1 // SPDX-License-Identifier: GPL-2.0 or MIT 2 /* Copyright 2019 Linaro, Ltd, Rob Herring <robh@kernel.org> */ 3 /* Copyright 2023 Collabora ltd. */ 4 5 #include <drm/drm_debugfs.h> 6 #include <drm/drm_drv.h> 7 #include <drm/drm_exec.h> 8 #include <drm/drm_gpuvm.h> 9 #include <drm/drm_managed.h> 10 #include <drm/gpu_scheduler.h> 11 #include <drm/panthor_drm.h> 12 13 #include <linux/atomic.h> 14 #include <linux/bitfield.h> 15 #include <linux/delay.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/interrupt.h> 18 #include <linux/io.h> 19 #include <linux/iopoll.h> 20 #include <linux/io-pgtable.h> 21 #include <linux/iommu.h> 22 #include <linux/kmemleak.h> 23 #include <linux/platform_device.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/rwsem.h> 26 #include <linux/sched.h> 27 #include <linux/shmem_fs.h> 28 #include <linux/sizes.h> 29 30 #include "panthor_device.h" 31 #include "panthor_gem.h" 32 #include "panthor_heap.h" 33 #include "panthor_mmu.h" 34 #include "panthor_regs.h" 35 #include "panthor_sched.h" 36 37 #define MAX_AS_SLOTS 32 38 39 struct panthor_vm; 40 41 /** 42 * struct panthor_as_slot - Address space slot 43 */ 44 struct panthor_as_slot { 45 /** @vm: VM bound to this slot. NULL is no VM is bound. */ 46 struct panthor_vm *vm; 47 }; 48 49 /** 50 * struct panthor_mmu - MMU related data 51 */ 52 struct panthor_mmu { 53 /** @irq: The MMU irq. */ 54 struct panthor_irq irq; 55 56 /** @as: Address space related fields. 57 * 58 * The GPU has a limited number of address spaces (AS) slots, forcing 59 * us to re-assign them to re-assign slots on-demand. 60 */ 61 struct { 62 /** @slots_lock: Lock protecting access to all other AS fields. */ 63 struct mutex slots_lock; 64 65 /** @alloc_mask: Bitmask encoding the allocated slots. */ 66 unsigned long alloc_mask; 67 68 /** @faulty_mask: Bitmask encoding the faulty slots. */ 69 unsigned long faulty_mask; 70 71 /** @slots: VMs currently bound to the AS slots. */ 72 struct panthor_as_slot slots[MAX_AS_SLOTS]; 73 74 /** 75 * @lru_list: List of least recently used VMs. 76 * 77 * We use this list to pick a VM to evict when all slots are 78 * used. 79 * 80 * There should be no more active VMs than there are AS slots, 81 * so this LRU is just here to keep VMs bound until there's 82 * a need to release a slot, thus avoid unnecessary TLB/cache 83 * flushes. 84 */ 85 struct list_head lru_list; 86 } as; 87 88 /** @vm: VMs management fields */ 89 struct { 90 /** @lock: Lock protecting access to list. */ 91 struct mutex lock; 92 93 /** @list: List containing all VMs. */ 94 struct list_head list; 95 96 /** @reset_in_progress: True if a reset is in progress. */ 97 bool reset_in_progress; 98 99 /** @wq: Workqueue used for the VM_BIND queues. */ 100 struct workqueue_struct *wq; 101 } vm; 102 }; 103 104 /** 105 * struct panthor_vm_pool - VM pool object 106 */ 107 struct panthor_vm_pool { 108 /** @xa: Array used for VM handle tracking. */ 109 struct xarray xa; 110 }; 111 112 /** 113 * struct panthor_vma - GPU mapping object 114 * 115 * This is used to track GEM mappings in GPU space. 116 */ 117 struct panthor_vma { 118 /** @base: Inherits from drm_gpuva. */ 119 struct drm_gpuva base; 120 121 /** @node: Used to implement deferred release of VMAs. */ 122 struct list_head node; 123 124 /** 125 * @flags: Combination of drm_panthor_vm_bind_op_flags. 126 * 127 * Only map related flags are accepted. 128 */ 129 u32 flags; 130 }; 131 132 /** 133 * struct panthor_vm_op_ctx - VM operation context 134 * 135 * With VM operations potentially taking place in a dma-signaling path, we 136 * need to make sure everything that might require resource allocation is 137 * pre-allocated upfront. This is what this operation context is far. 138 * 139 * We also collect resources that have been freed, so we can release them 140 * asynchronously, and let the VM_BIND scheduler process the next VM_BIND 141 * request. 142 */ 143 struct panthor_vm_op_ctx { 144 /** @rsvd_page_tables: Pages reserved for the MMU page table update. */ 145 struct { 146 /** @count: Number of pages reserved. */ 147 u32 count; 148 149 /** @ptr: Point to the first unused page in the @pages table. */ 150 u32 ptr; 151 152 /** 153 * @page: Array of pages that can be used for an MMU page table update. 154 * 155 * After an VM operation, there might be free pages left in this array. 156 * They should be returned to the pt_cache as part of the op_ctx cleanup. 157 */ 158 void **pages; 159 } rsvd_page_tables; 160 161 /** 162 * @preallocated_vmas: Pre-allocated VMAs to handle the remap case. 163 * 164 * Partial unmap requests or map requests overlapping existing mappings will 165 * trigger a remap call, which need to register up to three panthor_vma objects 166 * (one for the new mapping, and two for the previous and next mappings). 167 */ 168 struct panthor_vma *preallocated_vmas[3]; 169 170 /** @flags: Combination of drm_panthor_vm_bind_op_flags. */ 171 u32 flags; 172 173 /** @va: Virtual range targeted by the VM operation. */ 174 struct { 175 /** @addr: Start address. */ 176 u64 addr; 177 178 /** @range: Range size. */ 179 u64 range; 180 } va; 181 182 /** 183 * @returned_vmas: List of panthor_vma objects returned after a VM operation. 184 * 185 * For unmap operations, this will contain all VMAs that were covered by the 186 * specified VA range. 187 * 188 * For map operations, this will contain all VMAs that previously mapped to 189 * the specified VA range. 190 * 191 * Those VMAs, and the resources they point to will be released as part of 192 * the op_ctx cleanup operation. 193 */ 194 struct list_head returned_vmas; 195 196 /** @map: Fields specific to a map operation. */ 197 struct { 198 /** @vm_bo: Buffer object to map. */ 199 struct drm_gpuvm_bo *vm_bo; 200 201 /** @bo_offset: Offset in the buffer object. */ 202 u64 bo_offset; 203 204 /** 205 * @sgt: sg-table pointing to pages backing the GEM object. 206 * 207 * This is gathered at job creation time, such that we don't have 208 * to allocate in ::run_job(). 209 */ 210 struct sg_table *sgt; 211 212 /** 213 * @new_vma: The new VMA object that will be inserted to the VA tree. 214 */ 215 struct panthor_vma *new_vma; 216 } map; 217 }; 218 219 /** 220 * struct panthor_vm - VM object 221 * 222 * A VM is an object representing a GPU (or MCU) virtual address space. 223 * It embeds the MMU page table for this address space, a tree containing 224 * all the virtual mappings of GEM objects, and other things needed to manage 225 * the VM. 226 * 227 * Except for the MCU VM, which is managed by the kernel, all other VMs are 228 * created by userspace and mostly managed by userspace, using the 229 * %DRM_IOCTL_PANTHOR_VM_BIND ioctl. 230 * 231 * A portion of the virtual address space is reserved for kernel objects, 232 * like heap chunks, and userspace gets to decide how much of the virtual 233 * address space is left to the kernel (half of the virtual address space 234 * by default). 235 */ 236 struct panthor_vm { 237 /** 238 * @base: Inherit from drm_gpuvm. 239 * 240 * We delegate all the VA management to the common drm_gpuvm framework 241 * and only implement hooks to update the MMU page table. 242 */ 243 struct drm_gpuvm base; 244 245 /** 246 * @sched: Scheduler used for asynchronous VM_BIND request. 247 * 248 * We use a 1:1 scheduler here. 249 */ 250 struct drm_gpu_scheduler sched; 251 252 /** 253 * @entity: Scheduling entity representing the VM_BIND queue. 254 * 255 * There's currently one bind queue per VM. It doesn't make sense to 256 * allow more given the VM operations are serialized anyway. 257 */ 258 struct drm_sched_entity entity; 259 260 /** @ptdev: Device. */ 261 struct panthor_device *ptdev; 262 263 /** @memattr: Value to program to the AS_MEMATTR register. */ 264 u64 memattr; 265 266 /** @pgtbl_ops: Page table operations. */ 267 struct io_pgtable_ops *pgtbl_ops; 268 269 /** @root_page_table: Stores the root page table pointer. */ 270 void *root_page_table; 271 272 /** 273 * @op_lock: Lock used to serialize operations on a VM. 274 * 275 * The serialization of jobs queued to the VM_BIND queue is already 276 * taken care of by drm_sched, but we need to serialize synchronous 277 * and asynchronous VM_BIND request. This is what this lock is for. 278 */ 279 struct mutex op_lock; 280 281 /** 282 * @op_ctx: The context attached to the currently executing VM operation. 283 * 284 * NULL when no operation is in progress. 285 */ 286 struct panthor_vm_op_ctx *op_ctx; 287 288 /** 289 * @mm: Memory management object representing the auto-VA/kernel-VA. 290 * 291 * Used to auto-allocate VA space for kernel-managed objects (tiler 292 * heaps, ...). 293 * 294 * For the MCU VM, this is managing the VA range that's used to map 295 * all shared interfaces. 296 * 297 * For user VMs, the range is specified by userspace, and must not 298 * exceed half of the VA space addressable. 299 */ 300 struct drm_mm mm; 301 302 /** @mm_lock: Lock protecting the @mm field. */ 303 struct mutex mm_lock; 304 305 /** @kernel_auto_va: Automatic VA-range for kernel BOs. */ 306 struct { 307 /** @start: Start of the automatic VA-range for kernel BOs. */ 308 u64 start; 309 310 /** @size: Size of the automatic VA-range for kernel BOs. */ 311 u64 end; 312 } kernel_auto_va; 313 314 /** @as: Address space related fields. */ 315 struct { 316 /** 317 * @id: ID of the address space this VM is bound to. 318 * 319 * A value of -1 means the VM is inactive/not bound. 320 */ 321 int id; 322 323 /** @active_cnt: Number of active users of this VM. */ 324 refcount_t active_cnt; 325 326 /** 327 * @lru_node: Used to instead the VM in the panthor_mmu::as::lru_list. 328 * 329 * Active VMs should not be inserted in the LRU list. 330 */ 331 struct list_head lru_node; 332 } as; 333 334 /** 335 * @heaps: Tiler heap related fields. 336 */ 337 struct { 338 /** 339 * @pool: The heap pool attached to this VM. 340 * 341 * Will stay NULL until someone creates a heap context on this VM. 342 */ 343 struct panthor_heap_pool *pool; 344 345 /** @lock: Lock used to protect access to @pool. */ 346 struct mutex lock; 347 } heaps; 348 349 /** @node: Used to insert the VM in the panthor_mmu::vm::list. */ 350 struct list_head node; 351 352 /** @for_mcu: True if this is the MCU VM. */ 353 bool for_mcu; 354 355 /** 356 * @destroyed: True if the VM was destroyed. 357 * 358 * No further bind requests should be queued to a destroyed VM. 359 */ 360 bool destroyed; 361 362 /** 363 * @unusable: True if the VM has turned unusable because something 364 * bad happened during an asynchronous request. 365 * 366 * We don't try to recover from such failures, because this implies 367 * informing userspace about the specific operation that failed, and 368 * hoping the userspace driver can replay things from there. This all 369 * sounds very complicated for little gain. 370 * 371 * Instead, we should just flag the VM as unusable, and fail any 372 * further request targeting this VM. 373 * 374 * We also provide a way to query a VM state, so userspace can destroy 375 * it and create a new one. 376 * 377 * As an analogy, this would be mapped to a VK_ERROR_DEVICE_LOST 378 * situation, where the logical device needs to be re-created. 379 */ 380 bool unusable; 381 382 /** 383 * @unhandled_fault: Unhandled fault happened. 384 * 385 * This should be reported to the scheduler, and the queue/group be 386 * flagged as faulty as a result. 387 */ 388 bool unhandled_fault; 389 }; 390 391 /** 392 * struct panthor_vm_bind_job - VM bind job 393 */ 394 struct panthor_vm_bind_job { 395 /** @base: Inherit from drm_sched_job. */ 396 struct drm_sched_job base; 397 398 /** @refcount: Reference count. */ 399 struct kref refcount; 400 401 /** @cleanup_op_ctx_work: Work used to cleanup the VM operation context. */ 402 struct work_struct cleanup_op_ctx_work; 403 404 /** @vm: VM targeted by the VM operation. */ 405 struct panthor_vm *vm; 406 407 /** @ctx: Operation context. */ 408 struct panthor_vm_op_ctx ctx; 409 }; 410 411 /** 412 * @pt_cache: Cache used to allocate MMU page tables. 413 * 414 * The pre-allocation pattern forces us to over-allocate to plan for 415 * the worst case scenario, and return the pages we didn't use. 416 * 417 * Having a kmem_cache allows us to speed allocations. 418 */ 419 static struct kmem_cache *pt_cache; 420 421 /** 422 * alloc_pt() - Custom page table allocator 423 * @cookie: Cookie passed at page table allocation time. 424 * @size: Size of the page table. This size should be fixed, 425 * and determined at creation time based on the granule size. 426 * @gfp: GFP flags. 427 * 428 * We want a custom allocator so we can use a cache for page table 429 * allocations and amortize the cost of the over-reservation that's 430 * done to allow asynchronous VM operations. 431 * 432 * Return: non-NULL on success, NULL if the allocation failed for any 433 * reason. 434 */ 435 static void *alloc_pt(void *cookie, size_t size, gfp_t gfp) 436 { 437 struct panthor_vm *vm = cookie; 438 void *page; 439 440 /* Allocation of the root page table happening during init. */ 441 if (unlikely(!vm->root_page_table)) { 442 struct page *p; 443 444 drm_WARN_ON(&vm->ptdev->base, vm->op_ctx); 445 p = alloc_pages_node(dev_to_node(vm->ptdev->base.dev), 446 gfp | __GFP_ZERO, get_order(size)); 447 page = p ? page_address(p) : NULL; 448 vm->root_page_table = page; 449 return page; 450 } 451 452 /* We're not supposed to have anything bigger than 4k here, because we picked a 453 * 4k granule size at init time. 454 */ 455 if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K)) 456 return NULL; 457 458 /* We must have some op_ctx attached to the VM and it must have at least one 459 * free page. 460 */ 461 if (drm_WARN_ON(&vm->ptdev->base, !vm->op_ctx) || 462 drm_WARN_ON(&vm->ptdev->base, 463 vm->op_ctx->rsvd_page_tables.ptr >= vm->op_ctx->rsvd_page_tables.count)) 464 return NULL; 465 466 page = vm->op_ctx->rsvd_page_tables.pages[vm->op_ctx->rsvd_page_tables.ptr++]; 467 memset(page, 0, SZ_4K); 468 469 /* Page table entries don't use virtual addresses, which trips out 470 * kmemleak. kmemleak_alloc_phys() might work, but physical addresses 471 * are mixed with other fields, and I fear kmemleak won't detect that 472 * either. 473 * 474 * Let's just ignore memory passed to the page-table driver for now. 475 */ 476 kmemleak_ignore(page); 477 return page; 478 } 479 480 /** 481 * @free_pt() - Custom page table free function 482 * @cookie: Cookie passed at page table allocation time. 483 * @data: Page table to free. 484 * @size: Size of the page table. This size should be fixed, 485 * and determined at creation time based on the granule size. 486 */ 487 static void free_pt(void *cookie, void *data, size_t size) 488 { 489 struct panthor_vm *vm = cookie; 490 491 if (unlikely(vm->root_page_table == data)) { 492 free_pages((unsigned long)data, get_order(size)); 493 vm->root_page_table = NULL; 494 return; 495 } 496 497 if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K)) 498 return; 499 500 /* Return the page to the pt_cache. */ 501 kmem_cache_free(pt_cache, data); 502 } 503 504 static int wait_ready(struct panthor_device *ptdev, u32 as_nr) 505 { 506 int ret; 507 u32 val; 508 509 /* Wait for the MMU status to indicate there is no active command, in 510 * case one is pending. 511 */ 512 ret = readl_relaxed_poll_timeout_atomic(ptdev->iomem + AS_STATUS(as_nr), 513 val, !(val & AS_STATUS_AS_ACTIVE), 514 10, 100000); 515 516 if (ret) { 517 panthor_device_schedule_reset(ptdev); 518 drm_err(&ptdev->base, "AS_ACTIVE bit stuck\n"); 519 } 520 521 return ret; 522 } 523 524 static int write_cmd(struct panthor_device *ptdev, u32 as_nr, u32 cmd) 525 { 526 int status; 527 528 /* write AS_COMMAND when MMU is ready to accept another command */ 529 status = wait_ready(ptdev, as_nr); 530 if (!status) 531 gpu_write(ptdev, AS_COMMAND(as_nr), cmd); 532 533 return status; 534 } 535 536 static void lock_region(struct panthor_device *ptdev, u32 as_nr, 537 u64 region_start, u64 size) 538 { 539 u8 region_width; 540 u64 region; 541 u64 region_end = region_start + size; 542 543 if (!size) 544 return; 545 546 /* 547 * The locked region is a naturally aligned power of 2 block encoded as 548 * log2 minus(1). 549 * Calculate the desired start/end and look for the highest bit which 550 * differs. The smallest naturally aligned block must include this bit 551 * change, the desired region starts with this bit (and subsequent bits) 552 * zeroed and ends with the bit (and subsequent bits) set to one. 553 */ 554 region_width = max(fls64(region_start ^ (region_end - 1)), 555 const_ilog2(AS_LOCK_REGION_MIN_SIZE)) - 1; 556 557 /* 558 * Mask off the low bits of region_start (which would be ignored by 559 * the hardware anyway) 560 */ 561 region_start &= GENMASK_ULL(63, region_width); 562 563 region = region_width | region_start; 564 565 /* Lock the region that needs to be updated */ 566 gpu_write(ptdev, AS_LOCKADDR_LO(as_nr), lower_32_bits(region)); 567 gpu_write(ptdev, AS_LOCKADDR_HI(as_nr), upper_32_bits(region)); 568 write_cmd(ptdev, as_nr, AS_COMMAND_LOCK); 569 } 570 571 static int mmu_hw_do_operation_locked(struct panthor_device *ptdev, int as_nr, 572 u64 iova, u64 size, u32 op) 573 { 574 lockdep_assert_held(&ptdev->mmu->as.slots_lock); 575 576 if (as_nr < 0) 577 return 0; 578 579 /* 580 * If the AS number is greater than zero, then we can be sure 581 * the device is up and running, so we don't need to explicitly 582 * power it up 583 */ 584 585 if (op != AS_COMMAND_UNLOCK) 586 lock_region(ptdev, as_nr, iova, size); 587 588 /* Run the MMU operation */ 589 write_cmd(ptdev, as_nr, op); 590 591 /* Wait for the flush to complete */ 592 return wait_ready(ptdev, as_nr); 593 } 594 595 static int mmu_hw_do_operation(struct panthor_vm *vm, 596 u64 iova, u64 size, u32 op) 597 { 598 struct panthor_device *ptdev = vm->ptdev; 599 int ret; 600 601 mutex_lock(&ptdev->mmu->as.slots_lock); 602 ret = mmu_hw_do_operation_locked(ptdev, vm->as.id, iova, size, op); 603 mutex_unlock(&ptdev->mmu->as.slots_lock); 604 605 return ret; 606 } 607 608 static int panthor_mmu_as_enable(struct panthor_device *ptdev, u32 as_nr, 609 u64 transtab, u64 transcfg, u64 memattr) 610 { 611 int ret; 612 613 ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM); 614 if (ret) 615 return ret; 616 617 gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), lower_32_bits(transtab)); 618 gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), upper_32_bits(transtab)); 619 620 gpu_write(ptdev, AS_MEMATTR_LO(as_nr), lower_32_bits(memattr)); 621 gpu_write(ptdev, AS_MEMATTR_HI(as_nr), upper_32_bits(memattr)); 622 623 gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), lower_32_bits(transcfg)); 624 gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), upper_32_bits(transcfg)); 625 626 return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE); 627 } 628 629 static int panthor_mmu_as_disable(struct panthor_device *ptdev, u32 as_nr) 630 { 631 int ret; 632 633 ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM); 634 if (ret) 635 return ret; 636 637 gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), 0); 638 gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), 0); 639 640 gpu_write(ptdev, AS_MEMATTR_LO(as_nr), 0); 641 gpu_write(ptdev, AS_MEMATTR_HI(as_nr), 0); 642 643 gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), AS_TRANSCFG_ADRMODE_UNMAPPED); 644 gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), 0); 645 646 return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE); 647 } 648 649 static u32 panthor_mmu_fault_mask(struct panthor_device *ptdev, u32 value) 650 { 651 /* Bits 16 to 31 mean REQ_COMPLETE. */ 652 return value & GENMASK(15, 0); 653 } 654 655 static u32 panthor_mmu_as_fault_mask(struct panthor_device *ptdev, u32 as) 656 { 657 return BIT(as); 658 } 659 660 /** 661 * panthor_vm_has_unhandled_faults() - Check if a VM has unhandled faults 662 * @vm: VM to check. 663 * 664 * Return: true if the VM has unhandled faults, false otherwise. 665 */ 666 bool panthor_vm_has_unhandled_faults(struct panthor_vm *vm) 667 { 668 return vm->unhandled_fault; 669 } 670 671 /** 672 * panthor_vm_is_unusable() - Check if the VM is still usable 673 * @vm: VM to check. 674 * 675 * Return: true if the VM is unusable, false otherwise. 676 */ 677 bool panthor_vm_is_unusable(struct panthor_vm *vm) 678 { 679 return vm->unusable; 680 } 681 682 static void panthor_vm_release_as_locked(struct panthor_vm *vm) 683 { 684 struct panthor_device *ptdev = vm->ptdev; 685 686 lockdep_assert_held(&ptdev->mmu->as.slots_lock); 687 688 if (drm_WARN_ON(&ptdev->base, vm->as.id < 0)) 689 return; 690 691 ptdev->mmu->as.slots[vm->as.id].vm = NULL; 692 clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask); 693 refcount_set(&vm->as.active_cnt, 0); 694 list_del_init(&vm->as.lru_node); 695 vm->as.id = -1; 696 } 697 698 /** 699 * panthor_vm_active() - Flag a VM as active 700 * @VM: VM to flag as active. 701 * 702 * Assigns an address space to a VM so it can be used by the GPU/MCU. 703 * 704 * Return: 0 on success, a negative error code otherwise. 705 */ 706 int panthor_vm_active(struct panthor_vm *vm) 707 { 708 struct panthor_device *ptdev = vm->ptdev; 709 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 710 struct io_pgtable_cfg *cfg = &io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg; 711 int ret = 0, as, cookie; 712 u64 transtab, transcfg; 713 714 if (!drm_dev_enter(&ptdev->base, &cookie)) 715 return -ENODEV; 716 717 if (refcount_inc_not_zero(&vm->as.active_cnt)) 718 goto out_dev_exit; 719 720 mutex_lock(&ptdev->mmu->as.slots_lock); 721 722 if (refcount_inc_not_zero(&vm->as.active_cnt)) 723 goto out_unlock; 724 725 as = vm->as.id; 726 if (as >= 0) { 727 /* Unhandled pagefault on this AS, the MMU was disabled. We need to 728 * re-enable the MMU after clearing+unmasking the AS interrupts. 729 */ 730 if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) 731 goto out_enable_as; 732 733 goto out_make_active; 734 } 735 736 /* Check for a free AS */ 737 if (vm->for_mcu) { 738 drm_WARN_ON(&ptdev->base, ptdev->mmu->as.alloc_mask & BIT(0)); 739 as = 0; 740 } else { 741 as = ffz(ptdev->mmu->as.alloc_mask | BIT(0)); 742 } 743 744 if (!(BIT(as) & ptdev->gpu_info.as_present)) { 745 struct panthor_vm *lru_vm; 746 747 lru_vm = list_first_entry_or_null(&ptdev->mmu->as.lru_list, 748 struct panthor_vm, 749 as.lru_node); 750 if (drm_WARN_ON(&ptdev->base, !lru_vm)) { 751 ret = -EBUSY; 752 goto out_unlock; 753 } 754 755 drm_WARN_ON(&ptdev->base, refcount_read(&lru_vm->as.active_cnt)); 756 as = lru_vm->as.id; 757 panthor_vm_release_as_locked(lru_vm); 758 } 759 760 /* Assign the free or reclaimed AS to the FD */ 761 vm->as.id = as; 762 set_bit(as, &ptdev->mmu->as.alloc_mask); 763 ptdev->mmu->as.slots[as].vm = vm; 764 765 out_enable_as: 766 transtab = cfg->arm_lpae_s1_cfg.ttbr; 767 transcfg = AS_TRANSCFG_PTW_MEMATTR_WB | 768 AS_TRANSCFG_PTW_RA | 769 AS_TRANSCFG_ADRMODE_AARCH64_4K | 770 AS_TRANSCFG_INA_BITS(55 - va_bits); 771 if (ptdev->coherent) 772 transcfg |= AS_TRANSCFG_PTW_SH_OS; 773 774 /* If the VM is re-activated, we clear the fault. */ 775 vm->unhandled_fault = false; 776 777 /* Unhandled pagefault on this AS, clear the fault and re-enable interrupts 778 * before enabling the AS. 779 */ 780 if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) { 781 gpu_write(ptdev, MMU_INT_CLEAR, panthor_mmu_as_fault_mask(ptdev, as)); 782 ptdev->mmu->as.faulty_mask &= ~panthor_mmu_as_fault_mask(ptdev, as); 783 gpu_write(ptdev, MMU_INT_MASK, ~ptdev->mmu->as.faulty_mask); 784 } 785 786 ret = panthor_mmu_as_enable(vm->ptdev, vm->as.id, transtab, transcfg, vm->memattr); 787 788 out_make_active: 789 if (!ret) { 790 refcount_set(&vm->as.active_cnt, 1); 791 list_del_init(&vm->as.lru_node); 792 } 793 794 out_unlock: 795 mutex_unlock(&ptdev->mmu->as.slots_lock); 796 797 out_dev_exit: 798 drm_dev_exit(cookie); 799 return ret; 800 } 801 802 /** 803 * panthor_vm_idle() - Flag a VM idle 804 * @VM: VM to flag as idle. 805 * 806 * When we know the GPU is done with the VM (no more jobs to process), 807 * we can relinquish the AS slot attached to this VM, if any. 808 * 809 * We don't release the slot immediately, but instead place the VM in 810 * the LRU list, so it can be evicted if another VM needs an AS slot. 811 * This way, VMs keep attached to the AS they were given until we run 812 * out of free slot, limiting the number of MMU operations (TLB flush 813 * and other AS updates). 814 */ 815 void panthor_vm_idle(struct panthor_vm *vm) 816 { 817 struct panthor_device *ptdev = vm->ptdev; 818 819 if (!refcount_dec_and_mutex_lock(&vm->as.active_cnt, &ptdev->mmu->as.slots_lock)) 820 return; 821 822 if (!drm_WARN_ON(&ptdev->base, vm->as.id == -1 || !list_empty(&vm->as.lru_node))) 823 list_add_tail(&vm->as.lru_node, &ptdev->mmu->as.lru_list); 824 825 refcount_set(&vm->as.active_cnt, 0); 826 mutex_unlock(&ptdev->mmu->as.slots_lock); 827 } 828 829 u32 panthor_vm_page_size(struct panthor_vm *vm) 830 { 831 const struct io_pgtable *pgt = io_pgtable_ops_to_pgtable(vm->pgtbl_ops); 832 u32 pg_shift = ffs(pgt->cfg.pgsize_bitmap) - 1; 833 834 return 1u << pg_shift; 835 } 836 837 static void panthor_vm_stop(struct panthor_vm *vm) 838 { 839 drm_sched_stop(&vm->sched, NULL); 840 } 841 842 static void panthor_vm_start(struct panthor_vm *vm) 843 { 844 drm_sched_start(&vm->sched, 0); 845 } 846 847 /** 848 * panthor_vm_as() - Get the AS slot attached to a VM 849 * @vm: VM to get the AS slot of. 850 * 851 * Return: -1 if the VM is not assigned an AS slot yet, >= 0 otherwise. 852 */ 853 int panthor_vm_as(struct panthor_vm *vm) 854 { 855 return vm->as.id; 856 } 857 858 static size_t get_pgsize(u64 addr, size_t size, size_t *count) 859 { 860 /* 861 * io-pgtable only operates on multiple pages within a single table 862 * entry, so we need to split at boundaries of the table size, i.e. 863 * the next block size up. The distance from address A to the next 864 * boundary of block size B is logically B - A % B, but in unsigned 865 * two's complement where B is a power of two we get the equivalence 866 * B - A % B == (B - A) % B == (n * B - A) % B, and choose n = 0 :) 867 */ 868 size_t blk_offset = -addr % SZ_2M; 869 870 if (blk_offset || size < SZ_2M) { 871 *count = min_not_zero(blk_offset, size) / SZ_4K; 872 return SZ_4K; 873 } 874 blk_offset = -addr % SZ_1G ?: SZ_1G; 875 *count = min(blk_offset, size) / SZ_2M; 876 return SZ_2M; 877 } 878 879 static int panthor_vm_flush_range(struct panthor_vm *vm, u64 iova, u64 size) 880 { 881 struct panthor_device *ptdev = vm->ptdev; 882 int ret = 0, cookie; 883 884 if (vm->as.id < 0) 885 return 0; 886 887 /* If the device is unplugged, we just silently skip the flush. */ 888 if (!drm_dev_enter(&ptdev->base, &cookie)) 889 return 0; 890 891 ret = mmu_hw_do_operation(vm, iova, size, AS_COMMAND_FLUSH_PT); 892 893 drm_dev_exit(cookie); 894 return ret; 895 } 896 897 /** 898 * panthor_vm_flush_all() - Flush L2 caches for the entirety of a VM's AS 899 * @vm: VM whose cache to flush 900 * 901 * Return: 0 on success, a negative error code if flush failed. 902 */ 903 int panthor_vm_flush_all(struct panthor_vm *vm) 904 { 905 return panthor_vm_flush_range(vm, vm->base.mm_start, vm->base.mm_range); 906 } 907 908 static int panthor_vm_unmap_pages(struct panthor_vm *vm, u64 iova, u64 size) 909 { 910 struct panthor_device *ptdev = vm->ptdev; 911 struct io_pgtable_ops *ops = vm->pgtbl_ops; 912 u64 offset = 0; 913 914 drm_dbg(&ptdev->base, "unmap: as=%d, iova=%llx, len=%llx", vm->as.id, iova, size); 915 916 while (offset < size) { 917 size_t unmapped_sz = 0, pgcount; 918 size_t pgsize = get_pgsize(iova + offset, size - offset, &pgcount); 919 920 unmapped_sz = ops->unmap_pages(ops, iova + offset, pgsize, pgcount, NULL); 921 922 if (drm_WARN_ON(&ptdev->base, unmapped_sz != pgsize * pgcount)) { 923 drm_err(&ptdev->base, "failed to unmap range %llx-%llx (requested range %llx-%llx)\n", 924 iova + offset + unmapped_sz, 925 iova + offset + pgsize * pgcount, 926 iova, iova + size); 927 panthor_vm_flush_range(vm, iova, offset + unmapped_sz); 928 return -EINVAL; 929 } 930 offset += unmapped_sz; 931 } 932 933 return panthor_vm_flush_range(vm, iova, size); 934 } 935 936 static int 937 panthor_vm_map_pages(struct panthor_vm *vm, u64 iova, int prot, 938 struct sg_table *sgt, u64 offset, u64 size) 939 { 940 struct panthor_device *ptdev = vm->ptdev; 941 unsigned int count; 942 struct scatterlist *sgl; 943 struct io_pgtable_ops *ops = vm->pgtbl_ops; 944 u64 start_iova = iova; 945 int ret; 946 947 if (!size) 948 return 0; 949 950 for_each_sgtable_dma_sg(sgt, sgl, count) { 951 dma_addr_t paddr = sg_dma_address(sgl); 952 size_t len = sg_dma_len(sgl); 953 954 if (len <= offset) { 955 offset -= len; 956 continue; 957 } 958 959 paddr += offset; 960 len -= offset; 961 len = min_t(size_t, len, size); 962 size -= len; 963 964 drm_dbg(&ptdev->base, "map: as=%d, iova=%llx, paddr=%pad, len=%zx", 965 vm->as.id, iova, &paddr, len); 966 967 while (len) { 968 size_t pgcount, mapped = 0; 969 size_t pgsize = get_pgsize(iova | paddr, len, &pgcount); 970 971 ret = ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot, 972 GFP_KERNEL, &mapped); 973 iova += mapped; 974 paddr += mapped; 975 len -= mapped; 976 977 if (drm_WARN_ON(&ptdev->base, !ret && !mapped)) 978 ret = -ENOMEM; 979 980 if (ret) { 981 /* If something failed, unmap what we've already mapped before 982 * returning. The unmap call is not supposed to fail. 983 */ 984 drm_WARN_ON(&ptdev->base, 985 panthor_vm_unmap_pages(vm, start_iova, 986 iova - start_iova)); 987 return ret; 988 } 989 } 990 991 if (!size) 992 break; 993 994 offset = 0; 995 } 996 997 return panthor_vm_flush_range(vm, start_iova, iova - start_iova); 998 } 999 1000 static int flags_to_prot(u32 flags) 1001 { 1002 int prot = 0; 1003 1004 if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC) 1005 prot |= IOMMU_NOEXEC; 1006 1007 if (!(flags & DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED)) 1008 prot |= IOMMU_CACHE; 1009 1010 if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_READONLY) 1011 prot |= IOMMU_READ; 1012 else 1013 prot |= IOMMU_READ | IOMMU_WRITE; 1014 1015 return prot; 1016 } 1017 1018 /** 1019 * panthor_vm_alloc_va() - Allocate a region in the auto-va space 1020 * @VM: VM to allocate a region on. 1021 * @va: start of the VA range. Can be PANTHOR_VM_KERNEL_AUTO_VA if the user 1022 * wants the VA to be automatically allocated from the auto-VA range. 1023 * @size: size of the VA range. 1024 * @va_node: drm_mm_node to initialize. Must be zero-initialized. 1025 * 1026 * Some GPU objects, like heap chunks, are fully managed by the kernel and 1027 * need to be mapped to the userspace VM, in the region reserved for kernel 1028 * objects. 1029 * 1030 * This function takes care of allocating a region in the kernel auto-VA space. 1031 * 1032 * Return: 0 on success, an error code otherwise. 1033 */ 1034 int 1035 panthor_vm_alloc_va(struct panthor_vm *vm, u64 va, u64 size, 1036 struct drm_mm_node *va_node) 1037 { 1038 ssize_t vm_pgsz = panthor_vm_page_size(vm); 1039 int ret; 1040 1041 if (!size || !IS_ALIGNED(size, vm_pgsz)) 1042 return -EINVAL; 1043 1044 if (va != PANTHOR_VM_KERNEL_AUTO_VA && !IS_ALIGNED(va, vm_pgsz)) 1045 return -EINVAL; 1046 1047 mutex_lock(&vm->mm_lock); 1048 if (va != PANTHOR_VM_KERNEL_AUTO_VA) { 1049 va_node->start = va; 1050 va_node->size = size; 1051 ret = drm_mm_reserve_node(&vm->mm, va_node); 1052 } else { 1053 ret = drm_mm_insert_node_in_range(&vm->mm, va_node, size, 1054 size >= SZ_2M ? SZ_2M : SZ_4K, 1055 0, vm->kernel_auto_va.start, 1056 vm->kernel_auto_va.end, 1057 DRM_MM_INSERT_BEST); 1058 } 1059 mutex_unlock(&vm->mm_lock); 1060 1061 return ret; 1062 } 1063 1064 /** 1065 * panthor_vm_free_va() - Free a region allocated with panthor_vm_alloc_va() 1066 * @VM: VM to free the region on. 1067 * @va_node: Memory node representing the region to free. 1068 */ 1069 void panthor_vm_free_va(struct panthor_vm *vm, struct drm_mm_node *va_node) 1070 { 1071 mutex_lock(&vm->mm_lock); 1072 drm_mm_remove_node(va_node); 1073 mutex_unlock(&vm->mm_lock); 1074 } 1075 1076 static void panthor_vm_bo_put(struct drm_gpuvm_bo *vm_bo) 1077 { 1078 struct panthor_gem_object *bo = to_panthor_bo(vm_bo->obj); 1079 struct drm_gpuvm *vm = vm_bo->vm; 1080 bool unpin; 1081 1082 /* We must retain the GEM before calling drm_gpuvm_bo_put(), 1083 * otherwise the mutex might be destroyed while we hold it. 1084 * Same goes for the VM, since we take the VM resv lock. 1085 */ 1086 drm_gem_object_get(&bo->base.base); 1087 drm_gpuvm_get(vm); 1088 1089 /* We take the resv lock to protect against concurrent accesses to the 1090 * gpuvm evicted/extobj lists that are modified in 1091 * drm_gpuvm_bo_destroy(), which is called if drm_gpuvm_bo_put() 1092 * releases sthe last vm_bo reference. 1093 * We take the BO GPUVA list lock to protect the vm_bo removal from the 1094 * GEM vm_bo list. 1095 */ 1096 dma_resv_lock(drm_gpuvm_resv(vm), NULL); 1097 mutex_lock(&bo->gpuva_list_lock); 1098 unpin = drm_gpuvm_bo_put(vm_bo); 1099 mutex_unlock(&bo->gpuva_list_lock); 1100 dma_resv_unlock(drm_gpuvm_resv(vm)); 1101 1102 /* If the vm_bo object was destroyed, release the pin reference that 1103 * was hold by this object. 1104 */ 1105 if (unpin && !bo->base.base.import_attach) 1106 drm_gem_shmem_unpin(&bo->base); 1107 1108 drm_gpuvm_put(vm); 1109 drm_gem_object_put(&bo->base.base); 1110 } 1111 1112 static void panthor_vm_cleanup_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1113 struct panthor_vm *vm) 1114 { 1115 struct panthor_vma *vma, *tmp_vma; 1116 1117 u32 remaining_pt_count = op_ctx->rsvd_page_tables.count - 1118 op_ctx->rsvd_page_tables.ptr; 1119 1120 if (remaining_pt_count) { 1121 kmem_cache_free_bulk(pt_cache, remaining_pt_count, 1122 op_ctx->rsvd_page_tables.pages + 1123 op_ctx->rsvd_page_tables.ptr); 1124 } 1125 1126 kfree(op_ctx->rsvd_page_tables.pages); 1127 1128 if (op_ctx->map.vm_bo) 1129 panthor_vm_bo_put(op_ctx->map.vm_bo); 1130 1131 for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) 1132 kfree(op_ctx->preallocated_vmas[i]); 1133 1134 list_for_each_entry_safe(vma, tmp_vma, &op_ctx->returned_vmas, node) { 1135 list_del(&vma->node); 1136 panthor_vm_bo_put(vma->base.vm_bo); 1137 kfree(vma); 1138 } 1139 } 1140 1141 static struct panthor_vma * 1142 panthor_vm_op_ctx_get_vma(struct panthor_vm_op_ctx *op_ctx) 1143 { 1144 for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) { 1145 struct panthor_vma *vma = op_ctx->preallocated_vmas[i]; 1146 1147 if (vma) { 1148 op_ctx->preallocated_vmas[i] = NULL; 1149 return vma; 1150 } 1151 } 1152 1153 return NULL; 1154 } 1155 1156 static int 1157 panthor_vm_op_ctx_prealloc_vmas(struct panthor_vm_op_ctx *op_ctx) 1158 { 1159 u32 vma_count; 1160 1161 switch (op_ctx->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) { 1162 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: 1163 /* One VMA for the new mapping, and two more VMAs for the remap case 1164 * which might contain both a prev and next VA. 1165 */ 1166 vma_count = 3; 1167 break; 1168 1169 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP: 1170 /* Partial unmaps might trigger a remap with either a prev or a next VA, 1171 * but not both. 1172 */ 1173 vma_count = 1; 1174 break; 1175 1176 default: 1177 return 0; 1178 } 1179 1180 for (u32 i = 0; i < vma_count; i++) { 1181 struct panthor_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL); 1182 1183 if (!vma) 1184 return -ENOMEM; 1185 1186 op_ctx->preallocated_vmas[i] = vma; 1187 } 1188 1189 return 0; 1190 } 1191 1192 #define PANTHOR_VM_BIND_OP_MAP_FLAGS \ 1193 (DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \ 1194 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \ 1195 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED | \ 1196 DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) 1197 1198 static int panthor_vm_prepare_map_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1199 struct panthor_vm *vm, 1200 struct panthor_gem_object *bo, 1201 u64 offset, 1202 u64 size, u64 va, 1203 u32 flags) 1204 { 1205 struct drm_gpuvm_bo *preallocated_vm_bo; 1206 struct sg_table *sgt = NULL; 1207 u64 pt_count; 1208 int ret; 1209 1210 if (!bo) 1211 return -EINVAL; 1212 1213 if ((flags & ~PANTHOR_VM_BIND_OP_MAP_FLAGS) || 1214 (flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) != DRM_PANTHOR_VM_BIND_OP_TYPE_MAP) 1215 return -EINVAL; 1216 1217 /* Make sure the VA and size are aligned and in-bounds. */ 1218 if (size > bo->base.base.size || offset > bo->base.base.size - size) 1219 return -EINVAL; 1220 1221 /* If the BO has an exclusive VM attached, it can't be mapped to other VMs. */ 1222 if (bo->exclusive_vm_root_gem && 1223 bo->exclusive_vm_root_gem != panthor_vm_root_gem(vm)) 1224 return -EINVAL; 1225 1226 memset(op_ctx, 0, sizeof(*op_ctx)); 1227 INIT_LIST_HEAD(&op_ctx->returned_vmas); 1228 op_ctx->flags = flags; 1229 op_ctx->va.range = size; 1230 op_ctx->va.addr = va; 1231 1232 ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx); 1233 if (ret) 1234 goto err_cleanup; 1235 1236 if (!bo->base.base.import_attach) { 1237 /* Pre-reserve the BO pages, so the map operation doesn't have to 1238 * allocate. 1239 */ 1240 ret = drm_gem_shmem_pin(&bo->base); 1241 if (ret) 1242 goto err_cleanup; 1243 } 1244 1245 sgt = drm_gem_shmem_get_pages_sgt(&bo->base); 1246 if (IS_ERR(sgt)) { 1247 if (!bo->base.base.import_attach) 1248 drm_gem_shmem_unpin(&bo->base); 1249 1250 ret = PTR_ERR(sgt); 1251 goto err_cleanup; 1252 } 1253 1254 op_ctx->map.sgt = sgt; 1255 1256 preallocated_vm_bo = drm_gpuvm_bo_create(&vm->base, &bo->base.base); 1257 if (!preallocated_vm_bo) { 1258 if (!bo->base.base.import_attach) 1259 drm_gem_shmem_unpin(&bo->base); 1260 1261 ret = -ENOMEM; 1262 goto err_cleanup; 1263 } 1264 1265 /* drm_gpuvm_bo_obtain_prealloc() will call drm_gpuvm_bo_put() on our 1266 * pre-allocated BO if the <BO,VM> association exists. Given we 1267 * only have one ref on preallocated_vm_bo, drm_gpuvm_bo_destroy() will 1268 * be called immediately, and we have to hold the VM resv lock when 1269 * calling this function. 1270 */ 1271 dma_resv_lock(panthor_vm_resv(vm), NULL); 1272 mutex_lock(&bo->gpuva_list_lock); 1273 op_ctx->map.vm_bo = drm_gpuvm_bo_obtain_prealloc(preallocated_vm_bo); 1274 mutex_unlock(&bo->gpuva_list_lock); 1275 dma_resv_unlock(panthor_vm_resv(vm)); 1276 1277 /* If the a vm_bo for this <VM,BO> combination exists, it already 1278 * retains a pin ref, and we can release the one we took earlier. 1279 * 1280 * If our pre-allocated vm_bo is picked, it now retains the pin ref, 1281 * which will be released in panthor_vm_bo_put(). 1282 */ 1283 if (preallocated_vm_bo != op_ctx->map.vm_bo && 1284 !bo->base.base.import_attach) 1285 drm_gem_shmem_unpin(&bo->base); 1286 1287 op_ctx->map.bo_offset = offset; 1288 1289 /* L1, L2 and L3 page tables. 1290 * We could optimize L3 allocation by iterating over the sgt and merging 1291 * 2M contiguous blocks, but it's simpler to over-provision and return 1292 * the pages if they're not used. 1293 */ 1294 pt_count = ((ALIGN(va + size, 1ull << 39) - ALIGN_DOWN(va, 1ull << 39)) >> 39) + 1295 ((ALIGN(va + size, 1ull << 30) - ALIGN_DOWN(va, 1ull << 30)) >> 30) + 1296 ((ALIGN(va + size, 1ull << 21) - ALIGN_DOWN(va, 1ull << 21)) >> 21); 1297 1298 op_ctx->rsvd_page_tables.pages = kcalloc(pt_count, 1299 sizeof(*op_ctx->rsvd_page_tables.pages), 1300 GFP_KERNEL); 1301 if (!op_ctx->rsvd_page_tables.pages) { 1302 ret = -ENOMEM; 1303 goto err_cleanup; 1304 } 1305 1306 ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count, 1307 op_ctx->rsvd_page_tables.pages); 1308 op_ctx->rsvd_page_tables.count = ret; 1309 if (ret != pt_count) { 1310 ret = -ENOMEM; 1311 goto err_cleanup; 1312 } 1313 1314 /* Insert BO into the extobj list last, when we know nothing can fail. */ 1315 dma_resv_lock(panthor_vm_resv(vm), NULL); 1316 drm_gpuvm_bo_extobj_add(op_ctx->map.vm_bo); 1317 dma_resv_unlock(panthor_vm_resv(vm)); 1318 1319 return 0; 1320 1321 err_cleanup: 1322 panthor_vm_cleanup_op_ctx(op_ctx, vm); 1323 return ret; 1324 } 1325 1326 static int panthor_vm_prepare_unmap_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1327 struct panthor_vm *vm, 1328 u64 va, u64 size) 1329 { 1330 u32 pt_count = 0; 1331 int ret; 1332 1333 memset(op_ctx, 0, sizeof(*op_ctx)); 1334 INIT_LIST_HEAD(&op_ctx->returned_vmas); 1335 op_ctx->va.range = size; 1336 op_ctx->va.addr = va; 1337 op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP; 1338 1339 /* Pre-allocate L3 page tables to account for the split-2M-block 1340 * situation on unmap. 1341 */ 1342 if (va != ALIGN(va, SZ_2M)) 1343 pt_count++; 1344 1345 if (va + size != ALIGN(va + size, SZ_2M) && 1346 ALIGN(va + size, SZ_2M) != ALIGN(va, SZ_2M)) 1347 pt_count++; 1348 1349 ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx); 1350 if (ret) 1351 goto err_cleanup; 1352 1353 if (pt_count) { 1354 op_ctx->rsvd_page_tables.pages = kcalloc(pt_count, 1355 sizeof(*op_ctx->rsvd_page_tables.pages), 1356 GFP_KERNEL); 1357 if (!op_ctx->rsvd_page_tables.pages) { 1358 ret = -ENOMEM; 1359 goto err_cleanup; 1360 } 1361 1362 ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count, 1363 op_ctx->rsvd_page_tables.pages); 1364 if (ret != pt_count) { 1365 ret = -ENOMEM; 1366 goto err_cleanup; 1367 } 1368 op_ctx->rsvd_page_tables.count = pt_count; 1369 } 1370 1371 return 0; 1372 1373 err_cleanup: 1374 panthor_vm_cleanup_op_ctx(op_ctx, vm); 1375 return ret; 1376 } 1377 1378 static void panthor_vm_prepare_sync_only_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1379 struct panthor_vm *vm) 1380 { 1381 memset(op_ctx, 0, sizeof(*op_ctx)); 1382 INIT_LIST_HEAD(&op_ctx->returned_vmas); 1383 op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY; 1384 } 1385 1386 /** 1387 * panthor_vm_get_bo_for_va() - Get the GEM object mapped at a virtual address 1388 * @vm: VM to look into. 1389 * @va: Virtual address to search for. 1390 * @bo_offset: Offset of the GEM object mapped at this virtual address. 1391 * Only valid on success. 1392 * 1393 * The object returned by this function might no longer be mapped when the 1394 * function returns. It's the caller responsibility to ensure there's no 1395 * concurrent map/unmap operations making the returned value invalid, or 1396 * make sure it doesn't matter if the object is no longer mapped. 1397 * 1398 * Return: A valid pointer on success, an ERR_PTR() otherwise. 1399 */ 1400 struct panthor_gem_object * 1401 panthor_vm_get_bo_for_va(struct panthor_vm *vm, u64 va, u64 *bo_offset) 1402 { 1403 struct panthor_gem_object *bo = ERR_PTR(-ENOENT); 1404 struct drm_gpuva *gpuva; 1405 struct panthor_vma *vma; 1406 1407 /* Take the VM lock to prevent concurrent map/unmap operations. */ 1408 mutex_lock(&vm->op_lock); 1409 gpuva = drm_gpuva_find_first(&vm->base, va, 1); 1410 vma = gpuva ? container_of(gpuva, struct panthor_vma, base) : NULL; 1411 if (vma && vma->base.gem.obj) { 1412 drm_gem_object_get(vma->base.gem.obj); 1413 bo = to_panthor_bo(vma->base.gem.obj); 1414 *bo_offset = vma->base.gem.offset + (va - vma->base.va.addr); 1415 } 1416 mutex_unlock(&vm->op_lock); 1417 1418 return bo; 1419 } 1420 1421 #define PANTHOR_VM_MIN_KERNEL_VA_SIZE SZ_256M 1422 1423 static u64 1424 panthor_vm_create_get_user_va_range(const struct drm_panthor_vm_create *args, 1425 u64 full_va_range) 1426 { 1427 u64 user_va_range; 1428 1429 /* Make sure we have a minimum amount of VA space for kernel objects. */ 1430 if (full_va_range < PANTHOR_VM_MIN_KERNEL_VA_SIZE) 1431 return 0; 1432 1433 if (args->user_va_range) { 1434 /* Use the user provided value if != 0. */ 1435 user_va_range = args->user_va_range; 1436 } else if (TASK_SIZE_OF(current) < full_va_range) { 1437 /* If the task VM size is smaller than the GPU VA range, pick this 1438 * as our default user VA range, so userspace can CPU/GPU map buffers 1439 * at the same address. 1440 */ 1441 user_va_range = TASK_SIZE_OF(current); 1442 } else { 1443 /* If the GPU VA range is smaller than the task VM size, we 1444 * just have to live with the fact we won't be able to map 1445 * all buffers at the same GPU/CPU address. 1446 * 1447 * If the GPU VA range is bigger than 4G (more than 32-bit of 1448 * VA), we split the range in two, and assign half of it to 1449 * the user and the other half to the kernel, if it's not, we 1450 * keep the kernel VA space as small as possible. 1451 */ 1452 user_va_range = full_va_range > SZ_4G ? 1453 full_va_range / 2 : 1454 full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE; 1455 } 1456 1457 if (full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE < user_va_range) 1458 user_va_range = full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE; 1459 1460 return user_va_range; 1461 } 1462 1463 #define PANTHOR_VM_CREATE_FLAGS 0 1464 1465 static int 1466 panthor_vm_create_check_args(const struct panthor_device *ptdev, 1467 const struct drm_panthor_vm_create *args, 1468 u64 *kernel_va_start, u64 *kernel_va_range) 1469 { 1470 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 1471 u64 full_va_range = 1ull << va_bits; 1472 u64 user_va_range; 1473 1474 if (args->flags & ~PANTHOR_VM_CREATE_FLAGS) 1475 return -EINVAL; 1476 1477 user_va_range = panthor_vm_create_get_user_va_range(args, full_va_range); 1478 if (!user_va_range || (args->user_va_range && args->user_va_range > user_va_range)) 1479 return -EINVAL; 1480 1481 /* Pick a kernel VA range that's a power of two, to have a clear split. */ 1482 *kernel_va_range = rounddown_pow_of_two(full_va_range - user_va_range); 1483 *kernel_va_start = full_va_range - *kernel_va_range; 1484 return 0; 1485 } 1486 1487 /* 1488 * Only 32 VMs per open file. If that becomes a limiting factor, we can 1489 * increase this number. 1490 */ 1491 #define PANTHOR_MAX_VMS_PER_FILE 32 1492 1493 /** 1494 * panthor_vm_pool_create_vm() - Create a VM 1495 * @pool: The VM to create this VM on. 1496 * @kernel_va_start: Start of the region reserved for kernel objects. 1497 * @kernel_va_range: Size of the region reserved for kernel objects. 1498 * 1499 * Return: a positive VM ID on success, a negative error code otherwise. 1500 */ 1501 int panthor_vm_pool_create_vm(struct panthor_device *ptdev, 1502 struct panthor_vm_pool *pool, 1503 struct drm_panthor_vm_create *args) 1504 { 1505 u64 kernel_va_start, kernel_va_range; 1506 struct panthor_vm *vm; 1507 int ret; 1508 u32 id; 1509 1510 ret = panthor_vm_create_check_args(ptdev, args, &kernel_va_start, &kernel_va_range); 1511 if (ret) 1512 return ret; 1513 1514 vm = panthor_vm_create(ptdev, false, kernel_va_start, kernel_va_range, 1515 kernel_va_start, kernel_va_range); 1516 if (IS_ERR(vm)) 1517 return PTR_ERR(vm); 1518 1519 ret = xa_alloc(&pool->xa, &id, vm, 1520 XA_LIMIT(1, PANTHOR_MAX_VMS_PER_FILE), GFP_KERNEL); 1521 1522 if (ret) { 1523 panthor_vm_put(vm); 1524 return ret; 1525 } 1526 1527 args->user_va_range = kernel_va_start; 1528 return id; 1529 } 1530 1531 static void panthor_vm_destroy(struct panthor_vm *vm) 1532 { 1533 if (!vm) 1534 return; 1535 1536 vm->destroyed = true; 1537 1538 mutex_lock(&vm->heaps.lock); 1539 panthor_heap_pool_destroy(vm->heaps.pool); 1540 vm->heaps.pool = NULL; 1541 mutex_unlock(&vm->heaps.lock); 1542 1543 drm_WARN_ON(&vm->ptdev->base, 1544 panthor_vm_unmap_range(vm, vm->base.mm_start, vm->base.mm_range)); 1545 panthor_vm_put(vm); 1546 } 1547 1548 /** 1549 * panthor_vm_pool_destroy_vm() - Destroy a VM. 1550 * @pool: VM pool. 1551 * @handle: VM handle. 1552 * 1553 * This function doesn't free the VM object or its resources, it just kills 1554 * all mappings, and makes sure nothing can be mapped after that point. 1555 * 1556 * If there was any active jobs at the time this function is called, these 1557 * jobs should experience page faults and be killed as a result. 1558 * 1559 * The VM resources are freed when the last reference on the VM object is 1560 * dropped. 1561 */ 1562 int panthor_vm_pool_destroy_vm(struct panthor_vm_pool *pool, u32 handle) 1563 { 1564 struct panthor_vm *vm; 1565 1566 vm = xa_erase(&pool->xa, handle); 1567 1568 panthor_vm_destroy(vm); 1569 1570 return vm ? 0 : -EINVAL; 1571 } 1572 1573 /** 1574 * panthor_vm_pool_get_vm() - Retrieve VM object bound to a VM handle 1575 * @pool: VM pool to check. 1576 * @handle: Handle of the VM to retrieve. 1577 * 1578 * Return: A valid pointer if the VM exists, NULL otherwise. 1579 */ 1580 struct panthor_vm * 1581 panthor_vm_pool_get_vm(struct panthor_vm_pool *pool, u32 handle) 1582 { 1583 struct panthor_vm *vm; 1584 1585 xa_lock(&pool->xa); 1586 vm = panthor_vm_get(xa_load(&pool->xa, handle)); 1587 xa_unlock(&pool->xa); 1588 1589 return vm; 1590 } 1591 1592 /** 1593 * panthor_vm_pool_destroy() - Destroy a VM pool. 1594 * @pfile: File. 1595 * 1596 * Destroy all VMs in the pool, and release the pool resources. 1597 * 1598 * Note that VMs can outlive the pool they were created from if other 1599 * objects hold a reference to there VMs. 1600 */ 1601 void panthor_vm_pool_destroy(struct panthor_file *pfile) 1602 { 1603 struct panthor_vm *vm; 1604 unsigned long i; 1605 1606 if (!pfile->vms) 1607 return; 1608 1609 xa_for_each(&pfile->vms->xa, i, vm) 1610 panthor_vm_destroy(vm); 1611 1612 xa_destroy(&pfile->vms->xa); 1613 kfree(pfile->vms); 1614 } 1615 1616 /** 1617 * panthor_vm_pool_create() - Create a VM pool 1618 * @pfile: File. 1619 * 1620 * Return: 0 on success, a negative error code otherwise. 1621 */ 1622 int panthor_vm_pool_create(struct panthor_file *pfile) 1623 { 1624 pfile->vms = kzalloc(sizeof(*pfile->vms), GFP_KERNEL); 1625 if (!pfile->vms) 1626 return -ENOMEM; 1627 1628 xa_init_flags(&pfile->vms->xa, XA_FLAGS_ALLOC1); 1629 return 0; 1630 } 1631 1632 /* dummy TLB ops, the real TLB flush happens in panthor_vm_flush_range() */ 1633 static void mmu_tlb_flush_all(void *cookie) 1634 { 1635 } 1636 1637 static void mmu_tlb_flush_walk(unsigned long iova, size_t size, size_t granule, void *cookie) 1638 { 1639 } 1640 1641 static const struct iommu_flush_ops mmu_tlb_ops = { 1642 .tlb_flush_all = mmu_tlb_flush_all, 1643 .tlb_flush_walk = mmu_tlb_flush_walk, 1644 }; 1645 1646 static const char *access_type_name(struct panthor_device *ptdev, 1647 u32 fault_status) 1648 { 1649 switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) { 1650 case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC: 1651 return "ATOMIC"; 1652 case AS_FAULTSTATUS_ACCESS_TYPE_READ: 1653 return "READ"; 1654 case AS_FAULTSTATUS_ACCESS_TYPE_WRITE: 1655 return "WRITE"; 1656 case AS_FAULTSTATUS_ACCESS_TYPE_EX: 1657 return "EXECUTE"; 1658 default: 1659 drm_WARN_ON(&ptdev->base, 1); 1660 return NULL; 1661 } 1662 } 1663 1664 static void panthor_mmu_irq_handler(struct panthor_device *ptdev, u32 status) 1665 { 1666 bool has_unhandled_faults = false; 1667 1668 status = panthor_mmu_fault_mask(ptdev, status); 1669 while (status) { 1670 u32 as = ffs(status | (status >> 16)) - 1; 1671 u32 mask = panthor_mmu_as_fault_mask(ptdev, as); 1672 u32 new_int_mask; 1673 u64 addr; 1674 u32 fault_status; 1675 u32 exception_type; 1676 u32 access_type; 1677 u32 source_id; 1678 1679 fault_status = gpu_read(ptdev, AS_FAULTSTATUS(as)); 1680 addr = gpu_read(ptdev, AS_FAULTADDRESS_LO(as)); 1681 addr |= (u64)gpu_read(ptdev, AS_FAULTADDRESS_HI(as)) << 32; 1682 1683 /* decode the fault status */ 1684 exception_type = fault_status & 0xFF; 1685 access_type = (fault_status >> 8) & 0x3; 1686 source_id = (fault_status >> 16); 1687 1688 mutex_lock(&ptdev->mmu->as.slots_lock); 1689 1690 ptdev->mmu->as.faulty_mask |= mask; 1691 new_int_mask = 1692 panthor_mmu_fault_mask(ptdev, ~ptdev->mmu->as.faulty_mask); 1693 1694 /* terminal fault, print info about the fault */ 1695 drm_err(&ptdev->base, 1696 "Unhandled Page fault in AS%d at VA 0x%016llX\n" 1697 "raw fault status: 0x%X\n" 1698 "decoded fault status: %s\n" 1699 "exception type 0x%X: %s\n" 1700 "access type 0x%X: %s\n" 1701 "source id 0x%X\n", 1702 as, addr, 1703 fault_status, 1704 (fault_status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"), 1705 exception_type, panthor_exception_name(ptdev, exception_type), 1706 access_type, access_type_name(ptdev, fault_status), 1707 source_id); 1708 1709 /* Ignore MMU interrupts on this AS until it's been 1710 * re-enabled. 1711 */ 1712 ptdev->mmu->irq.mask = new_int_mask; 1713 gpu_write(ptdev, MMU_INT_MASK, new_int_mask); 1714 1715 if (ptdev->mmu->as.slots[as].vm) 1716 ptdev->mmu->as.slots[as].vm->unhandled_fault = true; 1717 1718 /* Disable the MMU to kill jobs on this AS. */ 1719 panthor_mmu_as_disable(ptdev, as); 1720 mutex_unlock(&ptdev->mmu->as.slots_lock); 1721 1722 status &= ~mask; 1723 has_unhandled_faults = true; 1724 } 1725 1726 if (has_unhandled_faults) 1727 panthor_sched_report_mmu_fault(ptdev); 1728 } 1729 PANTHOR_IRQ_HANDLER(mmu, MMU, panthor_mmu_irq_handler); 1730 1731 /** 1732 * panthor_mmu_suspend() - Suspend the MMU logic 1733 * @ptdev: Device. 1734 * 1735 * All we do here is de-assign the AS slots on all active VMs, so things 1736 * get flushed to the main memory, and no further access to these VMs are 1737 * possible. 1738 * 1739 * We also suspend the MMU IRQ. 1740 */ 1741 void panthor_mmu_suspend(struct panthor_device *ptdev) 1742 { 1743 mutex_lock(&ptdev->mmu->as.slots_lock); 1744 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) { 1745 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm; 1746 1747 if (vm) { 1748 drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i)); 1749 panthor_vm_release_as_locked(vm); 1750 } 1751 } 1752 mutex_unlock(&ptdev->mmu->as.slots_lock); 1753 1754 panthor_mmu_irq_suspend(&ptdev->mmu->irq); 1755 } 1756 1757 /** 1758 * panthor_mmu_resume() - Resume the MMU logic 1759 * @ptdev: Device. 1760 * 1761 * Resume the IRQ. 1762 * 1763 * We don't re-enable previously active VMs. We assume other parts of the 1764 * driver will call panthor_vm_active() on the VMs they intend to use. 1765 */ 1766 void panthor_mmu_resume(struct panthor_device *ptdev) 1767 { 1768 mutex_lock(&ptdev->mmu->as.slots_lock); 1769 ptdev->mmu->as.alloc_mask = 0; 1770 ptdev->mmu->as.faulty_mask = 0; 1771 mutex_unlock(&ptdev->mmu->as.slots_lock); 1772 1773 panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0)); 1774 } 1775 1776 /** 1777 * panthor_mmu_pre_reset() - Prepare for a reset 1778 * @ptdev: Device. 1779 * 1780 * Suspend the IRQ, and make sure all VM_BIND queues are stopped, so we 1781 * don't get asked to do a VM operation while the GPU is down. 1782 * 1783 * We don't cleanly shutdown the AS slots here, because the reset might 1784 * come from an AS_ACTIVE_BIT stuck situation. 1785 */ 1786 void panthor_mmu_pre_reset(struct panthor_device *ptdev) 1787 { 1788 struct panthor_vm *vm; 1789 1790 panthor_mmu_irq_suspend(&ptdev->mmu->irq); 1791 1792 mutex_lock(&ptdev->mmu->vm.lock); 1793 ptdev->mmu->vm.reset_in_progress = true; 1794 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) 1795 panthor_vm_stop(vm); 1796 mutex_unlock(&ptdev->mmu->vm.lock); 1797 } 1798 1799 /** 1800 * panthor_mmu_post_reset() - Restore things after a reset 1801 * @ptdev: Device. 1802 * 1803 * Put the MMU logic back in action after a reset. That implies resuming the 1804 * IRQ and re-enabling the VM_BIND queues. 1805 */ 1806 void panthor_mmu_post_reset(struct panthor_device *ptdev) 1807 { 1808 struct panthor_vm *vm; 1809 1810 mutex_lock(&ptdev->mmu->as.slots_lock); 1811 1812 /* Now that the reset is effective, we can assume that none of the 1813 * AS slots are setup, and clear the faulty flags too. 1814 */ 1815 ptdev->mmu->as.alloc_mask = 0; 1816 ptdev->mmu->as.faulty_mask = 0; 1817 1818 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) { 1819 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm; 1820 1821 if (vm) 1822 panthor_vm_release_as_locked(vm); 1823 } 1824 1825 mutex_unlock(&ptdev->mmu->as.slots_lock); 1826 1827 panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0)); 1828 1829 /* Restart the VM_BIND queues. */ 1830 mutex_lock(&ptdev->mmu->vm.lock); 1831 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) { 1832 panthor_vm_start(vm); 1833 } 1834 ptdev->mmu->vm.reset_in_progress = false; 1835 mutex_unlock(&ptdev->mmu->vm.lock); 1836 } 1837 1838 static void panthor_vm_free(struct drm_gpuvm *gpuvm) 1839 { 1840 struct panthor_vm *vm = container_of(gpuvm, struct panthor_vm, base); 1841 struct panthor_device *ptdev = vm->ptdev; 1842 1843 mutex_lock(&vm->heaps.lock); 1844 if (drm_WARN_ON(&ptdev->base, vm->heaps.pool)) 1845 panthor_heap_pool_destroy(vm->heaps.pool); 1846 mutex_unlock(&vm->heaps.lock); 1847 mutex_destroy(&vm->heaps.lock); 1848 1849 mutex_lock(&ptdev->mmu->vm.lock); 1850 list_del(&vm->node); 1851 /* Restore the scheduler state so we can call drm_sched_entity_destroy() 1852 * and drm_sched_fini(). If get there, that means we have no job left 1853 * and no new jobs can be queued, so we can start the scheduler without 1854 * risking interfering with the reset. 1855 */ 1856 if (ptdev->mmu->vm.reset_in_progress) 1857 panthor_vm_start(vm); 1858 mutex_unlock(&ptdev->mmu->vm.lock); 1859 1860 drm_sched_entity_destroy(&vm->entity); 1861 drm_sched_fini(&vm->sched); 1862 1863 mutex_lock(&ptdev->mmu->as.slots_lock); 1864 if (vm->as.id >= 0) { 1865 int cookie; 1866 1867 if (drm_dev_enter(&ptdev->base, &cookie)) { 1868 panthor_mmu_as_disable(ptdev, vm->as.id); 1869 drm_dev_exit(cookie); 1870 } 1871 1872 ptdev->mmu->as.slots[vm->as.id].vm = NULL; 1873 clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask); 1874 list_del(&vm->as.lru_node); 1875 } 1876 mutex_unlock(&ptdev->mmu->as.slots_lock); 1877 1878 free_io_pgtable_ops(vm->pgtbl_ops); 1879 1880 drm_mm_takedown(&vm->mm); 1881 kfree(vm); 1882 } 1883 1884 /** 1885 * panthor_vm_put() - Release a reference on a VM 1886 * @vm: VM to release the reference on. Can be NULL. 1887 */ 1888 void panthor_vm_put(struct panthor_vm *vm) 1889 { 1890 drm_gpuvm_put(vm ? &vm->base : NULL); 1891 } 1892 1893 /** 1894 * panthor_vm_get() - Get a VM reference 1895 * @vm: VM to get the reference on. Can be NULL. 1896 * 1897 * Return: @vm value. 1898 */ 1899 struct panthor_vm *panthor_vm_get(struct panthor_vm *vm) 1900 { 1901 if (vm) 1902 drm_gpuvm_get(&vm->base); 1903 1904 return vm; 1905 } 1906 1907 /** 1908 * panthor_vm_get_heap_pool() - Get the heap pool attached to a VM 1909 * @vm: VM to query the heap pool on. 1910 * @create: True if the heap pool should be created when it doesn't exist. 1911 * 1912 * Heap pools are per-VM. This function allows one to retrieve the heap pool 1913 * attached to a VM. 1914 * 1915 * If no heap pool exists yet, and @create is true, we create one. 1916 * 1917 * The returned panthor_heap_pool should be released with panthor_heap_pool_put(). 1918 * 1919 * Return: A valid pointer on success, an ERR_PTR() otherwise. 1920 */ 1921 struct panthor_heap_pool *panthor_vm_get_heap_pool(struct panthor_vm *vm, bool create) 1922 { 1923 struct panthor_heap_pool *pool; 1924 1925 mutex_lock(&vm->heaps.lock); 1926 if (!vm->heaps.pool && create) { 1927 if (vm->destroyed) 1928 pool = ERR_PTR(-EINVAL); 1929 else 1930 pool = panthor_heap_pool_create(vm->ptdev, vm); 1931 1932 if (!IS_ERR(pool)) 1933 vm->heaps.pool = panthor_heap_pool_get(pool); 1934 } else { 1935 pool = panthor_heap_pool_get(vm->heaps.pool); 1936 if (!pool) 1937 pool = ERR_PTR(-ENOENT); 1938 } 1939 mutex_unlock(&vm->heaps.lock); 1940 1941 return pool; 1942 } 1943 1944 static u64 mair_to_memattr(u64 mair) 1945 { 1946 u64 memattr = 0; 1947 u32 i; 1948 1949 for (i = 0; i < 8; i++) { 1950 u8 in_attr = mair >> (8 * i), out_attr; 1951 u8 outer = in_attr >> 4, inner = in_attr & 0xf; 1952 1953 /* For caching to be enabled, inner and outer caching policy 1954 * have to be both write-back, if one of them is write-through 1955 * or non-cacheable, we just choose non-cacheable. Device 1956 * memory is also translated to non-cacheable. 1957 */ 1958 if (!(outer & 3) || !(outer & 4) || !(inner & 4)) { 1959 out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_NC | 1960 AS_MEMATTR_AARCH64_SH_MIDGARD_INNER | 1961 AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(false, false); 1962 } else { 1963 /* Use SH_CPU_INNER mode so SH_IS, which is used when 1964 * IOMMU_CACHE is set, actually maps to the standard 1965 * definition of inner-shareable and not Mali's 1966 * internal-shareable mode. 1967 */ 1968 out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_WB | 1969 AS_MEMATTR_AARCH64_SH_CPU_INNER | 1970 AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(inner & 1, inner & 2); 1971 } 1972 1973 memattr |= (u64)out_attr << (8 * i); 1974 } 1975 1976 return memattr; 1977 } 1978 1979 static void panthor_vma_link(struct panthor_vm *vm, 1980 struct panthor_vma *vma, 1981 struct drm_gpuvm_bo *vm_bo) 1982 { 1983 struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj); 1984 1985 mutex_lock(&bo->gpuva_list_lock); 1986 drm_gpuva_link(&vma->base, vm_bo); 1987 drm_WARN_ON(&vm->ptdev->base, drm_gpuvm_bo_put(vm_bo)); 1988 mutex_unlock(&bo->gpuva_list_lock); 1989 } 1990 1991 static void panthor_vma_unlink(struct panthor_vm *vm, 1992 struct panthor_vma *vma) 1993 { 1994 struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj); 1995 struct drm_gpuvm_bo *vm_bo = drm_gpuvm_bo_get(vma->base.vm_bo); 1996 1997 mutex_lock(&bo->gpuva_list_lock); 1998 drm_gpuva_unlink(&vma->base); 1999 mutex_unlock(&bo->gpuva_list_lock); 2000 2001 /* drm_gpuva_unlink() release the vm_bo, but we manually retained it 2002 * when entering this function, so we can implement deferred VMA 2003 * destruction. Re-assign it here. 2004 */ 2005 vma->base.vm_bo = vm_bo; 2006 list_add_tail(&vma->node, &vm->op_ctx->returned_vmas); 2007 } 2008 2009 static void panthor_vma_init(struct panthor_vma *vma, u32 flags) 2010 { 2011 INIT_LIST_HEAD(&vma->node); 2012 vma->flags = flags; 2013 } 2014 2015 #define PANTHOR_VM_MAP_FLAGS \ 2016 (DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \ 2017 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \ 2018 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED) 2019 2020 static int panthor_gpuva_sm_step_map(struct drm_gpuva_op *op, void *priv) 2021 { 2022 struct panthor_vm *vm = priv; 2023 struct panthor_vm_op_ctx *op_ctx = vm->op_ctx; 2024 struct panthor_vma *vma = panthor_vm_op_ctx_get_vma(op_ctx); 2025 int ret; 2026 2027 if (!vma) 2028 return -EINVAL; 2029 2030 panthor_vma_init(vma, op_ctx->flags & PANTHOR_VM_MAP_FLAGS); 2031 2032 ret = panthor_vm_map_pages(vm, op->map.va.addr, flags_to_prot(vma->flags), 2033 op_ctx->map.sgt, op->map.gem.offset, 2034 op->map.va.range); 2035 if (ret) 2036 return ret; 2037 2038 /* Ref owned by the mapping now, clear the obj field so we don't release the 2039 * pinning/obj ref behind GPUVA's back. 2040 */ 2041 drm_gpuva_map(&vm->base, &vma->base, &op->map); 2042 panthor_vma_link(vm, vma, op_ctx->map.vm_bo); 2043 op_ctx->map.vm_bo = NULL; 2044 return 0; 2045 } 2046 2047 static int panthor_gpuva_sm_step_remap(struct drm_gpuva_op *op, 2048 void *priv) 2049 { 2050 struct panthor_vma *unmap_vma = container_of(op->remap.unmap->va, struct panthor_vma, base); 2051 struct panthor_vm *vm = priv; 2052 struct panthor_vm_op_ctx *op_ctx = vm->op_ctx; 2053 struct panthor_vma *prev_vma = NULL, *next_vma = NULL; 2054 u64 unmap_start, unmap_range; 2055 int ret; 2056 2057 drm_gpuva_op_remap_to_unmap_range(&op->remap, &unmap_start, &unmap_range); 2058 ret = panthor_vm_unmap_pages(vm, unmap_start, unmap_range); 2059 if (ret) 2060 return ret; 2061 2062 if (op->remap.prev) { 2063 prev_vma = panthor_vm_op_ctx_get_vma(op_ctx); 2064 panthor_vma_init(prev_vma, unmap_vma->flags); 2065 } 2066 2067 if (op->remap.next) { 2068 next_vma = panthor_vm_op_ctx_get_vma(op_ctx); 2069 panthor_vma_init(next_vma, unmap_vma->flags); 2070 } 2071 2072 drm_gpuva_remap(prev_vma ? &prev_vma->base : NULL, 2073 next_vma ? &next_vma->base : NULL, 2074 &op->remap); 2075 2076 if (prev_vma) { 2077 /* panthor_vma_link() transfers the vm_bo ownership to 2078 * the VMA object. Since the vm_bo we're passing is still 2079 * owned by the old mapping which will be released when this 2080 * mapping is destroyed, we need to grab a ref here. 2081 */ 2082 panthor_vma_link(vm, prev_vma, 2083 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo)); 2084 } 2085 2086 if (next_vma) { 2087 panthor_vma_link(vm, next_vma, 2088 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo)); 2089 } 2090 2091 panthor_vma_unlink(vm, unmap_vma); 2092 return 0; 2093 } 2094 2095 static int panthor_gpuva_sm_step_unmap(struct drm_gpuva_op *op, 2096 void *priv) 2097 { 2098 struct panthor_vma *unmap_vma = container_of(op->unmap.va, struct panthor_vma, base); 2099 struct panthor_vm *vm = priv; 2100 int ret; 2101 2102 ret = panthor_vm_unmap_pages(vm, unmap_vma->base.va.addr, 2103 unmap_vma->base.va.range); 2104 if (drm_WARN_ON(&vm->ptdev->base, ret)) 2105 return ret; 2106 2107 drm_gpuva_unmap(&op->unmap); 2108 panthor_vma_unlink(vm, unmap_vma); 2109 return 0; 2110 } 2111 2112 static const struct drm_gpuvm_ops panthor_gpuvm_ops = { 2113 .vm_free = panthor_vm_free, 2114 .sm_step_map = panthor_gpuva_sm_step_map, 2115 .sm_step_remap = panthor_gpuva_sm_step_remap, 2116 .sm_step_unmap = panthor_gpuva_sm_step_unmap, 2117 }; 2118 2119 /** 2120 * panthor_vm_resv() - Get the dma_resv object attached to a VM. 2121 * @vm: VM to get the dma_resv of. 2122 * 2123 * Return: A dma_resv object. 2124 */ 2125 struct dma_resv *panthor_vm_resv(struct panthor_vm *vm) 2126 { 2127 return drm_gpuvm_resv(&vm->base); 2128 } 2129 2130 struct drm_gem_object *panthor_vm_root_gem(struct panthor_vm *vm) 2131 { 2132 if (!vm) 2133 return NULL; 2134 2135 return vm->base.r_obj; 2136 } 2137 2138 static int 2139 panthor_vm_exec_op(struct panthor_vm *vm, struct panthor_vm_op_ctx *op, 2140 bool flag_vm_unusable_on_failure) 2141 { 2142 u32 op_type = op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK; 2143 int ret; 2144 2145 if (op_type == DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY) 2146 return 0; 2147 2148 mutex_lock(&vm->op_lock); 2149 vm->op_ctx = op; 2150 switch (op_type) { 2151 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: 2152 if (vm->unusable) { 2153 ret = -EINVAL; 2154 break; 2155 } 2156 2157 ret = drm_gpuvm_sm_map(&vm->base, vm, op->va.addr, op->va.range, 2158 op->map.vm_bo->obj, op->map.bo_offset); 2159 break; 2160 2161 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP: 2162 ret = drm_gpuvm_sm_unmap(&vm->base, vm, op->va.addr, op->va.range); 2163 break; 2164 2165 default: 2166 ret = -EINVAL; 2167 break; 2168 } 2169 2170 if (ret && flag_vm_unusable_on_failure) 2171 vm->unusable = true; 2172 2173 vm->op_ctx = NULL; 2174 mutex_unlock(&vm->op_lock); 2175 2176 return ret; 2177 } 2178 2179 static struct dma_fence * 2180 panthor_vm_bind_run_job(struct drm_sched_job *sched_job) 2181 { 2182 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base); 2183 bool cookie; 2184 int ret; 2185 2186 /* Not only we report an error whose result is propagated to the 2187 * drm_sched finished fence, but we also flag the VM as unusable, because 2188 * a failure in the async VM_BIND results in an inconsistent state. VM needs 2189 * to be destroyed and recreated. 2190 */ 2191 cookie = dma_fence_begin_signalling(); 2192 ret = panthor_vm_exec_op(job->vm, &job->ctx, true); 2193 dma_fence_end_signalling(cookie); 2194 2195 return ret ? ERR_PTR(ret) : NULL; 2196 } 2197 2198 static void panthor_vm_bind_job_release(struct kref *kref) 2199 { 2200 struct panthor_vm_bind_job *job = container_of(kref, struct panthor_vm_bind_job, refcount); 2201 2202 if (job->base.s_fence) 2203 drm_sched_job_cleanup(&job->base); 2204 2205 panthor_vm_cleanup_op_ctx(&job->ctx, job->vm); 2206 panthor_vm_put(job->vm); 2207 kfree(job); 2208 } 2209 2210 /** 2211 * panthor_vm_bind_job_put() - Release a VM_BIND job reference 2212 * @sched_job: Job to release the reference on. 2213 */ 2214 void panthor_vm_bind_job_put(struct drm_sched_job *sched_job) 2215 { 2216 struct panthor_vm_bind_job *job = 2217 container_of(sched_job, struct panthor_vm_bind_job, base); 2218 2219 if (sched_job) 2220 kref_put(&job->refcount, panthor_vm_bind_job_release); 2221 } 2222 2223 static void 2224 panthor_vm_bind_free_job(struct drm_sched_job *sched_job) 2225 { 2226 struct panthor_vm_bind_job *job = 2227 container_of(sched_job, struct panthor_vm_bind_job, base); 2228 2229 drm_sched_job_cleanup(sched_job); 2230 2231 /* Do the heavy cleanups asynchronously, so we're out of the 2232 * dma-signaling path and can acquire dma-resv locks safely. 2233 */ 2234 queue_work(panthor_cleanup_wq, &job->cleanup_op_ctx_work); 2235 } 2236 2237 static enum drm_gpu_sched_stat 2238 panthor_vm_bind_timedout_job(struct drm_sched_job *sched_job) 2239 { 2240 WARN(1, "VM_BIND ops are synchronous for now, there should be no timeout!"); 2241 return DRM_GPU_SCHED_STAT_NOMINAL; 2242 } 2243 2244 static const struct drm_sched_backend_ops panthor_vm_bind_ops = { 2245 .run_job = panthor_vm_bind_run_job, 2246 .free_job = panthor_vm_bind_free_job, 2247 .timedout_job = panthor_vm_bind_timedout_job, 2248 }; 2249 2250 /** 2251 * panthor_vm_create() - Create a VM 2252 * @ptdev: Device. 2253 * @for_mcu: True if this is the FW MCU VM. 2254 * @kernel_va_start: Start of the range reserved for kernel BO mapping. 2255 * @kernel_va_size: Size of the range reserved for kernel BO mapping. 2256 * @auto_kernel_va_start: Start of the auto-VA kernel range. 2257 * @auto_kernel_va_size: Size of the auto-VA kernel range. 2258 * 2259 * Return: A valid pointer on success, an ERR_PTR() otherwise. 2260 */ 2261 struct panthor_vm * 2262 panthor_vm_create(struct panthor_device *ptdev, bool for_mcu, 2263 u64 kernel_va_start, u64 kernel_va_size, 2264 u64 auto_kernel_va_start, u64 auto_kernel_va_size) 2265 { 2266 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 2267 u32 pa_bits = GPU_MMU_FEATURES_PA_BITS(ptdev->gpu_info.mmu_features); 2268 u64 full_va_range = 1ull << va_bits; 2269 struct drm_gem_object *dummy_gem; 2270 struct drm_gpu_scheduler *sched; 2271 struct io_pgtable_cfg pgtbl_cfg; 2272 u64 mair, min_va, va_range; 2273 struct panthor_vm *vm; 2274 int ret; 2275 2276 vm = kzalloc(sizeof(*vm), GFP_KERNEL); 2277 if (!vm) 2278 return ERR_PTR(-ENOMEM); 2279 2280 /* We allocate a dummy GEM for the VM. */ 2281 dummy_gem = drm_gpuvm_resv_object_alloc(&ptdev->base); 2282 if (!dummy_gem) { 2283 ret = -ENOMEM; 2284 goto err_free_vm; 2285 } 2286 2287 mutex_init(&vm->heaps.lock); 2288 vm->for_mcu = for_mcu; 2289 vm->ptdev = ptdev; 2290 mutex_init(&vm->op_lock); 2291 2292 if (for_mcu) { 2293 /* CSF MCU is a cortex M7, and can only address 4G */ 2294 min_va = 0; 2295 va_range = SZ_4G; 2296 } else { 2297 min_va = 0; 2298 va_range = full_va_range; 2299 } 2300 2301 mutex_init(&vm->mm_lock); 2302 drm_mm_init(&vm->mm, kernel_va_start, kernel_va_size); 2303 vm->kernel_auto_va.start = auto_kernel_va_start; 2304 vm->kernel_auto_va.end = vm->kernel_auto_va.start + auto_kernel_va_size - 1; 2305 2306 INIT_LIST_HEAD(&vm->node); 2307 INIT_LIST_HEAD(&vm->as.lru_node); 2308 vm->as.id = -1; 2309 refcount_set(&vm->as.active_cnt, 0); 2310 2311 pgtbl_cfg = (struct io_pgtable_cfg) { 2312 .pgsize_bitmap = SZ_4K | SZ_2M, 2313 .ias = va_bits, 2314 .oas = pa_bits, 2315 .coherent_walk = ptdev->coherent, 2316 .tlb = &mmu_tlb_ops, 2317 .iommu_dev = ptdev->base.dev, 2318 .alloc = alloc_pt, 2319 .free = free_pt, 2320 }; 2321 2322 vm->pgtbl_ops = alloc_io_pgtable_ops(ARM_64_LPAE_S1, &pgtbl_cfg, vm); 2323 if (!vm->pgtbl_ops) { 2324 ret = -EINVAL; 2325 goto err_mm_takedown; 2326 } 2327 2328 /* Bind operations are synchronous for now, no timeout needed. */ 2329 ret = drm_sched_init(&vm->sched, &panthor_vm_bind_ops, ptdev->mmu->vm.wq, 2330 1, 1, 0, 2331 MAX_SCHEDULE_TIMEOUT, NULL, NULL, 2332 "panthor-vm-bind", ptdev->base.dev); 2333 if (ret) 2334 goto err_free_io_pgtable; 2335 2336 sched = &vm->sched; 2337 ret = drm_sched_entity_init(&vm->entity, 0, &sched, 1, NULL); 2338 if (ret) 2339 goto err_sched_fini; 2340 2341 mair = io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg.arm_lpae_s1_cfg.mair; 2342 vm->memattr = mair_to_memattr(mair); 2343 2344 mutex_lock(&ptdev->mmu->vm.lock); 2345 list_add_tail(&vm->node, &ptdev->mmu->vm.list); 2346 2347 /* If a reset is in progress, stop the scheduler. */ 2348 if (ptdev->mmu->vm.reset_in_progress) 2349 panthor_vm_stop(vm); 2350 mutex_unlock(&ptdev->mmu->vm.lock); 2351 2352 /* We intentionally leave the reserved range to zero, because we want kernel VMAs 2353 * to be handled the same way user VMAs are. 2354 */ 2355 drm_gpuvm_init(&vm->base, for_mcu ? "panthor-MCU-VM" : "panthor-GPU-VM", 2356 DRM_GPUVM_RESV_PROTECTED, &ptdev->base, dummy_gem, 2357 min_va, va_range, 0, 0, &panthor_gpuvm_ops); 2358 drm_gem_object_put(dummy_gem); 2359 return vm; 2360 2361 err_sched_fini: 2362 drm_sched_fini(&vm->sched); 2363 2364 err_free_io_pgtable: 2365 free_io_pgtable_ops(vm->pgtbl_ops); 2366 2367 err_mm_takedown: 2368 drm_mm_takedown(&vm->mm); 2369 drm_gem_object_put(dummy_gem); 2370 2371 err_free_vm: 2372 kfree(vm); 2373 return ERR_PTR(ret); 2374 } 2375 2376 static int 2377 panthor_vm_bind_prepare_op_ctx(struct drm_file *file, 2378 struct panthor_vm *vm, 2379 const struct drm_panthor_vm_bind_op *op, 2380 struct panthor_vm_op_ctx *op_ctx) 2381 { 2382 ssize_t vm_pgsz = panthor_vm_page_size(vm); 2383 struct drm_gem_object *gem; 2384 int ret; 2385 2386 /* Aligned on page size. */ 2387 if (!IS_ALIGNED(op->va | op->size, vm_pgsz)) 2388 return -EINVAL; 2389 2390 switch (op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) { 2391 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: 2392 gem = drm_gem_object_lookup(file, op->bo_handle); 2393 ret = panthor_vm_prepare_map_op_ctx(op_ctx, vm, 2394 gem ? to_panthor_bo(gem) : NULL, 2395 op->bo_offset, 2396 op->size, 2397 op->va, 2398 op->flags); 2399 drm_gem_object_put(gem); 2400 return ret; 2401 2402 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP: 2403 if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) 2404 return -EINVAL; 2405 2406 if (op->bo_handle || op->bo_offset) 2407 return -EINVAL; 2408 2409 return panthor_vm_prepare_unmap_op_ctx(op_ctx, vm, op->va, op->size); 2410 2411 case DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY: 2412 if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) 2413 return -EINVAL; 2414 2415 if (op->bo_handle || op->bo_offset) 2416 return -EINVAL; 2417 2418 if (op->va || op->size) 2419 return -EINVAL; 2420 2421 if (!op->syncs.count) 2422 return -EINVAL; 2423 2424 panthor_vm_prepare_sync_only_op_ctx(op_ctx, vm); 2425 return 0; 2426 2427 default: 2428 return -EINVAL; 2429 } 2430 } 2431 2432 static void panthor_vm_bind_job_cleanup_op_ctx_work(struct work_struct *work) 2433 { 2434 struct panthor_vm_bind_job *job = 2435 container_of(work, struct panthor_vm_bind_job, cleanup_op_ctx_work); 2436 2437 panthor_vm_bind_job_put(&job->base); 2438 } 2439 2440 /** 2441 * panthor_vm_bind_job_create() - Create a VM_BIND job 2442 * @file: File. 2443 * @vm: VM targeted by the VM_BIND job. 2444 * @op: VM operation data. 2445 * 2446 * Return: A valid pointer on success, an ERR_PTR() otherwise. 2447 */ 2448 struct drm_sched_job * 2449 panthor_vm_bind_job_create(struct drm_file *file, 2450 struct panthor_vm *vm, 2451 const struct drm_panthor_vm_bind_op *op) 2452 { 2453 struct panthor_vm_bind_job *job; 2454 int ret; 2455 2456 if (!vm) 2457 return ERR_PTR(-EINVAL); 2458 2459 if (vm->destroyed || vm->unusable) 2460 return ERR_PTR(-EINVAL); 2461 2462 job = kzalloc(sizeof(*job), GFP_KERNEL); 2463 if (!job) 2464 return ERR_PTR(-ENOMEM); 2465 2466 ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &job->ctx); 2467 if (ret) { 2468 kfree(job); 2469 return ERR_PTR(ret); 2470 } 2471 2472 INIT_WORK(&job->cleanup_op_ctx_work, panthor_vm_bind_job_cleanup_op_ctx_work); 2473 kref_init(&job->refcount); 2474 job->vm = panthor_vm_get(vm); 2475 2476 ret = drm_sched_job_init(&job->base, &vm->entity, 1, vm); 2477 if (ret) 2478 goto err_put_job; 2479 2480 return &job->base; 2481 2482 err_put_job: 2483 panthor_vm_bind_job_put(&job->base); 2484 return ERR_PTR(ret); 2485 } 2486 2487 /** 2488 * panthor_vm_bind_job_prepare_resvs() - Prepare VM_BIND job dma_resvs 2489 * @exec: The locking/preparation context. 2490 * @sched_job: The job to prepare resvs on. 2491 * 2492 * Locks and prepare the VM resv. 2493 * 2494 * If this is a map operation, locks and prepares the GEM resv. 2495 * 2496 * Return: 0 on success, a negative error code otherwise. 2497 */ 2498 int panthor_vm_bind_job_prepare_resvs(struct drm_exec *exec, 2499 struct drm_sched_job *sched_job) 2500 { 2501 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base); 2502 int ret; 2503 2504 /* Acquire the VM lock an reserve a slot for this VM bind job. */ 2505 ret = drm_gpuvm_prepare_vm(&job->vm->base, exec, 1); 2506 if (ret) 2507 return ret; 2508 2509 if (job->ctx.map.vm_bo) { 2510 /* Lock/prepare the GEM being mapped. */ 2511 ret = drm_exec_prepare_obj(exec, job->ctx.map.vm_bo->obj, 1); 2512 if (ret) 2513 return ret; 2514 } 2515 2516 return 0; 2517 } 2518 2519 /** 2520 * panthor_vm_bind_job_update_resvs() - Update the resv objects touched by a job 2521 * @exec: drm_exec context. 2522 * @sched_job: Job to update the resvs on. 2523 */ 2524 void panthor_vm_bind_job_update_resvs(struct drm_exec *exec, 2525 struct drm_sched_job *sched_job) 2526 { 2527 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base); 2528 2529 /* Explicit sync => we just register our job finished fence as bookkeep. */ 2530 drm_gpuvm_resv_add_fence(&job->vm->base, exec, 2531 &sched_job->s_fence->finished, 2532 DMA_RESV_USAGE_BOOKKEEP, 2533 DMA_RESV_USAGE_BOOKKEEP); 2534 } 2535 2536 void panthor_vm_update_resvs(struct panthor_vm *vm, struct drm_exec *exec, 2537 struct dma_fence *fence, 2538 enum dma_resv_usage private_usage, 2539 enum dma_resv_usage extobj_usage) 2540 { 2541 drm_gpuvm_resv_add_fence(&vm->base, exec, fence, private_usage, extobj_usage); 2542 } 2543 2544 /** 2545 * panthor_vm_bind_exec_sync_op() - Execute a VM_BIND operation synchronously. 2546 * @file: File. 2547 * @vm: VM targeted by the VM operation. 2548 * @op: Data describing the VM operation. 2549 * 2550 * Return: 0 on success, a negative error code otherwise. 2551 */ 2552 int panthor_vm_bind_exec_sync_op(struct drm_file *file, 2553 struct panthor_vm *vm, 2554 struct drm_panthor_vm_bind_op *op) 2555 { 2556 struct panthor_vm_op_ctx op_ctx; 2557 int ret; 2558 2559 /* No sync objects allowed on synchronous operations. */ 2560 if (op->syncs.count) 2561 return -EINVAL; 2562 2563 if (!op->size) 2564 return 0; 2565 2566 ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &op_ctx); 2567 if (ret) 2568 return ret; 2569 2570 ret = panthor_vm_exec_op(vm, &op_ctx, false); 2571 panthor_vm_cleanup_op_ctx(&op_ctx, vm); 2572 2573 return ret; 2574 } 2575 2576 /** 2577 * panthor_vm_map_bo_range() - Map a GEM object range to a VM 2578 * @vm: VM to map the GEM to. 2579 * @bo: GEM object to map. 2580 * @offset: Offset in the GEM object. 2581 * @size: Size to map. 2582 * @va: Virtual address to map the object to. 2583 * @flags: Combination of drm_panthor_vm_bind_op_flags flags. 2584 * Only map-related flags are valid. 2585 * 2586 * Internal use only. For userspace requests, use 2587 * panthor_vm_bind_exec_sync_op() instead. 2588 * 2589 * Return: 0 on success, a negative error code otherwise. 2590 */ 2591 int panthor_vm_map_bo_range(struct panthor_vm *vm, struct panthor_gem_object *bo, 2592 u64 offset, u64 size, u64 va, u32 flags) 2593 { 2594 struct panthor_vm_op_ctx op_ctx; 2595 int ret; 2596 2597 ret = panthor_vm_prepare_map_op_ctx(&op_ctx, vm, bo, offset, size, va, flags); 2598 if (ret) 2599 return ret; 2600 2601 ret = panthor_vm_exec_op(vm, &op_ctx, false); 2602 panthor_vm_cleanup_op_ctx(&op_ctx, vm); 2603 2604 return ret; 2605 } 2606 2607 /** 2608 * panthor_vm_unmap_range() - Unmap a portion of the VA space 2609 * @vm: VM to unmap the region from. 2610 * @va: Virtual address to unmap. Must be 4k aligned. 2611 * @size: Size of the region to unmap. Must be 4k aligned. 2612 * 2613 * Internal use only. For userspace requests, use 2614 * panthor_vm_bind_exec_sync_op() instead. 2615 * 2616 * Return: 0 on success, a negative error code otherwise. 2617 */ 2618 int panthor_vm_unmap_range(struct panthor_vm *vm, u64 va, u64 size) 2619 { 2620 struct panthor_vm_op_ctx op_ctx; 2621 int ret; 2622 2623 ret = panthor_vm_prepare_unmap_op_ctx(&op_ctx, vm, va, size); 2624 if (ret) 2625 return ret; 2626 2627 ret = panthor_vm_exec_op(vm, &op_ctx, false); 2628 panthor_vm_cleanup_op_ctx(&op_ctx, vm); 2629 2630 return ret; 2631 } 2632 2633 /** 2634 * panthor_vm_prepare_mapped_bos_resvs() - Prepare resvs on VM BOs. 2635 * @exec: Locking/preparation context. 2636 * @vm: VM targeted by the GPU job. 2637 * @slot_count: Number of slots to reserve. 2638 * 2639 * GPU jobs assume all BOs bound to the VM at the time the job is submitted 2640 * are available when the job is executed. In order to guarantee that, we 2641 * need to reserve a slot on all BOs mapped to a VM and update this slot with 2642 * the job fence after its submission. 2643 * 2644 * Return: 0 on success, a negative error code otherwise. 2645 */ 2646 int panthor_vm_prepare_mapped_bos_resvs(struct drm_exec *exec, struct panthor_vm *vm, 2647 u32 slot_count) 2648 { 2649 int ret; 2650 2651 /* Acquire the VM lock and reserve a slot for this GPU job. */ 2652 ret = drm_gpuvm_prepare_vm(&vm->base, exec, slot_count); 2653 if (ret) 2654 return ret; 2655 2656 return drm_gpuvm_prepare_objects(&vm->base, exec, slot_count); 2657 } 2658 2659 /** 2660 * panthor_mmu_unplug() - Unplug the MMU logic 2661 * @ptdev: Device. 2662 * 2663 * No access to the MMU regs should be done after this function is called. 2664 * We suspend the IRQ and disable all VMs to guarantee that. 2665 */ 2666 void panthor_mmu_unplug(struct panthor_device *ptdev) 2667 { 2668 panthor_mmu_irq_suspend(&ptdev->mmu->irq); 2669 2670 mutex_lock(&ptdev->mmu->as.slots_lock); 2671 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) { 2672 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm; 2673 2674 if (vm) { 2675 drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i)); 2676 panthor_vm_release_as_locked(vm); 2677 } 2678 } 2679 mutex_unlock(&ptdev->mmu->as.slots_lock); 2680 } 2681 2682 static void panthor_mmu_release_wq(struct drm_device *ddev, void *res) 2683 { 2684 destroy_workqueue(res); 2685 } 2686 2687 /** 2688 * panthor_mmu_init() - Initialize the MMU logic. 2689 * @ptdev: Device. 2690 * 2691 * Return: 0 on success, a negative error code otherwise. 2692 */ 2693 int panthor_mmu_init(struct panthor_device *ptdev) 2694 { 2695 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 2696 struct panthor_mmu *mmu; 2697 int ret, irq; 2698 2699 mmu = drmm_kzalloc(&ptdev->base, sizeof(*mmu), GFP_KERNEL); 2700 if (!mmu) 2701 return -ENOMEM; 2702 2703 INIT_LIST_HEAD(&mmu->as.lru_list); 2704 2705 ret = drmm_mutex_init(&ptdev->base, &mmu->as.slots_lock); 2706 if (ret) 2707 return ret; 2708 2709 INIT_LIST_HEAD(&mmu->vm.list); 2710 ret = drmm_mutex_init(&ptdev->base, &mmu->vm.lock); 2711 if (ret) 2712 return ret; 2713 2714 ptdev->mmu = mmu; 2715 2716 irq = platform_get_irq_byname(to_platform_device(ptdev->base.dev), "mmu"); 2717 if (irq <= 0) 2718 return -ENODEV; 2719 2720 ret = panthor_request_mmu_irq(ptdev, &mmu->irq, irq, 2721 panthor_mmu_fault_mask(ptdev, ~0)); 2722 if (ret) 2723 return ret; 2724 2725 mmu->vm.wq = alloc_workqueue("panthor-vm-bind", WQ_UNBOUND, 0); 2726 if (!mmu->vm.wq) 2727 return -ENOMEM; 2728 2729 /* On 32-bit kernels, the VA space is limited by the io_pgtable_ops abstraction, 2730 * which passes iova as an unsigned long. Patch the mmu_features to reflect this 2731 * limitation. 2732 */ 2733 if (va_bits > BITS_PER_LONG) { 2734 ptdev->gpu_info.mmu_features &= ~GENMASK(7, 0); 2735 ptdev->gpu_info.mmu_features |= BITS_PER_LONG; 2736 } 2737 2738 return drmm_add_action_or_reset(&ptdev->base, panthor_mmu_release_wq, mmu->vm.wq); 2739 } 2740 2741 #ifdef CONFIG_DEBUG_FS 2742 static int show_vm_gpuvas(struct panthor_vm *vm, struct seq_file *m) 2743 { 2744 int ret; 2745 2746 mutex_lock(&vm->op_lock); 2747 ret = drm_debugfs_gpuva_info(m, &vm->base); 2748 mutex_unlock(&vm->op_lock); 2749 2750 return ret; 2751 } 2752 2753 static int show_each_vm(struct seq_file *m, void *arg) 2754 { 2755 struct drm_info_node *node = (struct drm_info_node *)m->private; 2756 struct drm_device *ddev = node->minor->dev; 2757 struct panthor_device *ptdev = container_of(ddev, struct panthor_device, base); 2758 int (*show)(struct panthor_vm *, struct seq_file *) = node->info_ent->data; 2759 struct panthor_vm *vm; 2760 int ret = 0; 2761 2762 mutex_lock(&ptdev->mmu->vm.lock); 2763 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) { 2764 ret = show(vm, m); 2765 if (ret < 0) 2766 break; 2767 2768 seq_puts(m, "\n"); 2769 } 2770 mutex_unlock(&ptdev->mmu->vm.lock); 2771 2772 return ret; 2773 } 2774 2775 static struct drm_info_list panthor_mmu_debugfs_list[] = { 2776 DRM_DEBUGFS_GPUVA_INFO(show_each_vm, show_vm_gpuvas), 2777 }; 2778 2779 /** 2780 * panthor_mmu_debugfs_init() - Initialize MMU debugfs entries 2781 * @minor: Minor. 2782 */ 2783 void panthor_mmu_debugfs_init(struct drm_minor *minor) 2784 { 2785 drm_debugfs_create_files(panthor_mmu_debugfs_list, 2786 ARRAY_SIZE(panthor_mmu_debugfs_list), 2787 minor->debugfs_root, minor); 2788 } 2789 #endif /* CONFIG_DEBUG_FS */ 2790 2791 /** 2792 * panthor_mmu_pt_cache_init() - Initialize the page table cache. 2793 * 2794 * Return: 0 on success, a negative error code otherwise. 2795 */ 2796 int panthor_mmu_pt_cache_init(void) 2797 { 2798 pt_cache = kmem_cache_create("panthor-mmu-pt", SZ_4K, SZ_4K, 0, NULL); 2799 if (!pt_cache) 2800 return -ENOMEM; 2801 2802 return 0; 2803 } 2804 2805 /** 2806 * panthor_mmu_pt_cache_fini() - Destroy the page table cache. 2807 */ 2808 void panthor_mmu_pt_cache_fini(void) 2809 { 2810 kmem_cache_destroy(pt_cache); 2811 } 2812