1 // SPDX-License-Identifier: GPL-2.0 or MIT 2 /* Copyright 2019 Linaro, Ltd, Rob Herring <robh@kernel.org> */ 3 /* Copyright 2023 Collabora ltd. */ 4 5 #include <drm/drm_debugfs.h> 6 #include <drm/drm_drv.h> 7 #include <drm/drm_exec.h> 8 #include <drm/drm_gpuvm.h> 9 #include <drm/drm_managed.h> 10 #include <drm/gpu_scheduler.h> 11 #include <drm/panthor_drm.h> 12 13 #include <linux/atomic.h> 14 #include <linux/bitfield.h> 15 #include <linux/delay.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/interrupt.h> 18 #include <linux/io.h> 19 #include <linux/iopoll.h> 20 #include <linux/io-pgtable.h> 21 #include <linux/iommu.h> 22 #include <linux/kmemleak.h> 23 #include <linux/platform_device.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/rwsem.h> 26 #include <linux/sched.h> 27 #include <linux/shmem_fs.h> 28 #include <linux/sizes.h> 29 30 #include "panthor_device.h" 31 #include "panthor_gem.h" 32 #include "panthor_heap.h" 33 #include "panthor_mmu.h" 34 #include "panthor_regs.h" 35 #include "panthor_sched.h" 36 37 #define MAX_AS_SLOTS 32 38 39 struct panthor_vm; 40 41 /** 42 * struct panthor_as_slot - Address space slot 43 */ 44 struct panthor_as_slot { 45 /** @vm: VM bound to this slot. NULL is no VM is bound. */ 46 struct panthor_vm *vm; 47 }; 48 49 /** 50 * struct panthor_mmu - MMU related data 51 */ 52 struct panthor_mmu { 53 /** @irq: The MMU irq. */ 54 struct panthor_irq irq; 55 56 /** @as: Address space related fields. 57 * 58 * The GPU has a limited number of address spaces (AS) slots, forcing 59 * us to re-assign them to re-assign slots on-demand. 60 */ 61 struct { 62 /** @slots_lock: Lock protecting access to all other AS fields. */ 63 struct mutex slots_lock; 64 65 /** @alloc_mask: Bitmask encoding the allocated slots. */ 66 unsigned long alloc_mask; 67 68 /** @faulty_mask: Bitmask encoding the faulty slots. */ 69 unsigned long faulty_mask; 70 71 /** @slots: VMs currently bound to the AS slots. */ 72 struct panthor_as_slot slots[MAX_AS_SLOTS]; 73 74 /** 75 * @lru_list: List of least recently used VMs. 76 * 77 * We use this list to pick a VM to evict when all slots are 78 * used. 79 * 80 * There should be no more active VMs than there are AS slots, 81 * so this LRU is just here to keep VMs bound until there's 82 * a need to release a slot, thus avoid unnecessary TLB/cache 83 * flushes. 84 */ 85 struct list_head lru_list; 86 } as; 87 88 /** @vm: VMs management fields */ 89 struct { 90 /** @lock: Lock protecting access to list. */ 91 struct mutex lock; 92 93 /** @list: List containing all VMs. */ 94 struct list_head list; 95 96 /** @reset_in_progress: True if a reset is in progress. */ 97 bool reset_in_progress; 98 99 /** @wq: Workqueue used for the VM_BIND queues. */ 100 struct workqueue_struct *wq; 101 } vm; 102 }; 103 104 /** 105 * struct panthor_vm_pool - VM pool object 106 */ 107 struct panthor_vm_pool { 108 /** @xa: Array used for VM handle tracking. */ 109 struct xarray xa; 110 }; 111 112 /** 113 * struct panthor_vma - GPU mapping object 114 * 115 * This is used to track GEM mappings in GPU space. 116 */ 117 struct panthor_vma { 118 /** @base: Inherits from drm_gpuva. */ 119 struct drm_gpuva base; 120 121 /** @node: Used to implement deferred release of VMAs. */ 122 struct list_head node; 123 124 /** 125 * @flags: Combination of drm_panthor_vm_bind_op_flags. 126 * 127 * Only map related flags are accepted. 128 */ 129 u32 flags; 130 }; 131 132 /** 133 * struct panthor_vm_op_ctx - VM operation context 134 * 135 * With VM operations potentially taking place in a dma-signaling path, we 136 * need to make sure everything that might require resource allocation is 137 * pre-allocated upfront. This is what this operation context is far. 138 * 139 * We also collect resources that have been freed, so we can release them 140 * asynchronously, and let the VM_BIND scheduler process the next VM_BIND 141 * request. 142 */ 143 struct panthor_vm_op_ctx { 144 /** @rsvd_page_tables: Pages reserved for the MMU page table update. */ 145 struct { 146 /** @count: Number of pages reserved. */ 147 u32 count; 148 149 /** @ptr: Point to the first unused page in the @pages table. */ 150 u32 ptr; 151 152 /** 153 * @page: Array of pages that can be used for an MMU page table update. 154 * 155 * After an VM operation, there might be free pages left in this array. 156 * They should be returned to the pt_cache as part of the op_ctx cleanup. 157 */ 158 void **pages; 159 } rsvd_page_tables; 160 161 /** 162 * @preallocated_vmas: Pre-allocated VMAs to handle the remap case. 163 * 164 * Partial unmap requests or map requests overlapping existing mappings will 165 * trigger a remap call, which need to register up to three panthor_vma objects 166 * (one for the new mapping, and two for the previous and next mappings). 167 */ 168 struct panthor_vma *preallocated_vmas[3]; 169 170 /** @flags: Combination of drm_panthor_vm_bind_op_flags. */ 171 u32 flags; 172 173 /** @va: Virtual range targeted by the VM operation. */ 174 struct { 175 /** @addr: Start address. */ 176 u64 addr; 177 178 /** @range: Range size. */ 179 u64 range; 180 } va; 181 182 /** 183 * @returned_vmas: List of panthor_vma objects returned after a VM operation. 184 * 185 * For unmap operations, this will contain all VMAs that were covered by the 186 * specified VA range. 187 * 188 * For map operations, this will contain all VMAs that previously mapped to 189 * the specified VA range. 190 * 191 * Those VMAs, and the resources they point to will be released as part of 192 * the op_ctx cleanup operation. 193 */ 194 struct list_head returned_vmas; 195 196 /** @map: Fields specific to a map operation. */ 197 struct { 198 /** @vm_bo: Buffer object to map. */ 199 struct drm_gpuvm_bo *vm_bo; 200 201 /** @bo_offset: Offset in the buffer object. */ 202 u64 bo_offset; 203 204 /** 205 * @sgt: sg-table pointing to pages backing the GEM object. 206 * 207 * This is gathered at job creation time, such that we don't have 208 * to allocate in ::run_job(). 209 */ 210 struct sg_table *sgt; 211 212 /** 213 * @new_vma: The new VMA object that will be inserted to the VA tree. 214 */ 215 struct panthor_vma *new_vma; 216 } map; 217 }; 218 219 /** 220 * struct panthor_vm - VM object 221 * 222 * A VM is an object representing a GPU (or MCU) virtual address space. 223 * It embeds the MMU page table for this address space, a tree containing 224 * all the virtual mappings of GEM objects, and other things needed to manage 225 * the VM. 226 * 227 * Except for the MCU VM, which is managed by the kernel, all other VMs are 228 * created by userspace and mostly managed by userspace, using the 229 * %DRM_IOCTL_PANTHOR_VM_BIND ioctl. 230 * 231 * A portion of the virtual address space is reserved for kernel objects, 232 * like heap chunks, and userspace gets to decide how much of the virtual 233 * address space is left to the kernel (half of the virtual address space 234 * by default). 235 */ 236 struct panthor_vm { 237 /** 238 * @base: Inherit from drm_gpuvm. 239 * 240 * We delegate all the VA management to the common drm_gpuvm framework 241 * and only implement hooks to update the MMU page table. 242 */ 243 struct drm_gpuvm base; 244 245 /** 246 * @sched: Scheduler used for asynchronous VM_BIND request. 247 * 248 * We use a 1:1 scheduler here. 249 */ 250 struct drm_gpu_scheduler sched; 251 252 /** 253 * @entity: Scheduling entity representing the VM_BIND queue. 254 * 255 * There's currently one bind queue per VM. It doesn't make sense to 256 * allow more given the VM operations are serialized anyway. 257 */ 258 struct drm_sched_entity entity; 259 260 /** @ptdev: Device. */ 261 struct panthor_device *ptdev; 262 263 /** @memattr: Value to program to the AS_MEMATTR register. */ 264 u64 memattr; 265 266 /** @pgtbl_ops: Page table operations. */ 267 struct io_pgtable_ops *pgtbl_ops; 268 269 /** @root_page_table: Stores the root page table pointer. */ 270 void *root_page_table; 271 272 /** 273 * @op_lock: Lock used to serialize operations on a VM. 274 * 275 * The serialization of jobs queued to the VM_BIND queue is already 276 * taken care of by drm_sched, but we need to serialize synchronous 277 * and asynchronous VM_BIND request. This is what this lock is for. 278 */ 279 struct mutex op_lock; 280 281 /** 282 * @op_ctx: The context attached to the currently executing VM operation. 283 * 284 * NULL when no operation is in progress. 285 */ 286 struct panthor_vm_op_ctx *op_ctx; 287 288 /** 289 * @mm: Memory management object representing the auto-VA/kernel-VA. 290 * 291 * Used to auto-allocate VA space for kernel-managed objects (tiler 292 * heaps, ...). 293 * 294 * For the MCU VM, this is managing the VA range that's used to map 295 * all shared interfaces. 296 * 297 * For user VMs, the range is specified by userspace, and must not 298 * exceed half of the VA space addressable. 299 */ 300 struct drm_mm mm; 301 302 /** @mm_lock: Lock protecting the @mm field. */ 303 struct mutex mm_lock; 304 305 /** @kernel_auto_va: Automatic VA-range for kernel BOs. */ 306 struct { 307 /** @start: Start of the automatic VA-range for kernel BOs. */ 308 u64 start; 309 310 /** @size: Size of the automatic VA-range for kernel BOs. */ 311 u64 end; 312 } kernel_auto_va; 313 314 /** @as: Address space related fields. */ 315 struct { 316 /** 317 * @id: ID of the address space this VM is bound to. 318 * 319 * A value of -1 means the VM is inactive/not bound. 320 */ 321 int id; 322 323 /** @active_cnt: Number of active users of this VM. */ 324 refcount_t active_cnt; 325 326 /** 327 * @lru_node: Used to instead the VM in the panthor_mmu::as::lru_list. 328 * 329 * Active VMs should not be inserted in the LRU list. 330 */ 331 struct list_head lru_node; 332 } as; 333 334 /** 335 * @heaps: Tiler heap related fields. 336 */ 337 struct { 338 /** 339 * @pool: The heap pool attached to this VM. 340 * 341 * Will stay NULL until someone creates a heap context on this VM. 342 */ 343 struct panthor_heap_pool *pool; 344 345 /** @lock: Lock used to protect access to @pool. */ 346 struct mutex lock; 347 } heaps; 348 349 /** @node: Used to insert the VM in the panthor_mmu::vm::list. */ 350 struct list_head node; 351 352 /** @for_mcu: True if this is the MCU VM. */ 353 bool for_mcu; 354 355 /** 356 * @destroyed: True if the VM was destroyed. 357 * 358 * No further bind requests should be queued to a destroyed VM. 359 */ 360 bool destroyed; 361 362 /** 363 * @unusable: True if the VM has turned unusable because something 364 * bad happened during an asynchronous request. 365 * 366 * We don't try to recover from such failures, because this implies 367 * informing userspace about the specific operation that failed, and 368 * hoping the userspace driver can replay things from there. This all 369 * sounds very complicated for little gain. 370 * 371 * Instead, we should just flag the VM as unusable, and fail any 372 * further request targeting this VM. 373 * 374 * We also provide a way to query a VM state, so userspace can destroy 375 * it and create a new one. 376 * 377 * As an analogy, this would be mapped to a VK_ERROR_DEVICE_LOST 378 * situation, where the logical device needs to be re-created. 379 */ 380 bool unusable; 381 382 /** 383 * @unhandled_fault: Unhandled fault happened. 384 * 385 * This should be reported to the scheduler, and the queue/group be 386 * flagged as faulty as a result. 387 */ 388 bool unhandled_fault; 389 }; 390 391 /** 392 * struct panthor_vm_bind_job - VM bind job 393 */ 394 struct panthor_vm_bind_job { 395 /** @base: Inherit from drm_sched_job. */ 396 struct drm_sched_job base; 397 398 /** @refcount: Reference count. */ 399 struct kref refcount; 400 401 /** @cleanup_op_ctx_work: Work used to cleanup the VM operation context. */ 402 struct work_struct cleanup_op_ctx_work; 403 404 /** @vm: VM targeted by the VM operation. */ 405 struct panthor_vm *vm; 406 407 /** @ctx: Operation context. */ 408 struct panthor_vm_op_ctx ctx; 409 }; 410 411 /** 412 * @pt_cache: Cache used to allocate MMU page tables. 413 * 414 * The pre-allocation pattern forces us to over-allocate to plan for 415 * the worst case scenario, and return the pages we didn't use. 416 * 417 * Having a kmem_cache allows us to speed allocations. 418 */ 419 static struct kmem_cache *pt_cache; 420 421 /** 422 * alloc_pt() - Custom page table allocator 423 * @cookie: Cookie passed at page table allocation time. 424 * @size: Size of the page table. This size should be fixed, 425 * and determined at creation time based on the granule size. 426 * @gfp: GFP flags. 427 * 428 * We want a custom allocator so we can use a cache for page table 429 * allocations and amortize the cost of the over-reservation that's 430 * done to allow asynchronous VM operations. 431 * 432 * Return: non-NULL on success, NULL if the allocation failed for any 433 * reason. 434 */ 435 static void *alloc_pt(void *cookie, size_t size, gfp_t gfp) 436 { 437 struct panthor_vm *vm = cookie; 438 void *page; 439 440 /* Allocation of the root page table happening during init. */ 441 if (unlikely(!vm->root_page_table)) { 442 struct page *p; 443 444 drm_WARN_ON(&vm->ptdev->base, vm->op_ctx); 445 p = alloc_pages_node(dev_to_node(vm->ptdev->base.dev), 446 gfp | __GFP_ZERO, get_order(size)); 447 page = p ? page_address(p) : NULL; 448 vm->root_page_table = page; 449 return page; 450 } 451 452 /* We're not supposed to have anything bigger than 4k here, because we picked a 453 * 4k granule size at init time. 454 */ 455 if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K)) 456 return NULL; 457 458 /* We must have some op_ctx attached to the VM and it must have at least one 459 * free page. 460 */ 461 if (drm_WARN_ON(&vm->ptdev->base, !vm->op_ctx) || 462 drm_WARN_ON(&vm->ptdev->base, 463 vm->op_ctx->rsvd_page_tables.ptr >= vm->op_ctx->rsvd_page_tables.count)) 464 return NULL; 465 466 page = vm->op_ctx->rsvd_page_tables.pages[vm->op_ctx->rsvd_page_tables.ptr++]; 467 memset(page, 0, SZ_4K); 468 469 /* Page table entries don't use virtual addresses, which trips out 470 * kmemleak. kmemleak_alloc_phys() might work, but physical addresses 471 * are mixed with other fields, and I fear kmemleak won't detect that 472 * either. 473 * 474 * Let's just ignore memory passed to the page-table driver for now. 475 */ 476 kmemleak_ignore(page); 477 return page; 478 } 479 480 /** 481 * @free_pt() - Custom page table free function 482 * @cookie: Cookie passed at page table allocation time. 483 * @data: Page table to free. 484 * @size: Size of the page table. This size should be fixed, 485 * and determined at creation time based on the granule size. 486 */ 487 static void free_pt(void *cookie, void *data, size_t size) 488 { 489 struct panthor_vm *vm = cookie; 490 491 if (unlikely(vm->root_page_table == data)) { 492 free_pages((unsigned long)data, get_order(size)); 493 vm->root_page_table = NULL; 494 return; 495 } 496 497 if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K)) 498 return; 499 500 /* Return the page to the pt_cache. */ 501 kmem_cache_free(pt_cache, data); 502 } 503 504 static int wait_ready(struct panthor_device *ptdev, u32 as_nr) 505 { 506 int ret; 507 u32 val; 508 509 /* Wait for the MMU status to indicate there is no active command, in 510 * case one is pending. 511 */ 512 ret = readl_relaxed_poll_timeout_atomic(ptdev->iomem + AS_STATUS(as_nr), 513 val, !(val & AS_STATUS_AS_ACTIVE), 514 10, 100000); 515 516 if (ret) { 517 panthor_device_schedule_reset(ptdev); 518 drm_err(&ptdev->base, "AS_ACTIVE bit stuck\n"); 519 } 520 521 return ret; 522 } 523 524 static int write_cmd(struct panthor_device *ptdev, u32 as_nr, u32 cmd) 525 { 526 int status; 527 528 /* write AS_COMMAND when MMU is ready to accept another command */ 529 status = wait_ready(ptdev, as_nr); 530 if (!status) 531 gpu_write(ptdev, AS_COMMAND(as_nr), cmd); 532 533 return status; 534 } 535 536 static void lock_region(struct panthor_device *ptdev, u32 as_nr, 537 u64 region_start, u64 size) 538 { 539 u8 region_width; 540 u64 region; 541 u64 region_end = region_start + size; 542 543 if (!size) 544 return; 545 546 /* 547 * The locked region is a naturally aligned power of 2 block encoded as 548 * log2 minus(1). 549 * Calculate the desired start/end and look for the highest bit which 550 * differs. The smallest naturally aligned block must include this bit 551 * change, the desired region starts with this bit (and subsequent bits) 552 * zeroed and ends with the bit (and subsequent bits) set to one. 553 */ 554 region_width = max(fls64(region_start ^ (region_end - 1)), 555 const_ilog2(AS_LOCK_REGION_MIN_SIZE)) - 1; 556 557 /* 558 * Mask off the low bits of region_start (which would be ignored by 559 * the hardware anyway) 560 */ 561 region_start &= GENMASK_ULL(63, region_width); 562 563 region = region_width | region_start; 564 565 /* Lock the region that needs to be updated */ 566 gpu_write(ptdev, AS_LOCKADDR_LO(as_nr), lower_32_bits(region)); 567 gpu_write(ptdev, AS_LOCKADDR_HI(as_nr), upper_32_bits(region)); 568 write_cmd(ptdev, as_nr, AS_COMMAND_LOCK); 569 } 570 571 static int mmu_hw_do_operation_locked(struct panthor_device *ptdev, int as_nr, 572 u64 iova, u64 size, u32 op) 573 { 574 lockdep_assert_held(&ptdev->mmu->as.slots_lock); 575 576 if (as_nr < 0) 577 return 0; 578 579 if (op != AS_COMMAND_UNLOCK) 580 lock_region(ptdev, as_nr, iova, size); 581 582 /* Run the MMU operation */ 583 write_cmd(ptdev, as_nr, op); 584 585 /* Wait for the flush to complete */ 586 return wait_ready(ptdev, as_nr); 587 } 588 589 static int mmu_hw_do_operation(struct panthor_vm *vm, 590 u64 iova, u64 size, u32 op) 591 { 592 struct panthor_device *ptdev = vm->ptdev; 593 int ret; 594 595 mutex_lock(&ptdev->mmu->as.slots_lock); 596 ret = mmu_hw_do_operation_locked(ptdev, vm->as.id, iova, size, op); 597 mutex_unlock(&ptdev->mmu->as.slots_lock); 598 599 return ret; 600 } 601 602 static int panthor_mmu_as_enable(struct panthor_device *ptdev, u32 as_nr, 603 u64 transtab, u64 transcfg, u64 memattr) 604 { 605 int ret; 606 607 ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM); 608 if (ret) 609 return ret; 610 611 gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), lower_32_bits(transtab)); 612 gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), upper_32_bits(transtab)); 613 614 gpu_write(ptdev, AS_MEMATTR_LO(as_nr), lower_32_bits(memattr)); 615 gpu_write(ptdev, AS_MEMATTR_HI(as_nr), upper_32_bits(memattr)); 616 617 gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), lower_32_bits(transcfg)); 618 gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), upper_32_bits(transcfg)); 619 620 return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE); 621 } 622 623 static int panthor_mmu_as_disable(struct panthor_device *ptdev, u32 as_nr) 624 { 625 int ret; 626 627 ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM); 628 if (ret) 629 return ret; 630 631 gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), 0); 632 gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), 0); 633 634 gpu_write(ptdev, AS_MEMATTR_LO(as_nr), 0); 635 gpu_write(ptdev, AS_MEMATTR_HI(as_nr), 0); 636 637 gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), AS_TRANSCFG_ADRMODE_UNMAPPED); 638 gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), 0); 639 640 return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE); 641 } 642 643 static u32 panthor_mmu_fault_mask(struct panthor_device *ptdev, u32 value) 644 { 645 /* Bits 16 to 31 mean REQ_COMPLETE. */ 646 return value & GENMASK(15, 0); 647 } 648 649 static u32 panthor_mmu_as_fault_mask(struct panthor_device *ptdev, u32 as) 650 { 651 return BIT(as); 652 } 653 654 /** 655 * panthor_vm_has_unhandled_faults() - Check if a VM has unhandled faults 656 * @vm: VM to check. 657 * 658 * Return: true if the VM has unhandled faults, false otherwise. 659 */ 660 bool panthor_vm_has_unhandled_faults(struct panthor_vm *vm) 661 { 662 return vm->unhandled_fault; 663 } 664 665 /** 666 * panthor_vm_is_unusable() - Check if the VM is still usable 667 * @vm: VM to check. 668 * 669 * Return: true if the VM is unusable, false otherwise. 670 */ 671 bool panthor_vm_is_unusable(struct panthor_vm *vm) 672 { 673 return vm->unusable; 674 } 675 676 static void panthor_vm_release_as_locked(struct panthor_vm *vm) 677 { 678 struct panthor_device *ptdev = vm->ptdev; 679 680 lockdep_assert_held(&ptdev->mmu->as.slots_lock); 681 682 if (drm_WARN_ON(&ptdev->base, vm->as.id < 0)) 683 return; 684 685 ptdev->mmu->as.slots[vm->as.id].vm = NULL; 686 clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask); 687 refcount_set(&vm->as.active_cnt, 0); 688 list_del_init(&vm->as.lru_node); 689 vm->as.id = -1; 690 } 691 692 /** 693 * panthor_vm_active() - Flag a VM as active 694 * @VM: VM to flag as active. 695 * 696 * Assigns an address space to a VM so it can be used by the GPU/MCU. 697 * 698 * Return: 0 on success, a negative error code otherwise. 699 */ 700 int panthor_vm_active(struct panthor_vm *vm) 701 { 702 struct panthor_device *ptdev = vm->ptdev; 703 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 704 struct io_pgtable_cfg *cfg = &io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg; 705 int ret = 0, as, cookie; 706 u64 transtab, transcfg; 707 708 if (!drm_dev_enter(&ptdev->base, &cookie)) 709 return -ENODEV; 710 711 if (refcount_inc_not_zero(&vm->as.active_cnt)) 712 goto out_dev_exit; 713 714 mutex_lock(&ptdev->mmu->as.slots_lock); 715 716 if (refcount_inc_not_zero(&vm->as.active_cnt)) 717 goto out_unlock; 718 719 as = vm->as.id; 720 if (as >= 0) { 721 /* Unhandled pagefault on this AS, the MMU was disabled. We need to 722 * re-enable the MMU after clearing+unmasking the AS interrupts. 723 */ 724 if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) 725 goto out_enable_as; 726 727 goto out_make_active; 728 } 729 730 /* Check for a free AS */ 731 if (vm->for_mcu) { 732 drm_WARN_ON(&ptdev->base, ptdev->mmu->as.alloc_mask & BIT(0)); 733 as = 0; 734 } else { 735 as = ffz(ptdev->mmu->as.alloc_mask | BIT(0)); 736 } 737 738 if (!(BIT(as) & ptdev->gpu_info.as_present)) { 739 struct panthor_vm *lru_vm; 740 741 lru_vm = list_first_entry_or_null(&ptdev->mmu->as.lru_list, 742 struct panthor_vm, 743 as.lru_node); 744 if (drm_WARN_ON(&ptdev->base, !lru_vm)) { 745 ret = -EBUSY; 746 goto out_unlock; 747 } 748 749 drm_WARN_ON(&ptdev->base, refcount_read(&lru_vm->as.active_cnt)); 750 as = lru_vm->as.id; 751 panthor_vm_release_as_locked(lru_vm); 752 } 753 754 /* Assign the free or reclaimed AS to the FD */ 755 vm->as.id = as; 756 set_bit(as, &ptdev->mmu->as.alloc_mask); 757 ptdev->mmu->as.slots[as].vm = vm; 758 759 out_enable_as: 760 transtab = cfg->arm_lpae_s1_cfg.ttbr; 761 transcfg = AS_TRANSCFG_PTW_MEMATTR_WB | 762 AS_TRANSCFG_PTW_RA | 763 AS_TRANSCFG_ADRMODE_AARCH64_4K | 764 AS_TRANSCFG_INA_BITS(55 - va_bits); 765 if (ptdev->coherent) 766 transcfg |= AS_TRANSCFG_PTW_SH_OS; 767 768 /* If the VM is re-activated, we clear the fault. */ 769 vm->unhandled_fault = false; 770 771 /* Unhandled pagefault on this AS, clear the fault and re-enable interrupts 772 * before enabling the AS. 773 */ 774 if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) { 775 gpu_write(ptdev, MMU_INT_CLEAR, panthor_mmu_as_fault_mask(ptdev, as)); 776 ptdev->mmu->as.faulty_mask &= ~panthor_mmu_as_fault_mask(ptdev, as); 777 gpu_write(ptdev, MMU_INT_MASK, ~ptdev->mmu->as.faulty_mask); 778 } 779 780 ret = panthor_mmu_as_enable(vm->ptdev, vm->as.id, transtab, transcfg, vm->memattr); 781 782 out_make_active: 783 if (!ret) { 784 refcount_set(&vm->as.active_cnt, 1); 785 list_del_init(&vm->as.lru_node); 786 } 787 788 out_unlock: 789 mutex_unlock(&ptdev->mmu->as.slots_lock); 790 791 out_dev_exit: 792 drm_dev_exit(cookie); 793 return ret; 794 } 795 796 /** 797 * panthor_vm_idle() - Flag a VM idle 798 * @VM: VM to flag as idle. 799 * 800 * When we know the GPU is done with the VM (no more jobs to process), 801 * we can relinquish the AS slot attached to this VM, if any. 802 * 803 * We don't release the slot immediately, but instead place the VM in 804 * the LRU list, so it can be evicted if another VM needs an AS slot. 805 * This way, VMs keep attached to the AS they were given until we run 806 * out of free slot, limiting the number of MMU operations (TLB flush 807 * and other AS updates). 808 */ 809 void panthor_vm_idle(struct panthor_vm *vm) 810 { 811 struct panthor_device *ptdev = vm->ptdev; 812 813 if (!refcount_dec_and_mutex_lock(&vm->as.active_cnt, &ptdev->mmu->as.slots_lock)) 814 return; 815 816 if (!drm_WARN_ON(&ptdev->base, vm->as.id == -1 || !list_empty(&vm->as.lru_node))) 817 list_add_tail(&vm->as.lru_node, &ptdev->mmu->as.lru_list); 818 819 refcount_set(&vm->as.active_cnt, 0); 820 mutex_unlock(&ptdev->mmu->as.slots_lock); 821 } 822 823 static void panthor_vm_stop(struct panthor_vm *vm) 824 { 825 drm_sched_stop(&vm->sched, NULL); 826 } 827 828 static void panthor_vm_start(struct panthor_vm *vm) 829 { 830 drm_sched_start(&vm->sched, true); 831 } 832 833 /** 834 * panthor_vm_as() - Get the AS slot attached to a VM 835 * @vm: VM to get the AS slot of. 836 * 837 * Return: -1 if the VM is not assigned an AS slot yet, >= 0 otherwise. 838 */ 839 int panthor_vm_as(struct panthor_vm *vm) 840 { 841 return vm->as.id; 842 } 843 844 static size_t get_pgsize(u64 addr, size_t size, size_t *count) 845 { 846 /* 847 * io-pgtable only operates on multiple pages within a single table 848 * entry, so we need to split at boundaries of the table size, i.e. 849 * the next block size up. The distance from address A to the next 850 * boundary of block size B is logically B - A % B, but in unsigned 851 * two's complement where B is a power of two we get the equivalence 852 * B - A % B == (B - A) % B == (n * B - A) % B, and choose n = 0 :) 853 */ 854 size_t blk_offset = -addr % SZ_2M; 855 856 if (blk_offset || size < SZ_2M) { 857 *count = min_not_zero(blk_offset, size) / SZ_4K; 858 return SZ_4K; 859 } 860 blk_offset = -addr % SZ_1G ?: SZ_1G; 861 *count = min(blk_offset, size) / SZ_2M; 862 return SZ_2M; 863 } 864 865 static int panthor_vm_flush_range(struct panthor_vm *vm, u64 iova, u64 size) 866 { 867 struct panthor_device *ptdev = vm->ptdev; 868 int ret = 0, cookie; 869 870 if (vm->as.id < 0) 871 return 0; 872 873 /* If the device is unplugged, we just silently skip the flush. */ 874 if (!drm_dev_enter(&ptdev->base, &cookie)) 875 return 0; 876 877 /* Flush the PTs only if we're already awake */ 878 if (pm_runtime_active(ptdev->base.dev)) 879 ret = mmu_hw_do_operation(vm, iova, size, AS_COMMAND_FLUSH_PT); 880 881 drm_dev_exit(cookie); 882 return ret; 883 } 884 885 static int panthor_vm_unmap_pages(struct panthor_vm *vm, u64 iova, u64 size) 886 { 887 struct panthor_device *ptdev = vm->ptdev; 888 struct io_pgtable_ops *ops = vm->pgtbl_ops; 889 u64 offset = 0; 890 891 drm_dbg(&ptdev->base, "unmap: as=%d, iova=%llx, len=%llx", vm->as.id, iova, size); 892 893 while (offset < size) { 894 size_t unmapped_sz = 0, pgcount; 895 size_t pgsize = get_pgsize(iova + offset, size - offset, &pgcount); 896 897 unmapped_sz = ops->unmap_pages(ops, iova + offset, pgsize, pgcount, NULL); 898 899 if (drm_WARN_ON(&ptdev->base, unmapped_sz != pgsize * pgcount)) { 900 drm_err(&ptdev->base, "failed to unmap range %llx-%llx (requested range %llx-%llx)\n", 901 iova + offset + unmapped_sz, 902 iova + offset + pgsize * pgcount, 903 iova, iova + size); 904 panthor_vm_flush_range(vm, iova, offset + unmapped_sz); 905 return -EINVAL; 906 } 907 offset += unmapped_sz; 908 } 909 910 return panthor_vm_flush_range(vm, iova, size); 911 } 912 913 static int 914 panthor_vm_map_pages(struct panthor_vm *vm, u64 iova, int prot, 915 struct sg_table *sgt, u64 offset, u64 size) 916 { 917 struct panthor_device *ptdev = vm->ptdev; 918 unsigned int count; 919 struct scatterlist *sgl; 920 struct io_pgtable_ops *ops = vm->pgtbl_ops; 921 u64 start_iova = iova; 922 int ret; 923 924 if (!size) 925 return 0; 926 927 for_each_sgtable_dma_sg(sgt, sgl, count) { 928 dma_addr_t paddr = sg_dma_address(sgl); 929 size_t len = sg_dma_len(sgl); 930 931 if (len <= offset) { 932 offset -= len; 933 continue; 934 } 935 936 paddr += offset; 937 len -= offset; 938 len = min_t(size_t, len, size); 939 size -= len; 940 941 drm_dbg(&ptdev->base, "map: as=%d, iova=%llx, paddr=%pad, len=%zx", 942 vm->as.id, iova, &paddr, len); 943 944 while (len) { 945 size_t pgcount, mapped = 0; 946 size_t pgsize = get_pgsize(iova | paddr, len, &pgcount); 947 948 ret = ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot, 949 GFP_KERNEL, &mapped); 950 iova += mapped; 951 paddr += mapped; 952 len -= mapped; 953 954 if (drm_WARN_ON(&ptdev->base, !ret && !mapped)) 955 ret = -ENOMEM; 956 957 if (ret) { 958 /* If something failed, unmap what we've already mapped before 959 * returning. The unmap call is not supposed to fail. 960 */ 961 drm_WARN_ON(&ptdev->base, 962 panthor_vm_unmap_pages(vm, start_iova, 963 iova - start_iova)); 964 return ret; 965 } 966 } 967 968 if (!size) 969 break; 970 } 971 972 return panthor_vm_flush_range(vm, start_iova, iova - start_iova); 973 } 974 975 static int flags_to_prot(u32 flags) 976 { 977 int prot = 0; 978 979 if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC) 980 prot |= IOMMU_NOEXEC; 981 982 if (!(flags & DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED)) 983 prot |= IOMMU_CACHE; 984 985 if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_READONLY) 986 prot |= IOMMU_READ; 987 else 988 prot |= IOMMU_READ | IOMMU_WRITE; 989 990 return prot; 991 } 992 993 /** 994 * panthor_vm_alloc_va() - Allocate a region in the auto-va space 995 * @VM: VM to allocate a region on. 996 * @va: start of the VA range. Can be PANTHOR_VM_KERNEL_AUTO_VA if the user 997 * wants the VA to be automatically allocated from the auto-VA range. 998 * @size: size of the VA range. 999 * @va_node: drm_mm_node to initialize. Must be zero-initialized. 1000 * 1001 * Some GPU objects, like heap chunks, are fully managed by the kernel and 1002 * need to be mapped to the userspace VM, in the region reserved for kernel 1003 * objects. 1004 * 1005 * This function takes care of allocating a region in the kernel auto-VA space. 1006 * 1007 * Return: 0 on success, an error code otherwise. 1008 */ 1009 int 1010 panthor_vm_alloc_va(struct panthor_vm *vm, u64 va, u64 size, 1011 struct drm_mm_node *va_node) 1012 { 1013 int ret; 1014 1015 if (!size || (size & ~PAGE_MASK)) 1016 return -EINVAL; 1017 1018 if (va != PANTHOR_VM_KERNEL_AUTO_VA && (va & ~PAGE_MASK)) 1019 return -EINVAL; 1020 1021 mutex_lock(&vm->mm_lock); 1022 if (va != PANTHOR_VM_KERNEL_AUTO_VA) { 1023 va_node->start = va; 1024 va_node->size = size; 1025 ret = drm_mm_reserve_node(&vm->mm, va_node); 1026 } else { 1027 ret = drm_mm_insert_node_in_range(&vm->mm, va_node, size, 1028 size >= SZ_2M ? SZ_2M : SZ_4K, 1029 0, vm->kernel_auto_va.start, 1030 vm->kernel_auto_va.end, 1031 DRM_MM_INSERT_BEST); 1032 } 1033 mutex_unlock(&vm->mm_lock); 1034 1035 return ret; 1036 } 1037 1038 /** 1039 * panthor_vm_free_va() - Free a region allocated with panthor_vm_alloc_va() 1040 * @VM: VM to free the region on. 1041 * @va_node: Memory node representing the region to free. 1042 */ 1043 void panthor_vm_free_va(struct panthor_vm *vm, struct drm_mm_node *va_node) 1044 { 1045 mutex_lock(&vm->mm_lock); 1046 drm_mm_remove_node(va_node); 1047 mutex_unlock(&vm->mm_lock); 1048 } 1049 1050 static void panthor_vm_bo_put(struct drm_gpuvm_bo *vm_bo) 1051 { 1052 struct panthor_gem_object *bo = to_panthor_bo(vm_bo->obj); 1053 struct drm_gpuvm *vm = vm_bo->vm; 1054 bool unpin; 1055 1056 /* We must retain the GEM before calling drm_gpuvm_bo_put(), 1057 * otherwise the mutex might be destroyed while we hold it. 1058 * Same goes for the VM, since we take the VM resv lock. 1059 */ 1060 drm_gem_object_get(&bo->base.base); 1061 drm_gpuvm_get(vm); 1062 1063 /* We take the resv lock to protect against concurrent accesses to the 1064 * gpuvm evicted/extobj lists that are modified in 1065 * drm_gpuvm_bo_destroy(), which is called if drm_gpuvm_bo_put() 1066 * releases sthe last vm_bo reference. 1067 * We take the BO GPUVA list lock to protect the vm_bo removal from the 1068 * GEM vm_bo list. 1069 */ 1070 dma_resv_lock(drm_gpuvm_resv(vm), NULL); 1071 mutex_lock(&bo->gpuva_list_lock); 1072 unpin = drm_gpuvm_bo_put(vm_bo); 1073 mutex_unlock(&bo->gpuva_list_lock); 1074 dma_resv_unlock(drm_gpuvm_resv(vm)); 1075 1076 /* If the vm_bo object was destroyed, release the pin reference that 1077 * was hold by this object. 1078 */ 1079 if (unpin && !bo->base.base.import_attach) 1080 drm_gem_shmem_unpin(&bo->base); 1081 1082 drm_gpuvm_put(vm); 1083 drm_gem_object_put(&bo->base.base); 1084 } 1085 1086 static void panthor_vm_cleanup_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1087 struct panthor_vm *vm) 1088 { 1089 struct panthor_vma *vma, *tmp_vma; 1090 1091 u32 remaining_pt_count = op_ctx->rsvd_page_tables.count - 1092 op_ctx->rsvd_page_tables.ptr; 1093 1094 if (remaining_pt_count) { 1095 kmem_cache_free_bulk(pt_cache, remaining_pt_count, 1096 op_ctx->rsvd_page_tables.pages + 1097 op_ctx->rsvd_page_tables.ptr); 1098 } 1099 1100 kfree(op_ctx->rsvd_page_tables.pages); 1101 1102 if (op_ctx->map.vm_bo) 1103 panthor_vm_bo_put(op_ctx->map.vm_bo); 1104 1105 for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) 1106 kfree(op_ctx->preallocated_vmas[i]); 1107 1108 list_for_each_entry_safe(vma, tmp_vma, &op_ctx->returned_vmas, node) { 1109 list_del(&vma->node); 1110 panthor_vm_bo_put(vma->base.vm_bo); 1111 kfree(vma); 1112 } 1113 } 1114 1115 static struct panthor_vma * 1116 panthor_vm_op_ctx_get_vma(struct panthor_vm_op_ctx *op_ctx) 1117 { 1118 for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) { 1119 struct panthor_vma *vma = op_ctx->preallocated_vmas[i]; 1120 1121 if (vma) { 1122 op_ctx->preallocated_vmas[i] = NULL; 1123 return vma; 1124 } 1125 } 1126 1127 return NULL; 1128 } 1129 1130 static int 1131 panthor_vm_op_ctx_prealloc_vmas(struct panthor_vm_op_ctx *op_ctx) 1132 { 1133 u32 vma_count; 1134 1135 switch (op_ctx->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) { 1136 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: 1137 /* One VMA for the new mapping, and two more VMAs for the remap case 1138 * which might contain both a prev and next VA. 1139 */ 1140 vma_count = 3; 1141 break; 1142 1143 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP: 1144 /* Partial unmaps might trigger a remap with either a prev or a next VA, 1145 * but not both. 1146 */ 1147 vma_count = 1; 1148 break; 1149 1150 default: 1151 return 0; 1152 } 1153 1154 for (u32 i = 0; i < vma_count; i++) { 1155 struct panthor_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL); 1156 1157 if (!vma) 1158 return -ENOMEM; 1159 1160 op_ctx->preallocated_vmas[i] = vma; 1161 } 1162 1163 return 0; 1164 } 1165 1166 #define PANTHOR_VM_BIND_OP_MAP_FLAGS \ 1167 (DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \ 1168 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \ 1169 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED | \ 1170 DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) 1171 1172 static int panthor_vm_prepare_map_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1173 struct panthor_vm *vm, 1174 struct panthor_gem_object *bo, 1175 u64 offset, 1176 u64 size, u64 va, 1177 u32 flags) 1178 { 1179 struct drm_gpuvm_bo *preallocated_vm_bo; 1180 struct sg_table *sgt = NULL; 1181 u64 pt_count; 1182 int ret; 1183 1184 if (!bo) 1185 return -EINVAL; 1186 1187 if ((flags & ~PANTHOR_VM_BIND_OP_MAP_FLAGS) || 1188 (flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) != DRM_PANTHOR_VM_BIND_OP_TYPE_MAP) 1189 return -EINVAL; 1190 1191 /* Make sure the VA and size are aligned and in-bounds. */ 1192 if (size > bo->base.base.size || offset > bo->base.base.size - size) 1193 return -EINVAL; 1194 1195 /* If the BO has an exclusive VM attached, it can't be mapped to other VMs. */ 1196 if (bo->exclusive_vm_root_gem && 1197 bo->exclusive_vm_root_gem != panthor_vm_root_gem(vm)) 1198 return -EINVAL; 1199 1200 memset(op_ctx, 0, sizeof(*op_ctx)); 1201 INIT_LIST_HEAD(&op_ctx->returned_vmas); 1202 op_ctx->flags = flags; 1203 op_ctx->va.range = size; 1204 op_ctx->va.addr = va; 1205 1206 ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx); 1207 if (ret) 1208 goto err_cleanup; 1209 1210 if (!bo->base.base.import_attach) { 1211 /* Pre-reserve the BO pages, so the map operation doesn't have to 1212 * allocate. 1213 */ 1214 ret = drm_gem_shmem_pin(&bo->base); 1215 if (ret) 1216 goto err_cleanup; 1217 } 1218 1219 sgt = drm_gem_shmem_get_pages_sgt(&bo->base); 1220 if (IS_ERR(sgt)) { 1221 if (!bo->base.base.import_attach) 1222 drm_gem_shmem_unpin(&bo->base); 1223 1224 ret = PTR_ERR(sgt); 1225 goto err_cleanup; 1226 } 1227 1228 op_ctx->map.sgt = sgt; 1229 1230 preallocated_vm_bo = drm_gpuvm_bo_create(&vm->base, &bo->base.base); 1231 if (!preallocated_vm_bo) { 1232 if (!bo->base.base.import_attach) 1233 drm_gem_shmem_unpin(&bo->base); 1234 1235 ret = -ENOMEM; 1236 goto err_cleanup; 1237 } 1238 1239 mutex_lock(&bo->gpuva_list_lock); 1240 op_ctx->map.vm_bo = drm_gpuvm_bo_obtain_prealloc(preallocated_vm_bo); 1241 mutex_unlock(&bo->gpuva_list_lock); 1242 1243 /* If the a vm_bo for this <VM,BO> combination exists, it already 1244 * retains a pin ref, and we can release the one we took earlier. 1245 * 1246 * If our pre-allocated vm_bo is picked, it now retains the pin ref, 1247 * which will be released in panthor_vm_bo_put(). 1248 */ 1249 if (preallocated_vm_bo != op_ctx->map.vm_bo && 1250 !bo->base.base.import_attach) 1251 drm_gem_shmem_unpin(&bo->base); 1252 1253 op_ctx->map.bo_offset = offset; 1254 1255 /* L1, L2 and L3 page tables. 1256 * We could optimize L3 allocation by iterating over the sgt and merging 1257 * 2M contiguous blocks, but it's simpler to over-provision and return 1258 * the pages if they're not used. 1259 */ 1260 pt_count = ((ALIGN(va + size, 1ull << 39) - ALIGN_DOWN(va, 1ull << 39)) >> 39) + 1261 ((ALIGN(va + size, 1ull << 30) - ALIGN_DOWN(va, 1ull << 30)) >> 30) + 1262 ((ALIGN(va + size, 1ull << 21) - ALIGN_DOWN(va, 1ull << 21)) >> 21); 1263 1264 op_ctx->rsvd_page_tables.pages = kcalloc(pt_count, 1265 sizeof(*op_ctx->rsvd_page_tables.pages), 1266 GFP_KERNEL); 1267 if (!op_ctx->rsvd_page_tables.pages) { 1268 ret = -ENOMEM; 1269 goto err_cleanup; 1270 } 1271 1272 ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count, 1273 op_ctx->rsvd_page_tables.pages); 1274 op_ctx->rsvd_page_tables.count = ret; 1275 if (ret != pt_count) { 1276 ret = -ENOMEM; 1277 goto err_cleanup; 1278 } 1279 1280 /* Insert BO into the extobj list last, when we know nothing can fail. */ 1281 dma_resv_lock(panthor_vm_resv(vm), NULL); 1282 drm_gpuvm_bo_extobj_add(op_ctx->map.vm_bo); 1283 dma_resv_unlock(panthor_vm_resv(vm)); 1284 1285 return 0; 1286 1287 err_cleanup: 1288 panthor_vm_cleanup_op_ctx(op_ctx, vm); 1289 return ret; 1290 } 1291 1292 static int panthor_vm_prepare_unmap_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1293 struct panthor_vm *vm, 1294 u64 va, u64 size) 1295 { 1296 u32 pt_count = 0; 1297 int ret; 1298 1299 memset(op_ctx, 0, sizeof(*op_ctx)); 1300 INIT_LIST_HEAD(&op_ctx->returned_vmas); 1301 op_ctx->va.range = size; 1302 op_ctx->va.addr = va; 1303 op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP; 1304 1305 /* Pre-allocate L3 page tables to account for the split-2M-block 1306 * situation on unmap. 1307 */ 1308 if (va != ALIGN(va, SZ_2M)) 1309 pt_count++; 1310 1311 if (va + size != ALIGN(va + size, SZ_2M) && 1312 ALIGN(va + size, SZ_2M) != ALIGN(va, SZ_2M)) 1313 pt_count++; 1314 1315 ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx); 1316 if (ret) 1317 goto err_cleanup; 1318 1319 if (pt_count) { 1320 op_ctx->rsvd_page_tables.pages = kcalloc(pt_count, 1321 sizeof(*op_ctx->rsvd_page_tables.pages), 1322 GFP_KERNEL); 1323 if (!op_ctx->rsvd_page_tables.pages) { 1324 ret = -ENOMEM; 1325 goto err_cleanup; 1326 } 1327 1328 ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count, 1329 op_ctx->rsvd_page_tables.pages); 1330 if (ret != pt_count) { 1331 ret = -ENOMEM; 1332 goto err_cleanup; 1333 } 1334 op_ctx->rsvd_page_tables.count = pt_count; 1335 } 1336 1337 return 0; 1338 1339 err_cleanup: 1340 panthor_vm_cleanup_op_ctx(op_ctx, vm); 1341 return ret; 1342 } 1343 1344 static void panthor_vm_prepare_sync_only_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1345 struct panthor_vm *vm) 1346 { 1347 memset(op_ctx, 0, sizeof(*op_ctx)); 1348 INIT_LIST_HEAD(&op_ctx->returned_vmas); 1349 op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY; 1350 } 1351 1352 /** 1353 * panthor_vm_get_bo_for_va() - Get the GEM object mapped at a virtual address 1354 * @vm: VM to look into. 1355 * @va: Virtual address to search for. 1356 * @bo_offset: Offset of the GEM object mapped at this virtual address. 1357 * Only valid on success. 1358 * 1359 * The object returned by this function might no longer be mapped when the 1360 * function returns. It's the caller responsibility to ensure there's no 1361 * concurrent map/unmap operations making the returned value invalid, or 1362 * make sure it doesn't matter if the object is no longer mapped. 1363 * 1364 * Return: A valid pointer on success, an ERR_PTR() otherwise. 1365 */ 1366 struct panthor_gem_object * 1367 panthor_vm_get_bo_for_va(struct panthor_vm *vm, u64 va, u64 *bo_offset) 1368 { 1369 struct panthor_gem_object *bo = ERR_PTR(-ENOENT); 1370 struct drm_gpuva *gpuva; 1371 struct panthor_vma *vma; 1372 1373 /* Take the VM lock to prevent concurrent map/unmap operations. */ 1374 mutex_lock(&vm->op_lock); 1375 gpuva = drm_gpuva_find_first(&vm->base, va, 1); 1376 vma = gpuva ? container_of(gpuva, struct panthor_vma, base) : NULL; 1377 if (vma && vma->base.gem.obj) { 1378 drm_gem_object_get(vma->base.gem.obj); 1379 bo = to_panthor_bo(vma->base.gem.obj); 1380 *bo_offset = vma->base.gem.offset + (va - vma->base.va.addr); 1381 } 1382 mutex_unlock(&vm->op_lock); 1383 1384 return bo; 1385 } 1386 1387 #define PANTHOR_VM_MIN_KERNEL_VA_SIZE SZ_256M 1388 1389 static u64 1390 panthor_vm_create_get_user_va_range(const struct drm_panthor_vm_create *args, 1391 u64 full_va_range) 1392 { 1393 u64 user_va_range; 1394 1395 /* Make sure we have a minimum amount of VA space for kernel objects. */ 1396 if (full_va_range < PANTHOR_VM_MIN_KERNEL_VA_SIZE) 1397 return 0; 1398 1399 if (args->user_va_range) { 1400 /* Use the user provided value if != 0. */ 1401 user_va_range = args->user_va_range; 1402 } else if (TASK_SIZE_OF(current) < full_va_range) { 1403 /* If the task VM size is smaller than the GPU VA range, pick this 1404 * as our default user VA range, so userspace can CPU/GPU map buffers 1405 * at the same address. 1406 */ 1407 user_va_range = TASK_SIZE_OF(current); 1408 } else { 1409 /* If the GPU VA range is smaller than the task VM size, we 1410 * just have to live with the fact we won't be able to map 1411 * all buffers at the same GPU/CPU address. 1412 * 1413 * If the GPU VA range is bigger than 4G (more than 32-bit of 1414 * VA), we split the range in two, and assign half of it to 1415 * the user and the other half to the kernel, if it's not, we 1416 * keep the kernel VA space as small as possible. 1417 */ 1418 user_va_range = full_va_range > SZ_4G ? 1419 full_va_range / 2 : 1420 full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE; 1421 } 1422 1423 if (full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE < user_va_range) 1424 user_va_range = full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE; 1425 1426 return user_va_range; 1427 } 1428 1429 #define PANTHOR_VM_CREATE_FLAGS 0 1430 1431 static int 1432 panthor_vm_create_check_args(const struct panthor_device *ptdev, 1433 const struct drm_panthor_vm_create *args, 1434 u64 *kernel_va_start, u64 *kernel_va_range) 1435 { 1436 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 1437 u64 full_va_range = 1ull << va_bits; 1438 u64 user_va_range; 1439 1440 if (args->flags & ~PANTHOR_VM_CREATE_FLAGS) 1441 return -EINVAL; 1442 1443 user_va_range = panthor_vm_create_get_user_va_range(args, full_va_range); 1444 if (!user_va_range || (args->user_va_range && args->user_va_range > user_va_range)) 1445 return -EINVAL; 1446 1447 /* Pick a kernel VA range that's a power of two, to have a clear split. */ 1448 *kernel_va_range = rounddown_pow_of_two(full_va_range - user_va_range); 1449 *kernel_va_start = full_va_range - *kernel_va_range; 1450 return 0; 1451 } 1452 1453 /* 1454 * Only 32 VMs per open file. If that becomes a limiting factor, we can 1455 * increase this number. 1456 */ 1457 #define PANTHOR_MAX_VMS_PER_FILE 32 1458 1459 /** 1460 * panthor_vm_pool_create_vm() - Create a VM 1461 * @pool: The VM to create this VM on. 1462 * @kernel_va_start: Start of the region reserved for kernel objects. 1463 * @kernel_va_range: Size of the region reserved for kernel objects. 1464 * 1465 * Return: a positive VM ID on success, a negative error code otherwise. 1466 */ 1467 int panthor_vm_pool_create_vm(struct panthor_device *ptdev, 1468 struct panthor_vm_pool *pool, 1469 struct drm_panthor_vm_create *args) 1470 { 1471 u64 kernel_va_start, kernel_va_range; 1472 struct panthor_vm *vm; 1473 int ret; 1474 u32 id; 1475 1476 ret = panthor_vm_create_check_args(ptdev, args, &kernel_va_start, &kernel_va_range); 1477 if (ret) 1478 return ret; 1479 1480 vm = panthor_vm_create(ptdev, false, kernel_va_start, kernel_va_range, 1481 kernel_va_start, kernel_va_range); 1482 if (IS_ERR(vm)) 1483 return PTR_ERR(vm); 1484 1485 ret = xa_alloc(&pool->xa, &id, vm, 1486 XA_LIMIT(1, PANTHOR_MAX_VMS_PER_FILE), GFP_KERNEL); 1487 1488 if (ret) { 1489 panthor_vm_put(vm); 1490 return ret; 1491 } 1492 1493 args->user_va_range = kernel_va_start; 1494 return id; 1495 } 1496 1497 static void panthor_vm_destroy(struct panthor_vm *vm) 1498 { 1499 if (!vm) 1500 return; 1501 1502 vm->destroyed = true; 1503 1504 mutex_lock(&vm->heaps.lock); 1505 panthor_heap_pool_destroy(vm->heaps.pool); 1506 vm->heaps.pool = NULL; 1507 mutex_unlock(&vm->heaps.lock); 1508 1509 drm_WARN_ON(&vm->ptdev->base, 1510 panthor_vm_unmap_range(vm, vm->base.mm_start, vm->base.mm_range)); 1511 panthor_vm_put(vm); 1512 } 1513 1514 /** 1515 * panthor_vm_pool_destroy_vm() - Destroy a VM. 1516 * @pool: VM pool. 1517 * @handle: VM handle. 1518 * 1519 * This function doesn't free the VM object or its resources, it just kills 1520 * all mappings, and makes sure nothing can be mapped after that point. 1521 * 1522 * If there was any active jobs at the time this function is called, these 1523 * jobs should experience page faults and be killed as a result. 1524 * 1525 * The VM resources are freed when the last reference on the VM object is 1526 * dropped. 1527 */ 1528 int panthor_vm_pool_destroy_vm(struct panthor_vm_pool *pool, u32 handle) 1529 { 1530 struct panthor_vm *vm; 1531 1532 vm = xa_erase(&pool->xa, handle); 1533 1534 panthor_vm_destroy(vm); 1535 1536 return vm ? 0 : -EINVAL; 1537 } 1538 1539 /** 1540 * panthor_vm_pool_get_vm() - Retrieve VM object bound to a VM handle 1541 * @pool: VM pool to check. 1542 * @handle: Handle of the VM to retrieve. 1543 * 1544 * Return: A valid pointer if the VM exists, NULL otherwise. 1545 */ 1546 struct panthor_vm * 1547 panthor_vm_pool_get_vm(struct panthor_vm_pool *pool, u32 handle) 1548 { 1549 struct panthor_vm *vm; 1550 1551 vm = panthor_vm_get(xa_load(&pool->xa, handle)); 1552 1553 return vm; 1554 } 1555 1556 /** 1557 * panthor_vm_pool_destroy() - Destroy a VM pool. 1558 * @pfile: File. 1559 * 1560 * Destroy all VMs in the pool, and release the pool resources. 1561 * 1562 * Note that VMs can outlive the pool they were created from if other 1563 * objects hold a reference to there VMs. 1564 */ 1565 void panthor_vm_pool_destroy(struct panthor_file *pfile) 1566 { 1567 struct panthor_vm *vm; 1568 unsigned long i; 1569 1570 if (!pfile->vms) 1571 return; 1572 1573 xa_for_each(&pfile->vms->xa, i, vm) 1574 panthor_vm_destroy(vm); 1575 1576 xa_destroy(&pfile->vms->xa); 1577 kfree(pfile->vms); 1578 } 1579 1580 /** 1581 * panthor_vm_pool_create() - Create a VM pool 1582 * @pfile: File. 1583 * 1584 * Return: 0 on success, a negative error code otherwise. 1585 */ 1586 int panthor_vm_pool_create(struct panthor_file *pfile) 1587 { 1588 pfile->vms = kzalloc(sizeof(*pfile->vms), GFP_KERNEL); 1589 if (!pfile->vms) 1590 return -ENOMEM; 1591 1592 xa_init_flags(&pfile->vms->xa, XA_FLAGS_ALLOC1); 1593 return 0; 1594 } 1595 1596 /* dummy TLB ops, the real TLB flush happens in panthor_vm_flush_range() */ 1597 static void mmu_tlb_flush_all(void *cookie) 1598 { 1599 } 1600 1601 static void mmu_tlb_flush_walk(unsigned long iova, size_t size, size_t granule, void *cookie) 1602 { 1603 } 1604 1605 static const struct iommu_flush_ops mmu_tlb_ops = { 1606 .tlb_flush_all = mmu_tlb_flush_all, 1607 .tlb_flush_walk = mmu_tlb_flush_walk, 1608 }; 1609 1610 static const char *access_type_name(struct panthor_device *ptdev, 1611 u32 fault_status) 1612 { 1613 switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) { 1614 case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC: 1615 return "ATOMIC"; 1616 case AS_FAULTSTATUS_ACCESS_TYPE_READ: 1617 return "READ"; 1618 case AS_FAULTSTATUS_ACCESS_TYPE_WRITE: 1619 return "WRITE"; 1620 case AS_FAULTSTATUS_ACCESS_TYPE_EX: 1621 return "EXECUTE"; 1622 default: 1623 drm_WARN_ON(&ptdev->base, 1); 1624 return NULL; 1625 } 1626 } 1627 1628 static void panthor_mmu_irq_handler(struct panthor_device *ptdev, u32 status) 1629 { 1630 bool has_unhandled_faults = false; 1631 1632 status = panthor_mmu_fault_mask(ptdev, status); 1633 while (status) { 1634 u32 as = ffs(status | (status >> 16)) - 1; 1635 u32 mask = panthor_mmu_as_fault_mask(ptdev, as); 1636 u32 new_int_mask; 1637 u64 addr; 1638 u32 fault_status; 1639 u32 exception_type; 1640 u32 access_type; 1641 u32 source_id; 1642 1643 fault_status = gpu_read(ptdev, AS_FAULTSTATUS(as)); 1644 addr = gpu_read(ptdev, AS_FAULTADDRESS_LO(as)); 1645 addr |= (u64)gpu_read(ptdev, AS_FAULTADDRESS_HI(as)) << 32; 1646 1647 /* decode the fault status */ 1648 exception_type = fault_status & 0xFF; 1649 access_type = (fault_status >> 8) & 0x3; 1650 source_id = (fault_status >> 16); 1651 1652 mutex_lock(&ptdev->mmu->as.slots_lock); 1653 1654 ptdev->mmu->as.faulty_mask |= mask; 1655 new_int_mask = 1656 panthor_mmu_fault_mask(ptdev, ~ptdev->mmu->as.faulty_mask); 1657 1658 /* terminal fault, print info about the fault */ 1659 drm_err(&ptdev->base, 1660 "Unhandled Page fault in AS%d at VA 0x%016llX\n" 1661 "raw fault status: 0x%X\n" 1662 "decoded fault status: %s\n" 1663 "exception type 0x%X: %s\n" 1664 "access type 0x%X: %s\n" 1665 "source id 0x%X\n", 1666 as, addr, 1667 fault_status, 1668 (fault_status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"), 1669 exception_type, panthor_exception_name(ptdev, exception_type), 1670 access_type, access_type_name(ptdev, fault_status), 1671 source_id); 1672 1673 /* Ignore MMU interrupts on this AS until it's been 1674 * re-enabled. 1675 */ 1676 ptdev->mmu->irq.mask = new_int_mask; 1677 gpu_write(ptdev, MMU_INT_MASK, new_int_mask); 1678 1679 if (ptdev->mmu->as.slots[as].vm) 1680 ptdev->mmu->as.slots[as].vm->unhandled_fault = true; 1681 1682 /* Disable the MMU to kill jobs on this AS. */ 1683 panthor_mmu_as_disable(ptdev, as); 1684 mutex_unlock(&ptdev->mmu->as.slots_lock); 1685 1686 status &= ~mask; 1687 has_unhandled_faults = true; 1688 } 1689 1690 if (has_unhandled_faults) 1691 panthor_sched_report_mmu_fault(ptdev); 1692 } 1693 PANTHOR_IRQ_HANDLER(mmu, MMU, panthor_mmu_irq_handler); 1694 1695 /** 1696 * panthor_mmu_suspend() - Suspend the MMU logic 1697 * @ptdev: Device. 1698 * 1699 * All we do here is de-assign the AS slots on all active VMs, so things 1700 * get flushed to the main memory, and no further access to these VMs are 1701 * possible. 1702 * 1703 * We also suspend the MMU IRQ. 1704 */ 1705 void panthor_mmu_suspend(struct panthor_device *ptdev) 1706 { 1707 mutex_lock(&ptdev->mmu->as.slots_lock); 1708 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) { 1709 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm; 1710 1711 if (vm) { 1712 drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i)); 1713 panthor_vm_release_as_locked(vm); 1714 } 1715 } 1716 mutex_unlock(&ptdev->mmu->as.slots_lock); 1717 1718 panthor_mmu_irq_suspend(&ptdev->mmu->irq); 1719 } 1720 1721 /** 1722 * panthor_mmu_resume() - Resume the MMU logic 1723 * @ptdev: Device. 1724 * 1725 * Resume the IRQ. 1726 * 1727 * We don't re-enable previously active VMs. We assume other parts of the 1728 * driver will call panthor_vm_active() on the VMs they intend to use. 1729 */ 1730 void panthor_mmu_resume(struct panthor_device *ptdev) 1731 { 1732 mutex_lock(&ptdev->mmu->as.slots_lock); 1733 ptdev->mmu->as.alloc_mask = 0; 1734 ptdev->mmu->as.faulty_mask = 0; 1735 mutex_unlock(&ptdev->mmu->as.slots_lock); 1736 1737 panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0)); 1738 } 1739 1740 /** 1741 * panthor_mmu_pre_reset() - Prepare for a reset 1742 * @ptdev: Device. 1743 * 1744 * Suspend the IRQ, and make sure all VM_BIND queues are stopped, so we 1745 * don't get asked to do a VM operation while the GPU is down. 1746 * 1747 * We don't cleanly shutdown the AS slots here, because the reset might 1748 * come from an AS_ACTIVE_BIT stuck situation. 1749 */ 1750 void panthor_mmu_pre_reset(struct panthor_device *ptdev) 1751 { 1752 struct panthor_vm *vm; 1753 1754 panthor_mmu_irq_suspend(&ptdev->mmu->irq); 1755 1756 mutex_lock(&ptdev->mmu->vm.lock); 1757 ptdev->mmu->vm.reset_in_progress = true; 1758 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) 1759 panthor_vm_stop(vm); 1760 mutex_unlock(&ptdev->mmu->vm.lock); 1761 } 1762 1763 /** 1764 * panthor_mmu_post_reset() - Restore things after a reset 1765 * @ptdev: Device. 1766 * 1767 * Put the MMU logic back in action after a reset. That implies resuming the 1768 * IRQ and re-enabling the VM_BIND queues. 1769 */ 1770 void panthor_mmu_post_reset(struct panthor_device *ptdev) 1771 { 1772 struct panthor_vm *vm; 1773 1774 mutex_lock(&ptdev->mmu->as.slots_lock); 1775 1776 /* Now that the reset is effective, we can assume that none of the 1777 * AS slots are setup, and clear the faulty flags too. 1778 */ 1779 ptdev->mmu->as.alloc_mask = 0; 1780 ptdev->mmu->as.faulty_mask = 0; 1781 1782 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) { 1783 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm; 1784 1785 if (vm) 1786 panthor_vm_release_as_locked(vm); 1787 } 1788 1789 mutex_unlock(&ptdev->mmu->as.slots_lock); 1790 1791 panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0)); 1792 1793 /* Restart the VM_BIND queues. */ 1794 mutex_lock(&ptdev->mmu->vm.lock); 1795 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) { 1796 panthor_vm_start(vm); 1797 } 1798 ptdev->mmu->vm.reset_in_progress = false; 1799 mutex_unlock(&ptdev->mmu->vm.lock); 1800 } 1801 1802 static void panthor_vm_free(struct drm_gpuvm *gpuvm) 1803 { 1804 struct panthor_vm *vm = container_of(gpuvm, struct panthor_vm, base); 1805 struct panthor_device *ptdev = vm->ptdev; 1806 1807 mutex_lock(&vm->heaps.lock); 1808 if (drm_WARN_ON(&ptdev->base, vm->heaps.pool)) 1809 panthor_heap_pool_destroy(vm->heaps.pool); 1810 mutex_unlock(&vm->heaps.lock); 1811 mutex_destroy(&vm->heaps.lock); 1812 1813 mutex_lock(&ptdev->mmu->vm.lock); 1814 list_del(&vm->node); 1815 /* Restore the scheduler state so we can call drm_sched_entity_destroy() 1816 * and drm_sched_fini(). If get there, that means we have no job left 1817 * and no new jobs can be queued, so we can start the scheduler without 1818 * risking interfering with the reset. 1819 */ 1820 if (ptdev->mmu->vm.reset_in_progress) 1821 panthor_vm_start(vm); 1822 mutex_unlock(&ptdev->mmu->vm.lock); 1823 1824 drm_sched_entity_destroy(&vm->entity); 1825 drm_sched_fini(&vm->sched); 1826 1827 mutex_lock(&ptdev->mmu->as.slots_lock); 1828 if (vm->as.id >= 0) { 1829 int cookie; 1830 1831 if (drm_dev_enter(&ptdev->base, &cookie)) { 1832 panthor_mmu_as_disable(ptdev, vm->as.id); 1833 drm_dev_exit(cookie); 1834 } 1835 1836 ptdev->mmu->as.slots[vm->as.id].vm = NULL; 1837 clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask); 1838 list_del(&vm->as.lru_node); 1839 } 1840 mutex_unlock(&ptdev->mmu->as.slots_lock); 1841 1842 free_io_pgtable_ops(vm->pgtbl_ops); 1843 1844 drm_mm_takedown(&vm->mm); 1845 kfree(vm); 1846 } 1847 1848 /** 1849 * panthor_vm_put() - Release a reference on a VM 1850 * @vm: VM to release the reference on. Can be NULL. 1851 */ 1852 void panthor_vm_put(struct panthor_vm *vm) 1853 { 1854 drm_gpuvm_put(vm ? &vm->base : NULL); 1855 } 1856 1857 /** 1858 * panthor_vm_get() - Get a VM reference 1859 * @vm: VM to get the reference on. Can be NULL. 1860 * 1861 * Return: @vm value. 1862 */ 1863 struct panthor_vm *panthor_vm_get(struct panthor_vm *vm) 1864 { 1865 if (vm) 1866 drm_gpuvm_get(&vm->base); 1867 1868 return vm; 1869 } 1870 1871 /** 1872 * panthor_vm_get_heap_pool() - Get the heap pool attached to a VM 1873 * @vm: VM to query the heap pool on. 1874 * @create: True if the heap pool should be created when it doesn't exist. 1875 * 1876 * Heap pools are per-VM. This function allows one to retrieve the heap pool 1877 * attached to a VM. 1878 * 1879 * If no heap pool exists yet, and @create is true, we create one. 1880 * 1881 * The returned panthor_heap_pool should be released with panthor_heap_pool_put(). 1882 * 1883 * Return: A valid pointer on success, an ERR_PTR() otherwise. 1884 */ 1885 struct panthor_heap_pool *panthor_vm_get_heap_pool(struct panthor_vm *vm, bool create) 1886 { 1887 struct panthor_heap_pool *pool; 1888 1889 mutex_lock(&vm->heaps.lock); 1890 if (!vm->heaps.pool && create) { 1891 if (vm->destroyed) 1892 pool = ERR_PTR(-EINVAL); 1893 else 1894 pool = panthor_heap_pool_create(vm->ptdev, vm); 1895 1896 if (!IS_ERR(pool)) 1897 vm->heaps.pool = panthor_heap_pool_get(pool); 1898 } else { 1899 pool = panthor_heap_pool_get(vm->heaps.pool); 1900 if (!pool) 1901 pool = ERR_PTR(-ENOENT); 1902 } 1903 mutex_unlock(&vm->heaps.lock); 1904 1905 return pool; 1906 } 1907 1908 static u64 mair_to_memattr(u64 mair) 1909 { 1910 u64 memattr = 0; 1911 u32 i; 1912 1913 for (i = 0; i < 8; i++) { 1914 u8 in_attr = mair >> (8 * i), out_attr; 1915 u8 outer = in_attr >> 4, inner = in_attr & 0xf; 1916 1917 /* For caching to be enabled, inner and outer caching policy 1918 * have to be both write-back, if one of them is write-through 1919 * or non-cacheable, we just choose non-cacheable. Device 1920 * memory is also translated to non-cacheable. 1921 */ 1922 if (!(outer & 3) || !(outer & 4) || !(inner & 4)) { 1923 out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_NC | 1924 AS_MEMATTR_AARCH64_SH_MIDGARD_INNER | 1925 AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(false, false); 1926 } else { 1927 /* Use SH_CPU_INNER mode so SH_IS, which is used when 1928 * IOMMU_CACHE is set, actually maps to the standard 1929 * definition of inner-shareable and not Mali's 1930 * internal-shareable mode. 1931 */ 1932 out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_WB | 1933 AS_MEMATTR_AARCH64_SH_CPU_INNER | 1934 AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(inner & 1, inner & 2); 1935 } 1936 1937 memattr |= (u64)out_attr << (8 * i); 1938 } 1939 1940 return memattr; 1941 } 1942 1943 static void panthor_vma_link(struct panthor_vm *vm, 1944 struct panthor_vma *vma, 1945 struct drm_gpuvm_bo *vm_bo) 1946 { 1947 struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj); 1948 1949 mutex_lock(&bo->gpuva_list_lock); 1950 drm_gpuva_link(&vma->base, vm_bo); 1951 drm_WARN_ON(&vm->ptdev->base, drm_gpuvm_bo_put(vm_bo)); 1952 mutex_unlock(&bo->gpuva_list_lock); 1953 } 1954 1955 static void panthor_vma_unlink(struct panthor_vm *vm, 1956 struct panthor_vma *vma) 1957 { 1958 struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj); 1959 struct drm_gpuvm_bo *vm_bo = drm_gpuvm_bo_get(vma->base.vm_bo); 1960 1961 mutex_lock(&bo->gpuva_list_lock); 1962 drm_gpuva_unlink(&vma->base); 1963 mutex_unlock(&bo->gpuva_list_lock); 1964 1965 /* drm_gpuva_unlink() release the vm_bo, but we manually retained it 1966 * when entering this function, so we can implement deferred VMA 1967 * destruction. Re-assign it here. 1968 */ 1969 vma->base.vm_bo = vm_bo; 1970 list_add_tail(&vma->node, &vm->op_ctx->returned_vmas); 1971 } 1972 1973 static void panthor_vma_init(struct panthor_vma *vma, u32 flags) 1974 { 1975 INIT_LIST_HEAD(&vma->node); 1976 vma->flags = flags; 1977 } 1978 1979 #define PANTHOR_VM_MAP_FLAGS \ 1980 (DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \ 1981 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \ 1982 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED) 1983 1984 static int panthor_gpuva_sm_step_map(struct drm_gpuva_op *op, void *priv) 1985 { 1986 struct panthor_vm *vm = priv; 1987 struct panthor_vm_op_ctx *op_ctx = vm->op_ctx; 1988 struct panthor_vma *vma = panthor_vm_op_ctx_get_vma(op_ctx); 1989 int ret; 1990 1991 if (!vma) 1992 return -EINVAL; 1993 1994 panthor_vma_init(vma, op_ctx->flags & PANTHOR_VM_MAP_FLAGS); 1995 1996 ret = panthor_vm_map_pages(vm, op->map.va.addr, flags_to_prot(vma->flags), 1997 op_ctx->map.sgt, op->map.gem.offset, 1998 op->map.va.range); 1999 if (ret) 2000 return ret; 2001 2002 /* Ref owned by the mapping now, clear the obj field so we don't release the 2003 * pinning/obj ref behind GPUVA's back. 2004 */ 2005 drm_gpuva_map(&vm->base, &vma->base, &op->map); 2006 panthor_vma_link(vm, vma, op_ctx->map.vm_bo); 2007 op_ctx->map.vm_bo = NULL; 2008 return 0; 2009 } 2010 2011 static int panthor_gpuva_sm_step_remap(struct drm_gpuva_op *op, 2012 void *priv) 2013 { 2014 struct panthor_vma *unmap_vma = container_of(op->remap.unmap->va, struct panthor_vma, base); 2015 struct panthor_vm *vm = priv; 2016 struct panthor_vm_op_ctx *op_ctx = vm->op_ctx; 2017 struct panthor_vma *prev_vma = NULL, *next_vma = NULL; 2018 u64 unmap_start, unmap_range; 2019 int ret; 2020 2021 drm_gpuva_op_remap_to_unmap_range(&op->remap, &unmap_start, &unmap_range); 2022 ret = panthor_vm_unmap_pages(vm, unmap_start, unmap_range); 2023 if (ret) 2024 return ret; 2025 2026 if (op->remap.prev) { 2027 prev_vma = panthor_vm_op_ctx_get_vma(op_ctx); 2028 panthor_vma_init(prev_vma, unmap_vma->flags); 2029 } 2030 2031 if (op->remap.next) { 2032 next_vma = panthor_vm_op_ctx_get_vma(op_ctx); 2033 panthor_vma_init(next_vma, unmap_vma->flags); 2034 } 2035 2036 drm_gpuva_remap(prev_vma ? &prev_vma->base : NULL, 2037 next_vma ? &next_vma->base : NULL, 2038 &op->remap); 2039 2040 if (prev_vma) { 2041 /* panthor_vma_link() transfers the vm_bo ownership to 2042 * the VMA object. Since the vm_bo we're passing is still 2043 * owned by the old mapping which will be released when this 2044 * mapping is destroyed, we need to grab a ref here. 2045 */ 2046 panthor_vma_link(vm, prev_vma, 2047 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo)); 2048 } 2049 2050 if (next_vma) { 2051 panthor_vma_link(vm, next_vma, 2052 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo)); 2053 } 2054 2055 panthor_vma_unlink(vm, unmap_vma); 2056 return 0; 2057 } 2058 2059 static int panthor_gpuva_sm_step_unmap(struct drm_gpuva_op *op, 2060 void *priv) 2061 { 2062 struct panthor_vma *unmap_vma = container_of(op->unmap.va, struct panthor_vma, base); 2063 struct panthor_vm *vm = priv; 2064 int ret; 2065 2066 ret = panthor_vm_unmap_pages(vm, unmap_vma->base.va.addr, 2067 unmap_vma->base.va.range); 2068 if (drm_WARN_ON(&vm->ptdev->base, ret)) 2069 return ret; 2070 2071 drm_gpuva_unmap(&op->unmap); 2072 panthor_vma_unlink(vm, unmap_vma); 2073 return 0; 2074 } 2075 2076 static const struct drm_gpuvm_ops panthor_gpuvm_ops = { 2077 .vm_free = panthor_vm_free, 2078 .sm_step_map = panthor_gpuva_sm_step_map, 2079 .sm_step_remap = panthor_gpuva_sm_step_remap, 2080 .sm_step_unmap = panthor_gpuva_sm_step_unmap, 2081 }; 2082 2083 /** 2084 * panthor_vm_resv() - Get the dma_resv object attached to a VM. 2085 * @vm: VM to get the dma_resv of. 2086 * 2087 * Return: A dma_resv object. 2088 */ 2089 struct dma_resv *panthor_vm_resv(struct panthor_vm *vm) 2090 { 2091 return drm_gpuvm_resv(&vm->base); 2092 } 2093 2094 struct drm_gem_object *panthor_vm_root_gem(struct panthor_vm *vm) 2095 { 2096 if (!vm) 2097 return NULL; 2098 2099 return vm->base.r_obj; 2100 } 2101 2102 static int 2103 panthor_vm_exec_op(struct panthor_vm *vm, struct panthor_vm_op_ctx *op, 2104 bool flag_vm_unusable_on_failure) 2105 { 2106 u32 op_type = op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK; 2107 int ret; 2108 2109 if (op_type == DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY) 2110 return 0; 2111 2112 mutex_lock(&vm->op_lock); 2113 vm->op_ctx = op; 2114 switch (op_type) { 2115 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: 2116 if (vm->unusable) { 2117 ret = -EINVAL; 2118 break; 2119 } 2120 2121 ret = drm_gpuvm_sm_map(&vm->base, vm, op->va.addr, op->va.range, 2122 op->map.vm_bo->obj, op->map.bo_offset); 2123 break; 2124 2125 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP: 2126 ret = drm_gpuvm_sm_unmap(&vm->base, vm, op->va.addr, op->va.range); 2127 break; 2128 2129 default: 2130 ret = -EINVAL; 2131 break; 2132 } 2133 2134 if (ret && flag_vm_unusable_on_failure) 2135 vm->unusable = true; 2136 2137 vm->op_ctx = NULL; 2138 mutex_unlock(&vm->op_lock); 2139 2140 return ret; 2141 } 2142 2143 static struct dma_fence * 2144 panthor_vm_bind_run_job(struct drm_sched_job *sched_job) 2145 { 2146 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base); 2147 bool cookie; 2148 int ret; 2149 2150 /* Not only we report an error whose result is propagated to the 2151 * drm_sched finished fence, but we also flag the VM as unusable, because 2152 * a failure in the async VM_BIND results in an inconsistent state. VM needs 2153 * to be destroyed and recreated. 2154 */ 2155 cookie = dma_fence_begin_signalling(); 2156 ret = panthor_vm_exec_op(job->vm, &job->ctx, true); 2157 dma_fence_end_signalling(cookie); 2158 2159 return ret ? ERR_PTR(ret) : NULL; 2160 } 2161 2162 static void panthor_vm_bind_job_release(struct kref *kref) 2163 { 2164 struct panthor_vm_bind_job *job = container_of(kref, struct panthor_vm_bind_job, refcount); 2165 2166 if (job->base.s_fence) 2167 drm_sched_job_cleanup(&job->base); 2168 2169 panthor_vm_cleanup_op_ctx(&job->ctx, job->vm); 2170 panthor_vm_put(job->vm); 2171 kfree(job); 2172 } 2173 2174 /** 2175 * panthor_vm_bind_job_put() - Release a VM_BIND job reference 2176 * @sched_job: Job to release the reference on. 2177 */ 2178 void panthor_vm_bind_job_put(struct drm_sched_job *sched_job) 2179 { 2180 struct panthor_vm_bind_job *job = 2181 container_of(sched_job, struct panthor_vm_bind_job, base); 2182 2183 if (sched_job) 2184 kref_put(&job->refcount, panthor_vm_bind_job_release); 2185 } 2186 2187 static void 2188 panthor_vm_bind_free_job(struct drm_sched_job *sched_job) 2189 { 2190 struct panthor_vm_bind_job *job = 2191 container_of(sched_job, struct panthor_vm_bind_job, base); 2192 2193 drm_sched_job_cleanup(sched_job); 2194 2195 /* Do the heavy cleanups asynchronously, so we're out of the 2196 * dma-signaling path and can acquire dma-resv locks safely. 2197 */ 2198 queue_work(panthor_cleanup_wq, &job->cleanup_op_ctx_work); 2199 } 2200 2201 static enum drm_gpu_sched_stat 2202 panthor_vm_bind_timedout_job(struct drm_sched_job *sched_job) 2203 { 2204 WARN(1, "VM_BIND ops are synchronous for now, there should be no timeout!"); 2205 return DRM_GPU_SCHED_STAT_NOMINAL; 2206 } 2207 2208 static const struct drm_sched_backend_ops panthor_vm_bind_ops = { 2209 .run_job = panthor_vm_bind_run_job, 2210 .free_job = panthor_vm_bind_free_job, 2211 .timedout_job = panthor_vm_bind_timedout_job, 2212 }; 2213 2214 /** 2215 * panthor_vm_create() - Create a VM 2216 * @ptdev: Device. 2217 * @for_mcu: True if this is the FW MCU VM. 2218 * @kernel_va_start: Start of the range reserved for kernel BO mapping. 2219 * @kernel_va_size: Size of the range reserved for kernel BO mapping. 2220 * @auto_kernel_va_start: Start of the auto-VA kernel range. 2221 * @auto_kernel_va_size: Size of the auto-VA kernel range. 2222 * 2223 * Return: A valid pointer on success, an ERR_PTR() otherwise. 2224 */ 2225 struct panthor_vm * 2226 panthor_vm_create(struct panthor_device *ptdev, bool for_mcu, 2227 u64 kernel_va_start, u64 kernel_va_size, 2228 u64 auto_kernel_va_start, u64 auto_kernel_va_size) 2229 { 2230 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 2231 u32 pa_bits = GPU_MMU_FEATURES_PA_BITS(ptdev->gpu_info.mmu_features); 2232 u64 full_va_range = 1ull << va_bits; 2233 struct drm_gem_object *dummy_gem; 2234 struct drm_gpu_scheduler *sched; 2235 struct io_pgtable_cfg pgtbl_cfg; 2236 u64 mair, min_va, va_range; 2237 struct panthor_vm *vm; 2238 int ret; 2239 2240 vm = kzalloc(sizeof(*vm), GFP_KERNEL); 2241 if (!vm) 2242 return ERR_PTR(-ENOMEM); 2243 2244 /* We allocate a dummy GEM for the VM. */ 2245 dummy_gem = drm_gpuvm_resv_object_alloc(&ptdev->base); 2246 if (!dummy_gem) { 2247 ret = -ENOMEM; 2248 goto err_free_vm; 2249 } 2250 2251 mutex_init(&vm->heaps.lock); 2252 vm->for_mcu = for_mcu; 2253 vm->ptdev = ptdev; 2254 mutex_init(&vm->op_lock); 2255 2256 if (for_mcu) { 2257 /* CSF MCU is a cortex M7, and can only address 4G */ 2258 min_va = 0; 2259 va_range = SZ_4G; 2260 } else { 2261 min_va = 0; 2262 va_range = full_va_range; 2263 } 2264 2265 mutex_init(&vm->mm_lock); 2266 drm_mm_init(&vm->mm, kernel_va_start, kernel_va_size); 2267 vm->kernel_auto_va.start = auto_kernel_va_start; 2268 vm->kernel_auto_va.end = vm->kernel_auto_va.start + auto_kernel_va_size - 1; 2269 2270 INIT_LIST_HEAD(&vm->node); 2271 INIT_LIST_HEAD(&vm->as.lru_node); 2272 vm->as.id = -1; 2273 refcount_set(&vm->as.active_cnt, 0); 2274 2275 pgtbl_cfg = (struct io_pgtable_cfg) { 2276 .pgsize_bitmap = SZ_4K | SZ_2M, 2277 .ias = va_bits, 2278 .oas = pa_bits, 2279 .coherent_walk = ptdev->coherent, 2280 .tlb = &mmu_tlb_ops, 2281 .iommu_dev = ptdev->base.dev, 2282 .alloc = alloc_pt, 2283 .free = free_pt, 2284 }; 2285 2286 vm->pgtbl_ops = alloc_io_pgtable_ops(ARM_64_LPAE_S1, &pgtbl_cfg, vm); 2287 if (!vm->pgtbl_ops) { 2288 ret = -EINVAL; 2289 goto err_mm_takedown; 2290 } 2291 2292 /* Bind operations are synchronous for now, no timeout needed. */ 2293 ret = drm_sched_init(&vm->sched, &panthor_vm_bind_ops, ptdev->mmu->vm.wq, 2294 1, 1, 0, 2295 MAX_SCHEDULE_TIMEOUT, NULL, NULL, 2296 "panthor-vm-bind", ptdev->base.dev); 2297 if (ret) 2298 goto err_free_io_pgtable; 2299 2300 sched = &vm->sched; 2301 ret = drm_sched_entity_init(&vm->entity, 0, &sched, 1, NULL); 2302 if (ret) 2303 goto err_sched_fini; 2304 2305 mair = io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg.arm_lpae_s1_cfg.mair; 2306 vm->memattr = mair_to_memattr(mair); 2307 2308 mutex_lock(&ptdev->mmu->vm.lock); 2309 list_add_tail(&vm->node, &ptdev->mmu->vm.list); 2310 2311 /* If a reset is in progress, stop the scheduler. */ 2312 if (ptdev->mmu->vm.reset_in_progress) 2313 panthor_vm_stop(vm); 2314 mutex_unlock(&ptdev->mmu->vm.lock); 2315 2316 /* We intentionally leave the reserved range to zero, because we want kernel VMAs 2317 * to be handled the same way user VMAs are. 2318 */ 2319 drm_gpuvm_init(&vm->base, for_mcu ? "panthor-MCU-VM" : "panthor-GPU-VM", 2320 DRM_GPUVM_RESV_PROTECTED, &ptdev->base, dummy_gem, 2321 min_va, va_range, 0, 0, &panthor_gpuvm_ops); 2322 drm_gem_object_put(dummy_gem); 2323 return vm; 2324 2325 err_sched_fini: 2326 drm_sched_fini(&vm->sched); 2327 2328 err_free_io_pgtable: 2329 free_io_pgtable_ops(vm->pgtbl_ops); 2330 2331 err_mm_takedown: 2332 drm_mm_takedown(&vm->mm); 2333 drm_gem_object_put(dummy_gem); 2334 2335 err_free_vm: 2336 kfree(vm); 2337 return ERR_PTR(ret); 2338 } 2339 2340 static int 2341 panthor_vm_bind_prepare_op_ctx(struct drm_file *file, 2342 struct panthor_vm *vm, 2343 const struct drm_panthor_vm_bind_op *op, 2344 struct panthor_vm_op_ctx *op_ctx) 2345 { 2346 struct drm_gem_object *gem; 2347 int ret; 2348 2349 /* Aligned on page size. */ 2350 if ((op->va | op->size) & ~PAGE_MASK) 2351 return -EINVAL; 2352 2353 switch (op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) { 2354 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: 2355 gem = drm_gem_object_lookup(file, op->bo_handle); 2356 ret = panthor_vm_prepare_map_op_ctx(op_ctx, vm, 2357 gem ? to_panthor_bo(gem) : NULL, 2358 op->bo_offset, 2359 op->size, 2360 op->va, 2361 op->flags); 2362 drm_gem_object_put(gem); 2363 return ret; 2364 2365 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP: 2366 if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) 2367 return -EINVAL; 2368 2369 if (op->bo_handle || op->bo_offset) 2370 return -EINVAL; 2371 2372 return panthor_vm_prepare_unmap_op_ctx(op_ctx, vm, op->va, op->size); 2373 2374 case DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY: 2375 if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) 2376 return -EINVAL; 2377 2378 if (op->bo_handle || op->bo_offset) 2379 return -EINVAL; 2380 2381 if (op->va || op->size) 2382 return -EINVAL; 2383 2384 if (!op->syncs.count) 2385 return -EINVAL; 2386 2387 panthor_vm_prepare_sync_only_op_ctx(op_ctx, vm); 2388 return 0; 2389 2390 default: 2391 return -EINVAL; 2392 } 2393 } 2394 2395 static void panthor_vm_bind_job_cleanup_op_ctx_work(struct work_struct *work) 2396 { 2397 struct panthor_vm_bind_job *job = 2398 container_of(work, struct panthor_vm_bind_job, cleanup_op_ctx_work); 2399 2400 panthor_vm_bind_job_put(&job->base); 2401 } 2402 2403 /** 2404 * panthor_vm_bind_job_create() - Create a VM_BIND job 2405 * @file: File. 2406 * @vm: VM targeted by the VM_BIND job. 2407 * @op: VM operation data. 2408 * 2409 * Return: A valid pointer on success, an ERR_PTR() otherwise. 2410 */ 2411 struct drm_sched_job * 2412 panthor_vm_bind_job_create(struct drm_file *file, 2413 struct panthor_vm *vm, 2414 const struct drm_panthor_vm_bind_op *op) 2415 { 2416 struct panthor_vm_bind_job *job; 2417 int ret; 2418 2419 if (!vm) 2420 return ERR_PTR(-EINVAL); 2421 2422 if (vm->destroyed || vm->unusable) 2423 return ERR_PTR(-EINVAL); 2424 2425 job = kzalloc(sizeof(*job), GFP_KERNEL); 2426 if (!job) 2427 return ERR_PTR(-ENOMEM); 2428 2429 ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &job->ctx); 2430 if (ret) { 2431 kfree(job); 2432 return ERR_PTR(ret); 2433 } 2434 2435 INIT_WORK(&job->cleanup_op_ctx_work, panthor_vm_bind_job_cleanup_op_ctx_work); 2436 kref_init(&job->refcount); 2437 job->vm = panthor_vm_get(vm); 2438 2439 ret = drm_sched_job_init(&job->base, &vm->entity, 1, vm); 2440 if (ret) 2441 goto err_put_job; 2442 2443 return &job->base; 2444 2445 err_put_job: 2446 panthor_vm_bind_job_put(&job->base); 2447 return ERR_PTR(ret); 2448 } 2449 2450 /** 2451 * panthor_vm_bind_job_prepare_resvs() - Prepare VM_BIND job dma_resvs 2452 * @exec: The locking/preparation context. 2453 * @sched_job: The job to prepare resvs on. 2454 * 2455 * Locks and prepare the VM resv. 2456 * 2457 * If this is a map operation, locks and prepares the GEM resv. 2458 * 2459 * Return: 0 on success, a negative error code otherwise. 2460 */ 2461 int panthor_vm_bind_job_prepare_resvs(struct drm_exec *exec, 2462 struct drm_sched_job *sched_job) 2463 { 2464 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base); 2465 int ret; 2466 2467 /* Acquire the VM lock an reserve a slot for this VM bind job. */ 2468 ret = drm_gpuvm_prepare_vm(&job->vm->base, exec, 1); 2469 if (ret) 2470 return ret; 2471 2472 if (job->ctx.map.vm_bo) { 2473 /* Lock/prepare the GEM being mapped. */ 2474 ret = drm_exec_prepare_obj(exec, job->ctx.map.vm_bo->obj, 1); 2475 if (ret) 2476 return ret; 2477 } 2478 2479 return 0; 2480 } 2481 2482 /** 2483 * panthor_vm_bind_job_update_resvs() - Update the resv objects touched by a job 2484 * @exec: drm_exec context. 2485 * @sched_job: Job to update the resvs on. 2486 */ 2487 void panthor_vm_bind_job_update_resvs(struct drm_exec *exec, 2488 struct drm_sched_job *sched_job) 2489 { 2490 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base); 2491 2492 /* Explicit sync => we just register our job finished fence as bookkeep. */ 2493 drm_gpuvm_resv_add_fence(&job->vm->base, exec, 2494 &sched_job->s_fence->finished, 2495 DMA_RESV_USAGE_BOOKKEEP, 2496 DMA_RESV_USAGE_BOOKKEEP); 2497 } 2498 2499 void panthor_vm_update_resvs(struct panthor_vm *vm, struct drm_exec *exec, 2500 struct dma_fence *fence, 2501 enum dma_resv_usage private_usage, 2502 enum dma_resv_usage extobj_usage) 2503 { 2504 drm_gpuvm_resv_add_fence(&vm->base, exec, fence, private_usage, extobj_usage); 2505 } 2506 2507 /** 2508 * panthor_vm_bind_exec_sync_op() - Execute a VM_BIND operation synchronously. 2509 * @file: File. 2510 * @vm: VM targeted by the VM operation. 2511 * @op: Data describing the VM operation. 2512 * 2513 * Return: 0 on success, a negative error code otherwise. 2514 */ 2515 int panthor_vm_bind_exec_sync_op(struct drm_file *file, 2516 struct panthor_vm *vm, 2517 struct drm_panthor_vm_bind_op *op) 2518 { 2519 struct panthor_vm_op_ctx op_ctx; 2520 int ret; 2521 2522 /* No sync objects allowed on synchronous operations. */ 2523 if (op->syncs.count) 2524 return -EINVAL; 2525 2526 if (!op->size) 2527 return 0; 2528 2529 ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &op_ctx); 2530 if (ret) 2531 return ret; 2532 2533 ret = panthor_vm_exec_op(vm, &op_ctx, false); 2534 panthor_vm_cleanup_op_ctx(&op_ctx, vm); 2535 2536 return ret; 2537 } 2538 2539 /** 2540 * panthor_vm_map_bo_range() - Map a GEM object range to a VM 2541 * @vm: VM to map the GEM to. 2542 * @bo: GEM object to map. 2543 * @offset: Offset in the GEM object. 2544 * @size: Size to map. 2545 * @va: Virtual address to map the object to. 2546 * @flags: Combination of drm_panthor_vm_bind_op_flags flags. 2547 * Only map-related flags are valid. 2548 * 2549 * Internal use only. For userspace requests, use 2550 * panthor_vm_bind_exec_sync_op() instead. 2551 * 2552 * Return: 0 on success, a negative error code otherwise. 2553 */ 2554 int panthor_vm_map_bo_range(struct panthor_vm *vm, struct panthor_gem_object *bo, 2555 u64 offset, u64 size, u64 va, u32 flags) 2556 { 2557 struct panthor_vm_op_ctx op_ctx; 2558 int ret; 2559 2560 ret = panthor_vm_prepare_map_op_ctx(&op_ctx, vm, bo, offset, size, va, flags); 2561 if (ret) 2562 return ret; 2563 2564 ret = panthor_vm_exec_op(vm, &op_ctx, false); 2565 panthor_vm_cleanup_op_ctx(&op_ctx, vm); 2566 2567 return ret; 2568 } 2569 2570 /** 2571 * panthor_vm_unmap_range() - Unmap a portion of the VA space 2572 * @vm: VM to unmap the region from. 2573 * @va: Virtual address to unmap. Must be 4k aligned. 2574 * @size: Size of the region to unmap. Must be 4k aligned. 2575 * 2576 * Internal use only. For userspace requests, use 2577 * panthor_vm_bind_exec_sync_op() instead. 2578 * 2579 * Return: 0 on success, a negative error code otherwise. 2580 */ 2581 int panthor_vm_unmap_range(struct panthor_vm *vm, u64 va, u64 size) 2582 { 2583 struct panthor_vm_op_ctx op_ctx; 2584 int ret; 2585 2586 ret = panthor_vm_prepare_unmap_op_ctx(&op_ctx, vm, va, size); 2587 if (ret) 2588 return ret; 2589 2590 ret = panthor_vm_exec_op(vm, &op_ctx, false); 2591 panthor_vm_cleanup_op_ctx(&op_ctx, vm); 2592 2593 return ret; 2594 } 2595 2596 /** 2597 * panthor_vm_prepare_mapped_bos_resvs() - Prepare resvs on VM BOs. 2598 * @exec: Locking/preparation context. 2599 * @vm: VM targeted by the GPU job. 2600 * @slot_count: Number of slots to reserve. 2601 * 2602 * GPU jobs assume all BOs bound to the VM at the time the job is submitted 2603 * are available when the job is executed. In order to guarantee that, we 2604 * need to reserve a slot on all BOs mapped to a VM and update this slot with 2605 * the job fence after its submission. 2606 * 2607 * Return: 0 on success, a negative error code otherwise. 2608 */ 2609 int panthor_vm_prepare_mapped_bos_resvs(struct drm_exec *exec, struct panthor_vm *vm, 2610 u32 slot_count) 2611 { 2612 int ret; 2613 2614 /* Acquire the VM lock and reserve a slot for this GPU job. */ 2615 ret = drm_gpuvm_prepare_vm(&vm->base, exec, slot_count); 2616 if (ret) 2617 return ret; 2618 2619 return drm_gpuvm_prepare_objects(&vm->base, exec, slot_count); 2620 } 2621 2622 /** 2623 * panthor_mmu_unplug() - Unplug the MMU logic 2624 * @ptdev: Device. 2625 * 2626 * No access to the MMU regs should be done after this function is called. 2627 * We suspend the IRQ and disable all VMs to guarantee that. 2628 */ 2629 void panthor_mmu_unplug(struct panthor_device *ptdev) 2630 { 2631 panthor_mmu_irq_suspend(&ptdev->mmu->irq); 2632 2633 mutex_lock(&ptdev->mmu->as.slots_lock); 2634 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) { 2635 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm; 2636 2637 if (vm) { 2638 drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i)); 2639 panthor_vm_release_as_locked(vm); 2640 } 2641 } 2642 mutex_unlock(&ptdev->mmu->as.slots_lock); 2643 } 2644 2645 static void panthor_mmu_release_wq(struct drm_device *ddev, void *res) 2646 { 2647 destroy_workqueue(res); 2648 } 2649 2650 /** 2651 * panthor_mmu_init() - Initialize the MMU logic. 2652 * @ptdev: Device. 2653 * 2654 * Return: 0 on success, a negative error code otherwise. 2655 */ 2656 int panthor_mmu_init(struct panthor_device *ptdev) 2657 { 2658 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 2659 struct panthor_mmu *mmu; 2660 int ret, irq; 2661 2662 mmu = drmm_kzalloc(&ptdev->base, sizeof(*mmu), GFP_KERNEL); 2663 if (!mmu) 2664 return -ENOMEM; 2665 2666 INIT_LIST_HEAD(&mmu->as.lru_list); 2667 2668 ret = drmm_mutex_init(&ptdev->base, &mmu->as.slots_lock); 2669 if (ret) 2670 return ret; 2671 2672 INIT_LIST_HEAD(&mmu->vm.list); 2673 ret = drmm_mutex_init(&ptdev->base, &mmu->vm.lock); 2674 if (ret) 2675 return ret; 2676 2677 ptdev->mmu = mmu; 2678 2679 irq = platform_get_irq_byname(to_platform_device(ptdev->base.dev), "mmu"); 2680 if (irq <= 0) 2681 return -ENODEV; 2682 2683 ret = panthor_request_mmu_irq(ptdev, &mmu->irq, irq, 2684 panthor_mmu_fault_mask(ptdev, ~0)); 2685 if (ret) 2686 return ret; 2687 2688 mmu->vm.wq = alloc_workqueue("panthor-vm-bind", WQ_UNBOUND, 0); 2689 if (!mmu->vm.wq) 2690 return -ENOMEM; 2691 2692 /* On 32-bit kernels, the VA space is limited by the io_pgtable_ops abstraction, 2693 * which passes iova as an unsigned long. Patch the mmu_features to reflect this 2694 * limitation. 2695 */ 2696 if (sizeof(unsigned long) * 8 < va_bits) { 2697 ptdev->gpu_info.mmu_features &= ~GENMASK(7, 0); 2698 ptdev->gpu_info.mmu_features |= sizeof(unsigned long) * 8; 2699 } 2700 2701 return drmm_add_action_or_reset(&ptdev->base, panthor_mmu_release_wq, mmu->vm.wq); 2702 } 2703 2704 #ifdef CONFIG_DEBUG_FS 2705 static int show_vm_gpuvas(struct panthor_vm *vm, struct seq_file *m) 2706 { 2707 int ret; 2708 2709 mutex_lock(&vm->op_lock); 2710 ret = drm_debugfs_gpuva_info(m, &vm->base); 2711 mutex_unlock(&vm->op_lock); 2712 2713 return ret; 2714 } 2715 2716 static int show_each_vm(struct seq_file *m, void *arg) 2717 { 2718 struct drm_info_node *node = (struct drm_info_node *)m->private; 2719 struct drm_device *ddev = node->minor->dev; 2720 struct panthor_device *ptdev = container_of(ddev, struct panthor_device, base); 2721 int (*show)(struct panthor_vm *, struct seq_file *) = node->info_ent->data; 2722 struct panthor_vm *vm; 2723 int ret = 0; 2724 2725 mutex_lock(&ptdev->mmu->vm.lock); 2726 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) { 2727 ret = show(vm, m); 2728 if (ret < 0) 2729 break; 2730 2731 seq_puts(m, "\n"); 2732 } 2733 mutex_unlock(&ptdev->mmu->vm.lock); 2734 2735 return ret; 2736 } 2737 2738 static struct drm_info_list panthor_mmu_debugfs_list[] = { 2739 DRM_DEBUGFS_GPUVA_INFO(show_each_vm, show_vm_gpuvas), 2740 }; 2741 2742 /** 2743 * panthor_mmu_debugfs_init() - Initialize MMU debugfs entries 2744 * @minor: Minor. 2745 */ 2746 void panthor_mmu_debugfs_init(struct drm_minor *minor) 2747 { 2748 drm_debugfs_create_files(panthor_mmu_debugfs_list, 2749 ARRAY_SIZE(panthor_mmu_debugfs_list), 2750 minor->debugfs_root, minor); 2751 } 2752 #endif /* CONFIG_DEBUG_FS */ 2753 2754 /** 2755 * panthor_mmu_pt_cache_init() - Initialize the page table cache. 2756 * 2757 * Return: 0 on success, a negative error code otherwise. 2758 */ 2759 int panthor_mmu_pt_cache_init(void) 2760 { 2761 pt_cache = kmem_cache_create("panthor-mmu-pt", SZ_4K, SZ_4K, 0, NULL); 2762 if (!pt_cache) 2763 return -ENOMEM; 2764 2765 return 0; 2766 } 2767 2768 /** 2769 * panthor_mmu_pt_cache_fini() - Destroy the page table cache. 2770 */ 2771 void panthor_mmu_pt_cache_fini(void) 2772 { 2773 kmem_cache_destroy(pt_cache); 2774 } 2775