommu_flush_ops mmu_tlb_ops = { 1635 .tlb_flush_all = mmu_tlb_flush_all, 1636 .tlb_flush_walk = mmu_tlb_flush_walk, 1637 }; 1638 1639 static const char *access_type_name(struct panthor_device *ptdev, 1640 u32 fault_status) 1641 { 1642 switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) { 1643 case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC: 1644 return "ATOMIC"; 1645 case AS_FAULTSTATUS_ACCESS_TYPE_READ: 1646 return "READ"; 1647 case AS_FAULTSTATUS_ACCESS_TYPE_WRITE: 1648 return "WRITE"; 1649 case AS_FAULTSTATUS_ACCESS_TYPE_EX: 1650 return "EXECUTE"; 1651 default: 1652 drm_WARN_ON(&ptdev->base, 1); 1653 return NULL; 1654 } 1655 } 1656 1657 static void panthor_mmu_irq_handler(struct panthor_device *ptdev, u32 status) 1658 { 1659 bool has_unhandled_faults = false; 1660 1661 status = panthor_mmu_fault_mask(ptdev, status); 1662 while (status) { 1663 u32 as = ffs(status | (status >> 16)) - 1; 1664 u32 mask = panthor_mmu_as_fault_mask(ptdev, as); 1665 u32 new_int_mask; 1666 u64 addr; 1667 u32 fault_status; 1668 u32 exception_type; 1669 u32 access_type; 1670 u32 source_id; 1671 1672 fault_status = gpu_read(ptdev, AS_FAULTSTATUS(as)); 1673 addr = gpu_read64(ptdev, AS_FAULTADDRESS(as)); 1674 1675 /* decode the fault status */ 1676 exception_type = fault_status & 0xFF; 1677 access_type = (fault_status >> 8) & 0x3; 1678 source_id = (fault_status >> 16); 1679 1680 mutex_lock(&ptdev->mmu->as.slots_lock); 1681 1682 ptdev->mmu->as.faulty_mask |= mask; 1683 new_int_mask = 1684 panthor_mmu_fault_mask(ptdev, ~ptdev->mmu->as.faulty_mask); 1685 1686 /* terminal fault, print info about the fault */ 1687 drm_err(&ptdev->base, 1688 "Unhandled Page fault in AS%d at VA 0x%016llX\n" 1689 "raw fault status: 0x%X\n" 1690 "decoded fault status: %s\n" 1691 "exception type 0x%X: %s\n" 1692 "access type 0x%X: %s\n" 1693 "source id 0x%X\n", 1694 as, addr, 1695 fault_status, 1696 (fault_status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"), 1697 exception_type, panthor_exception_name(ptdev, exception_type), 1698 access_type, access_type_name(ptdev, fault_status), 1699 source_id); 1700 1701 /* We don't handle VM faults at the moment, so let's just clear the 1702 * interrupt and let the writer/reader crash. 1703 * Note that COMPLETED irqs are never cleared, but this is fine 1704 * because they are always masked. 1705 */ 1706 gpu_write(ptdev, MMU_INT_CLEAR, mask); 1707 1708 /* Ignore MMU interrupts on this AS until it's been 1709 * re-enabled. 1710 */ 1711 ptdev->mmu->irq.mask = new_int_mask; 1712 1713 if (ptdev->mmu->as.slots[as].vm) 1714 ptdev->mmu->as.slots[as].vm->unhandled_fault = true; 1715 1716 /* Disable the MMU to kill jobs on this AS. */ 1717 panthor_mmu_as_disable(ptdev, as); 1718 mutex_unlock(&ptdev->mmu->as.slots_lock); 1719 1720 status &= ~mask; 1721 has_unhandled_faults = true; 1722 } 1723 1724 if (has_unhandled_faults) 1725 panthor_sched_report_mmu_fault(ptdev); 1726 } 1727 PANTHOR_IRQ_HANDLER(mmu, MMU, panthor_mmu_irq_handler); 1728 1729 /** 1730 * panthor_mmu_suspend() - Suspend the MMU logic 1731 * @ptdev: Device. 1732 * 1733 * All we do here is de-assign the AS slots on all active VMs, so things 1734 * get flushed to the main memory, and no further access to these VMs are 1735 * possible. 1736 * 1737 * We also suspend the MMU IRQ. 1738 */ 1739 void panthor_mmu_suspend(struct panthor_device *ptdev) 1740 { 1741 mutex_lock(&ptdev->mmu->as.slots_lock); 1742 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) { 1743 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm; 1744 1745 if (vm) { 1746 drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i)); 1747 panthor_vm_release_as_locked(vm); 1748 } 1749 } 1750 mutex_unlock(&ptdev->mmu->as.slots_lock); 1751 1752 panthor_mmu_irq_suspend(&ptdev->mmu->irq); 1753 } 1754 1755 /** 1756 * panthor_mmu_resume() - Resume the MMU logic 1757 * @ptdev: Device. 1758 * 1759 * Resume the IRQ. 1760 * 1761 * We don't re-enable previously active VMs. We assume other parts of the 1762 * driver will call panthor_vm_active() on the VMs they intend to use. 1763 */ 1764 void panthor_mmu_resume(struct panthor_device *ptdev) 1765 { 1766 mutex_lock(&ptdev->mmu->as.slots_lock); 1767 ptdev->mmu->as.alloc_mask = 0; 1768 ptdev->mmu->as.faulty_mask = 0; 1769 mutex_unlock(&ptdev->mmu->as.slots_lock); 1770 1771 panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0)); 1772 } 1773 1774 /** 1775 * panthor_mmu_pre_reset() - Prepare for a reset 1776 * @ptdev: Device. 1777 * 1778 * Suspend the IRQ, and make sure all VM_BIND queues are stopped, so we 1779 * don't get asked to do a VM operation while the GPU is down. 1780 * 1781 * We don't cleanly shutdown the AS slots here, because the reset might 1782 * come from an AS_ACTIVE_BIT stuck situation. 1783 */ 1784 void panthor_mmu_pre_reset(struct panthor_device *ptdev) 1785 { 1786 struct panthor_vm *vm; 1787 1788 panthor_mmu_irq_suspend(&ptdev->mmu->irq); 1789 1790 mutex_lock(&ptdev->mmu->vm.lock); 1791 ptdev->mmu->vm.reset_in_progress = true; 1792 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) 1793 panthor_vm_stop(vm); 1794 mutex_unlock(&ptdev->mmu->vm.lock); 1795 } 1796 1797 /** 1798 * panthor_mmu_post_reset() - Restore things after a reset 1799 * @ptdev: Device. 1800 * 1801 * Put the MMU logic back in action after a reset. That implies resuming the 1802 * IRQ and re-enabling the VM_BIND queues. 1803 */ 1804 void panthor_mmu_post_reset(struct panthor_device *ptdev) 1805 { 1806 struct panthor_vm *vm; 1807 1808 mutex_lock(&ptdev->mmu->as.slots_lock); 1809 1810 /* Now that the reset is effective, we can assume that none of the 1811 * AS slots are setup, and clear the faulty flags too. 1812 */ 1813 ptdev->mmu->as.alloc_mask = 0; 1814 ptdev->mmu->as.faulty_mask = 0; 1815 1816 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) { 1817 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm; 1818 1819 if (vm) 1820 panthor_vm_release_as_locked(vm); 1821 } 1822 1823 mutex_unlock(&ptdev->mmu->as.slots_lock); 1824 1825 panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0)); 1826 1827 /* Restart the VM_BIND queues. */ 1828 mutex_lock(&ptdev->mmu->vm.lock); 1829 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) { 1830 panthor_vm_start(vm); 1831 } 1832 ptdev->mmu->vm.reset_in_progress = false; 1833 mutex_unlock(&ptdev->mmu->vm.lock); 1834 } 1835 1836 static void panthor_vm_free(struct drm_gpuvm *gpuvm) 1837 { 1838 struct panthor_vm *vm = container_of(gpuvm, struct panthor_vm, base); 1839 struct panthor_device *ptdev = vm->ptdev; 1840 1841 mutex_lock(&vm->heaps.lock); 1842 if (drm_WARN_ON(&ptdev->base, vm->heaps.pool)) 1843 panthor_heap_pool_destroy(vm->heaps.pool); 1844 mutex_unlock(&vm->heaps.lock); 1845 mutex_destroy(&vm->heaps.lock); 1846 1847 mutex_lock(&ptdev->mmu->vm.lock); 1848 list_del(&vm->node); 1849 /* Restore the scheduler state so we can call drm_sched_entity_destroy() 1850 * and drm_sched_fini(). If get there, that means we have no job left 1851 * and no new jobs can be queued, so we can start the scheduler without 1852 * risking interfering with the reset. 1853 */ 1854 if (ptdev->mmu->vm.reset_in_progress) 1855 panthor_vm_start(vm); 1856 mutex_unlock(&ptdev->mmu->vm.lock); 1857 1858 drm_sched_entity_destroy(&vm->entity); 1859 drm_sched_fini(&vm->sched); 1860 1861 mutex_lock(&ptdev->mmu->as.slots_lock); 1862 if (vm->as.id >= 0) { 1863 int cookie; 1864 1865 if (drm_dev_enter(&ptdev->base, &cookie)) { 1866 panthor_mmu_as_disable(ptdev, vm->as.id); 1867 drm_dev_exit(cookie); 1868 } 1869 1870 ptdev->mmu->as.slots[vm->as.id].vm = NULL; 1871 clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask); 1872 list_del(&vm->as.lru_node); 1873 } 1874 mutex_unlock(&ptdev->mmu->as.slots_lock); 1875 1876 free_io_pgtable_ops(vm->pgtbl_ops); 1877 1878 drm_mm_takedown(&vm->mm); 1879 kfree(vm); 1880 } 1881 1882 /** 1883 * panthor_vm_put() - Release a reference on a VM 1884 * @vm: VM to release the reference on. Can be NULL. 1885 */ 1886 void panthor_vm_put(struct panthor_vm *vm) 1887 { 1888 drm_gpuvm_put(vm ? &vm->base : NULL); 1889 } 1890 1891 /** 1892 * panthor_vm_get() - Get a VM reference 1893 * @vm: VM to get the reference on. Can be NULL. 1894 * 1895 * Return: @vm value. 1896 */ 1897 struct panthor_vm *panthor_vm_get(struct panthor_vm *vm) 1898 { 1899 if (vm) 1900 drm_gpuvm_get(&vm->base); 1901 1902 return vm; 1903 } 1904 1905 /** 1906 * panthor_vm_get_heap_pool() - Get the heap pool attached to a VM 1907 * @vm: VM to query the heap pool on. 1908 * @create: True if the heap pool should be created when it doesn't exist. 1909 * 1910 * Heap pools are per-VM. This function allows one to retrieve the heap pool 1911 * attached to a VM. 1912 * 1913 * If no heap pool exists yet, and @create is true, we create one. 1914 * 1915 * The returned panthor_heap_pool should be released with panthor_heap_pool_put(). 1916 * 1917 * Return: A valid pointer on success, an ERR_PTR() otherwise. 1918 */ 1919 struct panthor_heap_pool *panthor_vm_get_heap_pool(struct panthor_vm *vm, bool create) 1920 { 1921 struct panthor_heap_pool *pool; 1922 1923 mutex_lock(&vm->heaps.lock); 1924 if (!vm->heaps.pool && create) { 1925 if (vm->destroyed) 1926 pool = ERR_PTR(-EINVAL); 1927 else 1928 pool = panthor_heap_pool_create(vm->ptdev, vm); 1929 1930 if (!IS_ERR(pool)) 1931 vm->heaps.pool = panthor_heap_pool_get(pool); 1932 } else { 1933 pool = panthor_heap_pool_get(vm->heaps.pool); 1934 if (!pool) 1935 pool = ERR_PTR(-ENOENT); 1936 } 1937 mutex_unlock(&vm->heaps.lock); 1938 1939 return pool; 1940 } 1941 1942 /** 1943 * panthor_vm_heaps_sizes() - Calculate size of all heap chunks across all 1944 * heaps over all the heap pools in a VM 1945 * @pfile: File. 1946 * @stats: Memory stats to be updated. 1947 * 1948 * Calculate all heap chunk sizes in all heap pools bound to a VM. If the VM 1949 * is active, record the size as active as well. 1950 */ 1951 void panthor_vm_heaps_sizes(struct panthor_file *pfile, struct drm_memory_stats *stats) 1952 { 1953 struct panthor_vm *vm; 1954 unsigned long i; 1955 1956 if (!pfile->vms) 1957 return; 1958 1959 xa_lock(&pfile->vms->xa); 1960 xa_for_each(&pfile->vms->xa, i, vm) { 1961 size_t size = panthor_heap_pool_size(vm->heaps.pool); 1962 stats->resident += size; 1963 if (vm->as.id >= 0) 1964 stats->active += size; 1965 } 1966 xa_unlock(&pfile->vms->xa); 1967 } 1968 1969 static u64 mair_to_memattr(u64 mair, bool coherent) 1970 { 1971 u64 memattr = 0; 1972 u32 i; 1973 1974 for (i = 0; i < 8; i++) { 1975 u8 in_attr = mair >> (8 * i), out_attr; 1976 u8 outer = in_attr >> 4, inner = in_attr & 0xf; 1977 1978 /* For caching to be enabled, inner and outer caching policy 1979 * have to be both write-back, if one of them is write-through 1980 * or non-cacheable, we just choose non-cacheable. Device 1981 * memory is also translated to non-cacheable. 1982 */ 1983 if (!(outer & 3) || !(outer & 4) || !(inner & 4)) { 1984 out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_NC | 1985 AS_MEMATTR_AARCH64_SH_MIDGARD_INNER | 1986 AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(false, false); 1987 } else { 1988 out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_WB | 1989 AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(inner & 1, inner & 2); 1990 /* Use SH_MIDGARD_INNER mode when device isn't coherent, 1991 * so SH_IS, which is used when IOMMU_CACHE is set, maps 1992 * to Mali's internal-shareable mode. As per the Mali 1993 * Spec, inner and outer-shareable modes aren't allowed 1994 * for WB memory when coherency is disabled. 1995 * Use SH_CPU_INNER mode when coherency is enabled, so 1996 * that SH_IS actually maps to the standard definition of 1997 * inner-shareable. 1998 */ 1999 if (!coherent) 2000 out_attr |= AS_MEMATTR_AARCH64_SH_MIDGARD_INNER; 2001 else 2002 out_attr |= AS_MEMATTR_AARCH64_SH_CPU_INNER; 2003 } 2004 2005 memattr |= (u64)out_attr << (8 * i); 2006 } 2007 2008 return memattr; 2009 } 2010 2011 static void panthor_vma_link(struct panthor_vm *vm, 2012 struct panthor_vma *vma, 2013 struct drm_gpuvm_bo *vm_bo) 2014 { 2015 struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj); 2016 2017 mutex_lock(&bo->gpuva_list_lock); 2018 drm_gpuva_link(&vma->base, vm_bo); 2019 drm_WARN_ON(&vm->ptdev->base, drm_gpuvm_bo_put(vm_bo)); 2020 mutex_unlock(&bo->gpuva_list_lock); 2021 } 2022 2023 static void panthor_vma_unlink(struct panthor_vm *vm, 2024 struct panthor_vma *vma) 2025 { 2026 struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj); 2027 struct drm_gpuvm_bo *vm_bo = drm_gpuvm_bo_get(vma->base.vm_bo); 2028 2029 mutex_lock(&bo->gpuva_list_lock); 2030 drm_gpuva_unlink(&vma->base); 2031 mutex_unlock(&bo->gpuva_list_lock); 2032 2033 /* drm_gpuva_unlink() release the vm_bo, but we manually retained it 2034 * when entering this function, so we can implement deferred VMA 2035 * destruction. Re-assign it here. 2036 */ 2037 vma->base.vm_bo = vm_bo; 2038 list_add_tail(&vma->node, &vm->op_ctx->returned_vmas); 2039 } 2040 2041 static void panthor_vma_init(struct panthor_vma *vma, u32 flags) 2042 { 2043 INIT_LIST_HEAD(&vma->node); 2044 vma->flags = flags; 2045 } 2046 2047 #define PANTHOR_VM_MAP_FLAGS \ 2048 (DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \ 2049 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \ 2050 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED) 2051 2052 static int panthor_gpuva_sm_step_map(struct drm_gpuva_op *op, void *priv) 2053 { 2054 struct panthor_vm *vm = priv; 2055 struct panthor_vm_op_ctx *op_ctx = vm->op_ctx; 2056 struct panthor_vma *vma = panthor_vm_op_ctx_get_vma(op_ctx); 2057 int ret; 2058 2059 if (!vma) 2060 return -EINVAL; 2061 2062 panthor_vma_init(vma, op_ctx->flags & PANTHOR_VM_MAP_FLAGS); 2063 2064 ret = panthor_vm_map_pages(vm, op->map.va.addr, flags_to_prot(vma->flags), 2065 op_ctx->map.sgt, op->map.gem.offset, 2066 op->map.va.range); 2067 if (ret) 2068 return ret; 2069 2070 /* Ref owned by the mapping now, clear the obj field so we don't release the 2071 * pinning/obj ref behind GPUVA's back. 2072 */ 2073 drm_gpuva_map(&vm->base, &vma->base, &op->map); 2074 panthor_vma_link(vm, vma, op_ctx->map.vm_bo); 2075 op_ctx->map.vm_bo = NULL; 2076 return 0; 2077 } 2078 2079 static int panthor_gpuva_sm_step_remap(struct drm_gpuva_op *op, 2080 void *priv) 2081 { 2082 struct panthor_vma *unmap_vma = container_of(op->remap.unmap->va, struct panthor_vma, base); 2083 struct panthor_vm *vm = priv; 2084 struct panthor_vm_op_ctx *op_ctx = vm->op_ctx; 2085 struct panthor_vma *prev_vma = NULL, *next_vma = NULL; 2086 u64 unmap_start, unmap_range; 2087 int ret; 2088 2089 drm_gpuva_op_remap_to_unmap_range(&op->remap, &unmap_start, &unmap_range); 2090 ret = panthor_vm_unmap_pages(vm, unmap_start, unmap_range); 2091 if (ret) 2092 return ret; 2093 2094 if (op->remap.prev) { 2095 prev_vma = panthor_vm_op_ctx_get_vma(op_ctx); 2096 panthor_vma_init(prev_vma, unmap_vma->flags); 2097 } 2098 2099 if (op->remap.next) { 2100 next_vma = panthor_vm_op_ctx_get_vma(op_ctx); 2101 panthor_vma_init(next_vma, unmap_vma->flags); 2102 } 2103 2104 drm_gpuva_remap(prev_vma ? &prev_vma->base : NULL, 2105 next_vma ? &next_vma->base : NULL, 2106 &op->remap); 2107 2108 if (prev_vma) { 2109 /* panthor_vma_link() transfers the vm_bo ownership to 2110 * the VMA object. Since the vm_bo we're passing is still 2111 * owned by the old mapping which will be released when this 2112 * mapping is destroyed, we need to grab a ref here. 2113 */ 2114 panthor_vma_link(vm, prev_vma, 2115 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo)); 2116 } 2117 2118 if (next_vma) { 2119 panthor_vma_link(vm, next_vma, 2120 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo)); 2121 } 2122 2123 panthor_vma_unlink(vm, unmap_vma); 2124 return 0; 2125 } 2126 2127 static int panthor_gpuva_sm_step_unmap(struct drm_gpuva_op *op, 2128 void *priv) 2129 { 2130 struct panthor_vma *unmap_vma = container_of(op->unmap.va, struct panthor_vma, base); 2131 struct panthor_vm *vm = priv; 2132 int ret; 2133 2134 ret = panthor_vm_unmap_pages(vm, unmap_vma->base.va.addr, 2135 unmap_vma->base.va.range); 2136 if (drm_WARN_ON(&vm->ptdev->base, ret)) 2137 return ret; 2138 2139 drm_gpuva_unmap(&op->unmap); 2140 panthor_vma_unlink(vm, unmap_vma); 2141 return 0; 2142 } 2143 2144 static const struct drm_gpuvm_ops panthor_gpuvm_ops = { 2145 .vm_free = panthor_vm_free, 2146 .sm_step_map = panthor_gpuva_sm_step_map, 2147 .sm_step_remap = panthor_gpuva_sm_step_remap, 2148 .sm_step_unmap = panthor_gpuva_sm_step_unmap, 2149 }; 2150 2151 /** 2152 * panthor_vm_resv() - Get the dma_resv object attached to a VM. 2153 * @vm: VM to get the dma_resv of. 2154 * 2155 * Return: A dma_resv object. 2156 */ 2157 struct dma_resv *panthor_vm_resv(struct panthor_vm *vm) 2158 { 2159 return drm_gpuvm_resv(&vm->base); 2160 } 2161 2162 struct drm_gem_object *panthor_vm_root_gem(struct panthor_vm *vm) 2163 { 2164 if (!vm) 2165 return NULL; 2166 2167 return vm->base.r_obj; 2168 } 2169 2170 static int 2171 panthor_vm_exec_op(struct panthor_vm *vm, struct panthor_vm_op_ctx *op, 2172 bool flag_vm_unusable_on_failure) 2173 { 2174 u32 op_type = op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK; 2175 int ret; 2176 2177 if (op_type == DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY) 2178 return 0; 2179 2180 mutex_lock(&vm->op_lock); 2181 vm->op_ctx = op; 2182 switch (op_type) { 2183 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: 2184 if (vm->unusable) { 2185 ret = -EINVAL; 2186 break; 2187 } 2188 2189 ret = drm_gpuvm_sm_map(&vm->base, vm, op->va.addr, op->va.range, 2190 op->map.vm_bo->obj, op->map.bo_offset); 2191 break; 2192 2193 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP: 2194 ret = drm_gpuvm_sm_unmap(&vm->base, vm, op->va.addr, op->va.range); 2195 break; 2196 2197 default: 2198 ret = -EINVAL; 2199 break; 2200 } 2201 2202 if (ret && flag_vm_unusable_on_failure) 2203 vm->unusable = true; 2204 2205 vm->op_ctx = NULL; 2206 mutex_unlock(&vm->op_lock); 2207 2208 return ret; 2209 } 2210 2211 static struct dma_fence * 2212 panthor_vm_bind_run_job(struct drm_sched_job *sched_job) 2213 { 2214 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base); 2215 bool cookie; 2216 int ret; 2217 2218 /* Not only we report an error whose result is propagated to the 2219 * drm_sched finished fence, but we also flag the VM as unusable, because 2220 * a failure in the async VM_BIND results in an inconsistent state. VM needs 2221 * to be destroyed and recreated. 2222 */ 2223 cookie = dma_fence_begin_signalling(); 2224 ret = panthor_vm_exec_op(job->vm, &job->ctx, true); 2225 dma_fence_end_signalling(cookie); 2226 2227 return ret ? ERR_PTR(ret) : NULL; 2228 } 2229 2230 static void panthor_vm_bind_job_release(struct kref *kref) 2231 { 2232 struct panthor_vm_bind_job *job = container_of(kref, struct panthor_vm_bind_job, refcount); 2233 2234 if (job->base.s_fence) 2235 drm_sched_job_cleanup(&job->base); 2236 2237 panthor_vm_cleanup_op_ctx(&job->ctx, job->vm); 2238 panthor_vm_put(job->vm); 2239 kfree(job); 2240 } 2241 2242 /** 2243 * panthor_vm_bind_job_put() - Release a VM_BIND job reference 2244 * @sched_job: Job to release the reference on. 2245 */ 2246 void panthor_vm_bind_job_put(struct drm_sched_job *sched_job) 2247 { 2248 struct panthor_vm_bind_job *job = 2249 container_of(sched_job, struct panthor_vm_bind_job, base); 2250 2251 if (sched_job) 2252 kref_put(&job->refcount, panthor_vm_bind_job_release); 2253 } 2254 2255 static void 2256 panthor_vm_bind_free_job(struct drm_sched_job *sched_job) 2257 { 2258 struct panthor_vm_bind_job *job = 2259 container_of(sched_job, struct panthor_vm_bind_job, base); 2260 2261 drm_sched_job_cleanup(sched_job); 2262 2263 /* Do the heavy cleanups asynchronously, so we're out of the 2264 * dma-signaling path and can acquire dma-resv locks safely. 2265 */ 2266 queue_work(panthor_cleanup_wq, &job->cleanup_op_ctx_work); 2267 } 2268 2269 static enum drm_gpu_sched_stat 2270 panthor_vm_bind_timedout_job(struct drm_sched_job *sched_job) 2271 { 2272 WARN(1, "VM_BIND ops are synchronous for now, there should be no timeout!"); 2273 return DRM_GPU_SCHED_STAT_NOMINAL; 2274 } 2275 2276 static const struct drm_sched_backend_ops panthor_vm_bind_ops = { 2277 .run_job = panthor_vm_bind_run_job, 2278 .free_job = panthor_vm_bind_free_job, 2279 .timedout_job = panthor_vm_bind_timedout_job, 2280 }; 2281 2282 /** 2283 * panthor_vm_create() - Create a VM 2284 * @ptdev: Device. 2285 * @for_mcu: True if this is the FW MCU VM. 2286 * @kernel_va_start: Start of the range reserved for kernel BO mapping. 2287 * @kernel_va_size: Size of the range reserved for kernel BO mapping. 2288 * @auto_kernel_va_start: Start of the auto-VA kernel range. 2289 * @auto_kernel_va_size: Size of the auto-VA kernel range. 2290 * 2291 * Return: A valid pointer on success, an ERR_PTR() otherwise. 2292 */ 2293 struct panthor_vm * 2294 panthor_vm_create(struct panthor_device *ptdev, bool for_mcu, 2295 u64 kernel_va_start, u64 kernel_va_size, 2296 u64 auto_kernel_va_start, u64 auto_kernel_va_size) 2297 { 2298 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 2299 u32 pa_bits = GPU_MMU_FEATURES_PA_BITS(ptdev->gpu_info.mmu_features); 2300 u64 full_va_range = 1ull << va_bits; 2301 struct drm_gem_object *dummy_gem; 2302 struct drm_gpu_scheduler *sched; 2303 const struct drm_sched_init_args sched_args = { 2304 .ops = &panthor_vm_bind_ops, 2305 .submit_wq = ptdev->mmu->vm.wq, 2306 .num_rqs = 1, 2307 .credit_limit = 1, 2308 /* Bind operations are synchronous for now, no timeout needed. */ 2309 .timeout = MAX_SCHEDULE_TIMEOUT, 2310 .name = "panthor-vm-bind", 2311 .dev = ptdev->base.dev, 2312 }; 2313 struct io_pgtable_cfg pgtbl_cfg; 2314 u64 mair, min_va, va_range; 2315 struct panthor_vm *vm; 2316 int ret; 2317 2318 vm = kzalloc(sizeof(*vm), GFP_KERNEL); 2319 if (!vm) 2320 return ERR_PTR(-ENOMEM); 2321 2322 /* We allocate a dummy GEM for the VM. */ 2323 dummy_gem = drm_gpuvm_resv_object_alloc(&ptdev->base); 2324 if (!dummy_gem) { 2325 ret = -ENOMEM; 2326 goto err_free_vm; 2327 } 2328 2329 mutex_init(&vm->heaps.lock); 2330 vm->for_mcu = for_mcu; 2331 vm->ptdev = ptdev; 2332 mutex_init(&vm->op_lock); 2333 2334 if (for_mcu) { 2335 /* CSF MCU is a cortex M7, and can only address 4G */ 2336 min_va = 0; 2337 va_range = SZ_4G; 2338 } else { 2339 min_va = 0; 2340 va_range = full_va_range; 2341 } 2342 2343 mutex_init(&vm->mm_lock); 2344 drm_mm_init(&vm->mm, kernel_va_start, kernel_va_size); 2345 vm->kernel_auto_va.start = auto_kernel_va_start; 2346 vm->kernel_auto_va.end = vm->kernel_auto_va.start + auto_kernel_va_size - 1; 2347 2348 INIT_LIST_HEAD(&vm->node); 2349 INIT_LIST_HEAD(&vm->as.lru_node); 2350 vm->as.id = -1; 2351 refcount_set(&vm->as.active_cnt, 0); 2352 2353 pgtbl_cfg = (struct io_pgtable_cfg) { 2354 .pgsize_bitmap = SZ_4K | SZ_2M, 2355 .ias = va_bits, 2356 .oas = pa_bits, 2357 .coherent_walk = ptdev->coherent, 2358 .tlb = &mmu_tlb_ops, 2359 .iommu_dev = ptdev->base.dev, 2360 .alloc = alloc_pt, 2361 .free = free_pt, 2362 }; 2363 2364 vm->pgtbl_ops = alloc_io_pgtable_ops(ARM_64_LPAE_S1, &pgtbl_cfg, vm); 2365 if (!vm->pgtbl_ops) { 2366 ret = -EINVAL; 2367 goto err_mm_takedown; 2368 } 2369 2370 ret = drm_sched_init(&vm->sched, &sched_args); 2371 if (ret) 2372 goto err_free_io_pgtable; 2373 2374 sched = &vm->sched; 2375 ret = drm_sched_entity_init(&vm->entity, 0, &sched, 1, NULL); 2376 if (ret) 2377 goto err_sched_fini; 2378 2379 mair = io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg.arm_lpae_s1_cfg.mair; 2380 vm->memattr = mair_to_memattr(mair, ptdev->coherent); 2381 2382 mutex_lock(&ptdev->mmu->vm.lock); 2383 list_add_tail(&vm->node, &ptdev->mmu->vm.list); 2384 2385 /* If a reset is in progress, stop the scheduler. */ 2386 if (ptdev->mmu->vm.reset_in_progress) 2387 panthor_vm_stop(vm); 2388 mutex_unlock(&ptdev->mmu->vm.lock); 2389 2390 /* We intentionally leave the reserved range to zero, because we want kernel VMAs 2391 * to be handled the same way user VMAs are. 2392 */ 2393 drm_gpuvm_init(&vm->base, for_mcu ? "panthor-MCU-VM" : "panthor-GPU-VM", 2394 DRM_GPUVM_RESV_PROTECTED, &ptdev->base, dummy_gem, 2395 min_va, va_range, 0, 0, &panthor_gpuvm_ops); 2396 drm_gem_object_put(dummy_gem); 2397 return vm; 2398 2399 err_sched_fini: 2400 drm_sched_fini(&vm->sched); 2401 2402 err_free_io_pgtable: 2403 free_io_pgtable_ops(vm->pgtbl_ops); 2404 2405 err_mm_takedown: 2406 drm_mm_takedown(&vm->mm); 2407 drm_gem_object_put(dummy_gem); 2408 2409 err_free_vm: 2410 kfree(vm); 2411 return ERR_PTR(ret); 2412 } 2413 2414 static int 2415 panthor_vm_bind_prepare_op_ctx(struct drm_file *file, 2416 struct panthor_vm *vm, 2417 const struct drm_panthor_vm_bind_op *op, 2418 struct panthor_vm_op_ctx *op_ctx) 2419 { 2420 ssize_t vm_pgsz = panthor_vm_page_size(vm); 2421 struct drm_gem_object *gem; 2422 int ret; 2423 2424 /* Aligned on page size. */ 2425 if (!IS_ALIGNED(op->va | op->size, vm_pgsz)) 2426 return -EINVAL; 2427 2428 switch (op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) { 2429 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: 2430 gem = drm_gem_object_lookup(file, op->bo_handle); 2431 ret = panthor_vm_prepare_map_op_ctx(op_ctx, vm, 2432 gem ? to_panthor_bo(gem) : NULL, 2433 op->bo_offset, 2434 op->size, 2435 op->va, 2436 op->flags); 2437 drm_gem_object_put(gem); 2438 return ret; 2439 2440 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP: 2441 if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) 2442 return -EINVAL; 2443 2444 if (op->bo_handle || op->bo_offset) 2445 return -EINVAL; 2446 2447 return panthor_vm_prepare_unmap_op_ctx(op_ctx, vm, op->va, op->size); 2448 2449 case DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY: 2450 if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) 2451 return -EINVAL; 2452 2453 if (op->bo_handle || op->bo_offset) 2454 return -EINVAL; 2455 2456 if (op->va || op->size) 2457 return -EINVAL; 2458 2459 if (!op->syncs.count) 2460 return -EINVAL; 2461 2462 panthor_vm_prepare_sync_only_op_ctx(op_ctx, vm); 2463 return 0; 2464 2465 default: 2466 return -EINVAL; 2467 } 2468 } 2469 2470 static void panthor_vm_bind_job_cleanup_op_ctx_work(struct work_struct *work) 2471 { 2472 struct panthor_vm_bind_job *job = 2473 container_of(work, struct panthor_vm_bind_job, cleanup_op_ctx_work); 2474 2475 panthor_vm_bind_job_put(&job->base); 2476 } 2477 2478 /** 2479 * panthor_vm_bind_job_create() - Create a VM_BIND job 2480 * @file: File. 2481 * @vm: VM targeted by the VM_BIND job. 2482 * @op: VM operation data. 2483 * 2484 * Return: A valid pointer on success, an ERR_PTR() otherwise. 2485 */ 2486 struct drm_sched_job * 2487 panthor_vm_bind_job_create(struct drm_file *file, 2488 struct panthor_vm *vm, 2489 const struct drm_panthor_vm_bind_op *op) 2490 { 2491 struct panthor_vm_bind_job *job; 2492 int ret; 2493 2494 if (!vm) 2495 return ERR_PTR(-EINVAL); 2496 2497 if (vm->destroyed || vm->unusable) 2498 return ERR_PTR(-EINVAL); 2499 2500 job = kzalloc(sizeof(*job), GFP_KERNEL); 2501 if (!job) 2502 return ERR_PTR(-ENOMEM); 2503 2504 ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &job->ctx); 2505 if (ret) { 2506 kfree(job); 2507 return ERR_PTR(ret); 2508 } 2509 2510 INIT_WORK(&job->cleanup_op_ctx_work, panthor_vm_bind_job_cleanup_op_ctx_work); 2511 kref_init(&job->refcount); 2512 job->vm = panthor_vm_get(vm); 2513 2514 ret = drm_sched_job_init(&job->base, &vm->entity, 1, vm, file->client_id); 2515 if (ret) 2516 goto err_put_job; 2517 2518 return &job->base; 2519 2520 err_put_job: 2521 panthor_vm_bind_job_put(&job->base); 2522 return ERR_PTR(ret); 2523 } 2524 2525 /** 2526 * panthor_vm_bind_job_prepare_resvs() - Prepare VM_BIND job dma_resvs 2527 * @exec: The locking/preparation context. 2528 * @sched_job: The job to prepare resvs on. 2529 * 2530 * Locks and prepare the VM resv. 2531 * 2532 * If this is a map operation, locks and prepares the GEM resv. 2533 * 2534 * Return: 0 on success, a negative error code otherwise. 2535 */ 2536 int panthor_vm_bind_job_prepare_resvs(struct drm_exec *exec, 2537 struct drm_sched_job *sched_job) 2538 { 2539 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base); 2540 int ret; 2541 2542 /* Acquire the VM lock an reserve a slot for this VM bind job. */ 2543 ret = drm_gpuvm_prepare_vm(&job->vm->base, exec, 1); 2544 if (ret) 2545 return ret; 2546 2547 if (job->ctx.map.vm_bo) { 2548 /* Lock/prepare the GEM being mapped. */ 2549 ret = drm_exec_prepare_obj(exec, job->ctx.map.vm_bo->obj, 1); 2550 if (ret) 2551 return ret; 2552 } 2553 2554 return 0; 2555 } 2556 2557 /** 2558 * panthor_vm_bind_job_update_resvs() - Update the resv objects touched by a job 2559 * @exec: drm_exec context. 2560 * @sched_job: Job to update the resvs on. 2561 */ 2562 void panthor_vm_bind_job_update_resvs(struct drm_exec *exec, 2563 struct drm_sched_job *sched_job) 2564 { 2565 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base); 2566 2567 /* Explicit sync => we just register our job finished fence as bookkeep. */ 2568 drm_gpuvm_resv_add_fence(&job->vm->base, exec, 2569 &sched_job->s_fence->finished, 2570 DMA_RESV_USAGE_BOOKKEEP, 2571 DMA_RESV_USAGE_BOOKKEEP); 2572 } 2573 2574 void panthor_vm_update_resvs(struct panthor_vm *vm, struct drm_exec *exec, 2575 struct dma_fence *fence, 2576 enum dma_resv_usage private_usage, 2577 enum dma_resv_usage extobj_usage) 2578 { 2579 drm_gpuvm_resv_add_fence(&vm->base, exec, fence, private_usage, extobj_usage); 2580 } 2581 2582 /** 2583 * panthor_vm_bind_exec_sync_op() - Execute a VM_BIND operation synchronously. 2584 * @file: File. 2585 * @vm: VM targeted by the VM operation. 2586 * @op: Data describing the VM operation. 2587 * 2588 * Return: 0 on success, a negative error code otherwise. 2589 */ 2590 int panthor_vm_bind_exec_sync_op(struct drm_file *file, 2591 struct panthor_vm *vm, 2592 struct drm_panthor_vm_bind_op *op) 2593 { 2594 struct panthor_vm_op_ctx op_ctx; 2595 int ret; 2596 2597 /* No sync objects allowed on synchronous operations. */ 2598 if (op->syncs.count) 2599 return -EINVAL; 2600 2601 if (!op->size) 2602 return 0; 2603 2604 ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &op_ctx); 2605 if (ret) 2606 return ret; 2607 2608 ret = panthor_vm_exec_op(vm, &op_ctx, false); 2609 panthor_vm_cleanup_op_ctx(&op_ctx, vm); 2610 2611 return ret; 2612 } 2613 2614 /** 2615 * panthor_vm_map_bo_range() - Map a GEM object range to a VM 2616 * @vm: VM to map the GEM to. 2617 * @bo: GEM object to map. 2618 * @offset: Offset in the GEM object. 2619 * @size: Size to map. 2620 * @va: Virtual address to map the object to. 2621 * @flags: Combination of drm_panthor_vm_bind_op_flags flags. 2622 * Only map-related flags are valid. 2623 * 2624 * Internal use only. For userspace requests, use 2625 * panthor_vm_bind_exec_sync_op() instead. 2626 * 2627 * Return: 0 on success, a negative error code otherwise. 2628 */ 2629 int panthor_vm_map_bo_range(struct panthor_vm *vm, struct panthor_gem_object *bo, 2630 u64 offset, u64 size, u64 va, u32 flags) 2631 { 2632 struct panthor_vm_op_ctx op_ctx; 2633 int ret; 2634 2635 ret = panthor_vm_prepare_map_op_ctx(&op_ctx, vm, bo, offset, size, va, flags); 2636 if (ret) 2637 return ret; 2638 2639 ret = panthor_vm_exec_op(vm, &op_ctx, false); 2640 panthor_vm_cleanup_op_ctx(&op_ctx, vm); 2641 2642 return ret; 2643 } 2644 2645 /** 2646 * panthor_vm_unmap_range() - Unmap a portion of the VA space 2647 * @vm: VM to unmap the region from. 2648 * @va: Virtual address to unmap. Must be 4k aligned. 2649 * @size: Size of the region to unmap. Must be 4k aligned. 2650 * 2651 * Internal use only. For userspace requests, use 2652 * panthor_vm_bind_exec_sync_op() instead. 2653 * 2654 * Return: 0 on success, a negative error code otherwise. 2655 */ 2656 int panthor_vm_unmap_range(struct panthor_vm *vm, u64 va, u64 size) 2657 { 2658 struct panthor_vm_op_ctx op_ctx; 2659 int ret; 2660 2661 ret = panthor_vm_prepare_unmap_op_ctx(&op_ctx, vm, va, size); 2662 if (ret) 2663 return ret; 2664 2665 ret = panthor_vm_exec_op(vm, &op_ctx, false); 2666 panthor_vm_cleanup_op_ctx(&op_ctx, vm); 2667 2668 return ret; 2669 } 2670 2671 /** 2672 * panthor_vm_prepare_mapped_bos_resvs() - Prepare resvs on VM BOs. 2673 * @exec: Locking/preparation context. 2674 * @vm: VM targeted by the GPU job. 2675 * @slot_count: Number of slots to reserve. 2676 * 2677 * GPU jobs assume all BOs bound to the VM at the time the job is submitted 2678 * are available when the job is executed. In order to guarantee that, we 2679 * need to reserve a slot on all BOs mapped to a VM and update this slot with 2680 * the job fence after its submission. 2681 * 2682 * Return: 0 on success, a negative error code otherwise. 2683 */ 2684 int panthor_vm_prepare_mapped_bos_resvs(struct drm_exec *exec, struct panthor_vm *vm, 2685 u32 slot_count) 2686 { 2687 int ret; 2688 2689 /* Acquire the VM lock and reserve a slot for this GPU job. */ 2690 ret = drm_gpuvm_prepare_vm(&vm->base, exec, slot_count); 2691 if (ret) 2692 return ret; 2693 2694 return drm_gpuvm_prepare_objects(&vm->base, exec, slot_count); 2695 } 2696 2697 /** 2698 * panthor_mmu_unplug() - Unplug the MMU logic 2699 * @ptdev: Device. 2700 * 2701 * No access to the MMU regs should be done after this function is called. 2702 * We suspend the IRQ and disable all VMs to guarantee that. 2703 */ 2704 void panthor_mmu_unplug(struct panthor_device *ptdev) 2705 { 2706 if (!IS_ENABLED(CONFIG_PM) || pm_runtime_active(ptdev->base.dev)) 2707 panthor_mmu_irq_suspend(&ptdev->mmu->irq); 2708 2709 mutex_lock(&ptdev->mmu->as.slots_lock); 2710 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) { 2711 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm; 2712 2713 if (vm) { 2714 drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i)); 2715 panthor_vm_release_as_locked(vm); 2716 } 2717 } 2718 mutex_unlock(&ptdev->mmu->as.slots_lock); 2719 } 2720 2721 static void panthor_mmu_release_wq(struct drm_device *ddev, void *res) 2722 { 2723 destroy_workqueue(res); 2724 } 2725 2726 /** 2727 * panthor_mmu_init() - Initialize the MMU logic. 2728 * @ptdev: Device. 2729 * 2730 * Return: 0 on success, a negative error code otherwise. 2731 */ 2732 int panthor_mmu_init(struct panthor_device *ptdev) 2733 { 2734 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 2735 struct panthor_mmu *mmu; 2736 int ret, irq; 2737 2738 mmu = drmm_kzalloc(&ptdev->base, sizeof(*mmu), GFP_KERNEL); 2739 if (!mmu) 2740 return -ENOMEM; 2741 2742 INIT_LIST_HEAD(&mmu->as.lru_list); 2743 2744 ret = drmm_mutex_init(&ptdev->base, &mmu->as.slots_lock); 2745 if (ret) 2746 return ret; 2747 2748 INIT_LIST_HEAD(&mmu->vm.list); 2749 ret = drmm_mutex_init(&ptdev->base, &mmu->vm.lock); 2750 if (ret) 2751 return ret; 2752 2753 ptdev->mmu = mmu; 2754 2755 irq = platform_get_irq_byname(to_platform_device(ptdev->base.dev), "mmu"); 2756 if (irq <= 0) 2757 return -ENODEV; 2758 2759 ret = panthor_request_mmu_irq(ptdev, &mmu->irq, irq, 2760 panthor_mmu_fault_mask(ptdev, ~0)); 2761 if (ret) 2762 return ret; 2763 2764 mmu->vm.wq = alloc_workqueue("panthor-vm-bind", WQ_UNBOUND, 0); 2765 if (!mmu->vm.wq) 2766 return -ENOMEM; 2767 2768 /* On 32-bit kernels, the VA space is limited by the io_pgtable_ops abstraction, 2769 * which passes iova as an unsigned long. Patch the mmu_features to reflect this 2770 * limitation. 2771 */ 2772 if (va_bits > BITS_PER_LONG) { 2773 ptdev->gpu_info.mmu_features &= ~GENMASK(7, 0); 2774 ptdev->gpu_info.mmu_features |= BITS_PER_LONG; 2775 } 2776 2777 return drmm_add_action_or_reset(&ptdev->base, panthor_mmu_release_wq, mmu->vm.wq); 2778 } 2779 2780 #ifdef CONFIG_DEBUG_FS 2781 static int show_vm_gpuvas(struct panthor_vm *vm, struct seq_file *m) 2782 { 2783 int ret; 2784 2785 mutex_lock(&vm->op_lock); 2786 ret = drm_debugfs_gpuva_info(m, &vm->base); 2787 mutex_unlock(&vm->op_lock); 2788 2789 return ret; 2790 } 2791 2792 static int show_each_vm(struct seq_file *m, void *arg) 2793 { 2794 struct drm_info_node *node = (struct drm_info_node *)m->private; 2795 struct drm_device *ddev = node->minor->dev; 2796 struct panthor_device *ptdev = container_of(ddev, struct panthor_device, base); 2797 int (*show)(struct panthor_vm *, struct seq_file *) = node->info_ent->data; 2798 struct panthor_vm *vm; 2799 int ret = 0; 2800 2801 mutex_lock(&ptdev->mmu->vm.lock); 2802 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) { 2803 ret = show(vm, m); 2804 if (ret < 0) 2805 break; 2806 2807 seq_puts(m, "\n"); 2808 } 2809 mutex_unlock(&ptdev->mmu->vm.lock); 2810 2811 return ret; 2812 } 2813 2814 static struct drm_info_list panthor_mmu_debugfs_list[] = { 2815 DRM_DEBUGFS_GPUVA_INFO(show_each_vm, show_vm_gpuvas), 2816 }; 2817 2818 /** 2819 * panthor_mmu_debugfs_init() - Initialize MMU debugfs entries 2820 * @minor: Minor. 2821 */ 2822 void panthor_mmu_debugfs_init(struct drm_minor *minor) 2823 { 2824 drm_debugfs_create_files(panthor_mmu_debugfs_list, 2825 ARRAY_SIZE(panthor_mmu_debugfs_list), 2826 minor->debugfs_root, minor); 2827 } 2828 #endif /* CONFIG_DEBUG_FS */ 2829 2830 /** 2831 * panthor_mmu_pt_cache_init() - Initialize the page table cache. 2832 * 2833 * Return: 0 on success, a negative error code otherwise. 2834 */ 2835 int panthor_mmu_pt_cache_init(void) 2836 { 2837 pt_cache = kmem_cache_create("panthor-mmu-pt", SZ_4K, SZ_4K, 0, NULL); 2838 if (!pt_cache) 2839 return -ENOMEM; 2840 2841 return 0; 2842 } 2843 2844 /** 2845 * panthor_mmu_pt_cache_fini() - Destroy the page table cache. 2846 */ 2847 void panthor_mmu_pt_cache_fini(void) 2848 { 2849 kmem_cache_destroy(pt_cache); 2850 } 2851