xref: /linux/drivers/gpu/drm/panthor/panthor_mmu.c (revision 46ae4d0a489741565520195bddebc3414781e603)
1 // SPDX-License-Identifier: GPL-2.0 or MIT
2 /* Copyright 2019 Linaro, Ltd, Rob Herring <robh@kernel.org> */
3 /* Copyright 2023 Collabora ltd. */
4 
5 #include <drm/drm_debugfs.h>
6 #include <drm/drm_drv.h>
7 #include <drm/drm_exec.h>
8 #include <drm/drm_gpuvm.h>
9 #include <drm/drm_managed.h>
10 #include <drm/gpu_scheduler.h>
11 #include <drm/panthor_drm.h>
12 
13 #include <linux/atomic.h>
14 #include <linux/bitfield.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/io-pgtable.h>
21 #include <linux/iommu.h>
22 #include <linux/kmemleak.h>
23 #include <linux/platform_device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/rwsem.h>
26 #include <linux/sched.h>
27 #include <linux/shmem_fs.h>
28 #include <linux/sizes.h>
29 
30 #include "panthor_device.h"
31 #include "panthor_gem.h"
32 #include "panthor_heap.h"
33 #include "panthor_mmu.h"
34 #include "panthor_regs.h"
35 #include "panthor_sched.h"
36 
37 #define MAX_AS_SLOTS			32
38 
39 struct panthor_vm;
40 
41 /**
42  * struct panthor_as_slot - Address space slot
43  */
44 struct panthor_as_slot {
45 	/** @vm: VM bound to this slot. NULL is no VM is bound. */
46 	struct panthor_vm *vm;
47 };
48 
49 /**
50  * struct panthor_mmu - MMU related data
51  */
52 struct panthor_mmu {
53 	/** @irq: The MMU irq. */
54 	struct panthor_irq irq;
55 
56 	/** @as: Address space related fields.
57 	 *
58 	 * The GPU has a limited number of address spaces (AS) slots, forcing
59 	 * us to re-assign them to re-assign slots on-demand.
60 	 */
61 	struct {
62 		/** @slots_lock: Lock protecting access to all other AS fields. */
63 		struct mutex slots_lock;
64 
65 		/** @alloc_mask: Bitmask encoding the allocated slots. */
66 		unsigned long alloc_mask;
67 
68 		/** @faulty_mask: Bitmask encoding the faulty slots. */
69 		unsigned long faulty_mask;
70 
71 		/** @slots: VMs currently bound to the AS slots. */
72 		struct panthor_as_slot slots[MAX_AS_SLOTS];
73 
74 		/**
75 		 * @lru_list: List of least recently used VMs.
76 		 *
77 		 * We use this list to pick a VM to evict when all slots are
78 		 * used.
79 		 *
80 		 * There should be no more active VMs than there are AS slots,
81 		 * so this LRU is just here to keep VMs bound until there's
82 		 * a need to release a slot, thus avoid unnecessary TLB/cache
83 		 * flushes.
84 		 */
85 		struct list_head lru_list;
86 	} as;
87 
88 	/** @vm: VMs management fields */
89 	struct {
90 		/** @lock: Lock protecting access to list. */
91 		struct mutex lock;
92 
93 		/** @list: List containing all VMs. */
94 		struct list_head list;
95 
96 		/** @reset_in_progress: True if a reset is in progress. */
97 		bool reset_in_progress;
98 
99 		/** @wq: Workqueue used for the VM_BIND queues. */
100 		struct workqueue_struct *wq;
101 	} vm;
102 };
103 
104 /**
105  * struct panthor_vm_pool - VM pool object
106  */
107 struct panthor_vm_pool {
108 	/** @xa: Array used for VM handle tracking. */
109 	struct xarray xa;
110 };
111 
112 /**
113  * struct panthor_vma - GPU mapping object
114  *
115  * This is used to track GEM mappings in GPU space.
116  */
117 struct panthor_vma {
118 	/** @base: Inherits from drm_gpuva. */
119 	struct drm_gpuva base;
120 
121 	/** @node: Used to implement deferred release of VMAs. */
122 	struct list_head node;
123 
124 	/**
125 	 * @flags: Combination of drm_panthor_vm_bind_op_flags.
126 	 *
127 	 * Only map related flags are accepted.
128 	 */
129 	u32 flags;
130 };
131 
132 /**
133  * struct panthor_vm_op_ctx - VM operation context
134  *
135  * With VM operations potentially taking place in a dma-signaling path, we
136  * need to make sure everything that might require resource allocation is
137  * pre-allocated upfront. This is what this operation context is far.
138  *
139  * We also collect resources that have been freed, so we can release them
140  * asynchronously, and let the VM_BIND scheduler process the next VM_BIND
141  * request.
142  */
143 struct panthor_vm_op_ctx {
144 	/** @rsvd_page_tables: Pages reserved for the MMU page table update. */
145 	struct {
146 		/** @count: Number of pages reserved. */
147 		u32 count;
148 
149 		/** @ptr: Point to the first unused page in the @pages table. */
150 		u32 ptr;
151 
152 		/**
153 		 * @page: Array of pages that can be used for an MMU page table update.
154 		 *
155 		 * After an VM operation, there might be free pages left in this array.
156 		 * They should be returned to the pt_cache as part of the op_ctx cleanup.
157 		 */
158 		void **pages;
159 	} rsvd_page_tables;
160 
161 	/**
162 	 * @preallocated_vmas: Pre-allocated VMAs to handle the remap case.
163 	 *
164 	 * Partial unmap requests or map requests overlapping existing mappings will
165 	 * trigger a remap call, which need to register up to three panthor_vma objects
166 	 * (one for the new mapping, and two for the previous and next mappings).
167 	 */
168 	struct panthor_vma *preallocated_vmas[3];
169 
170 	/** @flags: Combination of drm_panthor_vm_bind_op_flags. */
171 	u32 flags;
172 
173 	/** @va: Virtual range targeted by the VM operation. */
174 	struct {
175 		/** @addr: Start address. */
176 		u64 addr;
177 
178 		/** @range: Range size. */
179 		u64 range;
180 	} va;
181 
182 	/**
183 	 * @returned_vmas: List of panthor_vma objects returned after a VM operation.
184 	 *
185 	 * For unmap operations, this will contain all VMAs that were covered by the
186 	 * specified VA range.
187 	 *
188 	 * For map operations, this will contain all VMAs that previously mapped to
189 	 * the specified VA range.
190 	 *
191 	 * Those VMAs, and the resources they point to will be released as part of
192 	 * the op_ctx cleanup operation.
193 	 */
194 	struct list_head returned_vmas;
195 
196 	/** @map: Fields specific to a map operation. */
197 	struct {
198 		/** @vm_bo: Buffer object to map. */
199 		struct drm_gpuvm_bo *vm_bo;
200 
201 		/** @bo_offset: Offset in the buffer object. */
202 		u64 bo_offset;
203 
204 		/**
205 		 * @sgt: sg-table pointing to pages backing the GEM object.
206 		 *
207 		 * This is gathered at job creation time, such that we don't have
208 		 * to allocate in ::run_job().
209 		 */
210 		struct sg_table *sgt;
211 
212 		/**
213 		 * @new_vma: The new VMA object that will be inserted to the VA tree.
214 		 */
215 		struct panthor_vma *new_vma;
216 	} map;
217 };
218 
219 /**
220  * struct panthor_vm - VM object
221  *
222  * A VM is an object representing a GPU (or MCU) virtual address space.
223  * It embeds the MMU page table for this address space, a tree containing
224  * all the virtual mappings of GEM objects, and other things needed to manage
225  * the VM.
226  *
227  * Except for the MCU VM, which is managed by the kernel, all other VMs are
228  * created by userspace and mostly managed by userspace, using the
229  * %DRM_IOCTL_PANTHOR_VM_BIND ioctl.
230  *
231  * A portion of the virtual address space is reserved for kernel objects,
232  * like heap chunks, and userspace gets to decide how much of the virtual
233  * address space is left to the kernel (half of the virtual address space
234  * by default).
235  */
236 struct panthor_vm {
237 	/**
238 	 * @base: Inherit from drm_gpuvm.
239 	 *
240 	 * We delegate all the VA management to the common drm_gpuvm framework
241 	 * and only implement hooks to update the MMU page table.
242 	 */
243 	struct drm_gpuvm base;
244 
245 	/**
246 	 * @sched: Scheduler used for asynchronous VM_BIND request.
247 	 *
248 	 * We use a 1:1 scheduler here.
249 	 */
250 	struct drm_gpu_scheduler sched;
251 
252 	/**
253 	 * @entity: Scheduling entity representing the VM_BIND queue.
254 	 *
255 	 * There's currently one bind queue per VM. It doesn't make sense to
256 	 * allow more given the VM operations are serialized anyway.
257 	 */
258 	struct drm_sched_entity entity;
259 
260 	/** @ptdev: Device. */
261 	struct panthor_device *ptdev;
262 
263 	/** @memattr: Value to program to the AS_MEMATTR register. */
264 	u64 memattr;
265 
266 	/** @pgtbl_ops: Page table operations. */
267 	struct io_pgtable_ops *pgtbl_ops;
268 
269 	/** @root_page_table: Stores the root page table pointer. */
270 	void *root_page_table;
271 
272 	/**
273 	 * @op_lock: Lock used to serialize operations on a VM.
274 	 *
275 	 * The serialization of jobs queued to the VM_BIND queue is already
276 	 * taken care of by drm_sched, but we need to serialize synchronous
277 	 * and asynchronous VM_BIND request. This is what this lock is for.
278 	 */
279 	struct mutex op_lock;
280 
281 	/**
282 	 * @op_ctx: The context attached to the currently executing VM operation.
283 	 *
284 	 * NULL when no operation is in progress.
285 	 */
286 	struct panthor_vm_op_ctx *op_ctx;
287 
288 	/**
289 	 * @mm: Memory management object representing the auto-VA/kernel-VA.
290 	 *
291 	 * Used to auto-allocate VA space for kernel-managed objects (tiler
292 	 * heaps, ...).
293 	 *
294 	 * For the MCU VM, this is managing the VA range that's used to map
295 	 * all shared interfaces.
296 	 *
297 	 * For user VMs, the range is specified by userspace, and must not
298 	 * exceed half of the VA space addressable.
299 	 */
300 	struct drm_mm mm;
301 
302 	/** @mm_lock: Lock protecting the @mm field. */
303 	struct mutex mm_lock;
304 
305 	/** @kernel_auto_va: Automatic VA-range for kernel BOs. */
306 	struct {
307 		/** @start: Start of the automatic VA-range for kernel BOs. */
308 		u64 start;
309 
310 		/** @size: Size of the automatic VA-range for kernel BOs. */
311 		u64 end;
312 	} kernel_auto_va;
313 
314 	/** @as: Address space related fields. */
315 	struct {
316 		/**
317 		 * @id: ID of the address space this VM is bound to.
318 		 *
319 		 * A value of -1 means the VM is inactive/not bound.
320 		 */
321 		int id;
322 
323 		/** @active_cnt: Number of active users of this VM. */
324 		refcount_t active_cnt;
325 
326 		/**
327 		 * @lru_node: Used to instead the VM in the panthor_mmu::as::lru_list.
328 		 *
329 		 * Active VMs should not be inserted in the LRU list.
330 		 */
331 		struct list_head lru_node;
332 	} as;
333 
334 	/**
335 	 * @heaps: Tiler heap related fields.
336 	 */
337 	struct {
338 		/**
339 		 * @pool: The heap pool attached to this VM.
340 		 *
341 		 * Will stay NULL until someone creates a heap context on this VM.
342 		 */
343 		struct panthor_heap_pool *pool;
344 
345 		/** @lock: Lock used to protect access to @pool. */
346 		struct mutex lock;
347 	} heaps;
348 
349 	/** @node: Used to insert the VM in the panthor_mmu::vm::list. */
350 	struct list_head node;
351 
352 	/** @for_mcu: True if this is the MCU VM. */
353 	bool for_mcu;
354 
355 	/**
356 	 * @destroyed: True if the VM was destroyed.
357 	 *
358 	 * No further bind requests should be queued to a destroyed VM.
359 	 */
360 	bool destroyed;
361 
362 	/**
363 	 * @unusable: True if the VM has turned unusable because something
364 	 * bad happened during an asynchronous request.
365 	 *
366 	 * We don't try to recover from such failures, because this implies
367 	 * informing userspace about the specific operation that failed, and
368 	 * hoping the userspace driver can replay things from there. This all
369 	 * sounds very complicated for little gain.
370 	 *
371 	 * Instead, we should just flag the VM as unusable, and fail any
372 	 * further request targeting this VM.
373 	 *
374 	 * We also provide a way to query a VM state, so userspace can destroy
375 	 * it and create a new one.
376 	 *
377 	 * As an analogy, this would be mapped to a VK_ERROR_DEVICE_LOST
378 	 * situation, where the logical device needs to be re-created.
379 	 */
380 	bool unusable;
381 
382 	/**
383 	 * @unhandled_fault: Unhandled fault happened.
384 	 *
385 	 * This should be reported to the scheduler, and the queue/group be
386 	 * flagged as faulty as a result.
387 	 */
388 	bool unhandled_fault;
389 };
390 
391 /**
392  * struct panthor_vm_bind_job - VM bind job
393  */
394 struct panthor_vm_bind_job {
395 	/** @base: Inherit from drm_sched_job. */
396 	struct drm_sched_job base;
397 
398 	/** @refcount: Reference count. */
399 	struct kref refcount;
400 
401 	/** @cleanup_op_ctx_work: Work used to cleanup the VM operation context. */
402 	struct work_struct cleanup_op_ctx_work;
403 
404 	/** @vm: VM targeted by the VM operation. */
405 	struct panthor_vm *vm;
406 
407 	/** @ctx: Operation context. */
408 	struct panthor_vm_op_ctx ctx;
409 };
410 
411 /**
412  * @pt_cache: Cache used to allocate MMU page tables.
413  *
414  * The pre-allocation pattern forces us to over-allocate to plan for
415  * the worst case scenario, and return the pages we didn't use.
416  *
417  * Having a kmem_cache allows us to speed allocations.
418  */
419 static struct kmem_cache *pt_cache;
420 
421 /**
422  * alloc_pt() - Custom page table allocator
423  * @cookie: Cookie passed at page table allocation time.
424  * @size: Size of the page table. This size should be fixed,
425  * and determined at creation time based on the granule size.
426  * @gfp: GFP flags.
427  *
428  * We want a custom allocator so we can use a cache for page table
429  * allocations and amortize the cost of the over-reservation that's
430  * done to allow asynchronous VM operations.
431  *
432  * Return: non-NULL on success, NULL if the allocation failed for any
433  * reason.
434  */
435 static void *alloc_pt(void *cookie, size_t size, gfp_t gfp)
436 {
437 	struct panthor_vm *vm = cookie;
438 	void *page;
439 
440 	/* Allocation of the root page table happening during init. */
441 	if (unlikely(!vm->root_page_table)) {
442 		struct page *p;
443 
444 		drm_WARN_ON(&vm->ptdev->base, vm->op_ctx);
445 		p = alloc_pages_node(dev_to_node(vm->ptdev->base.dev),
446 				     gfp | __GFP_ZERO, get_order(size));
447 		page = p ? page_address(p) : NULL;
448 		vm->root_page_table = page;
449 		return page;
450 	}
451 
452 	/* We're not supposed to have anything bigger than 4k here, because we picked a
453 	 * 4k granule size at init time.
454 	 */
455 	if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K))
456 		return NULL;
457 
458 	/* We must have some op_ctx attached to the VM and it must have at least one
459 	 * free page.
460 	 */
461 	if (drm_WARN_ON(&vm->ptdev->base, !vm->op_ctx) ||
462 	    drm_WARN_ON(&vm->ptdev->base,
463 			vm->op_ctx->rsvd_page_tables.ptr >= vm->op_ctx->rsvd_page_tables.count))
464 		return NULL;
465 
466 	page = vm->op_ctx->rsvd_page_tables.pages[vm->op_ctx->rsvd_page_tables.ptr++];
467 	memset(page, 0, SZ_4K);
468 
469 	/* Page table entries don't use virtual addresses, which trips out
470 	 * kmemleak. kmemleak_alloc_phys() might work, but physical addresses
471 	 * are mixed with other fields, and I fear kmemleak won't detect that
472 	 * either.
473 	 *
474 	 * Let's just ignore memory passed to the page-table driver for now.
475 	 */
476 	kmemleak_ignore(page);
477 	return page;
478 }
479 
480 /**
481  * @free_pt() - Custom page table free function
482  * @cookie: Cookie passed at page table allocation time.
483  * @data: Page table to free.
484  * @size: Size of the page table. This size should be fixed,
485  * and determined at creation time based on the granule size.
486  */
487 static void free_pt(void *cookie, void *data, size_t size)
488 {
489 	struct panthor_vm *vm = cookie;
490 
491 	if (unlikely(vm->root_page_table == data)) {
492 		free_pages((unsigned long)data, get_order(size));
493 		vm->root_page_table = NULL;
494 		return;
495 	}
496 
497 	if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K))
498 		return;
499 
500 	/* Return the page to the pt_cache. */
501 	kmem_cache_free(pt_cache, data);
502 }
503 
504 static int wait_ready(struct panthor_device *ptdev, u32 as_nr)
505 {
506 	int ret;
507 	u32 val;
508 
509 	/* Wait for the MMU status to indicate there is no active command, in
510 	 * case one is pending.
511 	 */
512 	ret = readl_relaxed_poll_timeout_atomic(ptdev->iomem + AS_STATUS(as_nr),
513 						val, !(val & AS_STATUS_AS_ACTIVE),
514 						10, 100000);
515 
516 	if (ret) {
517 		panthor_device_schedule_reset(ptdev);
518 		drm_err(&ptdev->base, "AS_ACTIVE bit stuck\n");
519 	}
520 
521 	return ret;
522 }
523 
524 static int write_cmd(struct panthor_device *ptdev, u32 as_nr, u32 cmd)
525 {
526 	int status;
527 
528 	/* write AS_COMMAND when MMU is ready to accept another command */
529 	status = wait_ready(ptdev, as_nr);
530 	if (!status)
531 		gpu_write(ptdev, AS_COMMAND(as_nr), cmd);
532 
533 	return status;
534 }
535 
536 static void lock_region(struct panthor_device *ptdev, u32 as_nr,
537 			u64 region_start, u64 size)
538 {
539 	u8 region_width;
540 	u64 region;
541 	u64 region_end = region_start + size;
542 
543 	if (!size)
544 		return;
545 
546 	/*
547 	 * The locked region is a naturally aligned power of 2 block encoded as
548 	 * log2 minus(1).
549 	 * Calculate the desired start/end and look for the highest bit which
550 	 * differs. The smallest naturally aligned block must include this bit
551 	 * change, the desired region starts with this bit (and subsequent bits)
552 	 * zeroed and ends with the bit (and subsequent bits) set to one.
553 	 */
554 	region_width = max(fls64(region_start ^ (region_end - 1)),
555 			   const_ilog2(AS_LOCK_REGION_MIN_SIZE)) - 1;
556 
557 	/*
558 	 * Mask off the low bits of region_start (which would be ignored by
559 	 * the hardware anyway)
560 	 */
561 	region_start &= GENMASK_ULL(63, region_width);
562 
563 	region = region_width | region_start;
564 
565 	/* Lock the region that needs to be updated */
566 	gpu_write(ptdev, AS_LOCKADDR_LO(as_nr), lower_32_bits(region));
567 	gpu_write(ptdev, AS_LOCKADDR_HI(as_nr), upper_32_bits(region));
568 	write_cmd(ptdev, as_nr, AS_COMMAND_LOCK);
569 }
570 
571 static int mmu_hw_do_operation_locked(struct panthor_device *ptdev, int as_nr,
572 				      u64 iova, u64 size, u32 op)
573 {
574 	lockdep_assert_held(&ptdev->mmu->as.slots_lock);
575 
576 	if (as_nr < 0)
577 		return 0;
578 
579 	/*
580 	 * If the AS number is greater than zero, then we can be sure
581 	 * the device is up and running, so we don't need to explicitly
582 	 * power it up
583 	 */
584 
585 	if (op != AS_COMMAND_UNLOCK)
586 		lock_region(ptdev, as_nr, iova, size);
587 
588 	/* Run the MMU operation */
589 	write_cmd(ptdev, as_nr, op);
590 
591 	/* Wait for the flush to complete */
592 	return wait_ready(ptdev, as_nr);
593 }
594 
595 static int mmu_hw_do_operation(struct panthor_vm *vm,
596 			       u64 iova, u64 size, u32 op)
597 {
598 	struct panthor_device *ptdev = vm->ptdev;
599 	int ret;
600 
601 	mutex_lock(&ptdev->mmu->as.slots_lock);
602 	ret = mmu_hw_do_operation_locked(ptdev, vm->as.id, iova, size, op);
603 	mutex_unlock(&ptdev->mmu->as.slots_lock);
604 
605 	return ret;
606 }
607 
608 static int panthor_mmu_as_enable(struct panthor_device *ptdev, u32 as_nr,
609 				 u64 transtab, u64 transcfg, u64 memattr)
610 {
611 	int ret;
612 
613 	ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
614 	if (ret)
615 		return ret;
616 
617 	gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), lower_32_bits(transtab));
618 	gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), upper_32_bits(transtab));
619 
620 	gpu_write(ptdev, AS_MEMATTR_LO(as_nr), lower_32_bits(memattr));
621 	gpu_write(ptdev, AS_MEMATTR_HI(as_nr), upper_32_bits(memattr));
622 
623 	gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), lower_32_bits(transcfg));
624 	gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), upper_32_bits(transcfg));
625 
626 	return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE);
627 }
628 
629 static int panthor_mmu_as_disable(struct panthor_device *ptdev, u32 as_nr)
630 {
631 	int ret;
632 
633 	ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
634 	if (ret)
635 		return ret;
636 
637 	gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), 0);
638 	gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), 0);
639 
640 	gpu_write(ptdev, AS_MEMATTR_LO(as_nr), 0);
641 	gpu_write(ptdev, AS_MEMATTR_HI(as_nr), 0);
642 
643 	gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), AS_TRANSCFG_ADRMODE_UNMAPPED);
644 	gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), 0);
645 
646 	return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE);
647 }
648 
649 static u32 panthor_mmu_fault_mask(struct panthor_device *ptdev, u32 value)
650 {
651 	/* Bits 16 to 31 mean REQ_COMPLETE. */
652 	return value & GENMASK(15, 0);
653 }
654 
655 static u32 panthor_mmu_as_fault_mask(struct panthor_device *ptdev, u32 as)
656 {
657 	return BIT(as);
658 }
659 
660 /**
661  * panthor_vm_has_unhandled_faults() - Check if a VM has unhandled faults
662  * @vm: VM to check.
663  *
664  * Return: true if the VM has unhandled faults, false otherwise.
665  */
666 bool panthor_vm_has_unhandled_faults(struct panthor_vm *vm)
667 {
668 	return vm->unhandled_fault;
669 }
670 
671 /**
672  * panthor_vm_is_unusable() - Check if the VM is still usable
673  * @vm: VM to check.
674  *
675  * Return: true if the VM is unusable, false otherwise.
676  */
677 bool panthor_vm_is_unusable(struct panthor_vm *vm)
678 {
679 	return vm->unusable;
680 }
681 
682 static void panthor_vm_release_as_locked(struct panthor_vm *vm)
683 {
684 	struct panthor_device *ptdev = vm->ptdev;
685 
686 	lockdep_assert_held(&ptdev->mmu->as.slots_lock);
687 
688 	if (drm_WARN_ON(&ptdev->base, vm->as.id < 0))
689 		return;
690 
691 	ptdev->mmu->as.slots[vm->as.id].vm = NULL;
692 	clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask);
693 	refcount_set(&vm->as.active_cnt, 0);
694 	list_del_init(&vm->as.lru_node);
695 	vm->as.id = -1;
696 }
697 
698 /**
699  * panthor_vm_active() - Flag a VM as active
700  * @VM: VM to flag as active.
701  *
702  * Assigns an address space to a VM so it can be used by the GPU/MCU.
703  *
704  * Return: 0 on success, a negative error code otherwise.
705  */
706 int panthor_vm_active(struct panthor_vm *vm)
707 {
708 	struct panthor_device *ptdev = vm->ptdev;
709 	u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
710 	struct io_pgtable_cfg *cfg = &io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg;
711 	int ret = 0, as, cookie;
712 	u64 transtab, transcfg;
713 
714 	if (!drm_dev_enter(&ptdev->base, &cookie))
715 		return -ENODEV;
716 
717 	if (refcount_inc_not_zero(&vm->as.active_cnt))
718 		goto out_dev_exit;
719 
720 	mutex_lock(&ptdev->mmu->as.slots_lock);
721 
722 	if (refcount_inc_not_zero(&vm->as.active_cnt))
723 		goto out_unlock;
724 
725 	as = vm->as.id;
726 	if (as >= 0) {
727 		/* Unhandled pagefault on this AS, the MMU was disabled. We need to
728 		 * re-enable the MMU after clearing+unmasking the AS interrupts.
729 		 */
730 		if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as))
731 			goto out_enable_as;
732 
733 		goto out_make_active;
734 	}
735 
736 	/* Check for a free AS */
737 	if (vm->for_mcu) {
738 		drm_WARN_ON(&ptdev->base, ptdev->mmu->as.alloc_mask & BIT(0));
739 		as = 0;
740 	} else {
741 		as = ffz(ptdev->mmu->as.alloc_mask | BIT(0));
742 	}
743 
744 	if (!(BIT(as) & ptdev->gpu_info.as_present)) {
745 		struct panthor_vm *lru_vm;
746 
747 		lru_vm = list_first_entry_or_null(&ptdev->mmu->as.lru_list,
748 						  struct panthor_vm,
749 						  as.lru_node);
750 		if (drm_WARN_ON(&ptdev->base, !lru_vm)) {
751 			ret = -EBUSY;
752 			goto out_unlock;
753 		}
754 
755 		drm_WARN_ON(&ptdev->base, refcount_read(&lru_vm->as.active_cnt));
756 		as = lru_vm->as.id;
757 		panthor_vm_release_as_locked(lru_vm);
758 	}
759 
760 	/* Assign the free or reclaimed AS to the FD */
761 	vm->as.id = as;
762 	set_bit(as, &ptdev->mmu->as.alloc_mask);
763 	ptdev->mmu->as.slots[as].vm = vm;
764 
765 out_enable_as:
766 	transtab = cfg->arm_lpae_s1_cfg.ttbr;
767 	transcfg = AS_TRANSCFG_PTW_MEMATTR_WB |
768 		   AS_TRANSCFG_PTW_RA |
769 		   AS_TRANSCFG_ADRMODE_AARCH64_4K |
770 		   AS_TRANSCFG_INA_BITS(55 - va_bits);
771 	if (ptdev->coherent)
772 		transcfg |= AS_TRANSCFG_PTW_SH_OS;
773 
774 	/* If the VM is re-activated, we clear the fault. */
775 	vm->unhandled_fault = false;
776 
777 	/* Unhandled pagefault on this AS, clear the fault and re-enable interrupts
778 	 * before enabling the AS.
779 	 */
780 	if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) {
781 		gpu_write(ptdev, MMU_INT_CLEAR, panthor_mmu_as_fault_mask(ptdev, as));
782 		ptdev->mmu->as.faulty_mask &= ~panthor_mmu_as_fault_mask(ptdev, as);
783 		gpu_write(ptdev, MMU_INT_MASK, ~ptdev->mmu->as.faulty_mask);
784 	}
785 
786 	ret = panthor_mmu_as_enable(vm->ptdev, vm->as.id, transtab, transcfg, vm->memattr);
787 
788 out_make_active:
789 	if (!ret) {
790 		refcount_set(&vm->as.active_cnt, 1);
791 		list_del_init(&vm->as.lru_node);
792 	}
793 
794 out_unlock:
795 	mutex_unlock(&ptdev->mmu->as.slots_lock);
796 
797 out_dev_exit:
798 	drm_dev_exit(cookie);
799 	return ret;
800 }
801 
802 /**
803  * panthor_vm_idle() - Flag a VM idle
804  * @VM: VM to flag as idle.
805  *
806  * When we know the GPU is done with the VM (no more jobs to process),
807  * we can relinquish the AS slot attached to this VM, if any.
808  *
809  * We don't release the slot immediately, but instead place the VM in
810  * the LRU list, so it can be evicted if another VM needs an AS slot.
811  * This way, VMs keep attached to the AS they were given until we run
812  * out of free slot, limiting the number of MMU operations (TLB flush
813  * and other AS updates).
814  */
815 void panthor_vm_idle(struct panthor_vm *vm)
816 {
817 	struct panthor_device *ptdev = vm->ptdev;
818 
819 	if (!refcount_dec_and_mutex_lock(&vm->as.active_cnt, &ptdev->mmu->as.slots_lock))
820 		return;
821 
822 	if (!drm_WARN_ON(&ptdev->base, vm->as.id == -1 || !list_empty(&vm->as.lru_node)))
823 		list_add_tail(&vm->as.lru_node, &ptdev->mmu->as.lru_list);
824 
825 	refcount_set(&vm->as.active_cnt, 0);
826 	mutex_unlock(&ptdev->mmu->as.slots_lock);
827 }
828 
829 static void panthor_vm_stop(struct panthor_vm *vm)
830 {
831 	drm_sched_stop(&vm->sched, NULL);
832 }
833 
834 static void panthor_vm_start(struct panthor_vm *vm)
835 {
836 	drm_sched_start(&vm->sched, true);
837 }
838 
839 /**
840  * panthor_vm_as() - Get the AS slot attached to a VM
841  * @vm: VM to get the AS slot of.
842  *
843  * Return: -1 if the VM is not assigned an AS slot yet, >= 0 otherwise.
844  */
845 int panthor_vm_as(struct panthor_vm *vm)
846 {
847 	return vm->as.id;
848 }
849 
850 static size_t get_pgsize(u64 addr, size_t size, size_t *count)
851 {
852 	/*
853 	 * io-pgtable only operates on multiple pages within a single table
854 	 * entry, so we need to split at boundaries of the table size, i.e.
855 	 * the next block size up. The distance from address A to the next
856 	 * boundary of block size B is logically B - A % B, but in unsigned
857 	 * two's complement where B is a power of two we get the equivalence
858 	 * B - A % B == (B - A) % B == (n * B - A) % B, and choose n = 0 :)
859 	 */
860 	size_t blk_offset = -addr % SZ_2M;
861 
862 	if (blk_offset || size < SZ_2M) {
863 		*count = min_not_zero(blk_offset, size) / SZ_4K;
864 		return SZ_4K;
865 	}
866 	blk_offset = -addr % SZ_1G ?: SZ_1G;
867 	*count = min(blk_offset, size) / SZ_2M;
868 	return SZ_2M;
869 }
870 
871 static int panthor_vm_flush_range(struct panthor_vm *vm, u64 iova, u64 size)
872 {
873 	struct panthor_device *ptdev = vm->ptdev;
874 	int ret = 0, cookie;
875 
876 	if (vm->as.id < 0)
877 		return 0;
878 
879 	/* If the device is unplugged, we just silently skip the flush. */
880 	if (!drm_dev_enter(&ptdev->base, &cookie))
881 		return 0;
882 
883 	ret = mmu_hw_do_operation(vm, iova, size, AS_COMMAND_FLUSH_PT);
884 
885 	drm_dev_exit(cookie);
886 	return ret;
887 }
888 
889 /**
890  * panthor_vm_flush_all() - Flush L2 caches for the entirety of a VM's AS
891  * @vm: VM whose cache to flush
892  *
893  * Return: 0 on success, a negative error code if flush failed.
894  */
895 int panthor_vm_flush_all(struct panthor_vm *vm)
896 {
897 	return panthor_vm_flush_range(vm, vm->base.mm_start, vm->base.mm_range);
898 }
899 
900 static int panthor_vm_unmap_pages(struct panthor_vm *vm, u64 iova, u64 size)
901 {
902 	struct panthor_device *ptdev = vm->ptdev;
903 	struct io_pgtable_ops *ops = vm->pgtbl_ops;
904 	u64 offset = 0;
905 
906 	drm_dbg(&ptdev->base, "unmap: as=%d, iova=%llx, len=%llx", vm->as.id, iova, size);
907 
908 	while (offset < size) {
909 		size_t unmapped_sz = 0, pgcount;
910 		size_t pgsize = get_pgsize(iova + offset, size - offset, &pgcount);
911 
912 		unmapped_sz = ops->unmap_pages(ops, iova + offset, pgsize, pgcount, NULL);
913 
914 		if (drm_WARN_ON(&ptdev->base, unmapped_sz != pgsize * pgcount)) {
915 			drm_err(&ptdev->base, "failed to unmap range %llx-%llx (requested range %llx-%llx)\n",
916 				iova + offset + unmapped_sz,
917 				iova + offset + pgsize * pgcount,
918 				iova, iova + size);
919 			panthor_vm_flush_range(vm, iova, offset + unmapped_sz);
920 			return  -EINVAL;
921 		}
922 		offset += unmapped_sz;
923 	}
924 
925 	return panthor_vm_flush_range(vm, iova, size);
926 }
927 
928 static int
929 panthor_vm_map_pages(struct panthor_vm *vm, u64 iova, int prot,
930 		     struct sg_table *sgt, u64 offset, u64 size)
931 {
932 	struct panthor_device *ptdev = vm->ptdev;
933 	unsigned int count;
934 	struct scatterlist *sgl;
935 	struct io_pgtable_ops *ops = vm->pgtbl_ops;
936 	u64 start_iova = iova;
937 	int ret;
938 
939 	if (!size)
940 		return 0;
941 
942 	for_each_sgtable_dma_sg(sgt, sgl, count) {
943 		dma_addr_t paddr = sg_dma_address(sgl);
944 		size_t len = sg_dma_len(sgl);
945 
946 		if (len <= offset) {
947 			offset -= len;
948 			continue;
949 		}
950 
951 		paddr += offset;
952 		len -= offset;
953 		len = min_t(size_t, len, size);
954 		size -= len;
955 
956 		drm_dbg(&ptdev->base, "map: as=%d, iova=%llx, paddr=%pad, len=%zx",
957 			vm->as.id, iova, &paddr, len);
958 
959 		while (len) {
960 			size_t pgcount, mapped = 0;
961 			size_t pgsize = get_pgsize(iova | paddr, len, &pgcount);
962 
963 			ret = ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot,
964 					     GFP_KERNEL, &mapped);
965 			iova += mapped;
966 			paddr += mapped;
967 			len -= mapped;
968 
969 			if (drm_WARN_ON(&ptdev->base, !ret && !mapped))
970 				ret = -ENOMEM;
971 
972 			if (ret) {
973 				/* If something failed, unmap what we've already mapped before
974 				 * returning. The unmap call is not supposed to fail.
975 				 */
976 				drm_WARN_ON(&ptdev->base,
977 					    panthor_vm_unmap_pages(vm, start_iova,
978 								   iova - start_iova));
979 				return ret;
980 			}
981 		}
982 
983 		if (!size)
984 			break;
985 	}
986 
987 	return panthor_vm_flush_range(vm, start_iova, iova - start_iova);
988 }
989 
990 static int flags_to_prot(u32 flags)
991 {
992 	int prot = 0;
993 
994 	if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC)
995 		prot |= IOMMU_NOEXEC;
996 
997 	if (!(flags & DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED))
998 		prot |= IOMMU_CACHE;
999 
1000 	if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_READONLY)
1001 		prot |= IOMMU_READ;
1002 	else
1003 		prot |= IOMMU_READ | IOMMU_WRITE;
1004 
1005 	return prot;
1006 }
1007 
1008 /**
1009  * panthor_vm_alloc_va() - Allocate a region in the auto-va space
1010  * @VM: VM to allocate a region on.
1011  * @va: start of the VA range. Can be PANTHOR_VM_KERNEL_AUTO_VA if the user
1012  * wants the VA to be automatically allocated from the auto-VA range.
1013  * @size: size of the VA range.
1014  * @va_node: drm_mm_node to initialize. Must be zero-initialized.
1015  *
1016  * Some GPU objects, like heap chunks, are fully managed by the kernel and
1017  * need to be mapped to the userspace VM, in the region reserved for kernel
1018  * objects.
1019  *
1020  * This function takes care of allocating a region in the kernel auto-VA space.
1021  *
1022  * Return: 0 on success, an error code otherwise.
1023  */
1024 int
1025 panthor_vm_alloc_va(struct panthor_vm *vm, u64 va, u64 size,
1026 		    struct drm_mm_node *va_node)
1027 {
1028 	int ret;
1029 
1030 	if (!size || (size & ~PAGE_MASK))
1031 		return -EINVAL;
1032 
1033 	if (va != PANTHOR_VM_KERNEL_AUTO_VA && (va & ~PAGE_MASK))
1034 		return -EINVAL;
1035 
1036 	mutex_lock(&vm->mm_lock);
1037 	if (va != PANTHOR_VM_KERNEL_AUTO_VA) {
1038 		va_node->start = va;
1039 		va_node->size = size;
1040 		ret = drm_mm_reserve_node(&vm->mm, va_node);
1041 	} else {
1042 		ret = drm_mm_insert_node_in_range(&vm->mm, va_node, size,
1043 						  size >= SZ_2M ? SZ_2M : SZ_4K,
1044 						  0, vm->kernel_auto_va.start,
1045 						  vm->kernel_auto_va.end,
1046 						  DRM_MM_INSERT_BEST);
1047 	}
1048 	mutex_unlock(&vm->mm_lock);
1049 
1050 	return ret;
1051 }
1052 
1053 /**
1054  * panthor_vm_free_va() - Free a region allocated with panthor_vm_alloc_va()
1055  * @VM: VM to free the region on.
1056  * @va_node: Memory node representing the region to free.
1057  */
1058 void panthor_vm_free_va(struct panthor_vm *vm, struct drm_mm_node *va_node)
1059 {
1060 	mutex_lock(&vm->mm_lock);
1061 	drm_mm_remove_node(va_node);
1062 	mutex_unlock(&vm->mm_lock);
1063 }
1064 
1065 static void panthor_vm_bo_put(struct drm_gpuvm_bo *vm_bo)
1066 {
1067 	struct panthor_gem_object *bo = to_panthor_bo(vm_bo->obj);
1068 	struct drm_gpuvm *vm = vm_bo->vm;
1069 	bool unpin;
1070 
1071 	/* We must retain the GEM before calling drm_gpuvm_bo_put(),
1072 	 * otherwise the mutex might be destroyed while we hold it.
1073 	 * Same goes for the VM, since we take the VM resv lock.
1074 	 */
1075 	drm_gem_object_get(&bo->base.base);
1076 	drm_gpuvm_get(vm);
1077 
1078 	/* We take the resv lock to protect against concurrent accesses to the
1079 	 * gpuvm evicted/extobj lists that are modified in
1080 	 * drm_gpuvm_bo_destroy(), which is called if drm_gpuvm_bo_put()
1081 	 * releases sthe last vm_bo reference.
1082 	 * We take the BO GPUVA list lock to protect the vm_bo removal from the
1083 	 * GEM vm_bo list.
1084 	 */
1085 	dma_resv_lock(drm_gpuvm_resv(vm), NULL);
1086 	mutex_lock(&bo->gpuva_list_lock);
1087 	unpin = drm_gpuvm_bo_put(vm_bo);
1088 	mutex_unlock(&bo->gpuva_list_lock);
1089 	dma_resv_unlock(drm_gpuvm_resv(vm));
1090 
1091 	/* If the vm_bo object was destroyed, release the pin reference that
1092 	 * was hold by this object.
1093 	 */
1094 	if (unpin && !bo->base.base.import_attach)
1095 		drm_gem_shmem_unpin(&bo->base);
1096 
1097 	drm_gpuvm_put(vm);
1098 	drm_gem_object_put(&bo->base.base);
1099 }
1100 
1101 static void panthor_vm_cleanup_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1102 				      struct panthor_vm *vm)
1103 {
1104 	struct panthor_vma *vma, *tmp_vma;
1105 
1106 	u32 remaining_pt_count = op_ctx->rsvd_page_tables.count -
1107 				 op_ctx->rsvd_page_tables.ptr;
1108 
1109 	if (remaining_pt_count) {
1110 		kmem_cache_free_bulk(pt_cache, remaining_pt_count,
1111 				     op_ctx->rsvd_page_tables.pages +
1112 				     op_ctx->rsvd_page_tables.ptr);
1113 	}
1114 
1115 	kfree(op_ctx->rsvd_page_tables.pages);
1116 
1117 	if (op_ctx->map.vm_bo)
1118 		panthor_vm_bo_put(op_ctx->map.vm_bo);
1119 
1120 	for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++)
1121 		kfree(op_ctx->preallocated_vmas[i]);
1122 
1123 	list_for_each_entry_safe(vma, tmp_vma, &op_ctx->returned_vmas, node) {
1124 		list_del(&vma->node);
1125 		panthor_vm_bo_put(vma->base.vm_bo);
1126 		kfree(vma);
1127 	}
1128 }
1129 
1130 static struct panthor_vma *
1131 panthor_vm_op_ctx_get_vma(struct panthor_vm_op_ctx *op_ctx)
1132 {
1133 	for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) {
1134 		struct panthor_vma *vma = op_ctx->preallocated_vmas[i];
1135 
1136 		if (vma) {
1137 			op_ctx->preallocated_vmas[i] = NULL;
1138 			return vma;
1139 		}
1140 	}
1141 
1142 	return NULL;
1143 }
1144 
1145 static int
1146 panthor_vm_op_ctx_prealloc_vmas(struct panthor_vm_op_ctx *op_ctx)
1147 {
1148 	u32 vma_count;
1149 
1150 	switch (op_ctx->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) {
1151 	case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
1152 		/* One VMA for the new mapping, and two more VMAs for the remap case
1153 		 * which might contain both a prev and next VA.
1154 		 */
1155 		vma_count = 3;
1156 		break;
1157 
1158 	case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
1159 		/* Partial unmaps might trigger a remap with either a prev or a next VA,
1160 		 * but not both.
1161 		 */
1162 		vma_count = 1;
1163 		break;
1164 
1165 	default:
1166 		return 0;
1167 	}
1168 
1169 	for (u32 i = 0; i < vma_count; i++) {
1170 		struct panthor_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
1171 
1172 		if (!vma)
1173 			return -ENOMEM;
1174 
1175 		op_ctx->preallocated_vmas[i] = vma;
1176 	}
1177 
1178 	return 0;
1179 }
1180 
1181 #define PANTHOR_VM_BIND_OP_MAP_FLAGS \
1182 	(DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \
1183 	 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \
1184 	 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED | \
1185 	 DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
1186 
1187 static int panthor_vm_prepare_map_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1188 					 struct panthor_vm *vm,
1189 					 struct panthor_gem_object *bo,
1190 					 u64 offset,
1191 					 u64 size, u64 va,
1192 					 u32 flags)
1193 {
1194 	struct drm_gpuvm_bo *preallocated_vm_bo;
1195 	struct sg_table *sgt = NULL;
1196 	u64 pt_count;
1197 	int ret;
1198 
1199 	if (!bo)
1200 		return -EINVAL;
1201 
1202 	if ((flags & ~PANTHOR_VM_BIND_OP_MAP_FLAGS) ||
1203 	    (flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) != DRM_PANTHOR_VM_BIND_OP_TYPE_MAP)
1204 		return -EINVAL;
1205 
1206 	/* Make sure the VA and size are aligned and in-bounds. */
1207 	if (size > bo->base.base.size || offset > bo->base.base.size - size)
1208 		return -EINVAL;
1209 
1210 	/* If the BO has an exclusive VM attached, it can't be mapped to other VMs. */
1211 	if (bo->exclusive_vm_root_gem &&
1212 	    bo->exclusive_vm_root_gem != panthor_vm_root_gem(vm))
1213 		return -EINVAL;
1214 
1215 	memset(op_ctx, 0, sizeof(*op_ctx));
1216 	INIT_LIST_HEAD(&op_ctx->returned_vmas);
1217 	op_ctx->flags = flags;
1218 	op_ctx->va.range = size;
1219 	op_ctx->va.addr = va;
1220 
1221 	ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx);
1222 	if (ret)
1223 		goto err_cleanup;
1224 
1225 	if (!bo->base.base.import_attach) {
1226 		/* Pre-reserve the BO pages, so the map operation doesn't have to
1227 		 * allocate.
1228 		 */
1229 		ret = drm_gem_shmem_pin(&bo->base);
1230 		if (ret)
1231 			goto err_cleanup;
1232 	}
1233 
1234 	sgt = drm_gem_shmem_get_pages_sgt(&bo->base);
1235 	if (IS_ERR(sgt)) {
1236 		if (!bo->base.base.import_attach)
1237 			drm_gem_shmem_unpin(&bo->base);
1238 
1239 		ret = PTR_ERR(sgt);
1240 		goto err_cleanup;
1241 	}
1242 
1243 	op_ctx->map.sgt = sgt;
1244 
1245 	preallocated_vm_bo = drm_gpuvm_bo_create(&vm->base, &bo->base.base);
1246 	if (!preallocated_vm_bo) {
1247 		if (!bo->base.base.import_attach)
1248 			drm_gem_shmem_unpin(&bo->base);
1249 
1250 		ret = -ENOMEM;
1251 		goto err_cleanup;
1252 	}
1253 
1254 	mutex_lock(&bo->gpuva_list_lock);
1255 	op_ctx->map.vm_bo = drm_gpuvm_bo_obtain_prealloc(preallocated_vm_bo);
1256 	mutex_unlock(&bo->gpuva_list_lock);
1257 
1258 	/* If the a vm_bo for this <VM,BO> combination exists, it already
1259 	 * retains a pin ref, and we can release the one we took earlier.
1260 	 *
1261 	 * If our pre-allocated vm_bo is picked, it now retains the pin ref,
1262 	 * which will be released in panthor_vm_bo_put().
1263 	 */
1264 	if (preallocated_vm_bo != op_ctx->map.vm_bo &&
1265 	    !bo->base.base.import_attach)
1266 		drm_gem_shmem_unpin(&bo->base);
1267 
1268 	op_ctx->map.bo_offset = offset;
1269 
1270 	/* L1, L2 and L3 page tables.
1271 	 * We could optimize L3 allocation by iterating over the sgt and merging
1272 	 * 2M contiguous blocks, but it's simpler to over-provision and return
1273 	 * the pages if they're not used.
1274 	 */
1275 	pt_count = ((ALIGN(va + size, 1ull << 39) - ALIGN_DOWN(va, 1ull << 39)) >> 39) +
1276 		   ((ALIGN(va + size, 1ull << 30) - ALIGN_DOWN(va, 1ull << 30)) >> 30) +
1277 		   ((ALIGN(va + size, 1ull << 21) - ALIGN_DOWN(va, 1ull << 21)) >> 21);
1278 
1279 	op_ctx->rsvd_page_tables.pages = kcalloc(pt_count,
1280 						 sizeof(*op_ctx->rsvd_page_tables.pages),
1281 						 GFP_KERNEL);
1282 	if (!op_ctx->rsvd_page_tables.pages) {
1283 		ret = -ENOMEM;
1284 		goto err_cleanup;
1285 	}
1286 
1287 	ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count,
1288 				    op_ctx->rsvd_page_tables.pages);
1289 	op_ctx->rsvd_page_tables.count = ret;
1290 	if (ret != pt_count) {
1291 		ret = -ENOMEM;
1292 		goto err_cleanup;
1293 	}
1294 
1295 	/* Insert BO into the extobj list last, when we know nothing can fail. */
1296 	dma_resv_lock(panthor_vm_resv(vm), NULL);
1297 	drm_gpuvm_bo_extobj_add(op_ctx->map.vm_bo);
1298 	dma_resv_unlock(panthor_vm_resv(vm));
1299 
1300 	return 0;
1301 
1302 err_cleanup:
1303 	panthor_vm_cleanup_op_ctx(op_ctx, vm);
1304 	return ret;
1305 }
1306 
1307 static int panthor_vm_prepare_unmap_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1308 					   struct panthor_vm *vm,
1309 					   u64 va, u64 size)
1310 {
1311 	u32 pt_count = 0;
1312 	int ret;
1313 
1314 	memset(op_ctx, 0, sizeof(*op_ctx));
1315 	INIT_LIST_HEAD(&op_ctx->returned_vmas);
1316 	op_ctx->va.range = size;
1317 	op_ctx->va.addr = va;
1318 	op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP;
1319 
1320 	/* Pre-allocate L3 page tables to account for the split-2M-block
1321 	 * situation on unmap.
1322 	 */
1323 	if (va != ALIGN(va, SZ_2M))
1324 		pt_count++;
1325 
1326 	if (va + size != ALIGN(va + size, SZ_2M) &&
1327 	    ALIGN(va + size, SZ_2M) != ALIGN(va, SZ_2M))
1328 		pt_count++;
1329 
1330 	ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx);
1331 	if (ret)
1332 		goto err_cleanup;
1333 
1334 	if (pt_count) {
1335 		op_ctx->rsvd_page_tables.pages = kcalloc(pt_count,
1336 							 sizeof(*op_ctx->rsvd_page_tables.pages),
1337 							 GFP_KERNEL);
1338 		if (!op_ctx->rsvd_page_tables.pages) {
1339 			ret = -ENOMEM;
1340 			goto err_cleanup;
1341 		}
1342 
1343 		ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count,
1344 					    op_ctx->rsvd_page_tables.pages);
1345 		if (ret != pt_count) {
1346 			ret = -ENOMEM;
1347 			goto err_cleanup;
1348 		}
1349 		op_ctx->rsvd_page_tables.count = pt_count;
1350 	}
1351 
1352 	return 0;
1353 
1354 err_cleanup:
1355 	panthor_vm_cleanup_op_ctx(op_ctx, vm);
1356 	return ret;
1357 }
1358 
1359 static void panthor_vm_prepare_sync_only_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1360 						struct panthor_vm *vm)
1361 {
1362 	memset(op_ctx, 0, sizeof(*op_ctx));
1363 	INIT_LIST_HEAD(&op_ctx->returned_vmas);
1364 	op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY;
1365 }
1366 
1367 /**
1368  * panthor_vm_get_bo_for_va() - Get the GEM object mapped at a virtual address
1369  * @vm: VM to look into.
1370  * @va: Virtual address to search for.
1371  * @bo_offset: Offset of the GEM object mapped at this virtual address.
1372  * Only valid on success.
1373  *
1374  * The object returned by this function might no longer be mapped when the
1375  * function returns. It's the caller responsibility to ensure there's no
1376  * concurrent map/unmap operations making the returned value invalid, or
1377  * make sure it doesn't matter if the object is no longer mapped.
1378  *
1379  * Return: A valid pointer on success, an ERR_PTR() otherwise.
1380  */
1381 struct panthor_gem_object *
1382 panthor_vm_get_bo_for_va(struct panthor_vm *vm, u64 va, u64 *bo_offset)
1383 {
1384 	struct panthor_gem_object *bo = ERR_PTR(-ENOENT);
1385 	struct drm_gpuva *gpuva;
1386 	struct panthor_vma *vma;
1387 
1388 	/* Take the VM lock to prevent concurrent map/unmap operations. */
1389 	mutex_lock(&vm->op_lock);
1390 	gpuva = drm_gpuva_find_first(&vm->base, va, 1);
1391 	vma = gpuva ? container_of(gpuva, struct panthor_vma, base) : NULL;
1392 	if (vma && vma->base.gem.obj) {
1393 		drm_gem_object_get(vma->base.gem.obj);
1394 		bo = to_panthor_bo(vma->base.gem.obj);
1395 		*bo_offset = vma->base.gem.offset + (va - vma->base.va.addr);
1396 	}
1397 	mutex_unlock(&vm->op_lock);
1398 
1399 	return bo;
1400 }
1401 
1402 #define PANTHOR_VM_MIN_KERNEL_VA_SIZE	SZ_256M
1403 
1404 static u64
1405 panthor_vm_create_get_user_va_range(const struct drm_panthor_vm_create *args,
1406 				    u64 full_va_range)
1407 {
1408 	u64 user_va_range;
1409 
1410 	/* Make sure we have a minimum amount of VA space for kernel objects. */
1411 	if (full_va_range < PANTHOR_VM_MIN_KERNEL_VA_SIZE)
1412 		return 0;
1413 
1414 	if (args->user_va_range) {
1415 		/* Use the user provided value if != 0. */
1416 		user_va_range = args->user_va_range;
1417 	} else if (TASK_SIZE_OF(current) < full_va_range) {
1418 		/* If the task VM size is smaller than the GPU VA range, pick this
1419 		 * as our default user VA range, so userspace can CPU/GPU map buffers
1420 		 * at the same address.
1421 		 */
1422 		user_va_range = TASK_SIZE_OF(current);
1423 	} else {
1424 		/* If the GPU VA range is smaller than the task VM size, we
1425 		 * just have to live with the fact we won't be able to map
1426 		 * all buffers at the same GPU/CPU address.
1427 		 *
1428 		 * If the GPU VA range is bigger than 4G (more than 32-bit of
1429 		 * VA), we split the range in two, and assign half of it to
1430 		 * the user and the other half to the kernel, if it's not, we
1431 		 * keep the kernel VA space as small as possible.
1432 		 */
1433 		user_va_range = full_va_range > SZ_4G ?
1434 				full_va_range / 2 :
1435 				full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE;
1436 	}
1437 
1438 	if (full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE < user_va_range)
1439 		user_va_range = full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE;
1440 
1441 	return user_va_range;
1442 }
1443 
1444 #define PANTHOR_VM_CREATE_FLAGS		0
1445 
1446 static int
1447 panthor_vm_create_check_args(const struct panthor_device *ptdev,
1448 			     const struct drm_panthor_vm_create *args,
1449 			     u64 *kernel_va_start, u64 *kernel_va_range)
1450 {
1451 	u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
1452 	u64 full_va_range = 1ull << va_bits;
1453 	u64 user_va_range;
1454 
1455 	if (args->flags & ~PANTHOR_VM_CREATE_FLAGS)
1456 		return -EINVAL;
1457 
1458 	user_va_range = panthor_vm_create_get_user_va_range(args, full_va_range);
1459 	if (!user_va_range || (args->user_va_range && args->user_va_range > user_va_range))
1460 		return -EINVAL;
1461 
1462 	/* Pick a kernel VA range that's a power of two, to have a clear split. */
1463 	*kernel_va_range = rounddown_pow_of_two(full_va_range - user_va_range);
1464 	*kernel_va_start = full_va_range - *kernel_va_range;
1465 	return 0;
1466 }
1467 
1468 /*
1469  * Only 32 VMs per open file. If that becomes a limiting factor, we can
1470  * increase this number.
1471  */
1472 #define PANTHOR_MAX_VMS_PER_FILE	32
1473 
1474 /**
1475  * panthor_vm_pool_create_vm() - Create a VM
1476  * @pool: The VM to create this VM on.
1477  * @kernel_va_start: Start of the region reserved for kernel objects.
1478  * @kernel_va_range: Size of the region reserved for kernel objects.
1479  *
1480  * Return: a positive VM ID on success, a negative error code otherwise.
1481  */
1482 int panthor_vm_pool_create_vm(struct panthor_device *ptdev,
1483 			      struct panthor_vm_pool *pool,
1484 			      struct drm_panthor_vm_create *args)
1485 {
1486 	u64 kernel_va_start, kernel_va_range;
1487 	struct panthor_vm *vm;
1488 	int ret;
1489 	u32 id;
1490 
1491 	ret = panthor_vm_create_check_args(ptdev, args, &kernel_va_start, &kernel_va_range);
1492 	if (ret)
1493 		return ret;
1494 
1495 	vm = panthor_vm_create(ptdev, false, kernel_va_start, kernel_va_range,
1496 			       kernel_va_start, kernel_va_range);
1497 	if (IS_ERR(vm))
1498 		return PTR_ERR(vm);
1499 
1500 	ret = xa_alloc(&pool->xa, &id, vm,
1501 		       XA_LIMIT(1, PANTHOR_MAX_VMS_PER_FILE), GFP_KERNEL);
1502 
1503 	if (ret) {
1504 		panthor_vm_put(vm);
1505 		return ret;
1506 	}
1507 
1508 	args->user_va_range = kernel_va_start;
1509 	return id;
1510 }
1511 
1512 static void panthor_vm_destroy(struct panthor_vm *vm)
1513 {
1514 	if (!vm)
1515 		return;
1516 
1517 	vm->destroyed = true;
1518 
1519 	mutex_lock(&vm->heaps.lock);
1520 	panthor_heap_pool_destroy(vm->heaps.pool);
1521 	vm->heaps.pool = NULL;
1522 	mutex_unlock(&vm->heaps.lock);
1523 
1524 	drm_WARN_ON(&vm->ptdev->base,
1525 		    panthor_vm_unmap_range(vm, vm->base.mm_start, vm->base.mm_range));
1526 	panthor_vm_put(vm);
1527 }
1528 
1529 /**
1530  * panthor_vm_pool_destroy_vm() - Destroy a VM.
1531  * @pool: VM pool.
1532  * @handle: VM handle.
1533  *
1534  * This function doesn't free the VM object or its resources, it just kills
1535  * all mappings, and makes sure nothing can be mapped after that point.
1536  *
1537  * If there was any active jobs at the time this function is called, these
1538  * jobs should experience page faults and be killed as a result.
1539  *
1540  * The VM resources are freed when the last reference on the VM object is
1541  * dropped.
1542  */
1543 int panthor_vm_pool_destroy_vm(struct panthor_vm_pool *pool, u32 handle)
1544 {
1545 	struct panthor_vm *vm;
1546 
1547 	vm = xa_erase(&pool->xa, handle);
1548 
1549 	panthor_vm_destroy(vm);
1550 
1551 	return vm ? 0 : -EINVAL;
1552 }
1553 
1554 /**
1555  * panthor_vm_pool_get_vm() - Retrieve VM object bound to a VM handle
1556  * @pool: VM pool to check.
1557  * @handle: Handle of the VM to retrieve.
1558  *
1559  * Return: A valid pointer if the VM exists, NULL otherwise.
1560  */
1561 struct panthor_vm *
1562 panthor_vm_pool_get_vm(struct panthor_vm_pool *pool, u32 handle)
1563 {
1564 	struct panthor_vm *vm;
1565 
1566 	vm = panthor_vm_get(xa_load(&pool->xa, handle));
1567 
1568 	return vm;
1569 }
1570 
1571 /**
1572  * panthor_vm_pool_destroy() - Destroy a VM pool.
1573  * @pfile: File.
1574  *
1575  * Destroy all VMs in the pool, and release the pool resources.
1576  *
1577  * Note that VMs can outlive the pool they were created from if other
1578  * objects hold a reference to there VMs.
1579  */
1580 void panthor_vm_pool_destroy(struct panthor_file *pfile)
1581 {
1582 	struct panthor_vm *vm;
1583 	unsigned long i;
1584 
1585 	if (!pfile->vms)
1586 		return;
1587 
1588 	xa_for_each(&pfile->vms->xa, i, vm)
1589 		panthor_vm_destroy(vm);
1590 
1591 	xa_destroy(&pfile->vms->xa);
1592 	kfree(pfile->vms);
1593 }
1594 
1595 /**
1596  * panthor_vm_pool_create() - Create a VM pool
1597  * @pfile: File.
1598  *
1599  * Return: 0 on success, a negative error code otherwise.
1600  */
1601 int panthor_vm_pool_create(struct panthor_file *pfile)
1602 {
1603 	pfile->vms = kzalloc(sizeof(*pfile->vms), GFP_KERNEL);
1604 	if (!pfile->vms)
1605 		return -ENOMEM;
1606 
1607 	xa_init_flags(&pfile->vms->xa, XA_FLAGS_ALLOC1);
1608 	return 0;
1609 }
1610 
1611 /* dummy TLB ops, the real TLB flush happens in panthor_vm_flush_range() */
1612 static void mmu_tlb_flush_all(void *cookie)
1613 {
1614 }
1615 
1616 static void mmu_tlb_flush_walk(unsigned long iova, size_t size, size_t granule, void *cookie)
1617 {
1618 }
1619 
1620 static const struct iommu_flush_ops mmu_tlb_ops = {
1621 	.tlb_flush_all = mmu_tlb_flush_all,
1622 	.tlb_flush_walk = mmu_tlb_flush_walk,
1623 };
1624 
1625 static const char *access_type_name(struct panthor_device *ptdev,
1626 				    u32 fault_status)
1627 {
1628 	switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) {
1629 	case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC:
1630 		return "ATOMIC";
1631 	case AS_FAULTSTATUS_ACCESS_TYPE_READ:
1632 		return "READ";
1633 	case AS_FAULTSTATUS_ACCESS_TYPE_WRITE:
1634 		return "WRITE";
1635 	case AS_FAULTSTATUS_ACCESS_TYPE_EX:
1636 		return "EXECUTE";
1637 	default:
1638 		drm_WARN_ON(&ptdev->base, 1);
1639 		return NULL;
1640 	}
1641 }
1642 
1643 static void panthor_mmu_irq_handler(struct panthor_device *ptdev, u32 status)
1644 {
1645 	bool has_unhandled_faults = false;
1646 
1647 	status = panthor_mmu_fault_mask(ptdev, status);
1648 	while (status) {
1649 		u32 as = ffs(status | (status >> 16)) - 1;
1650 		u32 mask = panthor_mmu_as_fault_mask(ptdev, as);
1651 		u32 new_int_mask;
1652 		u64 addr;
1653 		u32 fault_status;
1654 		u32 exception_type;
1655 		u32 access_type;
1656 		u32 source_id;
1657 
1658 		fault_status = gpu_read(ptdev, AS_FAULTSTATUS(as));
1659 		addr = gpu_read(ptdev, AS_FAULTADDRESS_LO(as));
1660 		addr |= (u64)gpu_read(ptdev, AS_FAULTADDRESS_HI(as)) << 32;
1661 
1662 		/* decode the fault status */
1663 		exception_type = fault_status & 0xFF;
1664 		access_type = (fault_status >> 8) & 0x3;
1665 		source_id = (fault_status >> 16);
1666 
1667 		mutex_lock(&ptdev->mmu->as.slots_lock);
1668 
1669 		ptdev->mmu->as.faulty_mask |= mask;
1670 		new_int_mask =
1671 			panthor_mmu_fault_mask(ptdev, ~ptdev->mmu->as.faulty_mask);
1672 
1673 		/* terminal fault, print info about the fault */
1674 		drm_err(&ptdev->base,
1675 			"Unhandled Page fault in AS%d at VA 0x%016llX\n"
1676 			"raw fault status: 0x%X\n"
1677 			"decoded fault status: %s\n"
1678 			"exception type 0x%X: %s\n"
1679 			"access type 0x%X: %s\n"
1680 			"source id 0x%X\n",
1681 			as, addr,
1682 			fault_status,
1683 			(fault_status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"),
1684 			exception_type, panthor_exception_name(ptdev, exception_type),
1685 			access_type, access_type_name(ptdev, fault_status),
1686 			source_id);
1687 
1688 		/* Ignore MMU interrupts on this AS until it's been
1689 		 * re-enabled.
1690 		 */
1691 		ptdev->mmu->irq.mask = new_int_mask;
1692 		gpu_write(ptdev, MMU_INT_MASK, new_int_mask);
1693 
1694 		if (ptdev->mmu->as.slots[as].vm)
1695 			ptdev->mmu->as.slots[as].vm->unhandled_fault = true;
1696 
1697 		/* Disable the MMU to kill jobs on this AS. */
1698 		panthor_mmu_as_disable(ptdev, as);
1699 		mutex_unlock(&ptdev->mmu->as.slots_lock);
1700 
1701 		status &= ~mask;
1702 		has_unhandled_faults = true;
1703 	}
1704 
1705 	if (has_unhandled_faults)
1706 		panthor_sched_report_mmu_fault(ptdev);
1707 }
1708 PANTHOR_IRQ_HANDLER(mmu, MMU, panthor_mmu_irq_handler);
1709 
1710 /**
1711  * panthor_mmu_suspend() - Suspend the MMU logic
1712  * @ptdev: Device.
1713  *
1714  * All we do here is de-assign the AS slots on all active VMs, so things
1715  * get flushed to the main memory, and no further access to these VMs are
1716  * possible.
1717  *
1718  * We also suspend the MMU IRQ.
1719  */
1720 void panthor_mmu_suspend(struct panthor_device *ptdev)
1721 {
1722 	mutex_lock(&ptdev->mmu->as.slots_lock);
1723 	for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
1724 		struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
1725 
1726 		if (vm) {
1727 			drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i));
1728 			panthor_vm_release_as_locked(vm);
1729 		}
1730 	}
1731 	mutex_unlock(&ptdev->mmu->as.slots_lock);
1732 
1733 	panthor_mmu_irq_suspend(&ptdev->mmu->irq);
1734 }
1735 
1736 /**
1737  * panthor_mmu_resume() - Resume the MMU logic
1738  * @ptdev: Device.
1739  *
1740  * Resume the IRQ.
1741  *
1742  * We don't re-enable previously active VMs. We assume other parts of the
1743  * driver will call panthor_vm_active() on the VMs they intend to use.
1744  */
1745 void panthor_mmu_resume(struct panthor_device *ptdev)
1746 {
1747 	mutex_lock(&ptdev->mmu->as.slots_lock);
1748 	ptdev->mmu->as.alloc_mask = 0;
1749 	ptdev->mmu->as.faulty_mask = 0;
1750 	mutex_unlock(&ptdev->mmu->as.slots_lock);
1751 
1752 	panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0));
1753 }
1754 
1755 /**
1756  * panthor_mmu_pre_reset() - Prepare for a reset
1757  * @ptdev: Device.
1758  *
1759  * Suspend the IRQ, and make sure all VM_BIND queues are stopped, so we
1760  * don't get asked to do a VM operation while the GPU is down.
1761  *
1762  * We don't cleanly shutdown the AS slots here, because the reset might
1763  * come from an AS_ACTIVE_BIT stuck situation.
1764  */
1765 void panthor_mmu_pre_reset(struct panthor_device *ptdev)
1766 {
1767 	struct panthor_vm *vm;
1768 
1769 	panthor_mmu_irq_suspend(&ptdev->mmu->irq);
1770 
1771 	mutex_lock(&ptdev->mmu->vm.lock);
1772 	ptdev->mmu->vm.reset_in_progress = true;
1773 	list_for_each_entry(vm, &ptdev->mmu->vm.list, node)
1774 		panthor_vm_stop(vm);
1775 	mutex_unlock(&ptdev->mmu->vm.lock);
1776 }
1777 
1778 /**
1779  * panthor_mmu_post_reset() - Restore things after a reset
1780  * @ptdev: Device.
1781  *
1782  * Put the MMU logic back in action after a reset. That implies resuming the
1783  * IRQ and re-enabling the VM_BIND queues.
1784  */
1785 void panthor_mmu_post_reset(struct panthor_device *ptdev)
1786 {
1787 	struct panthor_vm *vm;
1788 
1789 	mutex_lock(&ptdev->mmu->as.slots_lock);
1790 
1791 	/* Now that the reset is effective, we can assume that none of the
1792 	 * AS slots are setup, and clear the faulty flags too.
1793 	 */
1794 	ptdev->mmu->as.alloc_mask = 0;
1795 	ptdev->mmu->as.faulty_mask = 0;
1796 
1797 	for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
1798 		struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
1799 
1800 		if (vm)
1801 			panthor_vm_release_as_locked(vm);
1802 	}
1803 
1804 	mutex_unlock(&ptdev->mmu->as.slots_lock);
1805 
1806 	panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0));
1807 
1808 	/* Restart the VM_BIND queues. */
1809 	mutex_lock(&ptdev->mmu->vm.lock);
1810 	list_for_each_entry(vm, &ptdev->mmu->vm.list, node) {
1811 		panthor_vm_start(vm);
1812 	}
1813 	ptdev->mmu->vm.reset_in_progress = false;
1814 	mutex_unlock(&ptdev->mmu->vm.lock);
1815 }
1816 
1817 static void panthor_vm_free(struct drm_gpuvm *gpuvm)
1818 {
1819 	struct panthor_vm *vm = container_of(gpuvm, struct panthor_vm, base);
1820 	struct panthor_device *ptdev = vm->ptdev;
1821 
1822 	mutex_lock(&vm->heaps.lock);
1823 	if (drm_WARN_ON(&ptdev->base, vm->heaps.pool))
1824 		panthor_heap_pool_destroy(vm->heaps.pool);
1825 	mutex_unlock(&vm->heaps.lock);
1826 	mutex_destroy(&vm->heaps.lock);
1827 
1828 	mutex_lock(&ptdev->mmu->vm.lock);
1829 	list_del(&vm->node);
1830 	/* Restore the scheduler state so we can call drm_sched_entity_destroy()
1831 	 * and drm_sched_fini(). If get there, that means we have no job left
1832 	 * and no new jobs can be queued, so we can start the scheduler without
1833 	 * risking interfering with the reset.
1834 	 */
1835 	if (ptdev->mmu->vm.reset_in_progress)
1836 		panthor_vm_start(vm);
1837 	mutex_unlock(&ptdev->mmu->vm.lock);
1838 
1839 	drm_sched_entity_destroy(&vm->entity);
1840 	drm_sched_fini(&vm->sched);
1841 
1842 	mutex_lock(&ptdev->mmu->as.slots_lock);
1843 	if (vm->as.id >= 0) {
1844 		int cookie;
1845 
1846 		if (drm_dev_enter(&ptdev->base, &cookie)) {
1847 			panthor_mmu_as_disable(ptdev, vm->as.id);
1848 			drm_dev_exit(cookie);
1849 		}
1850 
1851 		ptdev->mmu->as.slots[vm->as.id].vm = NULL;
1852 		clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask);
1853 		list_del(&vm->as.lru_node);
1854 	}
1855 	mutex_unlock(&ptdev->mmu->as.slots_lock);
1856 
1857 	free_io_pgtable_ops(vm->pgtbl_ops);
1858 
1859 	drm_mm_takedown(&vm->mm);
1860 	kfree(vm);
1861 }
1862 
1863 /**
1864  * panthor_vm_put() - Release a reference on a VM
1865  * @vm: VM to release the reference on. Can be NULL.
1866  */
1867 void panthor_vm_put(struct panthor_vm *vm)
1868 {
1869 	drm_gpuvm_put(vm ? &vm->base : NULL);
1870 }
1871 
1872 /**
1873  * panthor_vm_get() - Get a VM reference
1874  * @vm: VM to get the reference on. Can be NULL.
1875  *
1876  * Return: @vm value.
1877  */
1878 struct panthor_vm *panthor_vm_get(struct panthor_vm *vm)
1879 {
1880 	if (vm)
1881 		drm_gpuvm_get(&vm->base);
1882 
1883 	return vm;
1884 }
1885 
1886 /**
1887  * panthor_vm_get_heap_pool() - Get the heap pool attached to a VM
1888  * @vm: VM to query the heap pool on.
1889  * @create: True if the heap pool should be created when it doesn't exist.
1890  *
1891  * Heap pools are per-VM. This function allows one to retrieve the heap pool
1892  * attached to a VM.
1893  *
1894  * If no heap pool exists yet, and @create is true, we create one.
1895  *
1896  * The returned panthor_heap_pool should be released with panthor_heap_pool_put().
1897  *
1898  * Return: A valid pointer on success, an ERR_PTR() otherwise.
1899  */
1900 struct panthor_heap_pool *panthor_vm_get_heap_pool(struct panthor_vm *vm, bool create)
1901 {
1902 	struct panthor_heap_pool *pool;
1903 
1904 	mutex_lock(&vm->heaps.lock);
1905 	if (!vm->heaps.pool && create) {
1906 		if (vm->destroyed)
1907 			pool = ERR_PTR(-EINVAL);
1908 		else
1909 			pool = panthor_heap_pool_create(vm->ptdev, vm);
1910 
1911 		if (!IS_ERR(pool))
1912 			vm->heaps.pool = panthor_heap_pool_get(pool);
1913 	} else {
1914 		pool = panthor_heap_pool_get(vm->heaps.pool);
1915 		if (!pool)
1916 			pool = ERR_PTR(-ENOENT);
1917 	}
1918 	mutex_unlock(&vm->heaps.lock);
1919 
1920 	return pool;
1921 }
1922 
1923 static u64 mair_to_memattr(u64 mair)
1924 {
1925 	u64 memattr = 0;
1926 	u32 i;
1927 
1928 	for (i = 0; i < 8; i++) {
1929 		u8 in_attr = mair >> (8 * i), out_attr;
1930 		u8 outer = in_attr >> 4, inner = in_attr & 0xf;
1931 
1932 		/* For caching to be enabled, inner and outer caching policy
1933 		 * have to be both write-back, if one of them is write-through
1934 		 * or non-cacheable, we just choose non-cacheable. Device
1935 		 * memory is also translated to non-cacheable.
1936 		 */
1937 		if (!(outer & 3) || !(outer & 4) || !(inner & 4)) {
1938 			out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_NC |
1939 				   AS_MEMATTR_AARCH64_SH_MIDGARD_INNER |
1940 				   AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(false, false);
1941 		} else {
1942 			/* Use SH_CPU_INNER mode so SH_IS, which is used when
1943 			 * IOMMU_CACHE is set, actually maps to the standard
1944 			 * definition of inner-shareable and not Mali's
1945 			 * internal-shareable mode.
1946 			 */
1947 			out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_WB |
1948 				   AS_MEMATTR_AARCH64_SH_CPU_INNER |
1949 				   AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(inner & 1, inner & 2);
1950 		}
1951 
1952 		memattr |= (u64)out_attr << (8 * i);
1953 	}
1954 
1955 	return memattr;
1956 }
1957 
1958 static void panthor_vma_link(struct panthor_vm *vm,
1959 			     struct panthor_vma *vma,
1960 			     struct drm_gpuvm_bo *vm_bo)
1961 {
1962 	struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj);
1963 
1964 	mutex_lock(&bo->gpuva_list_lock);
1965 	drm_gpuva_link(&vma->base, vm_bo);
1966 	drm_WARN_ON(&vm->ptdev->base, drm_gpuvm_bo_put(vm_bo));
1967 	mutex_unlock(&bo->gpuva_list_lock);
1968 }
1969 
1970 static void panthor_vma_unlink(struct panthor_vm *vm,
1971 			       struct panthor_vma *vma)
1972 {
1973 	struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj);
1974 	struct drm_gpuvm_bo *vm_bo = drm_gpuvm_bo_get(vma->base.vm_bo);
1975 
1976 	mutex_lock(&bo->gpuva_list_lock);
1977 	drm_gpuva_unlink(&vma->base);
1978 	mutex_unlock(&bo->gpuva_list_lock);
1979 
1980 	/* drm_gpuva_unlink() release the vm_bo, but we manually retained it
1981 	 * when entering this function, so we can implement deferred VMA
1982 	 * destruction. Re-assign it here.
1983 	 */
1984 	vma->base.vm_bo = vm_bo;
1985 	list_add_tail(&vma->node, &vm->op_ctx->returned_vmas);
1986 }
1987 
1988 static void panthor_vma_init(struct panthor_vma *vma, u32 flags)
1989 {
1990 	INIT_LIST_HEAD(&vma->node);
1991 	vma->flags = flags;
1992 }
1993 
1994 #define PANTHOR_VM_MAP_FLAGS \
1995 	(DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \
1996 	 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \
1997 	 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED)
1998 
1999 static int panthor_gpuva_sm_step_map(struct drm_gpuva_op *op, void *priv)
2000 {
2001 	struct panthor_vm *vm = priv;
2002 	struct panthor_vm_op_ctx *op_ctx = vm->op_ctx;
2003 	struct panthor_vma *vma = panthor_vm_op_ctx_get_vma(op_ctx);
2004 	int ret;
2005 
2006 	if (!vma)
2007 		return -EINVAL;
2008 
2009 	panthor_vma_init(vma, op_ctx->flags & PANTHOR_VM_MAP_FLAGS);
2010 
2011 	ret = panthor_vm_map_pages(vm, op->map.va.addr, flags_to_prot(vma->flags),
2012 				   op_ctx->map.sgt, op->map.gem.offset,
2013 				   op->map.va.range);
2014 	if (ret)
2015 		return ret;
2016 
2017 	/* Ref owned by the mapping now, clear the obj field so we don't release the
2018 	 * pinning/obj ref behind GPUVA's back.
2019 	 */
2020 	drm_gpuva_map(&vm->base, &vma->base, &op->map);
2021 	panthor_vma_link(vm, vma, op_ctx->map.vm_bo);
2022 	op_ctx->map.vm_bo = NULL;
2023 	return 0;
2024 }
2025 
2026 static int panthor_gpuva_sm_step_remap(struct drm_gpuva_op *op,
2027 				       void *priv)
2028 {
2029 	struct panthor_vma *unmap_vma = container_of(op->remap.unmap->va, struct panthor_vma, base);
2030 	struct panthor_vm *vm = priv;
2031 	struct panthor_vm_op_ctx *op_ctx = vm->op_ctx;
2032 	struct panthor_vma *prev_vma = NULL, *next_vma = NULL;
2033 	u64 unmap_start, unmap_range;
2034 	int ret;
2035 
2036 	drm_gpuva_op_remap_to_unmap_range(&op->remap, &unmap_start, &unmap_range);
2037 	ret = panthor_vm_unmap_pages(vm, unmap_start, unmap_range);
2038 	if (ret)
2039 		return ret;
2040 
2041 	if (op->remap.prev) {
2042 		prev_vma = panthor_vm_op_ctx_get_vma(op_ctx);
2043 		panthor_vma_init(prev_vma, unmap_vma->flags);
2044 	}
2045 
2046 	if (op->remap.next) {
2047 		next_vma = panthor_vm_op_ctx_get_vma(op_ctx);
2048 		panthor_vma_init(next_vma, unmap_vma->flags);
2049 	}
2050 
2051 	drm_gpuva_remap(prev_vma ? &prev_vma->base : NULL,
2052 			next_vma ? &next_vma->base : NULL,
2053 			&op->remap);
2054 
2055 	if (prev_vma) {
2056 		/* panthor_vma_link() transfers the vm_bo ownership to
2057 		 * the VMA object. Since the vm_bo we're passing is still
2058 		 * owned by the old mapping which will be released when this
2059 		 * mapping is destroyed, we need to grab a ref here.
2060 		 */
2061 		panthor_vma_link(vm, prev_vma,
2062 				 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo));
2063 	}
2064 
2065 	if (next_vma) {
2066 		panthor_vma_link(vm, next_vma,
2067 				 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo));
2068 	}
2069 
2070 	panthor_vma_unlink(vm, unmap_vma);
2071 	return 0;
2072 }
2073 
2074 static int panthor_gpuva_sm_step_unmap(struct drm_gpuva_op *op,
2075 				       void *priv)
2076 {
2077 	struct panthor_vma *unmap_vma = container_of(op->unmap.va, struct panthor_vma, base);
2078 	struct panthor_vm *vm = priv;
2079 	int ret;
2080 
2081 	ret = panthor_vm_unmap_pages(vm, unmap_vma->base.va.addr,
2082 				     unmap_vma->base.va.range);
2083 	if (drm_WARN_ON(&vm->ptdev->base, ret))
2084 		return ret;
2085 
2086 	drm_gpuva_unmap(&op->unmap);
2087 	panthor_vma_unlink(vm, unmap_vma);
2088 	return 0;
2089 }
2090 
2091 static const struct drm_gpuvm_ops panthor_gpuvm_ops = {
2092 	.vm_free = panthor_vm_free,
2093 	.sm_step_map = panthor_gpuva_sm_step_map,
2094 	.sm_step_remap = panthor_gpuva_sm_step_remap,
2095 	.sm_step_unmap = panthor_gpuva_sm_step_unmap,
2096 };
2097 
2098 /**
2099  * panthor_vm_resv() - Get the dma_resv object attached to a VM.
2100  * @vm: VM to get the dma_resv of.
2101  *
2102  * Return: A dma_resv object.
2103  */
2104 struct dma_resv *panthor_vm_resv(struct panthor_vm *vm)
2105 {
2106 	return drm_gpuvm_resv(&vm->base);
2107 }
2108 
2109 struct drm_gem_object *panthor_vm_root_gem(struct panthor_vm *vm)
2110 {
2111 	if (!vm)
2112 		return NULL;
2113 
2114 	return vm->base.r_obj;
2115 }
2116 
2117 static int
2118 panthor_vm_exec_op(struct panthor_vm *vm, struct panthor_vm_op_ctx *op,
2119 		   bool flag_vm_unusable_on_failure)
2120 {
2121 	u32 op_type = op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK;
2122 	int ret;
2123 
2124 	if (op_type == DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY)
2125 		return 0;
2126 
2127 	mutex_lock(&vm->op_lock);
2128 	vm->op_ctx = op;
2129 	switch (op_type) {
2130 	case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
2131 		if (vm->unusable) {
2132 			ret = -EINVAL;
2133 			break;
2134 		}
2135 
2136 		ret = drm_gpuvm_sm_map(&vm->base, vm, op->va.addr, op->va.range,
2137 				       op->map.vm_bo->obj, op->map.bo_offset);
2138 		break;
2139 
2140 	case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
2141 		ret = drm_gpuvm_sm_unmap(&vm->base, vm, op->va.addr, op->va.range);
2142 		break;
2143 
2144 	default:
2145 		ret = -EINVAL;
2146 		break;
2147 	}
2148 
2149 	if (ret && flag_vm_unusable_on_failure)
2150 		vm->unusable = true;
2151 
2152 	vm->op_ctx = NULL;
2153 	mutex_unlock(&vm->op_lock);
2154 
2155 	return ret;
2156 }
2157 
2158 static struct dma_fence *
2159 panthor_vm_bind_run_job(struct drm_sched_job *sched_job)
2160 {
2161 	struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2162 	bool cookie;
2163 	int ret;
2164 
2165 	/* Not only we report an error whose result is propagated to the
2166 	 * drm_sched finished fence, but we also flag the VM as unusable, because
2167 	 * a failure in the async VM_BIND results in an inconsistent state. VM needs
2168 	 * to be destroyed and recreated.
2169 	 */
2170 	cookie = dma_fence_begin_signalling();
2171 	ret = panthor_vm_exec_op(job->vm, &job->ctx, true);
2172 	dma_fence_end_signalling(cookie);
2173 
2174 	return ret ? ERR_PTR(ret) : NULL;
2175 }
2176 
2177 static void panthor_vm_bind_job_release(struct kref *kref)
2178 {
2179 	struct panthor_vm_bind_job *job = container_of(kref, struct panthor_vm_bind_job, refcount);
2180 
2181 	if (job->base.s_fence)
2182 		drm_sched_job_cleanup(&job->base);
2183 
2184 	panthor_vm_cleanup_op_ctx(&job->ctx, job->vm);
2185 	panthor_vm_put(job->vm);
2186 	kfree(job);
2187 }
2188 
2189 /**
2190  * panthor_vm_bind_job_put() - Release a VM_BIND job reference
2191  * @sched_job: Job to release the reference on.
2192  */
2193 void panthor_vm_bind_job_put(struct drm_sched_job *sched_job)
2194 {
2195 	struct panthor_vm_bind_job *job =
2196 		container_of(sched_job, struct panthor_vm_bind_job, base);
2197 
2198 	if (sched_job)
2199 		kref_put(&job->refcount, panthor_vm_bind_job_release);
2200 }
2201 
2202 static void
2203 panthor_vm_bind_free_job(struct drm_sched_job *sched_job)
2204 {
2205 	struct panthor_vm_bind_job *job =
2206 		container_of(sched_job, struct panthor_vm_bind_job, base);
2207 
2208 	drm_sched_job_cleanup(sched_job);
2209 
2210 	/* Do the heavy cleanups asynchronously, so we're out of the
2211 	 * dma-signaling path and can acquire dma-resv locks safely.
2212 	 */
2213 	queue_work(panthor_cleanup_wq, &job->cleanup_op_ctx_work);
2214 }
2215 
2216 static enum drm_gpu_sched_stat
2217 panthor_vm_bind_timedout_job(struct drm_sched_job *sched_job)
2218 {
2219 	WARN(1, "VM_BIND ops are synchronous for now, there should be no timeout!");
2220 	return DRM_GPU_SCHED_STAT_NOMINAL;
2221 }
2222 
2223 static const struct drm_sched_backend_ops panthor_vm_bind_ops = {
2224 	.run_job = panthor_vm_bind_run_job,
2225 	.free_job = panthor_vm_bind_free_job,
2226 	.timedout_job = panthor_vm_bind_timedout_job,
2227 };
2228 
2229 /**
2230  * panthor_vm_create() - Create a VM
2231  * @ptdev: Device.
2232  * @for_mcu: True if this is the FW MCU VM.
2233  * @kernel_va_start: Start of the range reserved for kernel BO mapping.
2234  * @kernel_va_size: Size of the range reserved for kernel BO mapping.
2235  * @auto_kernel_va_start: Start of the auto-VA kernel range.
2236  * @auto_kernel_va_size: Size of the auto-VA kernel range.
2237  *
2238  * Return: A valid pointer on success, an ERR_PTR() otherwise.
2239  */
2240 struct panthor_vm *
2241 panthor_vm_create(struct panthor_device *ptdev, bool for_mcu,
2242 		  u64 kernel_va_start, u64 kernel_va_size,
2243 		  u64 auto_kernel_va_start, u64 auto_kernel_va_size)
2244 {
2245 	u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
2246 	u32 pa_bits = GPU_MMU_FEATURES_PA_BITS(ptdev->gpu_info.mmu_features);
2247 	u64 full_va_range = 1ull << va_bits;
2248 	struct drm_gem_object *dummy_gem;
2249 	struct drm_gpu_scheduler *sched;
2250 	struct io_pgtable_cfg pgtbl_cfg;
2251 	u64 mair, min_va, va_range;
2252 	struct panthor_vm *vm;
2253 	int ret;
2254 
2255 	vm = kzalloc(sizeof(*vm), GFP_KERNEL);
2256 	if (!vm)
2257 		return ERR_PTR(-ENOMEM);
2258 
2259 	/* We allocate a dummy GEM for the VM. */
2260 	dummy_gem = drm_gpuvm_resv_object_alloc(&ptdev->base);
2261 	if (!dummy_gem) {
2262 		ret = -ENOMEM;
2263 		goto err_free_vm;
2264 	}
2265 
2266 	mutex_init(&vm->heaps.lock);
2267 	vm->for_mcu = for_mcu;
2268 	vm->ptdev = ptdev;
2269 	mutex_init(&vm->op_lock);
2270 
2271 	if (for_mcu) {
2272 		/* CSF MCU is a cortex M7, and can only address 4G */
2273 		min_va = 0;
2274 		va_range = SZ_4G;
2275 	} else {
2276 		min_va = 0;
2277 		va_range = full_va_range;
2278 	}
2279 
2280 	mutex_init(&vm->mm_lock);
2281 	drm_mm_init(&vm->mm, kernel_va_start, kernel_va_size);
2282 	vm->kernel_auto_va.start = auto_kernel_va_start;
2283 	vm->kernel_auto_va.end = vm->kernel_auto_va.start + auto_kernel_va_size - 1;
2284 
2285 	INIT_LIST_HEAD(&vm->node);
2286 	INIT_LIST_HEAD(&vm->as.lru_node);
2287 	vm->as.id = -1;
2288 	refcount_set(&vm->as.active_cnt, 0);
2289 
2290 	pgtbl_cfg = (struct io_pgtable_cfg) {
2291 		.pgsize_bitmap	= SZ_4K | SZ_2M,
2292 		.ias		= va_bits,
2293 		.oas		= pa_bits,
2294 		.coherent_walk	= ptdev->coherent,
2295 		.tlb		= &mmu_tlb_ops,
2296 		.iommu_dev	= ptdev->base.dev,
2297 		.alloc		= alloc_pt,
2298 		.free		= free_pt,
2299 	};
2300 
2301 	vm->pgtbl_ops = alloc_io_pgtable_ops(ARM_64_LPAE_S1, &pgtbl_cfg, vm);
2302 	if (!vm->pgtbl_ops) {
2303 		ret = -EINVAL;
2304 		goto err_mm_takedown;
2305 	}
2306 
2307 	/* Bind operations are synchronous for now, no timeout needed. */
2308 	ret = drm_sched_init(&vm->sched, &panthor_vm_bind_ops, ptdev->mmu->vm.wq,
2309 			     1, 1, 0,
2310 			     MAX_SCHEDULE_TIMEOUT, NULL, NULL,
2311 			     "panthor-vm-bind", ptdev->base.dev);
2312 	if (ret)
2313 		goto err_free_io_pgtable;
2314 
2315 	sched = &vm->sched;
2316 	ret = drm_sched_entity_init(&vm->entity, 0, &sched, 1, NULL);
2317 	if (ret)
2318 		goto err_sched_fini;
2319 
2320 	mair = io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg.arm_lpae_s1_cfg.mair;
2321 	vm->memattr = mair_to_memattr(mair);
2322 
2323 	mutex_lock(&ptdev->mmu->vm.lock);
2324 	list_add_tail(&vm->node, &ptdev->mmu->vm.list);
2325 
2326 	/* If a reset is in progress, stop the scheduler. */
2327 	if (ptdev->mmu->vm.reset_in_progress)
2328 		panthor_vm_stop(vm);
2329 	mutex_unlock(&ptdev->mmu->vm.lock);
2330 
2331 	/* We intentionally leave the reserved range to zero, because we want kernel VMAs
2332 	 * to be handled the same way user VMAs are.
2333 	 */
2334 	drm_gpuvm_init(&vm->base, for_mcu ? "panthor-MCU-VM" : "panthor-GPU-VM",
2335 		       DRM_GPUVM_RESV_PROTECTED, &ptdev->base, dummy_gem,
2336 		       min_va, va_range, 0, 0, &panthor_gpuvm_ops);
2337 	drm_gem_object_put(dummy_gem);
2338 	return vm;
2339 
2340 err_sched_fini:
2341 	drm_sched_fini(&vm->sched);
2342 
2343 err_free_io_pgtable:
2344 	free_io_pgtable_ops(vm->pgtbl_ops);
2345 
2346 err_mm_takedown:
2347 	drm_mm_takedown(&vm->mm);
2348 	drm_gem_object_put(dummy_gem);
2349 
2350 err_free_vm:
2351 	kfree(vm);
2352 	return ERR_PTR(ret);
2353 }
2354 
2355 static int
2356 panthor_vm_bind_prepare_op_ctx(struct drm_file *file,
2357 			       struct panthor_vm *vm,
2358 			       const struct drm_panthor_vm_bind_op *op,
2359 			       struct panthor_vm_op_ctx *op_ctx)
2360 {
2361 	struct drm_gem_object *gem;
2362 	int ret;
2363 
2364 	/* Aligned on page size. */
2365 	if ((op->va | op->size) & ~PAGE_MASK)
2366 		return -EINVAL;
2367 
2368 	switch (op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) {
2369 	case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
2370 		gem = drm_gem_object_lookup(file, op->bo_handle);
2371 		ret = panthor_vm_prepare_map_op_ctx(op_ctx, vm,
2372 						    gem ? to_panthor_bo(gem) : NULL,
2373 						    op->bo_offset,
2374 						    op->size,
2375 						    op->va,
2376 						    op->flags);
2377 		drm_gem_object_put(gem);
2378 		return ret;
2379 
2380 	case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
2381 		if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
2382 			return -EINVAL;
2383 
2384 		if (op->bo_handle || op->bo_offset)
2385 			return -EINVAL;
2386 
2387 		return panthor_vm_prepare_unmap_op_ctx(op_ctx, vm, op->va, op->size);
2388 
2389 	case DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY:
2390 		if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
2391 			return -EINVAL;
2392 
2393 		if (op->bo_handle || op->bo_offset)
2394 			return -EINVAL;
2395 
2396 		if (op->va || op->size)
2397 			return -EINVAL;
2398 
2399 		if (!op->syncs.count)
2400 			return -EINVAL;
2401 
2402 		panthor_vm_prepare_sync_only_op_ctx(op_ctx, vm);
2403 		return 0;
2404 
2405 	default:
2406 		return -EINVAL;
2407 	}
2408 }
2409 
2410 static void panthor_vm_bind_job_cleanup_op_ctx_work(struct work_struct *work)
2411 {
2412 	struct panthor_vm_bind_job *job =
2413 		container_of(work, struct panthor_vm_bind_job, cleanup_op_ctx_work);
2414 
2415 	panthor_vm_bind_job_put(&job->base);
2416 }
2417 
2418 /**
2419  * panthor_vm_bind_job_create() - Create a VM_BIND job
2420  * @file: File.
2421  * @vm: VM targeted by the VM_BIND job.
2422  * @op: VM operation data.
2423  *
2424  * Return: A valid pointer on success, an ERR_PTR() otherwise.
2425  */
2426 struct drm_sched_job *
2427 panthor_vm_bind_job_create(struct drm_file *file,
2428 			   struct panthor_vm *vm,
2429 			   const struct drm_panthor_vm_bind_op *op)
2430 {
2431 	struct panthor_vm_bind_job *job;
2432 	int ret;
2433 
2434 	if (!vm)
2435 		return ERR_PTR(-EINVAL);
2436 
2437 	if (vm->destroyed || vm->unusable)
2438 		return ERR_PTR(-EINVAL);
2439 
2440 	job = kzalloc(sizeof(*job), GFP_KERNEL);
2441 	if (!job)
2442 		return ERR_PTR(-ENOMEM);
2443 
2444 	ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &job->ctx);
2445 	if (ret) {
2446 		kfree(job);
2447 		return ERR_PTR(ret);
2448 	}
2449 
2450 	INIT_WORK(&job->cleanup_op_ctx_work, panthor_vm_bind_job_cleanup_op_ctx_work);
2451 	kref_init(&job->refcount);
2452 	job->vm = panthor_vm_get(vm);
2453 
2454 	ret = drm_sched_job_init(&job->base, &vm->entity, 1, vm);
2455 	if (ret)
2456 		goto err_put_job;
2457 
2458 	return &job->base;
2459 
2460 err_put_job:
2461 	panthor_vm_bind_job_put(&job->base);
2462 	return ERR_PTR(ret);
2463 }
2464 
2465 /**
2466  * panthor_vm_bind_job_prepare_resvs() - Prepare VM_BIND job dma_resvs
2467  * @exec: The locking/preparation context.
2468  * @sched_job: The job to prepare resvs on.
2469  *
2470  * Locks and prepare the VM resv.
2471  *
2472  * If this is a map operation, locks and prepares the GEM resv.
2473  *
2474  * Return: 0 on success, a negative error code otherwise.
2475  */
2476 int panthor_vm_bind_job_prepare_resvs(struct drm_exec *exec,
2477 				      struct drm_sched_job *sched_job)
2478 {
2479 	struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2480 	int ret;
2481 
2482 	/* Acquire the VM lock an reserve a slot for this VM bind job. */
2483 	ret = drm_gpuvm_prepare_vm(&job->vm->base, exec, 1);
2484 	if (ret)
2485 		return ret;
2486 
2487 	if (job->ctx.map.vm_bo) {
2488 		/* Lock/prepare the GEM being mapped. */
2489 		ret = drm_exec_prepare_obj(exec, job->ctx.map.vm_bo->obj, 1);
2490 		if (ret)
2491 			return ret;
2492 	}
2493 
2494 	return 0;
2495 }
2496 
2497 /**
2498  * panthor_vm_bind_job_update_resvs() - Update the resv objects touched by a job
2499  * @exec: drm_exec context.
2500  * @sched_job: Job to update the resvs on.
2501  */
2502 void panthor_vm_bind_job_update_resvs(struct drm_exec *exec,
2503 				      struct drm_sched_job *sched_job)
2504 {
2505 	struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2506 
2507 	/* Explicit sync => we just register our job finished fence as bookkeep. */
2508 	drm_gpuvm_resv_add_fence(&job->vm->base, exec,
2509 				 &sched_job->s_fence->finished,
2510 				 DMA_RESV_USAGE_BOOKKEEP,
2511 				 DMA_RESV_USAGE_BOOKKEEP);
2512 }
2513 
2514 void panthor_vm_update_resvs(struct panthor_vm *vm, struct drm_exec *exec,
2515 			     struct dma_fence *fence,
2516 			     enum dma_resv_usage private_usage,
2517 			     enum dma_resv_usage extobj_usage)
2518 {
2519 	drm_gpuvm_resv_add_fence(&vm->base, exec, fence, private_usage, extobj_usage);
2520 }
2521 
2522 /**
2523  * panthor_vm_bind_exec_sync_op() - Execute a VM_BIND operation synchronously.
2524  * @file: File.
2525  * @vm: VM targeted by the VM operation.
2526  * @op: Data describing the VM operation.
2527  *
2528  * Return: 0 on success, a negative error code otherwise.
2529  */
2530 int panthor_vm_bind_exec_sync_op(struct drm_file *file,
2531 				 struct panthor_vm *vm,
2532 				 struct drm_panthor_vm_bind_op *op)
2533 {
2534 	struct panthor_vm_op_ctx op_ctx;
2535 	int ret;
2536 
2537 	/* No sync objects allowed on synchronous operations. */
2538 	if (op->syncs.count)
2539 		return -EINVAL;
2540 
2541 	if (!op->size)
2542 		return 0;
2543 
2544 	ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &op_ctx);
2545 	if (ret)
2546 		return ret;
2547 
2548 	ret = panthor_vm_exec_op(vm, &op_ctx, false);
2549 	panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2550 
2551 	return ret;
2552 }
2553 
2554 /**
2555  * panthor_vm_map_bo_range() - Map a GEM object range to a VM
2556  * @vm: VM to map the GEM to.
2557  * @bo: GEM object to map.
2558  * @offset: Offset in the GEM object.
2559  * @size: Size to map.
2560  * @va: Virtual address to map the object to.
2561  * @flags: Combination of drm_panthor_vm_bind_op_flags flags.
2562  * Only map-related flags are valid.
2563  *
2564  * Internal use only. For userspace requests, use
2565  * panthor_vm_bind_exec_sync_op() instead.
2566  *
2567  * Return: 0 on success, a negative error code otherwise.
2568  */
2569 int panthor_vm_map_bo_range(struct panthor_vm *vm, struct panthor_gem_object *bo,
2570 			    u64 offset, u64 size, u64 va, u32 flags)
2571 {
2572 	struct panthor_vm_op_ctx op_ctx;
2573 	int ret;
2574 
2575 	ret = panthor_vm_prepare_map_op_ctx(&op_ctx, vm, bo, offset, size, va, flags);
2576 	if (ret)
2577 		return ret;
2578 
2579 	ret = panthor_vm_exec_op(vm, &op_ctx, false);
2580 	panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2581 
2582 	return ret;
2583 }
2584 
2585 /**
2586  * panthor_vm_unmap_range() - Unmap a portion of the VA space
2587  * @vm: VM to unmap the region from.
2588  * @va: Virtual address to unmap. Must be 4k aligned.
2589  * @size: Size of the region to unmap. Must be 4k aligned.
2590  *
2591  * Internal use only. For userspace requests, use
2592  * panthor_vm_bind_exec_sync_op() instead.
2593  *
2594  * Return: 0 on success, a negative error code otherwise.
2595  */
2596 int panthor_vm_unmap_range(struct panthor_vm *vm, u64 va, u64 size)
2597 {
2598 	struct panthor_vm_op_ctx op_ctx;
2599 	int ret;
2600 
2601 	ret = panthor_vm_prepare_unmap_op_ctx(&op_ctx, vm, va, size);
2602 	if (ret)
2603 		return ret;
2604 
2605 	ret = panthor_vm_exec_op(vm, &op_ctx, false);
2606 	panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2607 
2608 	return ret;
2609 }
2610 
2611 /**
2612  * panthor_vm_prepare_mapped_bos_resvs() - Prepare resvs on VM BOs.
2613  * @exec: Locking/preparation context.
2614  * @vm: VM targeted by the GPU job.
2615  * @slot_count: Number of slots to reserve.
2616  *
2617  * GPU jobs assume all BOs bound to the VM at the time the job is submitted
2618  * are available when the job is executed. In order to guarantee that, we
2619  * need to reserve a slot on all BOs mapped to a VM and update this slot with
2620  * the job fence after its submission.
2621  *
2622  * Return: 0 on success, a negative error code otherwise.
2623  */
2624 int panthor_vm_prepare_mapped_bos_resvs(struct drm_exec *exec, struct panthor_vm *vm,
2625 					u32 slot_count)
2626 {
2627 	int ret;
2628 
2629 	/* Acquire the VM lock and reserve a slot for this GPU job. */
2630 	ret = drm_gpuvm_prepare_vm(&vm->base, exec, slot_count);
2631 	if (ret)
2632 		return ret;
2633 
2634 	return drm_gpuvm_prepare_objects(&vm->base, exec, slot_count);
2635 }
2636 
2637 /**
2638  * panthor_mmu_unplug() - Unplug the MMU logic
2639  * @ptdev: Device.
2640  *
2641  * No access to the MMU regs should be done after this function is called.
2642  * We suspend the IRQ and disable all VMs to guarantee that.
2643  */
2644 void panthor_mmu_unplug(struct panthor_device *ptdev)
2645 {
2646 	panthor_mmu_irq_suspend(&ptdev->mmu->irq);
2647 
2648 	mutex_lock(&ptdev->mmu->as.slots_lock);
2649 	for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
2650 		struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
2651 
2652 		if (vm) {
2653 			drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i));
2654 			panthor_vm_release_as_locked(vm);
2655 		}
2656 	}
2657 	mutex_unlock(&ptdev->mmu->as.slots_lock);
2658 }
2659 
2660 static void panthor_mmu_release_wq(struct drm_device *ddev, void *res)
2661 {
2662 	destroy_workqueue(res);
2663 }
2664 
2665 /**
2666  * panthor_mmu_init() - Initialize the MMU logic.
2667  * @ptdev: Device.
2668  *
2669  * Return: 0 on success, a negative error code otherwise.
2670  */
2671 int panthor_mmu_init(struct panthor_device *ptdev)
2672 {
2673 	u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
2674 	struct panthor_mmu *mmu;
2675 	int ret, irq;
2676 
2677 	mmu = drmm_kzalloc(&ptdev->base, sizeof(*mmu), GFP_KERNEL);
2678 	if (!mmu)
2679 		return -ENOMEM;
2680 
2681 	INIT_LIST_HEAD(&mmu->as.lru_list);
2682 
2683 	ret = drmm_mutex_init(&ptdev->base, &mmu->as.slots_lock);
2684 	if (ret)
2685 		return ret;
2686 
2687 	INIT_LIST_HEAD(&mmu->vm.list);
2688 	ret = drmm_mutex_init(&ptdev->base, &mmu->vm.lock);
2689 	if (ret)
2690 		return ret;
2691 
2692 	ptdev->mmu = mmu;
2693 
2694 	irq = platform_get_irq_byname(to_platform_device(ptdev->base.dev), "mmu");
2695 	if (irq <= 0)
2696 		return -ENODEV;
2697 
2698 	ret = panthor_request_mmu_irq(ptdev, &mmu->irq, irq,
2699 				      panthor_mmu_fault_mask(ptdev, ~0));
2700 	if (ret)
2701 		return ret;
2702 
2703 	mmu->vm.wq = alloc_workqueue("panthor-vm-bind", WQ_UNBOUND, 0);
2704 	if (!mmu->vm.wq)
2705 		return -ENOMEM;
2706 
2707 	/* On 32-bit kernels, the VA space is limited by the io_pgtable_ops abstraction,
2708 	 * which passes iova as an unsigned long. Patch the mmu_features to reflect this
2709 	 * limitation.
2710 	 */
2711 	if (sizeof(unsigned long) * 8 < va_bits) {
2712 		ptdev->gpu_info.mmu_features &= ~GENMASK(7, 0);
2713 		ptdev->gpu_info.mmu_features |= sizeof(unsigned long) * 8;
2714 	}
2715 
2716 	return drmm_add_action_or_reset(&ptdev->base, panthor_mmu_release_wq, mmu->vm.wq);
2717 }
2718 
2719 #ifdef CONFIG_DEBUG_FS
2720 static int show_vm_gpuvas(struct panthor_vm *vm, struct seq_file *m)
2721 {
2722 	int ret;
2723 
2724 	mutex_lock(&vm->op_lock);
2725 	ret = drm_debugfs_gpuva_info(m, &vm->base);
2726 	mutex_unlock(&vm->op_lock);
2727 
2728 	return ret;
2729 }
2730 
2731 static int show_each_vm(struct seq_file *m, void *arg)
2732 {
2733 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2734 	struct drm_device *ddev = node->minor->dev;
2735 	struct panthor_device *ptdev = container_of(ddev, struct panthor_device, base);
2736 	int (*show)(struct panthor_vm *, struct seq_file *) = node->info_ent->data;
2737 	struct panthor_vm *vm;
2738 	int ret = 0;
2739 
2740 	mutex_lock(&ptdev->mmu->vm.lock);
2741 	list_for_each_entry(vm, &ptdev->mmu->vm.list, node) {
2742 		ret = show(vm, m);
2743 		if (ret < 0)
2744 			break;
2745 
2746 		seq_puts(m, "\n");
2747 	}
2748 	mutex_unlock(&ptdev->mmu->vm.lock);
2749 
2750 	return ret;
2751 }
2752 
2753 static struct drm_info_list panthor_mmu_debugfs_list[] = {
2754 	DRM_DEBUGFS_GPUVA_INFO(show_each_vm, show_vm_gpuvas),
2755 };
2756 
2757 /**
2758  * panthor_mmu_debugfs_init() - Initialize MMU debugfs entries
2759  * @minor: Minor.
2760  */
2761 void panthor_mmu_debugfs_init(struct drm_minor *minor)
2762 {
2763 	drm_debugfs_create_files(panthor_mmu_debugfs_list,
2764 				 ARRAY_SIZE(panthor_mmu_debugfs_list),
2765 				 minor->debugfs_root, minor);
2766 }
2767 #endif /* CONFIG_DEBUG_FS */
2768 
2769 /**
2770  * panthor_mmu_pt_cache_init() - Initialize the page table cache.
2771  *
2772  * Return: 0 on success, a negative error code otherwise.
2773  */
2774 int panthor_mmu_pt_cache_init(void)
2775 {
2776 	pt_cache = kmem_cache_create("panthor-mmu-pt", SZ_4K, SZ_4K, 0, NULL);
2777 	if (!pt_cache)
2778 		return -ENOMEM;
2779 
2780 	return 0;
2781 }
2782 
2783 /**
2784  * panthor_mmu_pt_cache_fini() - Destroy the page table cache.
2785  */
2786 void panthor_mmu_pt_cache_fini(void)
2787 {
2788 	kmem_cache_destroy(pt_cache);
2789 }
2790