1 // SPDX-License-Identifier: GPL-2.0 or MIT 2 /* Copyright 2019 Linaro, Ltd, Rob Herring <robh@kernel.org> */ 3 /* Copyright 2023 Collabora ltd. */ 4 5 #include <drm/drm_debugfs.h> 6 #include <drm/drm_drv.h> 7 #include <drm/drm_exec.h> 8 #include <drm/drm_gpuvm.h> 9 #include <drm/drm_managed.h> 10 #include <drm/gpu_scheduler.h> 11 #include <drm/panthor_drm.h> 12 13 #include <linux/atomic.h> 14 #include <linux/bitfield.h> 15 #include <linux/delay.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/interrupt.h> 18 #include <linux/io.h> 19 #include <linux/iopoll.h> 20 #include <linux/io-pgtable.h> 21 #include <linux/iommu.h> 22 #include <linux/kmemleak.h> 23 #include <linux/platform_device.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/rwsem.h> 26 #include <linux/sched.h> 27 #include <linux/shmem_fs.h> 28 #include <linux/sizes.h> 29 30 #include "panthor_device.h" 31 #include "panthor_gem.h" 32 #include "panthor_heap.h" 33 #include "panthor_mmu.h" 34 #include "panthor_regs.h" 35 #include "panthor_sched.h" 36 37 #define MAX_AS_SLOTS 32 38 39 struct panthor_vm; 40 41 /** 42 * struct panthor_as_slot - Address space slot 43 */ 44 struct panthor_as_slot { 45 /** @vm: VM bound to this slot. NULL is no VM is bound. */ 46 struct panthor_vm *vm; 47 }; 48 49 /** 50 * struct panthor_mmu - MMU related data 51 */ 52 struct panthor_mmu { 53 /** @irq: The MMU irq. */ 54 struct panthor_irq irq; 55 56 /** @as: Address space related fields. 57 * 58 * The GPU has a limited number of address spaces (AS) slots, forcing 59 * us to re-assign them to re-assign slots on-demand. 60 */ 61 struct { 62 /** @slots_lock: Lock protecting access to all other AS fields. */ 63 struct mutex slots_lock; 64 65 /** @alloc_mask: Bitmask encoding the allocated slots. */ 66 unsigned long alloc_mask; 67 68 /** @faulty_mask: Bitmask encoding the faulty slots. */ 69 unsigned long faulty_mask; 70 71 /** @slots: VMs currently bound to the AS slots. */ 72 struct panthor_as_slot slots[MAX_AS_SLOTS]; 73 74 /** 75 * @lru_list: List of least recently used VMs. 76 * 77 * We use this list to pick a VM to evict when all slots are 78 * used. 79 * 80 * There should be no more active VMs than there are AS slots, 81 * so this LRU is just here to keep VMs bound until there's 82 * a need to release a slot, thus avoid unnecessary TLB/cache 83 * flushes. 84 */ 85 struct list_head lru_list; 86 } as; 87 88 /** @vm: VMs management fields */ 89 struct { 90 /** @lock: Lock protecting access to list. */ 91 struct mutex lock; 92 93 /** @list: List containing all VMs. */ 94 struct list_head list; 95 96 /** @reset_in_progress: True if a reset is in progress. */ 97 bool reset_in_progress; 98 99 /** @wq: Workqueue used for the VM_BIND queues. */ 100 struct workqueue_struct *wq; 101 } vm; 102 }; 103 104 /** 105 * struct panthor_vm_pool - VM pool object 106 */ 107 struct panthor_vm_pool { 108 /** @xa: Array used for VM handle tracking. */ 109 struct xarray xa; 110 }; 111 112 /** 113 * struct panthor_vma - GPU mapping object 114 * 115 * This is used to track GEM mappings in GPU space. 116 */ 117 struct panthor_vma { 118 /** @base: Inherits from drm_gpuva. */ 119 struct drm_gpuva base; 120 121 /** @node: Used to implement deferred release of VMAs. */ 122 struct list_head node; 123 124 /** 125 * @flags: Combination of drm_panthor_vm_bind_op_flags. 126 * 127 * Only map related flags are accepted. 128 */ 129 u32 flags; 130 }; 131 132 /** 133 * struct panthor_vm_op_ctx - VM operation context 134 * 135 * With VM operations potentially taking place in a dma-signaling path, we 136 * need to make sure everything that might require resource allocation is 137 * pre-allocated upfront. This is what this operation context is far. 138 * 139 * We also collect resources that have been freed, so we can release them 140 * asynchronously, and let the VM_BIND scheduler process the next VM_BIND 141 * request. 142 */ 143 struct panthor_vm_op_ctx { 144 /** @rsvd_page_tables: Pages reserved for the MMU page table update. */ 145 struct { 146 /** @count: Number of pages reserved. */ 147 u32 count; 148 149 /** @ptr: Point to the first unused page in the @pages table. */ 150 u32 ptr; 151 152 /** 153 * @page: Array of pages that can be used for an MMU page table update. 154 * 155 * After an VM operation, there might be free pages left in this array. 156 * They should be returned to the pt_cache as part of the op_ctx cleanup. 157 */ 158 void **pages; 159 } rsvd_page_tables; 160 161 /** 162 * @preallocated_vmas: Pre-allocated VMAs to handle the remap case. 163 * 164 * Partial unmap requests or map requests overlapping existing mappings will 165 * trigger a remap call, which need to register up to three panthor_vma objects 166 * (one for the new mapping, and two for the previous and next mappings). 167 */ 168 struct panthor_vma *preallocated_vmas[3]; 169 170 /** @flags: Combination of drm_panthor_vm_bind_op_flags. */ 171 u32 flags; 172 173 /** @va: Virtual range targeted by the VM operation. */ 174 struct { 175 /** @addr: Start address. */ 176 u64 addr; 177 178 /** @range: Range size. */ 179 u64 range; 180 } va; 181 182 /** 183 * @returned_vmas: List of panthor_vma objects returned after a VM operation. 184 * 185 * For unmap operations, this will contain all VMAs that were covered by the 186 * specified VA range. 187 * 188 * For map operations, this will contain all VMAs that previously mapped to 189 * the specified VA range. 190 * 191 * Those VMAs, and the resources they point to will be released as part of 192 * the op_ctx cleanup operation. 193 */ 194 struct list_head returned_vmas; 195 196 /** @map: Fields specific to a map operation. */ 197 struct { 198 /** @vm_bo: Buffer object to map. */ 199 struct drm_gpuvm_bo *vm_bo; 200 201 /** @bo_offset: Offset in the buffer object. */ 202 u64 bo_offset; 203 204 /** 205 * @sgt: sg-table pointing to pages backing the GEM object. 206 * 207 * This is gathered at job creation time, such that we don't have 208 * to allocate in ::run_job(). 209 */ 210 struct sg_table *sgt; 211 212 /** 213 * @new_vma: The new VMA object that will be inserted to the VA tree. 214 */ 215 struct panthor_vma *new_vma; 216 } map; 217 }; 218 219 /** 220 * struct panthor_vm - VM object 221 * 222 * A VM is an object representing a GPU (or MCU) virtual address space. 223 * It embeds the MMU page table for this address space, a tree containing 224 * all the virtual mappings of GEM objects, and other things needed to manage 225 * the VM. 226 * 227 * Except for the MCU VM, which is managed by the kernel, all other VMs are 228 * created by userspace and mostly managed by userspace, using the 229 * %DRM_IOCTL_PANTHOR_VM_BIND ioctl. 230 * 231 * A portion of the virtual address space is reserved for kernel objects, 232 * like heap chunks, and userspace gets to decide how much of the virtual 233 * address space is left to the kernel (half of the virtual address space 234 * by default). 235 */ 236 struct panthor_vm { 237 /** 238 * @base: Inherit from drm_gpuvm. 239 * 240 * We delegate all the VA management to the common drm_gpuvm framework 241 * and only implement hooks to update the MMU page table. 242 */ 243 struct drm_gpuvm base; 244 245 /** 246 * @sched: Scheduler used for asynchronous VM_BIND request. 247 * 248 * We use a 1:1 scheduler here. 249 */ 250 struct drm_gpu_scheduler sched; 251 252 /** 253 * @entity: Scheduling entity representing the VM_BIND queue. 254 * 255 * There's currently one bind queue per VM. It doesn't make sense to 256 * allow more given the VM operations are serialized anyway. 257 */ 258 struct drm_sched_entity entity; 259 260 /** @ptdev: Device. */ 261 struct panthor_device *ptdev; 262 263 /** @memattr: Value to program to the AS_MEMATTR register. */ 264 u64 memattr; 265 266 /** @pgtbl_ops: Page table operations. */ 267 struct io_pgtable_ops *pgtbl_ops; 268 269 /** @root_page_table: Stores the root page table pointer. */ 270 void *root_page_table; 271 272 /** 273 * @op_lock: Lock used to serialize operations on a VM. 274 * 275 * The serialization of jobs queued to the VM_BIND queue is already 276 * taken care of by drm_sched, but we need to serialize synchronous 277 * and asynchronous VM_BIND request. This is what this lock is for. 278 */ 279 struct mutex op_lock; 280 281 /** 282 * @op_ctx: The context attached to the currently executing VM operation. 283 * 284 * NULL when no operation is in progress. 285 */ 286 struct panthor_vm_op_ctx *op_ctx; 287 288 /** 289 * @mm: Memory management object representing the auto-VA/kernel-VA. 290 * 291 * Used to auto-allocate VA space for kernel-managed objects (tiler 292 * heaps, ...). 293 * 294 * For the MCU VM, this is managing the VA range that's used to map 295 * all shared interfaces. 296 * 297 * For user VMs, the range is specified by userspace, and must not 298 * exceed half of the VA space addressable. 299 */ 300 struct drm_mm mm; 301 302 /** @mm_lock: Lock protecting the @mm field. */ 303 struct mutex mm_lock; 304 305 /** @kernel_auto_va: Automatic VA-range for kernel BOs. */ 306 struct { 307 /** @start: Start of the automatic VA-range for kernel BOs. */ 308 u64 start; 309 310 /** @size: Size of the automatic VA-range for kernel BOs. */ 311 u64 end; 312 } kernel_auto_va; 313 314 /** @as: Address space related fields. */ 315 struct { 316 /** 317 * @id: ID of the address space this VM is bound to. 318 * 319 * A value of -1 means the VM is inactive/not bound. 320 */ 321 int id; 322 323 /** @active_cnt: Number of active users of this VM. */ 324 refcount_t active_cnt; 325 326 /** 327 * @lru_node: Used to instead the VM in the panthor_mmu::as::lru_list. 328 * 329 * Active VMs should not be inserted in the LRU list. 330 */ 331 struct list_head lru_node; 332 } as; 333 334 /** 335 * @heaps: Tiler heap related fields. 336 */ 337 struct { 338 /** 339 * @pool: The heap pool attached to this VM. 340 * 341 * Will stay NULL until someone creates a heap context on this VM. 342 */ 343 struct panthor_heap_pool *pool; 344 345 /** @lock: Lock used to protect access to @pool. */ 346 struct mutex lock; 347 } heaps; 348 349 /** @node: Used to insert the VM in the panthor_mmu::vm::list. */ 350 struct list_head node; 351 352 /** @for_mcu: True if this is the MCU VM. */ 353 bool for_mcu; 354 355 /** 356 * @destroyed: True if the VM was destroyed. 357 * 358 * No further bind requests should be queued to a destroyed VM. 359 */ 360 bool destroyed; 361 362 /** 363 * @unusable: True if the VM has turned unusable because something 364 * bad happened during an asynchronous request. 365 * 366 * We don't try to recover from such failures, because this implies 367 * informing userspace about the specific operation that failed, and 368 * hoping the userspace driver can replay things from there. This all 369 * sounds very complicated for little gain. 370 * 371 * Instead, we should just flag the VM as unusable, and fail any 372 * further request targeting this VM. 373 * 374 * We also provide a way to query a VM state, so userspace can destroy 375 * it and create a new one. 376 * 377 * As an analogy, this would be mapped to a VK_ERROR_DEVICE_LOST 378 * situation, where the logical device needs to be re-created. 379 */ 380 bool unusable; 381 382 /** 383 * @unhandled_fault: Unhandled fault happened. 384 * 385 * This should be reported to the scheduler, and the queue/group be 386 * flagged as faulty as a result. 387 */ 388 bool unhandled_fault; 389 }; 390 391 /** 392 * struct panthor_vm_bind_job - VM bind job 393 */ 394 struct panthor_vm_bind_job { 395 /** @base: Inherit from drm_sched_job. */ 396 struct drm_sched_job base; 397 398 /** @refcount: Reference count. */ 399 struct kref refcount; 400 401 /** @cleanup_op_ctx_work: Work used to cleanup the VM operation context. */ 402 struct work_struct cleanup_op_ctx_work; 403 404 /** @vm: VM targeted by the VM operation. */ 405 struct panthor_vm *vm; 406 407 /** @ctx: Operation context. */ 408 struct panthor_vm_op_ctx ctx; 409 }; 410 411 /** 412 * @pt_cache: Cache used to allocate MMU page tables. 413 * 414 * The pre-allocation pattern forces us to over-allocate to plan for 415 * the worst case scenario, and return the pages we didn't use. 416 * 417 * Having a kmem_cache allows us to speed allocations. 418 */ 419 static struct kmem_cache *pt_cache; 420 421 /** 422 * alloc_pt() - Custom page table allocator 423 * @cookie: Cookie passed at page table allocation time. 424 * @size: Size of the page table. This size should be fixed, 425 * and determined at creation time based on the granule size. 426 * @gfp: GFP flags. 427 * 428 * We want a custom allocator so we can use a cache for page table 429 * allocations and amortize the cost of the over-reservation that's 430 * done to allow asynchronous VM operations. 431 * 432 * Return: non-NULL on success, NULL if the allocation failed for any 433 * reason. 434 */ 435 static void *alloc_pt(void *cookie, size_t size, gfp_t gfp) 436 { 437 struct panthor_vm *vm = cookie; 438 void *page; 439 440 /* Allocation of the root page table happening during init. */ 441 if (unlikely(!vm->root_page_table)) { 442 struct page *p; 443 444 drm_WARN_ON(&vm->ptdev->base, vm->op_ctx); 445 p = alloc_pages_node(dev_to_node(vm->ptdev->base.dev), 446 gfp | __GFP_ZERO, get_order(size)); 447 page = p ? page_address(p) : NULL; 448 vm->root_page_table = page; 449 return page; 450 } 451 452 /* We're not supposed to have anything bigger than 4k here, because we picked a 453 * 4k granule size at init time. 454 */ 455 if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K)) 456 return NULL; 457 458 /* We must have some op_ctx attached to the VM and it must have at least one 459 * free page. 460 */ 461 if (drm_WARN_ON(&vm->ptdev->base, !vm->op_ctx) || 462 drm_WARN_ON(&vm->ptdev->base, 463 vm->op_ctx->rsvd_page_tables.ptr >= vm->op_ctx->rsvd_page_tables.count)) 464 return NULL; 465 466 page = vm->op_ctx->rsvd_page_tables.pages[vm->op_ctx->rsvd_page_tables.ptr++]; 467 memset(page, 0, SZ_4K); 468 469 /* Page table entries don't use virtual addresses, which trips out 470 * kmemleak. kmemleak_alloc_phys() might work, but physical addresses 471 * are mixed with other fields, and I fear kmemleak won't detect that 472 * either. 473 * 474 * Let's just ignore memory passed to the page-table driver for now. 475 */ 476 kmemleak_ignore(page); 477 return page; 478 } 479 480 /** 481 * @free_pt() - Custom page table free function 482 * @cookie: Cookie passed at page table allocation time. 483 * @data: Page table to free. 484 * @size: Size of the page table. This size should be fixed, 485 * and determined at creation time based on the granule size. 486 */ 487 static void free_pt(void *cookie, void *data, size_t size) 488 { 489 struct panthor_vm *vm = cookie; 490 491 if (unlikely(vm->root_page_table == data)) { 492 free_pages((unsigned long)data, get_order(size)); 493 vm->root_page_table = NULL; 494 return; 495 } 496 497 if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K)) 498 return; 499 500 /* Return the page to the pt_cache. */ 501 kmem_cache_free(pt_cache, data); 502 } 503 504 static int wait_ready(struct panthor_device *ptdev, u32 as_nr) 505 { 506 int ret; 507 u32 val; 508 509 /* Wait for the MMU status to indicate there is no active command, in 510 * case one is pending. 511 */ 512 ret = readl_relaxed_poll_timeout_atomic(ptdev->iomem + AS_STATUS(as_nr), 513 val, !(val & AS_STATUS_AS_ACTIVE), 514 10, 100000); 515 516 if (ret) { 517 panthor_device_schedule_reset(ptdev); 518 drm_err(&ptdev->base, "AS_ACTIVE bit stuck\n"); 519 } 520 521 return ret; 522 } 523 524 static int write_cmd(struct panthor_device *ptdev, u32 as_nr, u32 cmd) 525 { 526 int status; 527 528 /* write AS_COMMAND when MMU is ready to accept another command */ 529 status = wait_ready(ptdev, as_nr); 530 if (!status) 531 gpu_write(ptdev, AS_COMMAND(as_nr), cmd); 532 533 return status; 534 } 535 536 static void lock_region(struct panthor_device *ptdev, u32 as_nr, 537 u64 region_start, u64 size) 538 { 539 u8 region_width; 540 u64 region; 541 u64 region_end = region_start + size; 542 543 if (!size) 544 return; 545 546 /* 547 * The locked region is a naturally aligned power of 2 block encoded as 548 * log2 minus(1). 549 * Calculate the desired start/end and look for the highest bit which 550 * differs. The smallest naturally aligned block must include this bit 551 * change, the desired region starts with this bit (and subsequent bits) 552 * zeroed and ends with the bit (and subsequent bits) set to one. 553 */ 554 region_width = max(fls64(region_start ^ (region_end - 1)), 555 const_ilog2(AS_LOCK_REGION_MIN_SIZE)) - 1; 556 557 /* 558 * Mask off the low bits of region_start (which would be ignored by 559 * the hardware anyway) 560 */ 561 region_start &= GENMASK_ULL(63, region_width); 562 563 region = region_width | region_start; 564 565 /* Lock the region that needs to be updated */ 566 gpu_write(ptdev, AS_LOCKADDR_LO(as_nr), lower_32_bits(region)); 567 gpu_write(ptdev, AS_LOCKADDR_HI(as_nr), upper_32_bits(region)); 568 write_cmd(ptdev, as_nr, AS_COMMAND_LOCK); 569 } 570 571 static int mmu_hw_do_operation_locked(struct panthor_device *ptdev, int as_nr, 572 u64 iova, u64 size, u32 op) 573 { 574 lockdep_assert_held(&ptdev->mmu->as.slots_lock); 575 576 if (as_nr < 0) 577 return 0; 578 579 /* 580 * If the AS number is greater than zero, then we can be sure 581 * the device is up and running, so we don't need to explicitly 582 * power it up 583 */ 584 585 if (op != AS_COMMAND_UNLOCK) 586 lock_region(ptdev, as_nr, iova, size); 587 588 /* Run the MMU operation */ 589 write_cmd(ptdev, as_nr, op); 590 591 /* Wait for the flush to complete */ 592 return wait_ready(ptdev, as_nr); 593 } 594 595 static int mmu_hw_do_operation(struct panthor_vm *vm, 596 u64 iova, u64 size, u32 op) 597 { 598 struct panthor_device *ptdev = vm->ptdev; 599 int ret; 600 601 mutex_lock(&ptdev->mmu->as.slots_lock); 602 ret = mmu_hw_do_operation_locked(ptdev, vm->as.id, iova, size, op); 603 mutex_unlock(&ptdev->mmu->as.slots_lock); 604 605 return ret; 606 } 607 608 static int panthor_mmu_as_enable(struct panthor_device *ptdev, u32 as_nr, 609 u64 transtab, u64 transcfg, u64 memattr) 610 { 611 int ret; 612 613 ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM); 614 if (ret) 615 return ret; 616 617 gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), lower_32_bits(transtab)); 618 gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), upper_32_bits(transtab)); 619 620 gpu_write(ptdev, AS_MEMATTR_LO(as_nr), lower_32_bits(memattr)); 621 gpu_write(ptdev, AS_MEMATTR_HI(as_nr), upper_32_bits(memattr)); 622 623 gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), lower_32_bits(transcfg)); 624 gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), upper_32_bits(transcfg)); 625 626 return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE); 627 } 628 629 static int panthor_mmu_as_disable(struct panthor_device *ptdev, u32 as_nr) 630 { 631 int ret; 632 633 ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM); 634 if (ret) 635 return ret; 636 637 gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), 0); 638 gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), 0); 639 640 gpu_write(ptdev, AS_MEMATTR_LO(as_nr), 0); 641 gpu_write(ptdev, AS_MEMATTR_HI(as_nr), 0); 642 643 gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), AS_TRANSCFG_ADRMODE_UNMAPPED); 644 gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), 0); 645 646 return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE); 647 } 648 649 static u32 panthor_mmu_fault_mask(struct panthor_device *ptdev, u32 value) 650 { 651 /* Bits 16 to 31 mean REQ_COMPLETE. */ 652 return value & GENMASK(15, 0); 653 } 654 655 static u32 panthor_mmu_as_fault_mask(struct panthor_device *ptdev, u32 as) 656 { 657 return BIT(as); 658 } 659 660 /** 661 * panthor_vm_has_unhandled_faults() - Check if a VM has unhandled faults 662 * @vm: VM to check. 663 * 664 * Return: true if the VM has unhandled faults, false otherwise. 665 */ 666 bool panthor_vm_has_unhandled_faults(struct panthor_vm *vm) 667 { 668 return vm->unhandled_fault; 669 } 670 671 /** 672 * panthor_vm_is_unusable() - Check if the VM is still usable 673 * @vm: VM to check. 674 * 675 * Return: true if the VM is unusable, false otherwise. 676 */ 677 bool panthor_vm_is_unusable(struct panthor_vm *vm) 678 { 679 return vm->unusable; 680 } 681 682 static void panthor_vm_release_as_locked(struct panthor_vm *vm) 683 { 684 struct panthor_device *ptdev = vm->ptdev; 685 686 lockdep_assert_held(&ptdev->mmu->as.slots_lock); 687 688 if (drm_WARN_ON(&ptdev->base, vm->as.id < 0)) 689 return; 690 691 ptdev->mmu->as.slots[vm->as.id].vm = NULL; 692 clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask); 693 refcount_set(&vm->as.active_cnt, 0); 694 list_del_init(&vm->as.lru_node); 695 vm->as.id = -1; 696 } 697 698 /** 699 * panthor_vm_active() - Flag a VM as active 700 * @VM: VM to flag as active. 701 * 702 * Assigns an address space to a VM so it can be used by the GPU/MCU. 703 * 704 * Return: 0 on success, a negative error code otherwise. 705 */ 706 int panthor_vm_active(struct panthor_vm *vm) 707 { 708 struct panthor_device *ptdev = vm->ptdev; 709 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 710 struct io_pgtable_cfg *cfg = &io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg; 711 int ret = 0, as, cookie; 712 u64 transtab, transcfg; 713 714 if (!drm_dev_enter(&ptdev->base, &cookie)) 715 return -ENODEV; 716 717 if (refcount_inc_not_zero(&vm->as.active_cnt)) 718 goto out_dev_exit; 719 720 mutex_lock(&ptdev->mmu->as.slots_lock); 721 722 if (refcount_inc_not_zero(&vm->as.active_cnt)) 723 goto out_unlock; 724 725 as = vm->as.id; 726 if (as >= 0) { 727 /* Unhandled pagefault on this AS, the MMU was disabled. We need to 728 * re-enable the MMU after clearing+unmasking the AS interrupts. 729 */ 730 if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) 731 goto out_enable_as; 732 733 goto out_make_active; 734 } 735 736 /* Check for a free AS */ 737 if (vm->for_mcu) { 738 drm_WARN_ON(&ptdev->base, ptdev->mmu->as.alloc_mask & BIT(0)); 739 as = 0; 740 } else { 741 as = ffz(ptdev->mmu->as.alloc_mask | BIT(0)); 742 } 743 744 if (!(BIT(as) & ptdev->gpu_info.as_present)) { 745 struct panthor_vm *lru_vm; 746 747 lru_vm = list_first_entry_or_null(&ptdev->mmu->as.lru_list, 748 struct panthor_vm, 749 as.lru_node); 750 if (drm_WARN_ON(&ptdev->base, !lru_vm)) { 751 ret = -EBUSY; 752 goto out_unlock; 753 } 754 755 drm_WARN_ON(&ptdev->base, refcount_read(&lru_vm->as.active_cnt)); 756 as = lru_vm->as.id; 757 panthor_vm_release_as_locked(lru_vm); 758 } 759 760 /* Assign the free or reclaimed AS to the FD */ 761 vm->as.id = as; 762 set_bit(as, &ptdev->mmu->as.alloc_mask); 763 ptdev->mmu->as.slots[as].vm = vm; 764 765 out_enable_as: 766 transtab = cfg->arm_lpae_s1_cfg.ttbr; 767 transcfg = AS_TRANSCFG_PTW_MEMATTR_WB | 768 AS_TRANSCFG_PTW_RA | 769 AS_TRANSCFG_ADRMODE_AARCH64_4K | 770 AS_TRANSCFG_INA_BITS(55 - va_bits); 771 if (ptdev->coherent) 772 transcfg |= AS_TRANSCFG_PTW_SH_OS; 773 774 /* If the VM is re-activated, we clear the fault. */ 775 vm->unhandled_fault = false; 776 777 /* Unhandled pagefault on this AS, clear the fault and re-enable interrupts 778 * before enabling the AS. 779 */ 780 if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) { 781 gpu_write(ptdev, MMU_INT_CLEAR, panthor_mmu_as_fault_mask(ptdev, as)); 782 ptdev->mmu->as.faulty_mask &= ~panthor_mmu_as_fault_mask(ptdev, as); 783 gpu_write(ptdev, MMU_INT_MASK, ~ptdev->mmu->as.faulty_mask); 784 } 785 786 ret = panthor_mmu_as_enable(vm->ptdev, vm->as.id, transtab, transcfg, vm->memattr); 787 788 out_make_active: 789 if (!ret) { 790 refcount_set(&vm->as.active_cnt, 1); 791 list_del_init(&vm->as.lru_node); 792 } 793 794 out_unlock: 795 mutex_unlock(&ptdev->mmu->as.slots_lock); 796 797 out_dev_exit: 798 drm_dev_exit(cookie); 799 return ret; 800 } 801 802 /** 803 * panthor_vm_idle() - Flag a VM idle 804 * @VM: VM to flag as idle. 805 * 806 * When we know the GPU is done with the VM (no more jobs to process), 807 * we can relinquish the AS slot attached to this VM, if any. 808 * 809 * We don't release the slot immediately, but instead place the VM in 810 * the LRU list, so it can be evicted if another VM needs an AS slot. 811 * This way, VMs keep attached to the AS they were given until we run 812 * out of free slot, limiting the number of MMU operations (TLB flush 813 * and other AS updates). 814 */ 815 void panthor_vm_idle(struct panthor_vm *vm) 816 { 817 struct panthor_device *ptdev = vm->ptdev; 818 819 if (!refcount_dec_and_mutex_lock(&vm->as.active_cnt, &ptdev->mmu->as.slots_lock)) 820 return; 821 822 if (!drm_WARN_ON(&ptdev->base, vm->as.id == -1 || !list_empty(&vm->as.lru_node))) 823 list_add_tail(&vm->as.lru_node, &ptdev->mmu->as.lru_list); 824 825 refcount_set(&vm->as.active_cnt, 0); 826 mutex_unlock(&ptdev->mmu->as.slots_lock); 827 } 828 829 u32 panthor_vm_page_size(struct panthor_vm *vm) 830 { 831 const struct io_pgtable *pgt = io_pgtable_ops_to_pgtable(vm->pgtbl_ops); 832 u32 pg_shift = ffs(pgt->cfg.pgsize_bitmap) - 1; 833 834 return 1u << pg_shift; 835 } 836 837 static void panthor_vm_stop(struct panthor_vm *vm) 838 { 839 drm_sched_stop(&vm->sched, NULL); 840 } 841 842 static void panthor_vm_start(struct panthor_vm *vm) 843 { 844 drm_sched_start(&vm->sched); 845 } 846 847 /** 848 * panthor_vm_as() - Get the AS slot attached to a VM 849 * @vm: VM to get the AS slot of. 850 * 851 * Return: -1 if the VM is not assigned an AS slot yet, >= 0 otherwise. 852 */ 853 int panthor_vm_as(struct panthor_vm *vm) 854 { 855 return vm->as.id; 856 } 857 858 static size_t get_pgsize(u64 addr, size_t size, size_t *count) 859 { 860 /* 861 * io-pgtable only operates on multiple pages within a single table 862 * entry, so we need to split at boundaries of the table size, i.e. 863 * the next block size up. The distance from address A to the next 864 * boundary of block size B is logically B - A % B, but in unsigned 865 * two's complement where B is a power of two we get the equivalence 866 * B - A % B == (B - A) % B == (n * B - A) % B, and choose n = 0 :) 867 */ 868 size_t blk_offset = -addr % SZ_2M; 869 870 if (blk_offset || size < SZ_2M) { 871 *count = min_not_zero(blk_offset, size) / SZ_4K; 872 return SZ_4K; 873 } 874 blk_offset = -addr % SZ_1G ?: SZ_1G; 875 *count = min(blk_offset, size) / SZ_2M; 876 return SZ_2M; 877 } 878 879 static int panthor_vm_flush_range(struct panthor_vm *vm, u64 iova, u64 size) 880 { 881 struct panthor_device *ptdev = vm->ptdev; 882 int ret = 0, cookie; 883 884 if (vm->as.id < 0) 885 return 0; 886 887 /* If the device is unplugged, we just silently skip the flush. */ 888 if (!drm_dev_enter(&ptdev->base, &cookie)) 889 return 0; 890 891 ret = mmu_hw_do_operation(vm, iova, size, AS_COMMAND_FLUSH_PT); 892 893 drm_dev_exit(cookie); 894 return ret; 895 } 896 897 /** 898 * panthor_vm_flush_all() - Flush L2 caches for the entirety of a VM's AS 899 * @vm: VM whose cache to flush 900 * 901 * Return: 0 on success, a negative error code if flush failed. 902 */ 903 int panthor_vm_flush_all(struct panthor_vm *vm) 904 { 905 return panthor_vm_flush_range(vm, vm->base.mm_start, vm->base.mm_range); 906 } 907 908 static int panthor_vm_unmap_pages(struct panthor_vm *vm, u64 iova, u64 size) 909 { 910 struct panthor_device *ptdev = vm->ptdev; 911 struct io_pgtable_ops *ops = vm->pgtbl_ops; 912 u64 offset = 0; 913 914 drm_dbg(&ptdev->base, "unmap: as=%d, iova=%llx, len=%llx", vm->as.id, iova, size); 915 916 while (offset < size) { 917 size_t unmapped_sz = 0, pgcount; 918 size_t pgsize = get_pgsize(iova + offset, size - offset, &pgcount); 919 920 unmapped_sz = ops->unmap_pages(ops, iova + offset, pgsize, pgcount, NULL); 921 922 if (drm_WARN_ON(&ptdev->base, unmapped_sz != pgsize * pgcount)) { 923 drm_err(&ptdev->base, "failed to unmap range %llx-%llx (requested range %llx-%llx)\n", 924 iova + offset + unmapped_sz, 925 iova + offset + pgsize * pgcount, 926 iova, iova + size); 927 panthor_vm_flush_range(vm, iova, offset + unmapped_sz); 928 return -EINVAL; 929 } 930 offset += unmapped_sz; 931 } 932 933 return panthor_vm_flush_range(vm, iova, size); 934 } 935 936 static int 937 panthor_vm_map_pages(struct panthor_vm *vm, u64 iova, int prot, 938 struct sg_table *sgt, u64 offset, u64 size) 939 { 940 struct panthor_device *ptdev = vm->ptdev; 941 unsigned int count; 942 struct scatterlist *sgl; 943 struct io_pgtable_ops *ops = vm->pgtbl_ops; 944 u64 start_iova = iova; 945 int ret; 946 947 if (!size) 948 return 0; 949 950 for_each_sgtable_dma_sg(sgt, sgl, count) { 951 dma_addr_t paddr = sg_dma_address(sgl); 952 size_t len = sg_dma_len(sgl); 953 954 if (len <= offset) { 955 offset -= len; 956 continue; 957 } 958 959 paddr += offset; 960 len -= offset; 961 len = min_t(size_t, len, size); 962 size -= len; 963 964 drm_dbg(&ptdev->base, "map: as=%d, iova=%llx, paddr=%pad, len=%zx", 965 vm->as.id, iova, &paddr, len); 966 967 while (len) { 968 size_t pgcount, mapped = 0; 969 size_t pgsize = get_pgsize(iova | paddr, len, &pgcount); 970 971 ret = ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot, 972 GFP_KERNEL, &mapped); 973 iova += mapped; 974 paddr += mapped; 975 len -= mapped; 976 977 if (drm_WARN_ON(&ptdev->base, !ret && !mapped)) 978 ret = -ENOMEM; 979 980 if (ret) { 981 /* If something failed, unmap what we've already mapped before 982 * returning. The unmap call is not supposed to fail. 983 */ 984 drm_WARN_ON(&ptdev->base, 985 panthor_vm_unmap_pages(vm, start_iova, 986 iova - start_iova)); 987 return ret; 988 } 989 } 990 991 if (!size) 992 break; 993 } 994 995 return panthor_vm_flush_range(vm, start_iova, iova - start_iova); 996 } 997 998 static int flags_to_prot(u32 flags) 999 { 1000 int prot = 0; 1001 1002 if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC) 1003 prot |= IOMMU_NOEXEC; 1004 1005 if (!(flags & DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED)) 1006 prot |= IOMMU_CACHE; 1007 1008 if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_READONLY) 1009 prot |= IOMMU_READ; 1010 else 1011 prot |= IOMMU_READ | IOMMU_WRITE; 1012 1013 return prot; 1014 } 1015 1016 /** 1017 * panthor_vm_alloc_va() - Allocate a region in the auto-va space 1018 * @VM: VM to allocate a region on. 1019 * @va: start of the VA range. Can be PANTHOR_VM_KERNEL_AUTO_VA if the user 1020 * wants the VA to be automatically allocated from the auto-VA range. 1021 * @size: size of the VA range. 1022 * @va_node: drm_mm_node to initialize. Must be zero-initialized. 1023 * 1024 * Some GPU objects, like heap chunks, are fully managed by the kernel and 1025 * need to be mapped to the userspace VM, in the region reserved for kernel 1026 * objects. 1027 * 1028 * This function takes care of allocating a region in the kernel auto-VA space. 1029 * 1030 * Return: 0 on success, an error code otherwise. 1031 */ 1032 int 1033 panthor_vm_alloc_va(struct panthor_vm *vm, u64 va, u64 size, 1034 struct drm_mm_node *va_node) 1035 { 1036 ssize_t vm_pgsz = panthor_vm_page_size(vm); 1037 int ret; 1038 1039 if (!size || !IS_ALIGNED(size, vm_pgsz)) 1040 return -EINVAL; 1041 1042 if (va != PANTHOR_VM_KERNEL_AUTO_VA && !IS_ALIGNED(va, vm_pgsz)) 1043 return -EINVAL; 1044 1045 mutex_lock(&vm->mm_lock); 1046 if (va != PANTHOR_VM_KERNEL_AUTO_VA) { 1047 va_node->start = va; 1048 va_node->size = size; 1049 ret = drm_mm_reserve_node(&vm->mm, va_node); 1050 } else { 1051 ret = drm_mm_insert_node_in_range(&vm->mm, va_node, size, 1052 size >= SZ_2M ? SZ_2M : SZ_4K, 1053 0, vm->kernel_auto_va.start, 1054 vm->kernel_auto_va.end, 1055 DRM_MM_INSERT_BEST); 1056 } 1057 mutex_unlock(&vm->mm_lock); 1058 1059 return ret; 1060 } 1061 1062 /** 1063 * panthor_vm_free_va() - Free a region allocated with panthor_vm_alloc_va() 1064 * @VM: VM to free the region on. 1065 * @va_node: Memory node representing the region to free. 1066 */ 1067 void panthor_vm_free_va(struct panthor_vm *vm, struct drm_mm_node *va_node) 1068 { 1069 mutex_lock(&vm->mm_lock); 1070 drm_mm_remove_node(va_node); 1071 mutex_unlock(&vm->mm_lock); 1072 } 1073 1074 static void panthor_vm_bo_put(struct drm_gpuvm_bo *vm_bo) 1075 { 1076 struct panthor_gem_object *bo = to_panthor_bo(vm_bo->obj); 1077 struct drm_gpuvm *vm = vm_bo->vm; 1078 bool unpin; 1079 1080 /* We must retain the GEM before calling drm_gpuvm_bo_put(), 1081 * otherwise the mutex might be destroyed while we hold it. 1082 * Same goes for the VM, since we take the VM resv lock. 1083 */ 1084 drm_gem_object_get(&bo->base.base); 1085 drm_gpuvm_get(vm); 1086 1087 /* We take the resv lock to protect against concurrent accesses to the 1088 * gpuvm evicted/extobj lists that are modified in 1089 * drm_gpuvm_bo_destroy(), which is called if drm_gpuvm_bo_put() 1090 * releases sthe last vm_bo reference. 1091 * We take the BO GPUVA list lock to protect the vm_bo removal from the 1092 * GEM vm_bo list. 1093 */ 1094 dma_resv_lock(drm_gpuvm_resv(vm), NULL); 1095 mutex_lock(&bo->gpuva_list_lock); 1096 unpin = drm_gpuvm_bo_put(vm_bo); 1097 mutex_unlock(&bo->gpuva_list_lock); 1098 dma_resv_unlock(drm_gpuvm_resv(vm)); 1099 1100 /* If the vm_bo object was destroyed, release the pin reference that 1101 * was hold by this object. 1102 */ 1103 if (unpin && !bo->base.base.import_attach) 1104 drm_gem_shmem_unpin(&bo->base); 1105 1106 drm_gpuvm_put(vm); 1107 drm_gem_object_put(&bo->base.base); 1108 } 1109 1110 static void panthor_vm_cleanup_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1111 struct panthor_vm *vm) 1112 { 1113 struct panthor_vma *vma, *tmp_vma; 1114 1115 u32 remaining_pt_count = op_ctx->rsvd_page_tables.count - 1116 op_ctx->rsvd_page_tables.ptr; 1117 1118 if (remaining_pt_count) { 1119 kmem_cache_free_bulk(pt_cache, remaining_pt_count, 1120 op_ctx->rsvd_page_tables.pages + 1121 op_ctx->rsvd_page_tables.ptr); 1122 } 1123 1124 kfree(op_ctx->rsvd_page_tables.pages); 1125 1126 if (op_ctx->map.vm_bo) 1127 panthor_vm_bo_put(op_ctx->map.vm_bo); 1128 1129 for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) 1130 kfree(op_ctx->preallocated_vmas[i]); 1131 1132 list_for_each_entry_safe(vma, tmp_vma, &op_ctx->returned_vmas, node) { 1133 list_del(&vma->node); 1134 panthor_vm_bo_put(vma->base.vm_bo); 1135 kfree(vma); 1136 } 1137 } 1138 1139 static struct panthor_vma * 1140 panthor_vm_op_ctx_get_vma(struct panthor_vm_op_ctx *op_ctx) 1141 { 1142 for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) { 1143 struct panthor_vma *vma = op_ctx->preallocated_vmas[i]; 1144 1145 if (vma) { 1146 op_ctx->preallocated_vmas[i] = NULL; 1147 return vma; 1148 } 1149 } 1150 1151 return NULL; 1152 } 1153 1154 static int 1155 panthor_vm_op_ctx_prealloc_vmas(struct panthor_vm_op_ctx *op_ctx) 1156 { 1157 u32 vma_count; 1158 1159 switch (op_ctx->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) { 1160 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: 1161 /* One VMA for the new mapping, and two more VMAs for the remap case 1162 * which might contain both a prev and next VA. 1163 */ 1164 vma_count = 3; 1165 break; 1166 1167 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP: 1168 /* Partial unmaps might trigger a remap with either a prev or a next VA, 1169 * but not both. 1170 */ 1171 vma_count = 1; 1172 break; 1173 1174 default: 1175 return 0; 1176 } 1177 1178 for (u32 i = 0; i < vma_count; i++) { 1179 struct panthor_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL); 1180 1181 if (!vma) 1182 return -ENOMEM; 1183 1184 op_ctx->preallocated_vmas[i] = vma; 1185 } 1186 1187 return 0; 1188 } 1189 1190 #define PANTHOR_VM_BIND_OP_MAP_FLAGS \ 1191 (DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \ 1192 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \ 1193 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED | \ 1194 DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) 1195 1196 static int panthor_vm_prepare_map_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1197 struct panthor_vm *vm, 1198 struct panthor_gem_object *bo, 1199 u64 offset, 1200 u64 size, u64 va, 1201 u32 flags) 1202 { 1203 struct drm_gpuvm_bo *preallocated_vm_bo; 1204 struct sg_table *sgt = NULL; 1205 u64 pt_count; 1206 int ret; 1207 1208 if (!bo) 1209 return -EINVAL; 1210 1211 if ((flags & ~PANTHOR_VM_BIND_OP_MAP_FLAGS) || 1212 (flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) != DRM_PANTHOR_VM_BIND_OP_TYPE_MAP) 1213 return -EINVAL; 1214 1215 /* Make sure the VA and size are aligned and in-bounds. */ 1216 if (size > bo->base.base.size || offset > bo->base.base.size - size) 1217 return -EINVAL; 1218 1219 /* If the BO has an exclusive VM attached, it can't be mapped to other VMs. */ 1220 if (bo->exclusive_vm_root_gem && 1221 bo->exclusive_vm_root_gem != panthor_vm_root_gem(vm)) 1222 return -EINVAL; 1223 1224 memset(op_ctx, 0, sizeof(*op_ctx)); 1225 INIT_LIST_HEAD(&op_ctx->returned_vmas); 1226 op_ctx->flags = flags; 1227 op_ctx->va.range = size; 1228 op_ctx->va.addr = va; 1229 1230 ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx); 1231 if (ret) 1232 goto err_cleanup; 1233 1234 if (!bo->base.base.import_attach) { 1235 /* Pre-reserve the BO pages, so the map operation doesn't have to 1236 * allocate. 1237 */ 1238 ret = drm_gem_shmem_pin(&bo->base); 1239 if (ret) 1240 goto err_cleanup; 1241 } 1242 1243 sgt = drm_gem_shmem_get_pages_sgt(&bo->base); 1244 if (IS_ERR(sgt)) { 1245 if (!bo->base.base.import_attach) 1246 drm_gem_shmem_unpin(&bo->base); 1247 1248 ret = PTR_ERR(sgt); 1249 goto err_cleanup; 1250 } 1251 1252 op_ctx->map.sgt = sgt; 1253 1254 preallocated_vm_bo = drm_gpuvm_bo_create(&vm->base, &bo->base.base); 1255 if (!preallocated_vm_bo) { 1256 if (!bo->base.base.import_attach) 1257 drm_gem_shmem_unpin(&bo->base); 1258 1259 ret = -ENOMEM; 1260 goto err_cleanup; 1261 } 1262 1263 /* drm_gpuvm_bo_obtain_prealloc() will call drm_gpuvm_bo_put() on our 1264 * pre-allocated BO if the <BO,VM> association exists. Given we 1265 * only have one ref on preallocated_vm_bo, drm_gpuvm_bo_destroy() will 1266 * be called immediately, and we have to hold the VM resv lock when 1267 * calling this function. 1268 */ 1269 dma_resv_lock(panthor_vm_resv(vm), NULL); 1270 mutex_lock(&bo->gpuva_list_lock); 1271 op_ctx->map.vm_bo = drm_gpuvm_bo_obtain_prealloc(preallocated_vm_bo); 1272 mutex_unlock(&bo->gpuva_list_lock); 1273 dma_resv_unlock(panthor_vm_resv(vm)); 1274 1275 /* If the a vm_bo for this <VM,BO> combination exists, it already 1276 * retains a pin ref, and we can release the one we took earlier. 1277 * 1278 * If our pre-allocated vm_bo is picked, it now retains the pin ref, 1279 * which will be released in panthor_vm_bo_put(). 1280 */ 1281 if (preallocated_vm_bo != op_ctx->map.vm_bo && 1282 !bo->base.base.import_attach) 1283 drm_gem_shmem_unpin(&bo->base); 1284 1285 op_ctx->map.bo_offset = offset; 1286 1287 /* L1, L2 and L3 page tables. 1288 * We could optimize L3 allocation by iterating over the sgt and merging 1289 * 2M contiguous blocks, but it's simpler to over-provision and return 1290 * the pages if they're not used. 1291 */ 1292 pt_count = ((ALIGN(va + size, 1ull << 39) - ALIGN_DOWN(va, 1ull << 39)) >> 39) + 1293 ((ALIGN(va + size, 1ull << 30) - ALIGN_DOWN(va, 1ull << 30)) >> 30) + 1294 ((ALIGN(va + size, 1ull << 21) - ALIGN_DOWN(va, 1ull << 21)) >> 21); 1295 1296 op_ctx->rsvd_page_tables.pages = kcalloc(pt_count, 1297 sizeof(*op_ctx->rsvd_page_tables.pages), 1298 GFP_KERNEL); 1299 if (!op_ctx->rsvd_page_tables.pages) { 1300 ret = -ENOMEM; 1301 goto err_cleanup; 1302 } 1303 1304 ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count, 1305 op_ctx->rsvd_page_tables.pages); 1306 op_ctx->rsvd_page_tables.count = ret; 1307 if (ret != pt_count) { 1308 ret = -ENOMEM; 1309 goto err_cleanup; 1310 } 1311 1312 /* Insert BO into the extobj list last, when we know nothing can fail. */ 1313 dma_resv_lock(panthor_vm_resv(vm), NULL); 1314 drm_gpuvm_bo_extobj_add(op_ctx->map.vm_bo); 1315 dma_resv_unlock(panthor_vm_resv(vm)); 1316 1317 return 0; 1318 1319 err_cleanup: 1320 panthor_vm_cleanup_op_ctx(op_ctx, vm); 1321 return ret; 1322 } 1323 1324 static int panthor_vm_prepare_unmap_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1325 struct panthor_vm *vm, 1326 u64 va, u64 size) 1327 { 1328 u32 pt_count = 0; 1329 int ret; 1330 1331 memset(op_ctx, 0, sizeof(*op_ctx)); 1332 INIT_LIST_HEAD(&op_ctx->returned_vmas); 1333 op_ctx->va.range = size; 1334 op_ctx->va.addr = va; 1335 op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP; 1336 1337 /* Pre-allocate L3 page tables to account for the split-2M-block 1338 * situation on unmap. 1339 */ 1340 if (va != ALIGN(va, SZ_2M)) 1341 pt_count++; 1342 1343 if (va + size != ALIGN(va + size, SZ_2M) && 1344 ALIGN(va + size, SZ_2M) != ALIGN(va, SZ_2M)) 1345 pt_count++; 1346 1347 ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx); 1348 if (ret) 1349 goto err_cleanup; 1350 1351 if (pt_count) { 1352 op_ctx->rsvd_page_tables.pages = kcalloc(pt_count, 1353 sizeof(*op_ctx->rsvd_page_tables.pages), 1354 GFP_KERNEL); 1355 if (!op_ctx->rsvd_page_tables.pages) { 1356 ret = -ENOMEM; 1357 goto err_cleanup; 1358 } 1359 1360 ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count, 1361 op_ctx->rsvd_page_tables.pages); 1362 if (ret != pt_count) { 1363 ret = -ENOMEM; 1364 goto err_cleanup; 1365 } 1366 op_ctx->rsvd_page_tables.count = pt_count; 1367 } 1368 1369 return 0; 1370 1371 err_cleanup: 1372 panthor_vm_cleanup_op_ctx(op_ctx, vm); 1373 return ret; 1374 } 1375 1376 static void panthor_vm_prepare_sync_only_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1377 struct panthor_vm *vm) 1378 { 1379 memset(op_ctx, 0, sizeof(*op_ctx)); 1380 INIT_LIST_HEAD(&op_ctx->returned_vmas); 1381 op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY; 1382 } 1383 1384 /** 1385 * panthor_vm_get_bo_for_va() - Get the GEM object mapped at a virtual address 1386 * @vm: VM to look into. 1387 * @va: Virtual address to search for. 1388 * @bo_offset: Offset of the GEM object mapped at this virtual address. 1389 * Only valid on success. 1390 * 1391 * The object returned by this function might no longer be mapped when the 1392 * function returns. It's the caller responsibility to ensure there's no 1393 * concurrent map/unmap operations making the returned value invalid, or 1394 * make sure it doesn't matter if the object is no longer mapped. 1395 * 1396 * Return: A valid pointer on success, an ERR_PTR() otherwise. 1397 */ 1398 struct panthor_gem_object * 1399 panthor_vm_get_bo_for_va(struct panthor_vm *vm, u64 va, u64 *bo_offset) 1400 { 1401 struct panthor_gem_object *bo = ERR_PTR(-ENOENT); 1402 struct drm_gpuva *gpuva; 1403 struct panthor_vma *vma; 1404 1405 /* Take the VM lock to prevent concurrent map/unmap operations. */ 1406 mutex_lock(&vm->op_lock); 1407 gpuva = drm_gpuva_find_first(&vm->base, va, 1); 1408 vma = gpuva ? container_of(gpuva, struct panthor_vma, base) : NULL; 1409 if (vma && vma->base.gem.obj) { 1410 drm_gem_object_get(vma->base.gem.obj); 1411 bo = to_panthor_bo(vma->base.gem.obj); 1412 *bo_offset = vma->base.gem.offset + (va - vma->base.va.addr); 1413 } 1414 mutex_unlock(&vm->op_lock); 1415 1416 return bo; 1417 } 1418 1419 #define PANTHOR_VM_MIN_KERNEL_VA_SIZE SZ_256M 1420 1421 static u64 1422 panthor_vm_create_get_user_va_range(const struct drm_panthor_vm_create *args, 1423 u64 full_va_range) 1424 { 1425 u64 user_va_range; 1426 1427 /* Make sure we have a minimum amount of VA space for kernel objects. */ 1428 if (full_va_range < PANTHOR_VM_MIN_KERNEL_VA_SIZE) 1429 return 0; 1430 1431 if (args->user_va_range) { 1432 /* Use the user provided value if != 0. */ 1433 user_va_range = args->user_va_range; 1434 } else if (TASK_SIZE_OF(current) < full_va_range) { 1435 /* If the task VM size is smaller than the GPU VA range, pick this 1436 * as our default user VA range, so userspace can CPU/GPU map buffers 1437 * at the same address. 1438 */ 1439 user_va_range = TASK_SIZE_OF(current); 1440 } else { 1441 /* If the GPU VA range is smaller than the task VM size, we 1442 * just have to live with the fact we won't be able to map 1443 * all buffers at the same GPU/CPU address. 1444 * 1445 * If the GPU VA range is bigger than 4G (more than 32-bit of 1446 * VA), we split the range in two, and assign half of it to 1447 * the user and the other half to the kernel, if it's not, we 1448 * keep the kernel VA space as small as possible. 1449 */ 1450 user_va_range = full_va_range > SZ_4G ? 1451 full_va_range / 2 : 1452 full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE; 1453 } 1454 1455 if (full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE < user_va_range) 1456 user_va_range = full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE; 1457 1458 return user_va_range; 1459 } 1460 1461 #define PANTHOR_VM_CREATE_FLAGS 0 1462 1463 static int 1464 panthor_vm_create_check_args(const struct panthor_device *ptdev, 1465 const struct drm_panthor_vm_create *args, 1466 u64 *kernel_va_start, u64 *kernel_va_range) 1467 { 1468 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 1469 u64 full_va_range = 1ull << va_bits; 1470 u64 user_va_range; 1471 1472 if (args->flags & ~PANTHOR_VM_CREATE_FLAGS) 1473 return -EINVAL; 1474 1475 user_va_range = panthor_vm_create_get_user_va_range(args, full_va_range); 1476 if (!user_va_range || (args->user_va_range && args->user_va_range > user_va_range)) 1477 return -EINVAL; 1478 1479 /* Pick a kernel VA range that's a power of two, to have a clear split. */ 1480 *kernel_va_range = rounddown_pow_of_two(full_va_range - user_va_range); 1481 *kernel_va_start = full_va_range - *kernel_va_range; 1482 return 0; 1483 } 1484 1485 /* 1486 * Only 32 VMs per open file. If that becomes a limiting factor, we can 1487 * increase this number. 1488 */ 1489 #define PANTHOR_MAX_VMS_PER_FILE 32 1490 1491 /** 1492 * panthor_vm_pool_create_vm() - Create a VM 1493 * @pool: The VM to create this VM on. 1494 * @kernel_va_start: Start of the region reserved for kernel objects. 1495 * @kernel_va_range: Size of the region reserved for kernel objects. 1496 * 1497 * Return: a positive VM ID on success, a negative error code otherwise. 1498 */ 1499 int panthor_vm_pool_create_vm(struct panthor_device *ptdev, 1500 struct panthor_vm_pool *pool, 1501 struct drm_panthor_vm_create *args) 1502 { 1503 u64 kernel_va_start, kernel_va_range; 1504 struct panthor_vm *vm; 1505 int ret; 1506 u32 id; 1507 1508 ret = panthor_vm_create_check_args(ptdev, args, &kernel_va_start, &kernel_va_range); 1509 if (ret) 1510 return ret; 1511 1512 vm = panthor_vm_create(ptdev, false, kernel_va_start, kernel_va_range, 1513 kernel_va_start, kernel_va_range); 1514 if (IS_ERR(vm)) 1515 return PTR_ERR(vm); 1516 1517 ret = xa_alloc(&pool->xa, &id, vm, 1518 XA_LIMIT(1, PANTHOR_MAX_VMS_PER_FILE), GFP_KERNEL); 1519 1520 if (ret) { 1521 panthor_vm_put(vm); 1522 return ret; 1523 } 1524 1525 args->user_va_range = kernel_va_start; 1526 return id; 1527 } 1528 1529 static void panthor_vm_destroy(struct panthor_vm *vm) 1530 { 1531 if (!vm) 1532 return; 1533 1534 vm->destroyed = true; 1535 1536 mutex_lock(&vm->heaps.lock); 1537 panthor_heap_pool_destroy(vm->heaps.pool); 1538 vm->heaps.pool = NULL; 1539 mutex_unlock(&vm->heaps.lock); 1540 1541 drm_WARN_ON(&vm->ptdev->base, 1542 panthor_vm_unmap_range(vm, vm->base.mm_start, vm->base.mm_range)); 1543 panthor_vm_put(vm); 1544 } 1545 1546 /** 1547 * panthor_vm_pool_destroy_vm() - Destroy a VM. 1548 * @pool: VM pool. 1549 * @handle: VM handle. 1550 * 1551 * This function doesn't free the VM object or its resources, it just kills 1552 * all mappings, and makes sure nothing can be mapped after that point. 1553 * 1554 * If there was any active jobs at the time this function is called, these 1555 * jobs should experience page faults and be killed as a result. 1556 * 1557 * The VM resources are freed when the last reference on the VM object is 1558 * dropped. 1559 */ 1560 int panthor_vm_pool_destroy_vm(struct panthor_vm_pool *pool, u32 handle) 1561 { 1562 struct panthor_vm *vm; 1563 1564 vm = xa_erase(&pool->xa, handle); 1565 1566 panthor_vm_destroy(vm); 1567 1568 return vm ? 0 : -EINVAL; 1569 } 1570 1571 /** 1572 * panthor_vm_pool_get_vm() - Retrieve VM object bound to a VM handle 1573 * @pool: VM pool to check. 1574 * @handle: Handle of the VM to retrieve. 1575 * 1576 * Return: A valid pointer if the VM exists, NULL otherwise. 1577 */ 1578 struct panthor_vm * 1579 panthor_vm_pool_get_vm(struct panthor_vm_pool *pool, u32 handle) 1580 { 1581 struct panthor_vm *vm; 1582 1583 vm = panthor_vm_get(xa_load(&pool->xa, handle)); 1584 1585 return vm; 1586 } 1587 1588 /** 1589 * panthor_vm_pool_destroy() - Destroy a VM pool. 1590 * @pfile: File. 1591 * 1592 * Destroy all VMs in the pool, and release the pool resources. 1593 * 1594 * Note that VMs can outlive the pool they were created from if other 1595 * objects hold a reference to there VMs. 1596 */ 1597 void panthor_vm_pool_destroy(struct panthor_file *pfile) 1598 { 1599 struct panthor_vm *vm; 1600 unsigned long i; 1601 1602 if (!pfile->vms) 1603 return; 1604 1605 xa_for_each(&pfile->vms->xa, i, vm) 1606 panthor_vm_destroy(vm); 1607 1608 xa_destroy(&pfile->vms->xa); 1609 kfree(pfile->vms); 1610 } 1611 1612 /** 1613 * panthor_vm_pool_create() - Create a VM pool 1614 * @pfile: File. 1615 * 1616 * Return: 0 on success, a negative error code otherwise. 1617 */ 1618 int panthor_vm_pool_create(struct panthor_file *pfile) 1619 { 1620 pfile->vms = kzalloc(sizeof(*pfile->vms), GFP_KERNEL); 1621 if (!pfile->vms) 1622 return -ENOMEM; 1623 1624 xa_init_flags(&pfile->vms->xa, XA_FLAGS_ALLOC1); 1625 return 0; 1626 } 1627 1628 /* dummy TLB ops, the real TLB flush happens in panthor_vm_flush_range() */ 1629 static void mmu_tlb_flush_all(void *cookie) 1630 { 1631 } 1632 1633 static void mmu_tlb_flush_walk(unsigned long iova, size_t size, size_t granule, void *cookie) 1634 { 1635 } 1636 1637 static const struct iommu_flush_ops mmu_tlb_ops = { 1638 .tlb_flush_all = mmu_tlb_flush_all, 1639 .tlb_flush_walk = mmu_tlb_flush_walk, 1640 }; 1641 1642 static const char *access_type_name(struct panthor_device *ptdev, 1643 u32 fault_status) 1644 { 1645 switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) { 1646 case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC: 1647 return "ATOMIC"; 1648 case AS_FAULTSTATUS_ACCESS_TYPE_READ: 1649 return "READ"; 1650 case AS_FAULTSTATUS_ACCESS_TYPE_WRITE: 1651 return "WRITE"; 1652 case AS_FAULTSTATUS_ACCESS_TYPE_EX: 1653 return "EXECUTE"; 1654 default: 1655 drm_WARN_ON(&ptdev->base, 1); 1656 return NULL; 1657 } 1658 } 1659 1660 static void panthor_mmu_irq_handler(struct panthor_device *ptdev, u32 status) 1661 { 1662 bool has_unhandled_faults = false; 1663 1664 status = panthor_mmu_fault_mask(ptdev, status); 1665 while (status) { 1666 u32 as = ffs(status | (status >> 16)) - 1; 1667 u32 mask = panthor_mmu_as_fault_mask(ptdev, as); 1668 u32 new_int_mask; 1669 u64 addr; 1670 u32 fault_status; 1671 u32 exception_type; 1672 u32 access_type; 1673 u32 source_id; 1674 1675 fault_status = gpu_read(ptdev, AS_FAULTSTATUS(as)); 1676 addr = gpu_read(ptdev, AS_FAULTADDRESS_LO(as)); 1677 addr |= (u64)gpu_read(ptdev, AS_FAULTADDRESS_HI(as)) << 32; 1678 1679 /* decode the fault status */ 1680 exception_type = fault_status & 0xFF; 1681 access_type = (fault_status >> 8) & 0x3; 1682 source_id = (fault_status >> 16); 1683 1684 mutex_lock(&ptdev->mmu->as.slots_lock); 1685 1686 ptdev->mmu->as.faulty_mask |= mask; 1687 new_int_mask = 1688 panthor_mmu_fault_mask(ptdev, ~ptdev->mmu->as.faulty_mask); 1689 1690 /* terminal fault, print info about the fault */ 1691 drm_err(&ptdev->base, 1692 "Unhandled Page fault in AS%d at VA 0x%016llX\n" 1693 "raw fault status: 0x%X\n" 1694 "decoded fault status: %s\n" 1695 "exception type 0x%X: %s\n" 1696 "access type 0x%X: %s\n" 1697 "source id 0x%X\n", 1698 as, addr, 1699 fault_status, 1700 (fault_status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"), 1701 exception_type, panthor_exception_name(ptdev, exception_type), 1702 access_type, access_type_name(ptdev, fault_status), 1703 source_id); 1704 1705 /* Ignore MMU interrupts on this AS until it's been 1706 * re-enabled. 1707 */ 1708 ptdev->mmu->irq.mask = new_int_mask; 1709 gpu_write(ptdev, MMU_INT_MASK, new_int_mask); 1710 1711 if (ptdev->mmu->as.slots[as].vm) 1712 ptdev->mmu->as.slots[as].vm->unhandled_fault = true; 1713 1714 /* Disable the MMU to kill jobs on this AS. */ 1715 panthor_mmu_as_disable(ptdev, as); 1716 mutex_unlock(&ptdev->mmu->as.slots_lock); 1717 1718 status &= ~mask; 1719 has_unhandled_faults = true; 1720 } 1721 1722 if (has_unhandled_faults) 1723 panthor_sched_report_mmu_fault(ptdev); 1724 } 1725 PANTHOR_IRQ_HANDLER(mmu, MMU, panthor_mmu_irq_handler); 1726 1727 /** 1728 * panthor_mmu_suspend() - Suspend the MMU logic 1729 * @ptdev: Device. 1730 * 1731 * All we do here is de-assign the AS slots on all active VMs, so things 1732 * get flushed to the main memory, and no further access to these VMs are 1733 * possible. 1734 * 1735 * We also suspend the MMU IRQ. 1736 */ 1737 void panthor_mmu_suspend(struct panthor_device *ptdev) 1738 { 1739 mutex_lock(&ptdev->mmu->as.slots_lock); 1740 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) { 1741 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm; 1742 1743 if (vm) { 1744 drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i)); 1745 panthor_vm_release_as_locked(vm); 1746 } 1747 } 1748 mutex_unlock(&ptdev->mmu->as.slots_lock); 1749 1750 panthor_mmu_irq_suspend(&ptdev->mmu->irq); 1751 } 1752 1753 /** 1754 * panthor_mmu_resume() - Resume the MMU logic 1755 * @ptdev: Device. 1756 * 1757 * Resume the IRQ. 1758 * 1759 * We don't re-enable previously active VMs. We assume other parts of the 1760 * driver will call panthor_vm_active() on the VMs they intend to use. 1761 */ 1762 void panthor_mmu_resume(struct panthor_device *ptdev) 1763 { 1764 mutex_lock(&ptdev->mmu->as.slots_lock); 1765 ptdev->mmu->as.alloc_mask = 0; 1766 ptdev->mmu->as.faulty_mask = 0; 1767 mutex_unlock(&ptdev->mmu->as.slots_lock); 1768 1769 panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0)); 1770 } 1771 1772 /** 1773 * panthor_mmu_pre_reset() - Prepare for a reset 1774 * @ptdev: Device. 1775 * 1776 * Suspend the IRQ, and make sure all VM_BIND queues are stopped, so we 1777 * don't get asked to do a VM operation while the GPU is down. 1778 * 1779 * We don't cleanly shutdown the AS slots here, because the reset might 1780 * come from an AS_ACTIVE_BIT stuck situation. 1781 */ 1782 void panthor_mmu_pre_reset(struct panthor_device *ptdev) 1783 { 1784 struct panthor_vm *vm; 1785 1786 panthor_mmu_irq_suspend(&ptdev->mmu->irq); 1787 1788 mutex_lock(&ptdev->mmu->vm.lock); 1789 ptdev->mmu->vm.reset_in_progress = true; 1790 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) 1791 panthor_vm_stop(vm); 1792 mutex_unlock(&ptdev->mmu->vm.lock); 1793 } 1794 1795 /** 1796 * panthor_mmu_post_reset() - Restore things after a reset 1797 * @ptdev: Device. 1798 * 1799 * Put the MMU logic back in action after a reset. That implies resuming the 1800 * IRQ and re-enabling the VM_BIND queues. 1801 */ 1802 void panthor_mmu_post_reset(struct panthor_device *ptdev) 1803 { 1804 struct panthor_vm *vm; 1805 1806 mutex_lock(&ptdev->mmu->as.slots_lock); 1807 1808 /* Now that the reset is effective, we can assume that none of the 1809 * AS slots are setup, and clear the faulty flags too. 1810 */ 1811 ptdev->mmu->as.alloc_mask = 0; 1812 ptdev->mmu->as.faulty_mask = 0; 1813 1814 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) { 1815 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm; 1816 1817 if (vm) 1818 panthor_vm_release_as_locked(vm); 1819 } 1820 1821 mutex_unlock(&ptdev->mmu->as.slots_lock); 1822 1823 panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0)); 1824 1825 /* Restart the VM_BIND queues. */ 1826 mutex_lock(&ptdev->mmu->vm.lock); 1827 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) { 1828 panthor_vm_start(vm); 1829 } 1830 ptdev->mmu->vm.reset_in_progress = false; 1831 mutex_unlock(&ptdev->mmu->vm.lock); 1832 } 1833 1834 static void panthor_vm_free(struct drm_gpuvm *gpuvm) 1835 { 1836 struct panthor_vm *vm = container_of(gpuvm, struct panthor_vm, base); 1837 struct panthor_device *ptdev = vm->ptdev; 1838 1839 mutex_lock(&vm->heaps.lock); 1840 if (drm_WARN_ON(&ptdev->base, vm->heaps.pool)) 1841 panthor_heap_pool_destroy(vm->heaps.pool); 1842 mutex_unlock(&vm->heaps.lock); 1843 mutex_destroy(&vm->heaps.lock); 1844 1845 mutex_lock(&ptdev->mmu->vm.lock); 1846 list_del(&vm->node); 1847 /* Restore the scheduler state so we can call drm_sched_entity_destroy() 1848 * and drm_sched_fini(). If get there, that means we have no job left 1849 * and no new jobs can be queued, so we can start the scheduler without 1850 * risking interfering with the reset. 1851 */ 1852 if (ptdev->mmu->vm.reset_in_progress) 1853 panthor_vm_start(vm); 1854 mutex_unlock(&ptdev->mmu->vm.lock); 1855 1856 drm_sched_entity_destroy(&vm->entity); 1857 drm_sched_fini(&vm->sched); 1858 1859 mutex_lock(&ptdev->mmu->as.slots_lock); 1860 if (vm->as.id >= 0) { 1861 int cookie; 1862 1863 if (drm_dev_enter(&ptdev->base, &cookie)) { 1864 panthor_mmu_as_disable(ptdev, vm->as.id); 1865 drm_dev_exit(cookie); 1866 } 1867 1868 ptdev->mmu->as.slots[vm->as.id].vm = NULL; 1869 clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask); 1870 list_del(&vm->as.lru_node); 1871 } 1872 mutex_unlock(&ptdev->mmu->as.slots_lock); 1873 1874 free_io_pgtable_ops(vm->pgtbl_ops); 1875 1876 drm_mm_takedown(&vm->mm); 1877 kfree(vm); 1878 } 1879 1880 /** 1881 * panthor_vm_put() - Release a reference on a VM 1882 * @vm: VM to release the reference on. Can be NULL. 1883 */ 1884 void panthor_vm_put(struct panthor_vm *vm) 1885 { 1886 drm_gpuvm_put(vm ? &vm->base : NULL); 1887 } 1888 1889 /** 1890 * panthor_vm_get() - Get a VM reference 1891 * @vm: VM to get the reference on. Can be NULL. 1892 * 1893 * Return: @vm value. 1894 */ 1895 struct panthor_vm *panthor_vm_get(struct panthor_vm *vm) 1896 { 1897 if (vm) 1898 drm_gpuvm_get(&vm->base); 1899 1900 return vm; 1901 } 1902 1903 /** 1904 * panthor_vm_get_heap_pool() - Get the heap pool attached to a VM 1905 * @vm: VM to query the heap pool on. 1906 * @create: True if the heap pool should be created when it doesn't exist. 1907 * 1908 * Heap pools are per-VM. This function allows one to retrieve the heap pool 1909 * attached to a VM. 1910 * 1911 * If no heap pool exists yet, and @create is true, we create one. 1912 * 1913 * The returned panthor_heap_pool should be released with panthor_heap_pool_put(). 1914 * 1915 * Return: A valid pointer on success, an ERR_PTR() otherwise. 1916 */ 1917 struct panthor_heap_pool *panthor_vm_get_heap_pool(struct panthor_vm *vm, bool create) 1918 { 1919 struct panthor_heap_pool *pool; 1920 1921 mutex_lock(&vm->heaps.lock); 1922 if (!vm->heaps.pool && create) { 1923 if (vm->destroyed) 1924 pool = ERR_PTR(-EINVAL); 1925 else 1926 pool = panthor_heap_pool_create(vm->ptdev, vm); 1927 1928 if (!IS_ERR(pool)) 1929 vm->heaps.pool = panthor_heap_pool_get(pool); 1930 } else { 1931 pool = panthor_heap_pool_get(vm->heaps.pool); 1932 if (!pool) 1933 pool = ERR_PTR(-ENOENT); 1934 } 1935 mutex_unlock(&vm->heaps.lock); 1936 1937 return pool; 1938 } 1939 1940 static u64 mair_to_memattr(u64 mair) 1941 { 1942 u64 memattr = 0; 1943 u32 i; 1944 1945 for (i = 0; i < 8; i++) { 1946 u8 in_attr = mair >> (8 * i), out_attr; 1947 u8 outer = in_attr >> 4, inner = in_attr & 0xf; 1948 1949 /* For caching to be enabled, inner and outer caching policy 1950 * have to be both write-back, if one of them is write-through 1951 * or non-cacheable, we just choose non-cacheable. Device 1952 * memory is also translated to non-cacheable. 1953 */ 1954 if (!(outer & 3) || !(outer & 4) || !(inner & 4)) { 1955 out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_NC | 1956 AS_MEMATTR_AARCH64_SH_MIDGARD_INNER | 1957 AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(false, false); 1958 } else { 1959 /* Use SH_CPU_INNER mode so SH_IS, which is used when 1960 * IOMMU_CACHE is set, actually maps to the standard 1961 * definition of inner-shareable and not Mali's 1962 * internal-shareable mode. 1963 */ 1964 out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_WB | 1965 AS_MEMATTR_AARCH64_SH_CPU_INNER | 1966 AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(inner & 1, inner & 2); 1967 } 1968 1969 memattr |= (u64)out_attr << (8 * i); 1970 } 1971 1972 return memattr; 1973 } 1974 1975 static void panthor_vma_link(struct panthor_vm *vm, 1976 struct panthor_vma *vma, 1977 struct drm_gpuvm_bo *vm_bo) 1978 { 1979 struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj); 1980 1981 mutex_lock(&bo->gpuva_list_lock); 1982 drm_gpuva_link(&vma->base, vm_bo); 1983 drm_WARN_ON(&vm->ptdev->base, drm_gpuvm_bo_put(vm_bo)); 1984 mutex_unlock(&bo->gpuva_list_lock); 1985 } 1986 1987 static void panthor_vma_unlink(struct panthor_vm *vm, 1988 struct panthor_vma *vma) 1989 { 1990 struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj); 1991 struct drm_gpuvm_bo *vm_bo = drm_gpuvm_bo_get(vma->base.vm_bo); 1992 1993 mutex_lock(&bo->gpuva_list_lock); 1994 drm_gpuva_unlink(&vma->base); 1995 mutex_unlock(&bo->gpuva_list_lock); 1996 1997 /* drm_gpuva_unlink() release the vm_bo, but we manually retained it 1998 * when entering this function, so we can implement deferred VMA 1999 * destruction. Re-assign it here. 2000 */ 2001 vma->base.vm_bo = vm_bo; 2002 list_add_tail(&vma->node, &vm->op_ctx->returned_vmas); 2003 } 2004 2005 static void panthor_vma_init(struct panthor_vma *vma, u32 flags) 2006 { 2007 INIT_LIST_HEAD(&vma->node); 2008 vma->flags = flags; 2009 } 2010 2011 #define PANTHOR_VM_MAP_FLAGS \ 2012 (DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \ 2013 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \ 2014 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED) 2015 2016 static int panthor_gpuva_sm_step_map(struct drm_gpuva_op *op, void *priv) 2017 { 2018 struct panthor_vm *vm = priv; 2019 struct panthor_vm_op_ctx *op_ctx = vm->op_ctx; 2020 struct panthor_vma *vma = panthor_vm_op_ctx_get_vma(op_ctx); 2021 int ret; 2022 2023 if (!vma) 2024 return -EINVAL; 2025 2026 panthor_vma_init(vma, op_ctx->flags & PANTHOR_VM_MAP_FLAGS); 2027 2028 ret = panthor_vm_map_pages(vm, op->map.va.addr, flags_to_prot(vma->flags), 2029 op_ctx->map.sgt, op->map.gem.offset, 2030 op->map.va.range); 2031 if (ret) 2032 return ret; 2033 2034 /* Ref owned by the mapping now, clear the obj field so we don't release the 2035 * pinning/obj ref behind GPUVA's back. 2036 */ 2037 drm_gpuva_map(&vm->base, &vma->base, &op->map); 2038 panthor_vma_link(vm, vma, op_ctx->map.vm_bo); 2039 op_ctx->map.vm_bo = NULL; 2040 return 0; 2041 } 2042 2043 static int panthor_gpuva_sm_step_remap(struct drm_gpuva_op *op, 2044 void *priv) 2045 { 2046 struct panthor_vma *unmap_vma = container_of(op->remap.unmap->va, struct panthor_vma, base); 2047 struct panthor_vm *vm = priv; 2048 struct panthor_vm_op_ctx *op_ctx = vm->op_ctx; 2049 struct panthor_vma *prev_vma = NULL, *next_vma = NULL; 2050 u64 unmap_start, unmap_range; 2051 int ret; 2052 2053 drm_gpuva_op_remap_to_unmap_range(&op->remap, &unmap_start, &unmap_range); 2054 ret = panthor_vm_unmap_pages(vm, unmap_start, unmap_range); 2055 if (ret) 2056 return ret; 2057 2058 if (op->remap.prev) { 2059 prev_vma = panthor_vm_op_ctx_get_vma(op_ctx); 2060 panthor_vma_init(prev_vma, unmap_vma->flags); 2061 } 2062 2063 if (op->remap.next) { 2064 next_vma = panthor_vm_op_ctx_get_vma(op_ctx); 2065 panthor_vma_init(next_vma, unmap_vma->flags); 2066 } 2067 2068 drm_gpuva_remap(prev_vma ? &prev_vma->base : NULL, 2069 next_vma ? &next_vma->base : NULL, 2070 &op->remap); 2071 2072 if (prev_vma) { 2073 /* panthor_vma_link() transfers the vm_bo ownership to 2074 * the VMA object. Since the vm_bo we're passing is still 2075 * owned by the old mapping which will be released when this 2076 * mapping is destroyed, we need to grab a ref here. 2077 */ 2078 panthor_vma_link(vm, prev_vma, 2079 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo)); 2080 } 2081 2082 if (next_vma) { 2083 panthor_vma_link(vm, next_vma, 2084 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo)); 2085 } 2086 2087 panthor_vma_unlink(vm, unmap_vma); 2088 return 0; 2089 } 2090 2091 static int panthor_gpuva_sm_step_unmap(struct drm_gpuva_op *op, 2092 void *priv) 2093 { 2094 struct panthor_vma *unmap_vma = container_of(op->unmap.va, struct panthor_vma, base); 2095 struct panthor_vm *vm = priv; 2096 int ret; 2097 2098 ret = panthor_vm_unmap_pages(vm, unmap_vma->base.va.addr, 2099 unmap_vma->base.va.range); 2100 if (drm_WARN_ON(&vm->ptdev->base, ret)) 2101 return ret; 2102 2103 drm_gpuva_unmap(&op->unmap); 2104 panthor_vma_unlink(vm, unmap_vma); 2105 return 0; 2106 } 2107 2108 static const struct drm_gpuvm_ops panthor_gpuvm_ops = { 2109 .vm_free = panthor_vm_free, 2110 .sm_step_map = panthor_gpuva_sm_step_map, 2111 .sm_step_remap = panthor_gpuva_sm_step_remap, 2112 .sm_step_unmap = panthor_gpuva_sm_step_unmap, 2113 }; 2114 2115 /** 2116 * panthor_vm_resv() - Get the dma_resv object attached to a VM. 2117 * @vm: VM to get the dma_resv of. 2118 * 2119 * Return: A dma_resv object. 2120 */ 2121 struct dma_resv *panthor_vm_resv(struct panthor_vm *vm) 2122 { 2123 return drm_gpuvm_resv(&vm->base); 2124 } 2125 2126 struct drm_gem_object *panthor_vm_root_gem(struct panthor_vm *vm) 2127 { 2128 if (!vm) 2129 return NULL; 2130 2131 return vm->base.r_obj; 2132 } 2133 2134 static int 2135 panthor_vm_exec_op(struct panthor_vm *vm, struct panthor_vm_op_ctx *op, 2136 bool flag_vm_unusable_on_failure) 2137 { 2138 u32 op_type = op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK; 2139 int ret; 2140 2141 if (op_type == DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY) 2142 return 0; 2143 2144 mutex_lock(&vm->op_lock); 2145 vm->op_ctx = op; 2146 switch (op_type) { 2147 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: 2148 if (vm->unusable) { 2149 ret = -EINVAL; 2150 break; 2151 } 2152 2153 ret = drm_gpuvm_sm_map(&vm->base, vm, op->va.addr, op->va.range, 2154 op->map.vm_bo->obj, op->map.bo_offset); 2155 break; 2156 2157 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP: 2158 ret = drm_gpuvm_sm_unmap(&vm->base, vm, op->va.addr, op->va.range); 2159 break; 2160 2161 default: 2162 ret = -EINVAL; 2163 break; 2164 } 2165 2166 if (ret && flag_vm_unusable_on_failure) 2167 vm->unusable = true; 2168 2169 vm->op_ctx = NULL; 2170 mutex_unlock(&vm->op_lock); 2171 2172 return ret; 2173 } 2174 2175 static struct dma_fence * 2176 panthor_vm_bind_run_job(struct drm_sched_job *sched_job) 2177 { 2178 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base); 2179 bool cookie; 2180 int ret; 2181 2182 /* Not only we report an error whose result is propagated to the 2183 * drm_sched finished fence, but we also flag the VM as unusable, because 2184 * a failure in the async VM_BIND results in an inconsistent state. VM needs 2185 * to be destroyed and recreated. 2186 */ 2187 cookie = dma_fence_begin_signalling(); 2188 ret = panthor_vm_exec_op(job->vm, &job->ctx, true); 2189 dma_fence_end_signalling(cookie); 2190 2191 return ret ? ERR_PTR(ret) : NULL; 2192 } 2193 2194 static void panthor_vm_bind_job_release(struct kref *kref) 2195 { 2196 struct panthor_vm_bind_job *job = container_of(kref, struct panthor_vm_bind_job, refcount); 2197 2198 if (job->base.s_fence) 2199 drm_sched_job_cleanup(&job->base); 2200 2201 panthor_vm_cleanup_op_ctx(&job->ctx, job->vm); 2202 panthor_vm_put(job->vm); 2203 kfree(job); 2204 } 2205 2206 /** 2207 * panthor_vm_bind_job_put() - Release a VM_BIND job reference 2208 * @sched_job: Job to release the reference on. 2209 */ 2210 void panthor_vm_bind_job_put(struct drm_sched_job *sched_job) 2211 { 2212 struct panthor_vm_bind_job *job = 2213 container_of(sched_job, struct panthor_vm_bind_job, base); 2214 2215 if (sched_job) 2216 kref_put(&job->refcount, panthor_vm_bind_job_release); 2217 } 2218 2219 static void 2220 panthor_vm_bind_free_job(struct drm_sched_job *sched_job) 2221 { 2222 struct panthor_vm_bind_job *job = 2223 container_of(sched_job, struct panthor_vm_bind_job, base); 2224 2225 drm_sched_job_cleanup(sched_job); 2226 2227 /* Do the heavy cleanups asynchronously, so we're out of the 2228 * dma-signaling path and can acquire dma-resv locks safely. 2229 */ 2230 queue_work(panthor_cleanup_wq, &job->cleanup_op_ctx_work); 2231 } 2232 2233 static enum drm_gpu_sched_stat 2234 panthor_vm_bind_timedout_job(struct drm_sched_job *sched_job) 2235 { 2236 WARN(1, "VM_BIND ops are synchronous for now, there should be no timeout!"); 2237 return DRM_GPU_SCHED_STAT_NOMINAL; 2238 } 2239 2240 static const struct drm_sched_backend_ops panthor_vm_bind_ops = { 2241 .run_job = panthor_vm_bind_run_job, 2242 .free_job = panthor_vm_bind_free_job, 2243 .timedout_job = panthor_vm_bind_timedout_job, 2244 }; 2245 2246 /** 2247 * panthor_vm_create() - Create a VM 2248 * @ptdev: Device. 2249 * @for_mcu: True if this is the FW MCU VM. 2250 * @kernel_va_start: Start of the range reserved for kernel BO mapping. 2251 * @kernel_va_size: Size of the range reserved for kernel BO mapping. 2252 * @auto_kernel_va_start: Start of the auto-VA kernel range. 2253 * @auto_kernel_va_size: Size of the auto-VA kernel range. 2254 * 2255 * Return: A valid pointer on success, an ERR_PTR() otherwise. 2256 */ 2257 struct panthor_vm * 2258 panthor_vm_create(struct panthor_device *ptdev, bool for_mcu, 2259 u64 kernel_va_start, u64 kernel_va_size, 2260 u64 auto_kernel_va_start, u64 auto_kernel_va_size) 2261 { 2262 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 2263 u32 pa_bits = GPU_MMU_FEATURES_PA_BITS(ptdev->gpu_info.mmu_features); 2264 u64 full_va_range = 1ull << va_bits; 2265 struct drm_gem_object *dummy_gem; 2266 struct drm_gpu_scheduler *sched; 2267 struct io_pgtable_cfg pgtbl_cfg; 2268 u64 mair, min_va, va_range; 2269 struct panthor_vm *vm; 2270 int ret; 2271 2272 vm = kzalloc(sizeof(*vm), GFP_KERNEL); 2273 if (!vm) 2274 return ERR_PTR(-ENOMEM); 2275 2276 /* We allocate a dummy GEM for the VM. */ 2277 dummy_gem = drm_gpuvm_resv_object_alloc(&ptdev->base); 2278 if (!dummy_gem) { 2279 ret = -ENOMEM; 2280 goto err_free_vm; 2281 } 2282 2283 mutex_init(&vm->heaps.lock); 2284 vm->for_mcu = for_mcu; 2285 vm->ptdev = ptdev; 2286 mutex_init(&vm->op_lock); 2287 2288 if (for_mcu) { 2289 /* CSF MCU is a cortex M7, and can only address 4G */ 2290 min_va = 0; 2291 va_range = SZ_4G; 2292 } else { 2293 min_va = 0; 2294 va_range = full_va_range; 2295 } 2296 2297 mutex_init(&vm->mm_lock); 2298 drm_mm_init(&vm->mm, kernel_va_start, kernel_va_size); 2299 vm->kernel_auto_va.start = auto_kernel_va_start; 2300 vm->kernel_auto_va.end = vm->kernel_auto_va.start + auto_kernel_va_size - 1; 2301 2302 INIT_LIST_HEAD(&vm->node); 2303 INIT_LIST_HEAD(&vm->as.lru_node); 2304 vm->as.id = -1; 2305 refcount_set(&vm->as.active_cnt, 0); 2306 2307 pgtbl_cfg = (struct io_pgtable_cfg) { 2308 .pgsize_bitmap = SZ_4K | SZ_2M, 2309 .ias = va_bits, 2310 .oas = pa_bits, 2311 .coherent_walk = ptdev->coherent, 2312 .tlb = &mmu_tlb_ops, 2313 .iommu_dev = ptdev->base.dev, 2314 .alloc = alloc_pt, 2315 .free = free_pt, 2316 }; 2317 2318 vm->pgtbl_ops = alloc_io_pgtable_ops(ARM_64_LPAE_S1, &pgtbl_cfg, vm); 2319 if (!vm->pgtbl_ops) { 2320 ret = -EINVAL; 2321 goto err_mm_takedown; 2322 } 2323 2324 /* Bind operations are synchronous for now, no timeout needed. */ 2325 ret = drm_sched_init(&vm->sched, &panthor_vm_bind_ops, ptdev->mmu->vm.wq, 2326 1, 1, 0, 2327 MAX_SCHEDULE_TIMEOUT, NULL, NULL, 2328 "panthor-vm-bind", ptdev->base.dev); 2329 if (ret) 2330 goto err_free_io_pgtable; 2331 2332 sched = &vm->sched; 2333 ret = drm_sched_entity_init(&vm->entity, 0, &sched, 1, NULL); 2334 if (ret) 2335 goto err_sched_fini; 2336 2337 mair = io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg.arm_lpae_s1_cfg.mair; 2338 vm->memattr = mair_to_memattr(mair); 2339 2340 mutex_lock(&ptdev->mmu->vm.lock); 2341 list_add_tail(&vm->node, &ptdev->mmu->vm.list); 2342 2343 /* If a reset is in progress, stop the scheduler. */ 2344 if (ptdev->mmu->vm.reset_in_progress) 2345 panthor_vm_stop(vm); 2346 mutex_unlock(&ptdev->mmu->vm.lock); 2347 2348 /* We intentionally leave the reserved range to zero, because we want kernel VMAs 2349 * to be handled the same way user VMAs are. 2350 */ 2351 drm_gpuvm_init(&vm->base, for_mcu ? "panthor-MCU-VM" : "panthor-GPU-VM", 2352 DRM_GPUVM_RESV_PROTECTED, &ptdev->base, dummy_gem, 2353 min_va, va_range, 0, 0, &panthor_gpuvm_ops); 2354 drm_gem_object_put(dummy_gem); 2355 return vm; 2356 2357 err_sched_fini: 2358 drm_sched_fini(&vm->sched); 2359 2360 err_free_io_pgtable: 2361 free_io_pgtable_ops(vm->pgtbl_ops); 2362 2363 err_mm_takedown: 2364 drm_mm_takedown(&vm->mm); 2365 drm_gem_object_put(dummy_gem); 2366 2367 err_free_vm: 2368 kfree(vm); 2369 return ERR_PTR(ret); 2370 } 2371 2372 static int 2373 panthor_vm_bind_prepare_op_ctx(struct drm_file *file, 2374 struct panthor_vm *vm, 2375 const struct drm_panthor_vm_bind_op *op, 2376 struct panthor_vm_op_ctx *op_ctx) 2377 { 2378 ssize_t vm_pgsz = panthor_vm_page_size(vm); 2379 struct drm_gem_object *gem; 2380 int ret; 2381 2382 /* Aligned on page size. */ 2383 if (!IS_ALIGNED(op->va | op->size, vm_pgsz)) 2384 return -EINVAL; 2385 2386 switch (op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) { 2387 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: 2388 gem = drm_gem_object_lookup(file, op->bo_handle); 2389 ret = panthor_vm_prepare_map_op_ctx(op_ctx, vm, 2390 gem ? to_panthor_bo(gem) : NULL, 2391 op->bo_offset, 2392 op->size, 2393 op->va, 2394 op->flags); 2395 drm_gem_object_put(gem); 2396 return ret; 2397 2398 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP: 2399 if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) 2400 return -EINVAL; 2401 2402 if (op->bo_handle || op->bo_offset) 2403 return -EINVAL; 2404 2405 return panthor_vm_prepare_unmap_op_ctx(op_ctx, vm, op->va, op->size); 2406 2407 case DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY: 2408 if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) 2409 return -EINVAL; 2410 2411 if (op->bo_handle || op->bo_offset) 2412 return -EINVAL; 2413 2414 if (op->va || op->size) 2415 return -EINVAL; 2416 2417 if (!op->syncs.count) 2418 return -EINVAL; 2419 2420 panthor_vm_prepare_sync_only_op_ctx(op_ctx, vm); 2421 return 0; 2422 2423 default: 2424 return -EINVAL; 2425 } 2426 } 2427 2428 static void panthor_vm_bind_job_cleanup_op_ctx_work(struct work_struct *work) 2429 { 2430 struct panthor_vm_bind_job *job = 2431 container_of(work, struct panthor_vm_bind_job, cleanup_op_ctx_work); 2432 2433 panthor_vm_bind_job_put(&job->base); 2434 } 2435 2436 /** 2437 * panthor_vm_bind_job_create() - Create a VM_BIND job 2438 * @file: File. 2439 * @vm: VM targeted by the VM_BIND job. 2440 * @op: VM operation data. 2441 * 2442 * Return: A valid pointer on success, an ERR_PTR() otherwise. 2443 */ 2444 struct drm_sched_job * 2445 panthor_vm_bind_job_create(struct drm_file *file, 2446 struct panthor_vm *vm, 2447 const struct drm_panthor_vm_bind_op *op) 2448 { 2449 struct panthor_vm_bind_job *job; 2450 int ret; 2451 2452 if (!vm) 2453 return ERR_PTR(-EINVAL); 2454 2455 if (vm->destroyed || vm->unusable) 2456 return ERR_PTR(-EINVAL); 2457 2458 job = kzalloc(sizeof(*job), GFP_KERNEL); 2459 if (!job) 2460 return ERR_PTR(-ENOMEM); 2461 2462 ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &job->ctx); 2463 if (ret) { 2464 kfree(job); 2465 return ERR_PTR(ret); 2466 } 2467 2468 INIT_WORK(&job->cleanup_op_ctx_work, panthor_vm_bind_job_cleanup_op_ctx_work); 2469 kref_init(&job->refcount); 2470 job->vm = panthor_vm_get(vm); 2471 2472 ret = drm_sched_job_init(&job->base, &vm->entity, 1, vm); 2473 if (ret) 2474 goto err_put_job; 2475 2476 return &job->base; 2477 2478 err_put_job: 2479 panthor_vm_bind_job_put(&job->base); 2480 return ERR_PTR(ret); 2481 } 2482 2483 /** 2484 * panthor_vm_bind_job_prepare_resvs() - Prepare VM_BIND job dma_resvs 2485 * @exec: The locking/preparation context. 2486 * @sched_job: The job to prepare resvs on. 2487 * 2488 * Locks and prepare the VM resv. 2489 * 2490 * If this is a map operation, locks and prepares the GEM resv. 2491 * 2492 * Return: 0 on success, a negative error code otherwise. 2493 */ 2494 int panthor_vm_bind_job_prepare_resvs(struct drm_exec *exec, 2495 struct drm_sched_job *sched_job) 2496 { 2497 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base); 2498 int ret; 2499 2500 /* Acquire the VM lock an reserve a slot for this VM bind job. */ 2501 ret = drm_gpuvm_prepare_vm(&job->vm->base, exec, 1); 2502 if (ret) 2503 return ret; 2504 2505 if (job->ctx.map.vm_bo) { 2506 /* Lock/prepare the GEM being mapped. */ 2507 ret = drm_exec_prepare_obj(exec, job->ctx.map.vm_bo->obj, 1); 2508 if (ret) 2509 return ret; 2510 } 2511 2512 return 0; 2513 } 2514 2515 /** 2516 * panthor_vm_bind_job_update_resvs() - Update the resv objects touched by a job 2517 * @exec: drm_exec context. 2518 * @sched_job: Job to update the resvs on. 2519 */ 2520 void panthor_vm_bind_job_update_resvs(struct drm_exec *exec, 2521 struct drm_sched_job *sched_job) 2522 { 2523 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base); 2524 2525 /* Explicit sync => we just register our job finished fence as bookkeep. */ 2526 drm_gpuvm_resv_add_fence(&job->vm->base, exec, 2527 &sched_job->s_fence->finished, 2528 DMA_RESV_USAGE_BOOKKEEP, 2529 DMA_RESV_USAGE_BOOKKEEP); 2530 } 2531 2532 void panthor_vm_update_resvs(struct panthor_vm *vm, struct drm_exec *exec, 2533 struct dma_fence *fence, 2534 enum dma_resv_usage private_usage, 2535 enum dma_resv_usage extobj_usage) 2536 { 2537 drm_gpuvm_resv_add_fence(&vm->base, exec, fence, private_usage, extobj_usage); 2538 } 2539 2540 /** 2541 * panthor_vm_bind_exec_sync_op() - Execute a VM_BIND operation synchronously. 2542 * @file: File. 2543 * @vm: VM targeted by the VM operation. 2544 * @op: Data describing the VM operation. 2545 * 2546 * Return: 0 on success, a negative error code otherwise. 2547 */ 2548 int panthor_vm_bind_exec_sync_op(struct drm_file *file, 2549 struct panthor_vm *vm, 2550 struct drm_panthor_vm_bind_op *op) 2551 { 2552 struct panthor_vm_op_ctx op_ctx; 2553 int ret; 2554 2555 /* No sync objects allowed on synchronous operations. */ 2556 if (op->syncs.count) 2557 return -EINVAL; 2558 2559 if (!op->size) 2560 return 0; 2561 2562 ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &op_ctx); 2563 if (ret) 2564 return ret; 2565 2566 ret = panthor_vm_exec_op(vm, &op_ctx, false); 2567 panthor_vm_cleanup_op_ctx(&op_ctx, vm); 2568 2569 return ret; 2570 } 2571 2572 /** 2573 * panthor_vm_map_bo_range() - Map a GEM object range to a VM 2574 * @vm: VM to map the GEM to. 2575 * @bo: GEM object to map. 2576 * @offset: Offset in the GEM object. 2577 * @size: Size to map. 2578 * @va: Virtual address to map the object to. 2579 * @flags: Combination of drm_panthor_vm_bind_op_flags flags. 2580 * Only map-related flags are valid. 2581 * 2582 * Internal use only. For userspace requests, use 2583 * panthor_vm_bind_exec_sync_op() instead. 2584 * 2585 * Return: 0 on success, a negative error code otherwise. 2586 */ 2587 int panthor_vm_map_bo_range(struct panthor_vm *vm, struct panthor_gem_object *bo, 2588 u64 offset, u64 size, u64 va, u32 flags) 2589 { 2590 struct panthor_vm_op_ctx op_ctx; 2591 int ret; 2592 2593 ret = panthor_vm_prepare_map_op_ctx(&op_ctx, vm, bo, offset, size, va, flags); 2594 if (ret) 2595 return ret; 2596 2597 ret = panthor_vm_exec_op(vm, &op_ctx, false); 2598 panthor_vm_cleanup_op_ctx(&op_ctx, vm); 2599 2600 return ret; 2601 } 2602 2603 /** 2604 * panthor_vm_unmap_range() - Unmap a portion of the VA space 2605 * @vm: VM to unmap the region from. 2606 * @va: Virtual address to unmap. Must be 4k aligned. 2607 * @size: Size of the region to unmap. Must be 4k aligned. 2608 * 2609 * Internal use only. For userspace requests, use 2610 * panthor_vm_bind_exec_sync_op() instead. 2611 * 2612 * Return: 0 on success, a negative error code otherwise. 2613 */ 2614 int panthor_vm_unmap_range(struct panthor_vm *vm, u64 va, u64 size) 2615 { 2616 struct panthor_vm_op_ctx op_ctx; 2617 int ret; 2618 2619 ret = panthor_vm_prepare_unmap_op_ctx(&op_ctx, vm, va, size); 2620 if (ret) 2621 return ret; 2622 2623 ret = panthor_vm_exec_op(vm, &op_ctx, false); 2624 panthor_vm_cleanup_op_ctx(&op_ctx, vm); 2625 2626 return ret; 2627 } 2628 2629 /** 2630 * panthor_vm_prepare_mapped_bos_resvs() - Prepare resvs on VM BOs. 2631 * @exec: Locking/preparation context. 2632 * @vm: VM targeted by the GPU job. 2633 * @slot_count: Number of slots to reserve. 2634 * 2635 * GPU jobs assume all BOs bound to the VM at the time the job is submitted 2636 * are available when the job is executed. In order to guarantee that, we 2637 * need to reserve a slot on all BOs mapped to a VM and update this slot with 2638 * the job fence after its submission. 2639 * 2640 * Return: 0 on success, a negative error code otherwise. 2641 */ 2642 int panthor_vm_prepare_mapped_bos_resvs(struct drm_exec *exec, struct panthor_vm *vm, 2643 u32 slot_count) 2644 { 2645 int ret; 2646 2647 /* Acquire the VM lock and reserve a slot for this GPU job. */ 2648 ret = drm_gpuvm_prepare_vm(&vm->base, exec, slot_count); 2649 if (ret) 2650 return ret; 2651 2652 return drm_gpuvm_prepare_objects(&vm->base, exec, slot_count); 2653 } 2654 2655 /** 2656 * panthor_mmu_unplug() - Unplug the MMU logic 2657 * @ptdev: Device. 2658 * 2659 * No access to the MMU regs should be done after this function is called. 2660 * We suspend the IRQ and disable all VMs to guarantee that. 2661 */ 2662 void panthor_mmu_unplug(struct panthor_device *ptdev) 2663 { 2664 panthor_mmu_irq_suspend(&ptdev->mmu->irq); 2665 2666 mutex_lock(&ptdev->mmu->as.slots_lock); 2667 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) { 2668 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm; 2669 2670 if (vm) { 2671 drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i)); 2672 panthor_vm_release_as_locked(vm); 2673 } 2674 } 2675 mutex_unlock(&ptdev->mmu->as.slots_lock); 2676 } 2677 2678 static void panthor_mmu_release_wq(struct drm_device *ddev, void *res) 2679 { 2680 destroy_workqueue(res); 2681 } 2682 2683 /** 2684 * panthor_mmu_init() - Initialize the MMU logic. 2685 * @ptdev: Device. 2686 * 2687 * Return: 0 on success, a negative error code otherwise. 2688 */ 2689 int panthor_mmu_init(struct panthor_device *ptdev) 2690 { 2691 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 2692 struct panthor_mmu *mmu; 2693 int ret, irq; 2694 2695 mmu = drmm_kzalloc(&ptdev->base, sizeof(*mmu), GFP_KERNEL); 2696 if (!mmu) 2697 return -ENOMEM; 2698 2699 INIT_LIST_HEAD(&mmu->as.lru_list); 2700 2701 ret = drmm_mutex_init(&ptdev->base, &mmu->as.slots_lock); 2702 if (ret) 2703 return ret; 2704 2705 INIT_LIST_HEAD(&mmu->vm.list); 2706 ret = drmm_mutex_init(&ptdev->base, &mmu->vm.lock); 2707 if (ret) 2708 return ret; 2709 2710 ptdev->mmu = mmu; 2711 2712 irq = platform_get_irq_byname(to_platform_device(ptdev->base.dev), "mmu"); 2713 if (irq <= 0) 2714 return -ENODEV; 2715 2716 ret = panthor_request_mmu_irq(ptdev, &mmu->irq, irq, 2717 panthor_mmu_fault_mask(ptdev, ~0)); 2718 if (ret) 2719 return ret; 2720 2721 mmu->vm.wq = alloc_workqueue("panthor-vm-bind", WQ_UNBOUND, 0); 2722 if (!mmu->vm.wq) 2723 return -ENOMEM; 2724 2725 /* On 32-bit kernels, the VA space is limited by the io_pgtable_ops abstraction, 2726 * which passes iova as an unsigned long. Patch the mmu_features to reflect this 2727 * limitation. 2728 */ 2729 if (sizeof(unsigned long) * 8 < va_bits) { 2730 ptdev->gpu_info.mmu_features &= ~GENMASK(7, 0); 2731 ptdev->gpu_info.mmu_features |= sizeof(unsigned long) * 8; 2732 } 2733 2734 return drmm_add_action_or_reset(&ptdev->base, panthor_mmu_release_wq, mmu->vm.wq); 2735 } 2736 2737 #ifdef CONFIG_DEBUG_FS 2738 static int show_vm_gpuvas(struct panthor_vm *vm, struct seq_file *m) 2739 { 2740 int ret; 2741 2742 mutex_lock(&vm->op_lock); 2743 ret = drm_debugfs_gpuva_info(m, &vm->base); 2744 mutex_unlock(&vm->op_lock); 2745 2746 return ret; 2747 } 2748 2749 static int show_each_vm(struct seq_file *m, void *arg) 2750 { 2751 struct drm_info_node *node = (struct drm_info_node *)m->private; 2752 struct drm_device *ddev = node->minor->dev; 2753 struct panthor_device *ptdev = container_of(ddev, struct panthor_device, base); 2754 int (*show)(struct panthor_vm *, struct seq_file *) = node->info_ent->data; 2755 struct panthor_vm *vm; 2756 int ret = 0; 2757 2758 mutex_lock(&ptdev->mmu->vm.lock); 2759 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) { 2760 ret = show(vm, m); 2761 if (ret < 0) 2762 break; 2763 2764 seq_puts(m, "\n"); 2765 } 2766 mutex_unlock(&ptdev->mmu->vm.lock); 2767 2768 return ret; 2769 } 2770 2771 static struct drm_info_list panthor_mmu_debugfs_list[] = { 2772 DRM_DEBUGFS_GPUVA_INFO(show_each_vm, show_vm_gpuvas), 2773 }; 2774 2775 /** 2776 * panthor_mmu_debugfs_init() - Initialize MMU debugfs entries 2777 * @minor: Minor. 2778 */ 2779 void panthor_mmu_debugfs_init(struct drm_minor *minor) 2780 { 2781 drm_debugfs_create_files(panthor_mmu_debugfs_list, 2782 ARRAY_SIZE(panthor_mmu_debugfs_list), 2783 minor->debugfs_root, minor); 2784 } 2785 #endif /* CONFIG_DEBUG_FS */ 2786 2787 /** 2788 * panthor_mmu_pt_cache_init() - Initialize the page table cache. 2789 * 2790 * Return: 0 on success, a negative error code otherwise. 2791 */ 2792 int panthor_mmu_pt_cache_init(void) 2793 { 2794 pt_cache = kmem_cache_create("panthor-mmu-pt", SZ_4K, SZ_4K, 0, NULL); 2795 if (!pt_cache) 2796 return -ENOMEM; 2797 2798 return 0; 2799 } 2800 2801 /** 2802 * panthor_mmu_pt_cache_fini() - Destroy the page table cache. 2803 */ 2804 void panthor_mmu_pt_cache_fini(void) 2805 { 2806 kmem_cache_destroy(pt_cache); 2807 } 2808