1 // SPDX-License-Identifier: GPL-2.0 or MIT 2 /* Copyright 2019 Linaro, Ltd, Rob Herring <robh@kernel.org> */ 3 /* Copyright 2023 Collabora ltd. */ 4 5 #include <drm/drm_debugfs.h> 6 #include <drm/drm_drv.h> 7 #include <drm/drm_exec.h> 8 #include <drm/drm_gpuvm.h> 9 #include <drm/drm_managed.h> 10 #include <drm/gpu_scheduler.h> 11 #include <drm/panthor_drm.h> 12 13 #include <linux/atomic.h> 14 #include <linux/bitfield.h> 15 #include <linux/delay.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/interrupt.h> 18 #include <linux/io.h> 19 #include <linux/iopoll.h> 20 #include <linux/io-pgtable.h> 21 #include <linux/iommu.h> 22 #include <linux/kmemleak.h> 23 #include <linux/platform_device.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/rwsem.h> 26 #include <linux/sched.h> 27 #include <linux/shmem_fs.h> 28 #include <linux/sizes.h> 29 30 #include "panthor_device.h" 31 #include "panthor_gem.h" 32 #include "panthor_gpu.h" 33 #include "panthor_heap.h" 34 #include "panthor_mmu.h" 35 #include "panthor_regs.h" 36 #include "panthor_sched.h" 37 38 #define MAX_AS_SLOTS 32 39 40 struct panthor_vm; 41 42 /** 43 * struct panthor_as_slot - Address space slot 44 */ 45 struct panthor_as_slot { 46 /** @vm: VM bound to this slot. NULL is no VM is bound. */ 47 struct panthor_vm *vm; 48 }; 49 50 /** 51 * struct panthor_mmu - MMU related data 52 */ 53 struct panthor_mmu { 54 /** @irq: The MMU irq. */ 55 struct panthor_irq irq; 56 57 /** 58 * @as: Address space related fields. 59 * 60 * The GPU has a limited number of address spaces (AS) slots, forcing 61 * us to re-assign them to re-assign slots on-demand. 62 */ 63 struct { 64 /** @as.slots_lock: Lock protecting access to all other AS fields. */ 65 struct mutex slots_lock; 66 67 /** @as.alloc_mask: Bitmask encoding the allocated slots. */ 68 unsigned long alloc_mask; 69 70 /** @as.faulty_mask: Bitmask encoding the faulty slots. */ 71 unsigned long faulty_mask; 72 73 /** @as.slots: VMs currently bound to the AS slots. */ 74 struct panthor_as_slot slots[MAX_AS_SLOTS]; 75 76 /** 77 * @as.lru_list: List of least recently used VMs. 78 * 79 * We use this list to pick a VM to evict when all slots are 80 * used. 81 * 82 * There should be no more active VMs than there are AS slots, 83 * so this LRU is just here to keep VMs bound until there's 84 * a need to release a slot, thus avoid unnecessary TLB/cache 85 * flushes. 86 */ 87 struct list_head lru_list; 88 } as; 89 90 /** @vm: VMs management fields */ 91 struct { 92 /** @vm.lock: Lock protecting access to list. */ 93 struct mutex lock; 94 95 /** @vm.list: List containing all VMs. */ 96 struct list_head list; 97 98 /** @vm.reset_in_progress: True if a reset is in progress. */ 99 bool reset_in_progress; 100 101 /** @vm.wq: Workqueue used for the VM_BIND queues. */ 102 struct workqueue_struct *wq; 103 } vm; 104 }; 105 106 /** 107 * struct panthor_vm_pool - VM pool object 108 */ 109 struct panthor_vm_pool { 110 /** @xa: Array used for VM handle tracking. */ 111 struct xarray xa; 112 }; 113 114 /** 115 * struct panthor_vma - GPU mapping object 116 * 117 * This is used to track GEM mappings in GPU space. 118 */ 119 struct panthor_vma { 120 /** @base: Inherits from drm_gpuva. */ 121 struct drm_gpuva base; 122 123 /** @node: Used to implement deferred release of VMAs. */ 124 struct list_head node; 125 126 /** 127 * @flags: Combination of drm_panthor_vm_bind_op_flags. 128 * 129 * Only map related flags are accepted. 130 */ 131 u32 flags; 132 }; 133 134 /** 135 * struct panthor_vm_op_ctx - VM operation context 136 * 137 * With VM operations potentially taking place in a dma-signaling path, we 138 * need to make sure everything that might require resource allocation is 139 * pre-allocated upfront. This is what this operation context is far. 140 * 141 * We also collect resources that have been freed, so we can release them 142 * asynchronously, and let the VM_BIND scheduler process the next VM_BIND 143 * request. 144 */ 145 struct panthor_vm_op_ctx { 146 /** @rsvd_page_tables: Pages reserved for the MMU page table update. */ 147 struct { 148 /** @rsvd_page_tables.count: Number of pages reserved. */ 149 u32 count; 150 151 /** @rsvd_page_tables.ptr: Point to the first unused page in the @pages table. */ 152 u32 ptr; 153 154 /** 155 * @rsvd_page_tables.pages: Array of pages to be used for an MMU page table update. 156 * 157 * After an VM operation, there might be free pages left in this array. 158 * They should be returned to the pt_cache as part of the op_ctx cleanup. 159 */ 160 void **pages; 161 } rsvd_page_tables; 162 163 /** 164 * @preallocated_vmas: Pre-allocated VMAs to handle the remap case. 165 * 166 * Partial unmap requests or map requests overlapping existing mappings will 167 * trigger a remap call, which need to register up to three panthor_vma objects 168 * (one for the new mapping, and two for the previous and next mappings). 169 */ 170 struct panthor_vma *preallocated_vmas[3]; 171 172 /** @flags: Combination of drm_panthor_vm_bind_op_flags. */ 173 u32 flags; 174 175 /** @va: Virtual range targeted by the VM operation. */ 176 struct { 177 /** @va.addr: Start address. */ 178 u64 addr; 179 180 /** @va.range: Range size. */ 181 u64 range; 182 } va; 183 184 /** 185 * @returned_vmas: List of panthor_vma objects returned after a VM operation. 186 * 187 * For unmap operations, this will contain all VMAs that were covered by the 188 * specified VA range. 189 * 190 * For map operations, this will contain all VMAs that previously mapped to 191 * the specified VA range. 192 * 193 * Those VMAs, and the resources they point to will be released as part of 194 * the op_ctx cleanup operation. 195 */ 196 struct list_head returned_vmas; 197 198 /** @map: Fields specific to a map operation. */ 199 struct { 200 /** @map.vm_bo: Buffer object to map. */ 201 struct drm_gpuvm_bo *vm_bo; 202 203 /** @map.bo_offset: Offset in the buffer object. */ 204 u64 bo_offset; 205 206 /** 207 * @map.sgt: sg-table pointing to pages backing the GEM object. 208 * 209 * This is gathered at job creation time, such that we don't have 210 * to allocate in ::run_job(). 211 */ 212 struct sg_table *sgt; 213 214 /** 215 * @map.new_vma: The new VMA object that will be inserted to the VA tree. 216 */ 217 struct panthor_vma *new_vma; 218 } map; 219 }; 220 221 /** 222 * struct panthor_vm - VM object 223 * 224 * A VM is an object representing a GPU (or MCU) virtual address space. 225 * It embeds the MMU page table for this address space, a tree containing 226 * all the virtual mappings of GEM objects, and other things needed to manage 227 * the VM. 228 * 229 * Except for the MCU VM, which is managed by the kernel, all other VMs are 230 * created by userspace and mostly managed by userspace, using the 231 * %DRM_IOCTL_PANTHOR_VM_BIND ioctl. 232 * 233 * A portion of the virtual address space is reserved for kernel objects, 234 * like heap chunks, and userspace gets to decide how much of the virtual 235 * address space is left to the kernel (half of the virtual address space 236 * by default). 237 */ 238 struct panthor_vm { 239 /** 240 * @base: Inherit from drm_gpuvm. 241 * 242 * We delegate all the VA management to the common drm_gpuvm framework 243 * and only implement hooks to update the MMU page table. 244 */ 245 struct drm_gpuvm base; 246 247 /** 248 * @sched: Scheduler used for asynchronous VM_BIND request. 249 * 250 * We use a 1:1 scheduler here. 251 */ 252 struct drm_gpu_scheduler sched; 253 254 /** 255 * @entity: Scheduling entity representing the VM_BIND queue. 256 * 257 * There's currently one bind queue per VM. It doesn't make sense to 258 * allow more given the VM operations are serialized anyway. 259 */ 260 struct drm_sched_entity entity; 261 262 /** @ptdev: Device. */ 263 struct panthor_device *ptdev; 264 265 /** @memattr: Value to program to the AS_MEMATTR register. */ 266 u64 memattr; 267 268 /** @pgtbl_ops: Page table operations. */ 269 struct io_pgtable_ops *pgtbl_ops; 270 271 /** @root_page_table: Stores the root page table pointer. */ 272 void *root_page_table; 273 274 /** 275 * @op_lock: Lock used to serialize operations on a VM. 276 * 277 * The serialization of jobs queued to the VM_BIND queue is already 278 * taken care of by drm_sched, but we need to serialize synchronous 279 * and asynchronous VM_BIND request. This is what this lock is for. 280 */ 281 struct mutex op_lock; 282 283 /** 284 * @op_ctx: The context attached to the currently executing VM operation. 285 * 286 * NULL when no operation is in progress. 287 */ 288 struct panthor_vm_op_ctx *op_ctx; 289 290 /** 291 * @mm: Memory management object representing the auto-VA/kernel-VA. 292 * 293 * Used to auto-allocate VA space for kernel-managed objects (tiler 294 * heaps, ...). 295 * 296 * For the MCU VM, this is managing the VA range that's used to map 297 * all shared interfaces. 298 * 299 * For user VMs, the range is specified by userspace, and must not 300 * exceed half of the VA space addressable. 301 */ 302 struct drm_mm mm; 303 304 /** @mm_lock: Lock protecting the @mm field. */ 305 struct mutex mm_lock; 306 307 /** @kernel_auto_va: Automatic VA-range for kernel BOs. */ 308 struct { 309 /** @kernel_auto_va.start: Start of the automatic VA-range for kernel BOs. */ 310 u64 start; 311 312 /** @kernel_auto_va.size: Size of the automatic VA-range for kernel BOs. */ 313 u64 end; 314 } kernel_auto_va; 315 316 /** @as: Address space related fields. */ 317 struct { 318 /** 319 * @as.id: ID of the address space this VM is bound to. 320 * 321 * A value of -1 means the VM is inactive/not bound. 322 */ 323 int id; 324 325 /** @as.active_cnt: Number of active users of this VM. */ 326 refcount_t active_cnt; 327 328 /** 329 * @as.lru_node: Used to instead the VM in the panthor_mmu::as::lru_list. 330 * 331 * Active VMs should not be inserted in the LRU list. 332 */ 333 struct list_head lru_node; 334 } as; 335 336 /** 337 * @heaps: Tiler heap related fields. 338 */ 339 struct { 340 /** 341 * @heaps.pool: The heap pool attached to this VM. 342 * 343 * Will stay NULL until someone creates a heap context on this VM. 344 */ 345 struct panthor_heap_pool *pool; 346 347 /** @heaps.lock: Lock used to protect access to @pool. */ 348 struct mutex lock; 349 } heaps; 350 351 /** @node: Used to insert the VM in the panthor_mmu::vm::list. */ 352 struct list_head node; 353 354 /** @for_mcu: True if this is the MCU VM. */ 355 bool for_mcu; 356 357 /** 358 * @destroyed: True if the VM was destroyed. 359 * 360 * No further bind requests should be queued to a destroyed VM. 361 */ 362 bool destroyed; 363 364 /** 365 * @unusable: True if the VM has turned unusable because something 366 * bad happened during an asynchronous request. 367 * 368 * We don't try to recover from such failures, because this implies 369 * informing userspace about the specific operation that failed, and 370 * hoping the userspace driver can replay things from there. This all 371 * sounds very complicated for little gain. 372 * 373 * Instead, we should just flag the VM as unusable, and fail any 374 * further request targeting this VM. 375 * 376 * We also provide a way to query a VM state, so userspace can destroy 377 * it and create a new one. 378 * 379 * As an analogy, this would be mapped to a VK_ERROR_DEVICE_LOST 380 * situation, where the logical device needs to be re-created. 381 */ 382 bool unusable; 383 384 /** 385 * @unhandled_fault: Unhandled fault happened. 386 * 387 * This should be reported to the scheduler, and the queue/group be 388 * flagged as faulty as a result. 389 */ 390 bool unhandled_fault; 391 }; 392 393 /** 394 * struct panthor_vm_bind_job - VM bind job 395 */ 396 struct panthor_vm_bind_job { 397 /** @base: Inherit from drm_sched_job. */ 398 struct drm_sched_job base; 399 400 /** @refcount: Reference count. */ 401 struct kref refcount; 402 403 /** @cleanup_op_ctx_work: Work used to cleanup the VM operation context. */ 404 struct work_struct cleanup_op_ctx_work; 405 406 /** @vm: VM targeted by the VM operation. */ 407 struct panthor_vm *vm; 408 409 /** @ctx: Operation context. */ 410 struct panthor_vm_op_ctx ctx; 411 }; 412 413 /* 414 * @pt_cache: Cache used to allocate MMU page tables. 415 * 416 * The pre-allocation pattern forces us to over-allocate to plan for 417 * the worst case scenario, and return the pages we didn't use. 418 * 419 * Having a kmem_cache allows us to speed allocations. 420 */ 421 static struct kmem_cache *pt_cache; 422 423 /** 424 * alloc_pt() - Custom page table allocator 425 * @cookie: Cookie passed at page table allocation time. 426 * @size: Size of the page table. This size should be fixed, 427 * and determined at creation time based on the granule size. 428 * @gfp: GFP flags. 429 * 430 * We want a custom allocator so we can use a cache for page table 431 * allocations and amortize the cost of the over-reservation that's 432 * done to allow asynchronous VM operations. 433 * 434 * Return: non-NULL on success, NULL if the allocation failed for any 435 * reason. 436 */ 437 static void *alloc_pt(void *cookie, size_t size, gfp_t gfp) 438 { 439 struct panthor_vm *vm = cookie; 440 void *page; 441 442 /* Allocation of the root page table happening during init. */ 443 if (unlikely(!vm->root_page_table)) { 444 struct page *p; 445 446 drm_WARN_ON(&vm->ptdev->base, vm->op_ctx); 447 p = alloc_pages_node(dev_to_node(vm->ptdev->base.dev), 448 gfp | __GFP_ZERO, get_order(size)); 449 page = p ? page_address(p) : NULL; 450 vm->root_page_table = page; 451 return page; 452 } 453 454 /* We're not supposed to have anything bigger than 4k here, because we picked a 455 * 4k granule size at init time. 456 */ 457 if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K)) 458 return NULL; 459 460 /* We must have some op_ctx attached to the VM and it must have at least one 461 * free page. 462 */ 463 if (drm_WARN_ON(&vm->ptdev->base, !vm->op_ctx) || 464 drm_WARN_ON(&vm->ptdev->base, 465 vm->op_ctx->rsvd_page_tables.ptr >= vm->op_ctx->rsvd_page_tables.count)) 466 return NULL; 467 468 page = vm->op_ctx->rsvd_page_tables.pages[vm->op_ctx->rsvd_page_tables.ptr++]; 469 memset(page, 0, SZ_4K); 470 471 /* Page table entries don't use virtual addresses, which trips out 472 * kmemleak. kmemleak_alloc_phys() might work, but physical addresses 473 * are mixed with other fields, and I fear kmemleak won't detect that 474 * either. 475 * 476 * Let's just ignore memory passed to the page-table driver for now. 477 */ 478 kmemleak_ignore(page); 479 return page; 480 } 481 482 /** 483 * free_pt() - Custom page table free function 484 * @cookie: Cookie passed at page table allocation time. 485 * @data: Page table to free. 486 * @size: Size of the page table. This size should be fixed, 487 * and determined at creation time based on the granule size. 488 */ 489 static void free_pt(void *cookie, void *data, size_t size) 490 { 491 struct panthor_vm *vm = cookie; 492 493 if (unlikely(vm->root_page_table == data)) { 494 free_pages((unsigned long)data, get_order(size)); 495 vm->root_page_table = NULL; 496 return; 497 } 498 499 if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K)) 500 return; 501 502 /* Return the page to the pt_cache. */ 503 kmem_cache_free(pt_cache, data); 504 } 505 506 static int wait_ready(struct panthor_device *ptdev, u32 as_nr) 507 { 508 int ret; 509 u32 val; 510 511 /* Wait for the MMU status to indicate there is no active command, in 512 * case one is pending. 513 */ 514 ret = gpu_read_relaxed_poll_timeout_atomic(ptdev, AS_STATUS(as_nr), val, 515 !(val & AS_STATUS_AS_ACTIVE), 516 10, 100000); 517 518 if (ret) { 519 panthor_device_schedule_reset(ptdev); 520 drm_err(&ptdev->base, "AS_ACTIVE bit stuck\n"); 521 } 522 523 return ret; 524 } 525 526 static int write_cmd(struct panthor_device *ptdev, u32 as_nr, u32 cmd) 527 { 528 int status; 529 530 /* write AS_COMMAND when MMU is ready to accept another command */ 531 status = wait_ready(ptdev, as_nr); 532 if (!status) 533 gpu_write(ptdev, AS_COMMAND(as_nr), cmd); 534 535 return status; 536 } 537 538 static void lock_region(struct panthor_device *ptdev, u32 as_nr, 539 u64 region_start, u64 size) 540 { 541 u8 region_width; 542 u64 region; 543 u64 region_end = region_start + size; 544 545 if (!size) 546 return; 547 548 /* 549 * The locked region is a naturally aligned power of 2 block encoded as 550 * log2 minus(1). 551 * Calculate the desired start/end and look for the highest bit which 552 * differs. The smallest naturally aligned block must include this bit 553 * change, the desired region starts with this bit (and subsequent bits) 554 * zeroed and ends with the bit (and subsequent bits) set to one. 555 */ 556 region_width = max(fls64(region_start ^ (region_end - 1)), 557 const_ilog2(AS_LOCK_REGION_MIN_SIZE)) - 1; 558 559 /* 560 * Mask off the low bits of region_start (which would be ignored by 561 * the hardware anyway) 562 */ 563 region_start &= GENMASK_ULL(63, region_width); 564 565 region = region_width | region_start; 566 567 /* Lock the region that needs to be updated */ 568 gpu_write64(ptdev, AS_LOCKADDR(as_nr), region); 569 write_cmd(ptdev, as_nr, AS_COMMAND_LOCK); 570 } 571 572 static int mmu_hw_do_operation_locked(struct panthor_device *ptdev, int as_nr, 573 u64 iova, u64 size, u32 op) 574 { 575 const u32 l2_flush_op = CACHE_CLEAN | CACHE_INV; 576 u32 lsc_flush_op; 577 int ret; 578 579 lockdep_assert_held(&ptdev->mmu->as.slots_lock); 580 581 switch (op) { 582 case AS_COMMAND_FLUSH_MEM: 583 lsc_flush_op = CACHE_CLEAN | CACHE_INV; 584 break; 585 case AS_COMMAND_FLUSH_PT: 586 lsc_flush_op = 0; 587 break; 588 default: 589 drm_WARN(&ptdev->base, 1, "Unexpected AS_COMMAND: %d", op); 590 return -EINVAL; 591 } 592 593 if (as_nr < 0) 594 return 0; 595 596 /* 597 * If the AS number is greater than zero, then we can be sure 598 * the device is up and running, so we don't need to explicitly 599 * power it up 600 */ 601 602 lock_region(ptdev, as_nr, iova, size); 603 604 ret = wait_ready(ptdev, as_nr); 605 if (ret) 606 return ret; 607 608 ret = panthor_gpu_flush_caches(ptdev, l2_flush_op, lsc_flush_op, 0); 609 if (ret) 610 return ret; 611 612 /* 613 * Explicitly unlock the region as the AS is not unlocked automatically 614 * at the end of the GPU_CONTROL cache flush command, unlike 615 * AS_COMMAND_FLUSH_MEM or AS_COMMAND_FLUSH_PT. 616 */ 617 write_cmd(ptdev, as_nr, AS_COMMAND_UNLOCK); 618 619 /* Wait for the unlock command to complete */ 620 return wait_ready(ptdev, as_nr); 621 } 622 623 static int mmu_hw_do_operation(struct panthor_vm *vm, 624 u64 iova, u64 size, u32 op) 625 { 626 struct panthor_device *ptdev = vm->ptdev; 627 int ret; 628 629 mutex_lock(&ptdev->mmu->as.slots_lock); 630 ret = mmu_hw_do_operation_locked(ptdev, vm->as.id, iova, size, op); 631 mutex_unlock(&ptdev->mmu->as.slots_lock); 632 633 return ret; 634 } 635 636 static int panthor_mmu_as_enable(struct panthor_device *ptdev, u32 as_nr, 637 u64 transtab, u64 transcfg, u64 memattr) 638 { 639 int ret; 640 641 ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM); 642 if (ret) 643 return ret; 644 645 gpu_write64(ptdev, AS_TRANSTAB(as_nr), transtab); 646 gpu_write64(ptdev, AS_MEMATTR(as_nr), memattr); 647 gpu_write64(ptdev, AS_TRANSCFG(as_nr), transcfg); 648 649 return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE); 650 } 651 652 static int panthor_mmu_as_disable(struct panthor_device *ptdev, u32 as_nr) 653 { 654 int ret; 655 656 ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM); 657 if (ret) 658 return ret; 659 660 gpu_write64(ptdev, AS_TRANSTAB(as_nr), 0); 661 gpu_write64(ptdev, AS_MEMATTR(as_nr), 0); 662 gpu_write64(ptdev, AS_TRANSCFG(as_nr), AS_TRANSCFG_ADRMODE_UNMAPPED); 663 664 return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE); 665 } 666 667 static u32 panthor_mmu_fault_mask(struct panthor_device *ptdev, u32 value) 668 { 669 /* Bits 16 to 31 mean REQ_COMPLETE. */ 670 return value & GENMASK(15, 0); 671 } 672 673 static u32 panthor_mmu_as_fault_mask(struct panthor_device *ptdev, u32 as) 674 { 675 return BIT(as); 676 } 677 678 /** 679 * panthor_vm_has_unhandled_faults() - Check if a VM has unhandled faults 680 * @vm: VM to check. 681 * 682 * Return: true if the VM has unhandled faults, false otherwise. 683 */ 684 bool panthor_vm_has_unhandled_faults(struct panthor_vm *vm) 685 { 686 return vm->unhandled_fault; 687 } 688 689 /** 690 * panthor_vm_is_unusable() - Check if the VM is still usable 691 * @vm: VM to check. 692 * 693 * Return: true if the VM is unusable, false otherwise. 694 */ 695 bool panthor_vm_is_unusable(struct panthor_vm *vm) 696 { 697 return vm->unusable; 698 } 699 700 static void panthor_vm_release_as_locked(struct panthor_vm *vm) 701 { 702 struct panthor_device *ptdev = vm->ptdev; 703 704 lockdep_assert_held(&ptdev->mmu->as.slots_lock); 705 706 if (drm_WARN_ON(&ptdev->base, vm->as.id < 0)) 707 return; 708 709 ptdev->mmu->as.slots[vm->as.id].vm = NULL; 710 clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask); 711 refcount_set(&vm->as.active_cnt, 0); 712 list_del_init(&vm->as.lru_node); 713 vm->as.id = -1; 714 } 715 716 /** 717 * panthor_vm_active() - Flag a VM as active 718 * @vm: VM to flag as active. 719 * 720 * Assigns an address space to a VM so it can be used by the GPU/MCU. 721 * 722 * Return: 0 on success, a negative error code otherwise. 723 */ 724 int panthor_vm_active(struct panthor_vm *vm) 725 { 726 struct panthor_device *ptdev = vm->ptdev; 727 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 728 struct io_pgtable_cfg *cfg = &io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg; 729 int ret = 0, as, cookie; 730 u64 transtab, transcfg; 731 732 if (!drm_dev_enter(&ptdev->base, &cookie)) 733 return -ENODEV; 734 735 if (refcount_inc_not_zero(&vm->as.active_cnt)) 736 goto out_dev_exit; 737 738 mutex_lock(&ptdev->mmu->as.slots_lock); 739 740 if (refcount_inc_not_zero(&vm->as.active_cnt)) 741 goto out_unlock; 742 743 as = vm->as.id; 744 if (as >= 0) { 745 /* Unhandled pagefault on this AS, the MMU was disabled. We need to 746 * re-enable the MMU after clearing+unmasking the AS interrupts. 747 */ 748 if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) 749 goto out_enable_as; 750 751 goto out_make_active; 752 } 753 754 /* Check for a free AS */ 755 if (vm->for_mcu) { 756 drm_WARN_ON(&ptdev->base, ptdev->mmu->as.alloc_mask & BIT(0)); 757 as = 0; 758 } else { 759 as = ffz(ptdev->mmu->as.alloc_mask | BIT(0)); 760 } 761 762 if (!(BIT(as) & ptdev->gpu_info.as_present)) { 763 struct panthor_vm *lru_vm; 764 765 lru_vm = list_first_entry_or_null(&ptdev->mmu->as.lru_list, 766 struct panthor_vm, 767 as.lru_node); 768 if (drm_WARN_ON(&ptdev->base, !lru_vm)) { 769 ret = -EBUSY; 770 goto out_unlock; 771 } 772 773 drm_WARN_ON(&ptdev->base, refcount_read(&lru_vm->as.active_cnt)); 774 as = lru_vm->as.id; 775 panthor_vm_release_as_locked(lru_vm); 776 } 777 778 /* Assign the free or reclaimed AS to the FD */ 779 vm->as.id = as; 780 set_bit(as, &ptdev->mmu->as.alloc_mask); 781 ptdev->mmu->as.slots[as].vm = vm; 782 783 out_enable_as: 784 transtab = cfg->arm_lpae_s1_cfg.ttbr; 785 transcfg = AS_TRANSCFG_PTW_MEMATTR_WB | 786 AS_TRANSCFG_PTW_RA | 787 AS_TRANSCFG_ADRMODE_AARCH64_4K | 788 AS_TRANSCFG_INA_BITS(55 - va_bits); 789 if (ptdev->coherent) 790 transcfg |= AS_TRANSCFG_PTW_SH_OS; 791 792 /* If the VM is re-activated, we clear the fault. */ 793 vm->unhandled_fault = false; 794 795 /* Unhandled pagefault on this AS, clear the fault and re-enable interrupts 796 * before enabling the AS. 797 */ 798 if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) { 799 gpu_write(ptdev, MMU_INT_CLEAR, panthor_mmu_as_fault_mask(ptdev, as)); 800 ptdev->mmu->as.faulty_mask &= ~panthor_mmu_as_fault_mask(ptdev, as); 801 ptdev->mmu->irq.mask |= panthor_mmu_as_fault_mask(ptdev, as); 802 gpu_write(ptdev, MMU_INT_MASK, ~ptdev->mmu->as.faulty_mask); 803 } 804 805 ret = panthor_mmu_as_enable(vm->ptdev, vm->as.id, transtab, transcfg, vm->memattr); 806 807 out_make_active: 808 if (!ret) { 809 refcount_set(&vm->as.active_cnt, 1); 810 list_del_init(&vm->as.lru_node); 811 } 812 813 out_unlock: 814 mutex_unlock(&ptdev->mmu->as.slots_lock); 815 816 out_dev_exit: 817 drm_dev_exit(cookie); 818 return ret; 819 } 820 821 /** 822 * panthor_vm_idle() - Flag a VM idle 823 * @vm: VM to flag as idle. 824 * 825 * When we know the GPU is done with the VM (no more jobs to process), 826 * we can relinquish the AS slot attached to this VM, if any. 827 * 828 * We don't release the slot immediately, but instead place the VM in 829 * the LRU list, so it can be evicted if another VM needs an AS slot. 830 * This way, VMs keep attached to the AS they were given until we run 831 * out of free slot, limiting the number of MMU operations (TLB flush 832 * and other AS updates). 833 */ 834 void panthor_vm_idle(struct panthor_vm *vm) 835 { 836 struct panthor_device *ptdev = vm->ptdev; 837 838 if (!refcount_dec_and_mutex_lock(&vm->as.active_cnt, &ptdev->mmu->as.slots_lock)) 839 return; 840 841 if (!drm_WARN_ON(&ptdev->base, vm->as.id == -1 || !list_empty(&vm->as.lru_node))) 842 list_add_tail(&vm->as.lru_node, &ptdev->mmu->as.lru_list); 843 844 refcount_set(&vm->as.active_cnt, 0); 845 mutex_unlock(&ptdev->mmu->as.slots_lock); 846 } 847 848 u32 panthor_vm_page_size(struct panthor_vm *vm) 849 { 850 const struct io_pgtable *pgt = io_pgtable_ops_to_pgtable(vm->pgtbl_ops); 851 u32 pg_shift = ffs(pgt->cfg.pgsize_bitmap) - 1; 852 853 return 1u << pg_shift; 854 } 855 856 static void panthor_vm_stop(struct panthor_vm *vm) 857 { 858 drm_sched_stop(&vm->sched, NULL); 859 } 860 861 static void panthor_vm_start(struct panthor_vm *vm) 862 { 863 drm_sched_start(&vm->sched, 0); 864 } 865 866 /** 867 * panthor_vm_as() - Get the AS slot attached to a VM 868 * @vm: VM to get the AS slot of. 869 * 870 * Return: -1 if the VM is not assigned an AS slot yet, >= 0 otherwise. 871 */ 872 int panthor_vm_as(struct panthor_vm *vm) 873 { 874 return vm->as.id; 875 } 876 877 static size_t get_pgsize(u64 addr, size_t size, size_t *count) 878 { 879 /* 880 * io-pgtable only operates on multiple pages within a single table 881 * entry, so we need to split at boundaries of the table size, i.e. 882 * the next block size up. The distance from address A to the next 883 * boundary of block size B is logically B - A % B, but in unsigned 884 * two's complement where B is a power of two we get the equivalence 885 * B - A % B == (B - A) % B == (n * B - A) % B, and choose n = 0 :) 886 */ 887 size_t blk_offset = -addr % SZ_2M; 888 889 if (blk_offset || size < SZ_2M) { 890 *count = min_not_zero(blk_offset, size) / SZ_4K; 891 return SZ_4K; 892 } 893 blk_offset = -addr % SZ_1G ?: SZ_1G; 894 *count = min(blk_offset, size) / SZ_2M; 895 return SZ_2M; 896 } 897 898 static int panthor_vm_flush_range(struct panthor_vm *vm, u64 iova, u64 size) 899 { 900 struct panthor_device *ptdev = vm->ptdev; 901 int ret = 0, cookie; 902 903 if (vm->as.id < 0) 904 return 0; 905 906 /* If the device is unplugged, we just silently skip the flush. */ 907 if (!drm_dev_enter(&ptdev->base, &cookie)) 908 return 0; 909 910 ret = mmu_hw_do_operation(vm, iova, size, AS_COMMAND_FLUSH_PT); 911 912 drm_dev_exit(cookie); 913 return ret; 914 } 915 916 static int panthor_vm_unmap_pages(struct panthor_vm *vm, u64 iova, u64 size) 917 { 918 struct panthor_device *ptdev = vm->ptdev; 919 struct io_pgtable_ops *ops = vm->pgtbl_ops; 920 u64 offset = 0; 921 922 drm_dbg(&ptdev->base, "unmap: as=%d, iova=%llx, len=%llx", vm->as.id, iova, size); 923 924 while (offset < size) { 925 size_t unmapped_sz = 0, pgcount; 926 size_t pgsize = get_pgsize(iova + offset, size - offset, &pgcount); 927 928 unmapped_sz = ops->unmap_pages(ops, iova + offset, pgsize, pgcount, NULL); 929 930 if (drm_WARN_ON(&ptdev->base, unmapped_sz != pgsize * pgcount)) { 931 drm_err(&ptdev->base, "failed to unmap range %llx-%llx (requested range %llx-%llx)\n", 932 iova + offset + unmapped_sz, 933 iova + offset + pgsize * pgcount, 934 iova, iova + size); 935 panthor_vm_flush_range(vm, iova, offset + unmapped_sz); 936 return -EINVAL; 937 } 938 offset += unmapped_sz; 939 } 940 941 return panthor_vm_flush_range(vm, iova, size); 942 } 943 944 static int 945 panthor_vm_map_pages(struct panthor_vm *vm, u64 iova, int prot, 946 struct sg_table *sgt, u64 offset, u64 size) 947 { 948 struct panthor_device *ptdev = vm->ptdev; 949 unsigned int count; 950 struct scatterlist *sgl; 951 struct io_pgtable_ops *ops = vm->pgtbl_ops; 952 u64 start_iova = iova; 953 int ret; 954 955 if (!size) 956 return 0; 957 958 for_each_sgtable_dma_sg(sgt, sgl, count) { 959 dma_addr_t paddr = sg_dma_address(sgl); 960 size_t len = sg_dma_len(sgl); 961 962 if (len <= offset) { 963 offset -= len; 964 continue; 965 } 966 967 paddr += offset; 968 len -= offset; 969 len = min_t(size_t, len, size); 970 size -= len; 971 972 drm_dbg(&ptdev->base, "map: as=%d, iova=%llx, paddr=%pad, len=%zx", 973 vm->as.id, iova, &paddr, len); 974 975 while (len) { 976 size_t pgcount, mapped = 0; 977 size_t pgsize = get_pgsize(iova | paddr, len, &pgcount); 978 979 ret = ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot, 980 GFP_KERNEL, &mapped); 981 iova += mapped; 982 paddr += mapped; 983 len -= mapped; 984 985 if (drm_WARN_ON(&ptdev->base, !ret && !mapped)) 986 ret = -ENOMEM; 987 988 if (ret) { 989 /* If something failed, unmap what we've already mapped before 990 * returning. The unmap call is not supposed to fail. 991 */ 992 drm_WARN_ON(&ptdev->base, 993 panthor_vm_unmap_pages(vm, start_iova, 994 iova - start_iova)); 995 return ret; 996 } 997 } 998 999 if (!size) 1000 break; 1001 1002 offset = 0; 1003 } 1004 1005 return panthor_vm_flush_range(vm, start_iova, iova - start_iova); 1006 } 1007 1008 static int flags_to_prot(u32 flags) 1009 { 1010 int prot = 0; 1011 1012 if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC) 1013 prot |= IOMMU_NOEXEC; 1014 1015 if (!(flags & DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED)) 1016 prot |= IOMMU_CACHE; 1017 1018 if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_READONLY) 1019 prot |= IOMMU_READ; 1020 else 1021 prot |= IOMMU_READ | IOMMU_WRITE; 1022 1023 return prot; 1024 } 1025 1026 /** 1027 * panthor_vm_alloc_va() - Allocate a region in the auto-va space 1028 * @vm: VM to allocate a region on. 1029 * @va: start of the VA range. Can be PANTHOR_VM_KERNEL_AUTO_VA if the user 1030 * wants the VA to be automatically allocated from the auto-VA range. 1031 * @size: size of the VA range. 1032 * @va_node: drm_mm_node to initialize. Must be zero-initialized. 1033 * 1034 * Some GPU objects, like heap chunks, are fully managed by the kernel and 1035 * need to be mapped to the userspace VM, in the region reserved for kernel 1036 * objects. 1037 * 1038 * This function takes care of allocating a region in the kernel auto-VA space. 1039 * 1040 * Return: 0 on success, an error code otherwise. 1041 */ 1042 int 1043 panthor_vm_alloc_va(struct panthor_vm *vm, u64 va, u64 size, 1044 struct drm_mm_node *va_node) 1045 { 1046 ssize_t vm_pgsz = panthor_vm_page_size(vm); 1047 int ret; 1048 1049 if (!size || !IS_ALIGNED(size, vm_pgsz)) 1050 return -EINVAL; 1051 1052 if (va != PANTHOR_VM_KERNEL_AUTO_VA && !IS_ALIGNED(va, vm_pgsz)) 1053 return -EINVAL; 1054 1055 mutex_lock(&vm->mm_lock); 1056 if (va != PANTHOR_VM_KERNEL_AUTO_VA) { 1057 va_node->start = va; 1058 va_node->size = size; 1059 ret = drm_mm_reserve_node(&vm->mm, va_node); 1060 } else { 1061 ret = drm_mm_insert_node_in_range(&vm->mm, va_node, size, 1062 size >= SZ_2M ? SZ_2M : SZ_4K, 1063 0, vm->kernel_auto_va.start, 1064 vm->kernel_auto_va.end, 1065 DRM_MM_INSERT_BEST); 1066 } 1067 mutex_unlock(&vm->mm_lock); 1068 1069 return ret; 1070 } 1071 1072 /** 1073 * panthor_vm_free_va() - Free a region allocated with panthor_vm_alloc_va() 1074 * @vm: VM to free the region on. 1075 * @va_node: Memory node representing the region to free. 1076 */ 1077 void panthor_vm_free_va(struct panthor_vm *vm, struct drm_mm_node *va_node) 1078 { 1079 mutex_lock(&vm->mm_lock); 1080 drm_mm_remove_node(va_node); 1081 mutex_unlock(&vm->mm_lock); 1082 } 1083 1084 static void panthor_vm_bo_put(struct drm_gpuvm_bo *vm_bo) 1085 { 1086 struct panthor_gem_object *bo = to_panthor_bo(vm_bo->obj); 1087 struct drm_gpuvm *vm = vm_bo->vm; 1088 bool unpin; 1089 1090 /* We must retain the GEM before calling drm_gpuvm_bo_put(), 1091 * otherwise the mutex might be destroyed while we hold it. 1092 * Same goes for the VM, since we take the VM resv lock. 1093 */ 1094 drm_gem_object_get(&bo->base.base); 1095 drm_gpuvm_get(vm); 1096 1097 /* We take the resv lock to protect against concurrent accesses to the 1098 * gpuvm evicted/extobj lists that are modified in 1099 * drm_gpuvm_bo_destroy(), which is called if drm_gpuvm_bo_put() 1100 * releases sthe last vm_bo reference. 1101 * We take the BO GPUVA list lock to protect the vm_bo removal from the 1102 * GEM vm_bo list. 1103 */ 1104 dma_resv_lock(drm_gpuvm_resv(vm), NULL); 1105 mutex_lock(&bo->base.base.gpuva.lock); 1106 unpin = drm_gpuvm_bo_put(vm_bo); 1107 mutex_unlock(&bo->base.base.gpuva.lock); 1108 dma_resv_unlock(drm_gpuvm_resv(vm)); 1109 1110 /* If the vm_bo object was destroyed, release the pin reference that 1111 * was hold by this object. 1112 */ 1113 if (unpin && !drm_gem_is_imported(&bo->base.base)) 1114 drm_gem_shmem_unpin(&bo->base); 1115 1116 drm_gpuvm_put(vm); 1117 drm_gem_object_put(&bo->base.base); 1118 } 1119 1120 static void panthor_vm_cleanup_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1121 struct panthor_vm *vm) 1122 { 1123 struct panthor_vma *vma, *tmp_vma; 1124 1125 u32 remaining_pt_count = op_ctx->rsvd_page_tables.count - 1126 op_ctx->rsvd_page_tables.ptr; 1127 1128 if (remaining_pt_count) { 1129 kmem_cache_free_bulk(pt_cache, remaining_pt_count, 1130 op_ctx->rsvd_page_tables.pages + 1131 op_ctx->rsvd_page_tables.ptr); 1132 } 1133 1134 kfree(op_ctx->rsvd_page_tables.pages); 1135 1136 if (op_ctx->map.vm_bo) 1137 panthor_vm_bo_put(op_ctx->map.vm_bo); 1138 1139 for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) 1140 kfree(op_ctx->preallocated_vmas[i]); 1141 1142 list_for_each_entry_safe(vma, tmp_vma, &op_ctx->returned_vmas, node) { 1143 list_del(&vma->node); 1144 panthor_vm_bo_put(vma->base.vm_bo); 1145 kfree(vma); 1146 } 1147 } 1148 1149 static struct panthor_vma * 1150 panthor_vm_op_ctx_get_vma(struct panthor_vm_op_ctx *op_ctx) 1151 { 1152 for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) { 1153 struct panthor_vma *vma = op_ctx->preallocated_vmas[i]; 1154 1155 if (vma) { 1156 op_ctx->preallocated_vmas[i] = NULL; 1157 return vma; 1158 } 1159 } 1160 1161 return NULL; 1162 } 1163 1164 static int 1165 panthor_vm_op_ctx_prealloc_vmas(struct panthor_vm_op_ctx *op_ctx) 1166 { 1167 u32 vma_count; 1168 1169 switch (op_ctx->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) { 1170 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: 1171 /* One VMA for the new mapping, and two more VMAs for the remap case 1172 * which might contain both a prev and next VA. 1173 */ 1174 vma_count = 3; 1175 break; 1176 1177 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP: 1178 /* Partial unmaps might trigger a remap with either a prev or a next VA, 1179 * but not both. 1180 */ 1181 vma_count = 1; 1182 break; 1183 1184 default: 1185 return 0; 1186 } 1187 1188 for (u32 i = 0; i < vma_count; i++) { 1189 struct panthor_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL); 1190 1191 if (!vma) 1192 return -ENOMEM; 1193 1194 op_ctx->preallocated_vmas[i] = vma; 1195 } 1196 1197 return 0; 1198 } 1199 1200 #define PANTHOR_VM_BIND_OP_MAP_FLAGS \ 1201 (DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \ 1202 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \ 1203 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED | \ 1204 DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) 1205 1206 static int panthor_vm_prepare_map_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1207 struct panthor_vm *vm, 1208 struct panthor_gem_object *bo, 1209 u64 offset, 1210 u64 size, u64 va, 1211 u32 flags) 1212 { 1213 struct drm_gpuvm_bo *preallocated_vm_bo; 1214 struct sg_table *sgt = NULL; 1215 u64 pt_count; 1216 int ret; 1217 1218 if (!bo) 1219 return -EINVAL; 1220 1221 if ((flags & ~PANTHOR_VM_BIND_OP_MAP_FLAGS) || 1222 (flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) != DRM_PANTHOR_VM_BIND_OP_TYPE_MAP) 1223 return -EINVAL; 1224 1225 /* Make sure the VA and size are in-bounds. */ 1226 if (size > bo->base.base.size || offset > bo->base.base.size - size) 1227 return -EINVAL; 1228 1229 /* If the BO has an exclusive VM attached, it can't be mapped to other VMs. */ 1230 if (bo->exclusive_vm_root_gem && 1231 bo->exclusive_vm_root_gem != panthor_vm_root_gem(vm)) 1232 return -EINVAL; 1233 1234 memset(op_ctx, 0, sizeof(*op_ctx)); 1235 INIT_LIST_HEAD(&op_ctx->returned_vmas); 1236 op_ctx->flags = flags; 1237 op_ctx->va.range = size; 1238 op_ctx->va.addr = va; 1239 1240 ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx); 1241 if (ret) 1242 goto err_cleanup; 1243 1244 if (!drm_gem_is_imported(&bo->base.base)) { 1245 /* Pre-reserve the BO pages, so the map operation doesn't have to 1246 * allocate. 1247 */ 1248 ret = drm_gem_shmem_pin(&bo->base); 1249 if (ret) 1250 goto err_cleanup; 1251 } 1252 1253 sgt = drm_gem_shmem_get_pages_sgt(&bo->base); 1254 if (IS_ERR(sgt)) { 1255 if (!drm_gem_is_imported(&bo->base.base)) 1256 drm_gem_shmem_unpin(&bo->base); 1257 1258 ret = PTR_ERR(sgt); 1259 goto err_cleanup; 1260 } 1261 1262 op_ctx->map.sgt = sgt; 1263 1264 preallocated_vm_bo = drm_gpuvm_bo_create(&vm->base, &bo->base.base); 1265 if (!preallocated_vm_bo) { 1266 if (!drm_gem_is_imported(&bo->base.base)) 1267 drm_gem_shmem_unpin(&bo->base); 1268 1269 ret = -ENOMEM; 1270 goto err_cleanup; 1271 } 1272 1273 /* drm_gpuvm_bo_obtain_prealloc() will call drm_gpuvm_bo_put() on our 1274 * pre-allocated BO if the <BO,VM> association exists. Given we 1275 * only have one ref on preallocated_vm_bo, drm_gpuvm_bo_destroy() will 1276 * be called immediately, and we have to hold the VM resv lock when 1277 * calling this function. 1278 */ 1279 dma_resv_lock(panthor_vm_resv(vm), NULL); 1280 mutex_lock(&bo->base.base.gpuva.lock); 1281 op_ctx->map.vm_bo = drm_gpuvm_bo_obtain_prealloc(preallocated_vm_bo); 1282 mutex_unlock(&bo->base.base.gpuva.lock); 1283 dma_resv_unlock(panthor_vm_resv(vm)); 1284 1285 /* If the a vm_bo for this <VM,BO> combination exists, it already 1286 * retains a pin ref, and we can release the one we took earlier. 1287 * 1288 * If our pre-allocated vm_bo is picked, it now retains the pin ref, 1289 * which will be released in panthor_vm_bo_put(). 1290 */ 1291 if (preallocated_vm_bo != op_ctx->map.vm_bo && 1292 !drm_gem_is_imported(&bo->base.base)) 1293 drm_gem_shmem_unpin(&bo->base); 1294 1295 op_ctx->map.bo_offset = offset; 1296 1297 /* L1, L2 and L3 page tables. 1298 * We could optimize L3 allocation by iterating over the sgt and merging 1299 * 2M contiguous blocks, but it's simpler to over-provision and return 1300 * the pages if they're not used. 1301 */ 1302 pt_count = ((ALIGN(va + size, 1ull << 39) - ALIGN_DOWN(va, 1ull << 39)) >> 39) + 1303 ((ALIGN(va + size, 1ull << 30) - ALIGN_DOWN(va, 1ull << 30)) >> 30) + 1304 ((ALIGN(va + size, 1ull << 21) - ALIGN_DOWN(va, 1ull << 21)) >> 21); 1305 1306 op_ctx->rsvd_page_tables.pages = kcalloc(pt_count, 1307 sizeof(*op_ctx->rsvd_page_tables.pages), 1308 GFP_KERNEL); 1309 if (!op_ctx->rsvd_page_tables.pages) { 1310 ret = -ENOMEM; 1311 goto err_cleanup; 1312 } 1313 1314 ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count, 1315 op_ctx->rsvd_page_tables.pages); 1316 op_ctx->rsvd_page_tables.count = ret; 1317 if (ret != pt_count) { 1318 ret = -ENOMEM; 1319 goto err_cleanup; 1320 } 1321 1322 /* Insert BO into the extobj list last, when we know nothing can fail. */ 1323 dma_resv_lock(panthor_vm_resv(vm), NULL); 1324 drm_gpuvm_bo_extobj_add(op_ctx->map.vm_bo); 1325 dma_resv_unlock(panthor_vm_resv(vm)); 1326 1327 return 0; 1328 1329 err_cleanup: 1330 panthor_vm_cleanup_op_ctx(op_ctx, vm); 1331 return ret; 1332 } 1333 1334 static int panthor_vm_prepare_unmap_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1335 struct panthor_vm *vm, 1336 u64 va, u64 size) 1337 { 1338 u32 pt_count = 0; 1339 int ret; 1340 1341 memset(op_ctx, 0, sizeof(*op_ctx)); 1342 INIT_LIST_HEAD(&op_ctx->returned_vmas); 1343 op_ctx->va.range = size; 1344 op_ctx->va.addr = va; 1345 op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP; 1346 1347 /* Pre-allocate L3 page tables to account for the split-2M-block 1348 * situation on unmap. 1349 */ 1350 if (va != ALIGN(va, SZ_2M)) 1351 pt_count++; 1352 1353 if (va + size != ALIGN(va + size, SZ_2M) && 1354 ALIGN(va + size, SZ_2M) != ALIGN(va, SZ_2M)) 1355 pt_count++; 1356 1357 ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx); 1358 if (ret) 1359 goto err_cleanup; 1360 1361 if (pt_count) { 1362 op_ctx->rsvd_page_tables.pages = kcalloc(pt_count, 1363 sizeof(*op_ctx->rsvd_page_tables.pages), 1364 GFP_KERNEL); 1365 if (!op_ctx->rsvd_page_tables.pages) { 1366 ret = -ENOMEM; 1367 goto err_cleanup; 1368 } 1369 1370 ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count, 1371 op_ctx->rsvd_page_tables.pages); 1372 if (ret != pt_count) { 1373 ret = -ENOMEM; 1374 goto err_cleanup; 1375 } 1376 op_ctx->rsvd_page_tables.count = pt_count; 1377 } 1378 1379 return 0; 1380 1381 err_cleanup: 1382 panthor_vm_cleanup_op_ctx(op_ctx, vm); 1383 return ret; 1384 } 1385 1386 static void panthor_vm_prepare_sync_only_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1387 struct panthor_vm *vm) 1388 { 1389 memset(op_ctx, 0, sizeof(*op_ctx)); 1390 INIT_LIST_HEAD(&op_ctx->returned_vmas); 1391 op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY; 1392 } 1393 1394 /** 1395 * panthor_vm_get_bo_for_va() - Get the GEM object mapped at a virtual address 1396 * @vm: VM to look into. 1397 * @va: Virtual address to search for. 1398 * @bo_offset: Offset of the GEM object mapped at this virtual address. 1399 * Only valid on success. 1400 * 1401 * The object returned by this function might no longer be mapped when the 1402 * function returns. It's the caller responsibility to ensure there's no 1403 * concurrent map/unmap operations making the returned value invalid, or 1404 * make sure it doesn't matter if the object is no longer mapped. 1405 * 1406 * Return: A valid pointer on success, an ERR_PTR() otherwise. 1407 */ 1408 struct panthor_gem_object * 1409 panthor_vm_get_bo_for_va(struct panthor_vm *vm, u64 va, u64 *bo_offset) 1410 { 1411 struct panthor_gem_object *bo = ERR_PTR(-ENOENT); 1412 struct drm_gpuva *gpuva; 1413 struct panthor_vma *vma; 1414 1415 /* Take the VM lock to prevent concurrent map/unmap operations. */ 1416 mutex_lock(&vm->op_lock); 1417 gpuva = drm_gpuva_find_first(&vm->base, va, 1); 1418 vma = gpuva ? container_of(gpuva, struct panthor_vma, base) : NULL; 1419 if (vma && vma->base.gem.obj) { 1420 drm_gem_object_get(vma->base.gem.obj); 1421 bo = to_panthor_bo(vma->base.gem.obj); 1422 *bo_offset = vma->base.gem.offset + (va - vma->base.va.addr); 1423 } 1424 mutex_unlock(&vm->op_lock); 1425 1426 return bo; 1427 } 1428 1429 #define PANTHOR_VM_MIN_KERNEL_VA_SIZE SZ_256M 1430 1431 static u64 1432 panthor_vm_create_get_user_va_range(const struct drm_panthor_vm_create *args, 1433 u64 full_va_range) 1434 { 1435 u64 user_va_range; 1436 1437 /* Make sure we have a minimum amount of VA space for kernel objects. */ 1438 if (full_va_range < PANTHOR_VM_MIN_KERNEL_VA_SIZE) 1439 return 0; 1440 1441 if (args->user_va_range) { 1442 /* Use the user provided value if != 0. */ 1443 user_va_range = args->user_va_range; 1444 } else if (TASK_SIZE_OF(current) < full_va_range) { 1445 /* If the task VM size is smaller than the GPU VA range, pick this 1446 * as our default user VA range, so userspace can CPU/GPU map buffers 1447 * at the same address. 1448 */ 1449 user_va_range = TASK_SIZE_OF(current); 1450 } else { 1451 /* If the GPU VA range is smaller than the task VM size, we 1452 * just have to live with the fact we won't be able to map 1453 * all buffers at the same GPU/CPU address. 1454 * 1455 * If the GPU VA range is bigger than 4G (more than 32-bit of 1456 * VA), we split the range in two, and assign half of it to 1457 * the user and the other half to the kernel, if it's not, we 1458 * keep the kernel VA space as small as possible. 1459 */ 1460 user_va_range = full_va_range > SZ_4G ? 1461 full_va_range / 2 : 1462 full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE; 1463 } 1464 1465 if (full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE < user_va_range) 1466 user_va_range = full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE; 1467 1468 return user_va_range; 1469 } 1470 1471 #define PANTHOR_VM_CREATE_FLAGS 0 1472 1473 static int 1474 panthor_vm_create_check_args(const struct panthor_device *ptdev, 1475 const struct drm_panthor_vm_create *args, 1476 u64 *kernel_va_start, u64 *kernel_va_range) 1477 { 1478 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 1479 u64 full_va_range = 1ull << va_bits; 1480 u64 user_va_range; 1481 1482 if (args->flags & ~PANTHOR_VM_CREATE_FLAGS) 1483 return -EINVAL; 1484 1485 user_va_range = panthor_vm_create_get_user_va_range(args, full_va_range); 1486 if (!user_va_range || (args->user_va_range && args->user_va_range > user_va_range)) 1487 return -EINVAL; 1488 1489 /* Pick a kernel VA range that's a power of two, to have a clear split. */ 1490 *kernel_va_range = rounddown_pow_of_two(full_va_range - user_va_range); 1491 *kernel_va_start = full_va_range - *kernel_va_range; 1492 return 0; 1493 } 1494 1495 /* 1496 * Only 32 VMs per open file. If that becomes a limiting factor, we can 1497 * increase this number. 1498 */ 1499 #define PANTHOR_MAX_VMS_PER_FILE 32 1500 1501 /** 1502 * panthor_vm_pool_create_vm() - Create a VM 1503 * @ptdev: The panthor device 1504 * @pool: The VM to create this VM on. 1505 * @args: VM creation args. 1506 * 1507 * Return: a positive VM ID on success, a negative error code otherwise. 1508 */ 1509 int panthor_vm_pool_create_vm(struct panthor_device *ptdev, 1510 struct panthor_vm_pool *pool, 1511 struct drm_panthor_vm_create *args) 1512 { 1513 u64 kernel_va_start, kernel_va_range; 1514 struct panthor_vm *vm; 1515 int ret; 1516 u32 id; 1517 1518 ret = panthor_vm_create_check_args(ptdev, args, &kernel_va_start, &kernel_va_range); 1519 if (ret) 1520 return ret; 1521 1522 vm = panthor_vm_create(ptdev, false, kernel_va_start, kernel_va_range, 1523 kernel_va_start, kernel_va_range); 1524 if (IS_ERR(vm)) 1525 return PTR_ERR(vm); 1526 1527 ret = xa_alloc(&pool->xa, &id, vm, 1528 XA_LIMIT(1, PANTHOR_MAX_VMS_PER_FILE), GFP_KERNEL); 1529 1530 if (ret) { 1531 panthor_vm_put(vm); 1532 return ret; 1533 } 1534 1535 args->user_va_range = kernel_va_start; 1536 return id; 1537 } 1538 1539 static void panthor_vm_destroy(struct panthor_vm *vm) 1540 { 1541 if (!vm) 1542 return; 1543 1544 vm->destroyed = true; 1545 1546 mutex_lock(&vm->heaps.lock); 1547 panthor_heap_pool_destroy(vm->heaps.pool); 1548 vm->heaps.pool = NULL; 1549 mutex_unlock(&vm->heaps.lock); 1550 1551 drm_WARN_ON(&vm->ptdev->base, 1552 panthor_vm_unmap_range(vm, vm->base.mm_start, vm->base.mm_range)); 1553 panthor_vm_put(vm); 1554 } 1555 1556 /** 1557 * panthor_vm_pool_destroy_vm() - Destroy a VM. 1558 * @pool: VM pool. 1559 * @handle: VM handle. 1560 * 1561 * This function doesn't free the VM object or its resources, it just kills 1562 * all mappings, and makes sure nothing can be mapped after that point. 1563 * 1564 * If there was any active jobs at the time this function is called, these 1565 * jobs should experience page faults and be killed as a result. 1566 * 1567 * The VM resources are freed when the last reference on the VM object is 1568 * dropped. 1569 * 1570 * Return: %0 for success, negative errno value for failure 1571 */ 1572 int panthor_vm_pool_destroy_vm(struct panthor_vm_pool *pool, u32 handle) 1573 { 1574 struct panthor_vm *vm; 1575 1576 vm = xa_erase(&pool->xa, handle); 1577 1578 panthor_vm_destroy(vm); 1579 1580 return vm ? 0 : -EINVAL; 1581 } 1582 1583 /** 1584 * panthor_vm_pool_get_vm() - Retrieve VM object bound to a VM handle 1585 * @pool: VM pool to check. 1586 * @handle: Handle of the VM to retrieve. 1587 * 1588 * Return: A valid pointer if the VM exists, NULL otherwise. 1589 */ 1590 struct panthor_vm * 1591 panthor_vm_pool_get_vm(struct panthor_vm_pool *pool, u32 handle) 1592 { 1593 struct panthor_vm *vm; 1594 1595 xa_lock(&pool->xa); 1596 vm = panthor_vm_get(xa_load(&pool->xa, handle)); 1597 xa_unlock(&pool->xa); 1598 1599 return vm; 1600 } 1601 1602 /** 1603 * panthor_vm_pool_destroy() - Destroy a VM pool. 1604 * @pfile: File. 1605 * 1606 * Destroy all VMs in the pool, and release the pool resources. 1607 * 1608 * Note that VMs can outlive the pool they were created from if other 1609 * objects hold a reference to there VMs. 1610 */ 1611 void panthor_vm_pool_destroy(struct panthor_file *pfile) 1612 { 1613 struct panthor_vm *vm; 1614 unsigned long i; 1615 1616 if (!pfile->vms) 1617 return; 1618 1619 xa_for_each(&pfile->vms->xa, i, vm) 1620 panthor_vm_destroy(vm); 1621 1622 xa_destroy(&pfile->vms->xa); 1623 kfree(pfile->vms); 1624 } 1625 1626 /** 1627 * panthor_vm_pool_create() - Create a VM pool 1628 * @pfile: File. 1629 * 1630 * Return: 0 on success, a negative error code otherwise. 1631 */ 1632 int panthor_vm_pool_create(struct panthor_file *pfile) 1633 { 1634 pfile->vms = kzalloc(sizeof(*pfile->vms), GFP_KERNEL); 1635 if (!pfile->vms) 1636 return -ENOMEM; 1637 1638 xa_init_flags(&pfile->vms->xa, XA_FLAGS_ALLOC1); 1639 return 0; 1640 } 1641 1642 /* dummy TLB ops, the real TLB flush happens in panthor_vm_flush_range() */ 1643 static void mmu_tlb_flush_all(void *cookie) 1644 { 1645 } 1646 1647 static void mmu_tlb_flush_walk(unsigned long iova, size_t size, size_t granule, void *cookie) 1648 { 1649 } 1650 1651 static const struct iommu_flush_ops mmu_tlb_ops = { 1652 .tlb_flush_all = mmu_tlb_flush_all, 1653 .tlb_flush_walk = mmu_tlb_flush_walk, 1654 }; 1655 1656 static const char *access_type_name(struct panthor_device *ptdev, 1657 u32 fault_status) 1658 { 1659 switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) { 1660 case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC: 1661 return "ATOMIC"; 1662 case AS_FAULTSTATUS_ACCESS_TYPE_READ: 1663 return "READ"; 1664 case AS_FAULTSTATUS_ACCESS_TYPE_WRITE: 1665 return "WRITE"; 1666 case AS_FAULTSTATUS_ACCESS_TYPE_EX: 1667 return "EXECUTE"; 1668 default: 1669 drm_WARN_ON(&ptdev->base, 1); 1670 return NULL; 1671 } 1672 } 1673 1674 static void panthor_mmu_irq_handler(struct panthor_device *ptdev, u32 status) 1675 { 1676 bool has_unhandled_faults = false; 1677 1678 status = panthor_mmu_fault_mask(ptdev, status); 1679 while (status) { 1680 u32 as = ffs(status | (status >> 16)) - 1; 1681 u32 mask = panthor_mmu_as_fault_mask(ptdev, as); 1682 u32 new_int_mask; 1683 u64 addr; 1684 u32 fault_status; 1685 u32 exception_type; 1686 u32 access_type; 1687 u32 source_id; 1688 1689 fault_status = gpu_read(ptdev, AS_FAULTSTATUS(as)); 1690 addr = gpu_read64(ptdev, AS_FAULTADDRESS(as)); 1691 1692 /* decode the fault status */ 1693 exception_type = fault_status & 0xFF; 1694 access_type = (fault_status >> 8) & 0x3; 1695 source_id = (fault_status >> 16); 1696 1697 mutex_lock(&ptdev->mmu->as.slots_lock); 1698 1699 ptdev->mmu->as.faulty_mask |= mask; 1700 new_int_mask = 1701 panthor_mmu_fault_mask(ptdev, ~ptdev->mmu->as.faulty_mask); 1702 1703 /* terminal fault, print info about the fault */ 1704 drm_err(&ptdev->base, 1705 "Unhandled Page fault in AS%d at VA 0x%016llX\n" 1706 "raw fault status: 0x%X\n" 1707 "decoded fault status: %s\n" 1708 "exception type 0x%X: %s\n" 1709 "access type 0x%X: %s\n" 1710 "source id 0x%X\n", 1711 as, addr, 1712 fault_status, 1713 (fault_status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"), 1714 exception_type, panthor_exception_name(ptdev, exception_type), 1715 access_type, access_type_name(ptdev, fault_status), 1716 source_id); 1717 1718 /* We don't handle VM faults at the moment, so let's just clear the 1719 * interrupt and let the writer/reader crash. 1720 * Note that COMPLETED irqs are never cleared, but this is fine 1721 * because they are always masked. 1722 */ 1723 gpu_write(ptdev, MMU_INT_CLEAR, mask); 1724 1725 /* Ignore MMU interrupts on this AS until it's been 1726 * re-enabled. 1727 */ 1728 ptdev->mmu->irq.mask = new_int_mask; 1729 1730 if (ptdev->mmu->as.slots[as].vm) 1731 ptdev->mmu->as.slots[as].vm->unhandled_fault = true; 1732 1733 /* Disable the MMU to kill jobs on this AS. */ 1734 panthor_mmu_as_disable(ptdev, as); 1735 mutex_unlock(&ptdev->mmu->as.slots_lock); 1736 1737 status &= ~mask; 1738 has_unhandled_faults = true; 1739 } 1740 1741 if (has_unhandled_faults) 1742 panthor_sched_report_mmu_fault(ptdev); 1743 } 1744 PANTHOR_IRQ_HANDLER(mmu, MMU, panthor_mmu_irq_handler); 1745 1746 /** 1747 * panthor_mmu_suspend() - Suspend the MMU logic 1748 * @ptdev: Device. 1749 * 1750 * All we do here is de-assign the AS slots on all active VMs, so things 1751 * get flushed to the main memory, and no further access to these VMs are 1752 * possible. 1753 * 1754 * We also suspend the MMU IRQ. 1755 */ 1756 void panthor_mmu_suspend(struct panthor_device *ptdev) 1757 { 1758 mutex_lock(&ptdev->mmu->as.slots_lock); 1759 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) { 1760 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm; 1761 1762 if (vm) { 1763 drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i)); 1764 panthor_vm_release_as_locked(vm); 1765 } 1766 } 1767 mutex_unlock(&ptdev->mmu->as.slots_lock); 1768 1769 panthor_mmu_irq_suspend(&ptdev->mmu->irq); 1770 } 1771 1772 /** 1773 * panthor_mmu_resume() - Resume the MMU logic 1774 * @ptdev: Device. 1775 * 1776 * Resume the IRQ. 1777 * 1778 * We don't re-enable previously active VMs. We assume other parts of the 1779 * driver will call panthor_vm_active() on the VMs they intend to use. 1780 */ 1781 void panthor_mmu_resume(struct panthor_device *ptdev) 1782 { 1783 mutex_lock(&ptdev->mmu->as.slots_lock); 1784 ptdev->mmu->as.alloc_mask = 0; 1785 ptdev->mmu->as.faulty_mask = 0; 1786 mutex_unlock(&ptdev->mmu->as.slots_lock); 1787 1788 panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0)); 1789 } 1790 1791 /** 1792 * panthor_mmu_pre_reset() - Prepare for a reset 1793 * @ptdev: Device. 1794 * 1795 * Suspend the IRQ, and make sure all VM_BIND queues are stopped, so we 1796 * don't get asked to do a VM operation while the GPU is down. 1797 * 1798 * We don't cleanly shutdown the AS slots here, because the reset might 1799 * come from an AS_ACTIVE_BIT stuck situation. 1800 */ 1801 void panthor_mmu_pre_reset(struct panthor_device *ptdev) 1802 { 1803 struct panthor_vm *vm; 1804 1805 panthor_mmu_irq_suspend(&ptdev->mmu->irq); 1806 1807 mutex_lock(&ptdev->mmu->vm.lock); 1808 ptdev->mmu->vm.reset_in_progress = true; 1809 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) 1810 panthor_vm_stop(vm); 1811 mutex_unlock(&ptdev->mmu->vm.lock); 1812 } 1813 1814 /** 1815 * panthor_mmu_post_reset() - Restore things after a reset 1816 * @ptdev: Device. 1817 * 1818 * Put the MMU logic back in action after a reset. That implies resuming the 1819 * IRQ and re-enabling the VM_BIND queues. 1820 */ 1821 void panthor_mmu_post_reset(struct panthor_device *ptdev) 1822 { 1823 struct panthor_vm *vm; 1824 1825 mutex_lock(&ptdev->mmu->as.slots_lock); 1826 1827 /* Now that the reset is effective, we can assume that none of the 1828 * AS slots are setup, and clear the faulty flags too. 1829 */ 1830 ptdev->mmu->as.alloc_mask = 0; 1831 ptdev->mmu->as.faulty_mask = 0; 1832 1833 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) { 1834 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm; 1835 1836 if (vm) 1837 panthor_vm_release_as_locked(vm); 1838 } 1839 1840 mutex_unlock(&ptdev->mmu->as.slots_lock); 1841 1842 panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0)); 1843 1844 /* Restart the VM_BIND queues. */ 1845 mutex_lock(&ptdev->mmu->vm.lock); 1846 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) { 1847 panthor_vm_start(vm); 1848 } 1849 ptdev->mmu->vm.reset_in_progress = false; 1850 mutex_unlock(&ptdev->mmu->vm.lock); 1851 } 1852 1853 static void panthor_vm_free(struct drm_gpuvm *gpuvm) 1854 { 1855 struct panthor_vm *vm = container_of(gpuvm, struct panthor_vm, base); 1856 struct panthor_device *ptdev = vm->ptdev; 1857 1858 mutex_lock(&vm->heaps.lock); 1859 if (drm_WARN_ON(&ptdev->base, vm->heaps.pool)) 1860 panthor_heap_pool_destroy(vm->heaps.pool); 1861 mutex_unlock(&vm->heaps.lock); 1862 mutex_destroy(&vm->heaps.lock); 1863 1864 mutex_lock(&ptdev->mmu->vm.lock); 1865 list_del(&vm->node); 1866 /* Restore the scheduler state so we can call drm_sched_entity_destroy() 1867 * and drm_sched_fini(). If get there, that means we have no job left 1868 * and no new jobs can be queued, so we can start the scheduler without 1869 * risking interfering with the reset. 1870 */ 1871 if (ptdev->mmu->vm.reset_in_progress) 1872 panthor_vm_start(vm); 1873 mutex_unlock(&ptdev->mmu->vm.lock); 1874 1875 drm_sched_entity_destroy(&vm->entity); 1876 drm_sched_fini(&vm->sched); 1877 1878 mutex_lock(&ptdev->mmu->as.slots_lock); 1879 if (vm->as.id >= 0) { 1880 int cookie; 1881 1882 if (drm_dev_enter(&ptdev->base, &cookie)) { 1883 panthor_mmu_as_disable(ptdev, vm->as.id); 1884 drm_dev_exit(cookie); 1885 } 1886 1887 ptdev->mmu->as.slots[vm->as.id].vm = NULL; 1888 clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask); 1889 list_del(&vm->as.lru_node); 1890 } 1891 mutex_unlock(&ptdev->mmu->as.slots_lock); 1892 1893 free_io_pgtable_ops(vm->pgtbl_ops); 1894 1895 drm_mm_takedown(&vm->mm); 1896 kfree(vm); 1897 } 1898 1899 /** 1900 * panthor_vm_put() - Release a reference on a VM 1901 * @vm: VM to release the reference on. Can be NULL. 1902 */ 1903 void panthor_vm_put(struct panthor_vm *vm) 1904 { 1905 drm_gpuvm_put(vm ? &vm->base : NULL); 1906 } 1907 1908 /** 1909 * panthor_vm_get() - Get a VM reference 1910 * @vm: VM to get the reference on. Can be NULL. 1911 * 1912 * Return: @vm value. 1913 */ 1914 struct panthor_vm *panthor_vm_get(struct panthor_vm *vm) 1915 { 1916 if (vm) 1917 drm_gpuvm_get(&vm->base); 1918 1919 return vm; 1920 } 1921 1922 /** 1923 * panthor_vm_get_heap_pool() - Get the heap pool attached to a VM 1924 * @vm: VM to query the heap pool on. 1925 * @create: True if the heap pool should be created when it doesn't exist. 1926 * 1927 * Heap pools are per-VM. This function allows one to retrieve the heap pool 1928 * attached to a VM. 1929 * 1930 * If no heap pool exists yet, and @create is true, we create one. 1931 * 1932 * The returned panthor_heap_pool should be released with panthor_heap_pool_put(). 1933 * 1934 * Return: A valid pointer on success, an ERR_PTR() otherwise. 1935 */ 1936 struct panthor_heap_pool *panthor_vm_get_heap_pool(struct panthor_vm *vm, bool create) 1937 { 1938 struct panthor_heap_pool *pool; 1939 1940 mutex_lock(&vm->heaps.lock); 1941 if (!vm->heaps.pool && create) { 1942 if (vm->destroyed) 1943 pool = ERR_PTR(-EINVAL); 1944 else 1945 pool = panthor_heap_pool_create(vm->ptdev, vm); 1946 1947 if (!IS_ERR(pool)) 1948 vm->heaps.pool = panthor_heap_pool_get(pool); 1949 } else { 1950 pool = panthor_heap_pool_get(vm->heaps.pool); 1951 if (!pool) 1952 pool = ERR_PTR(-ENOENT); 1953 } 1954 mutex_unlock(&vm->heaps.lock); 1955 1956 return pool; 1957 } 1958 1959 /** 1960 * panthor_vm_heaps_sizes() - Calculate size of all heap chunks across all 1961 * heaps over all the heap pools in a VM 1962 * @pfile: File. 1963 * @stats: Memory stats to be updated. 1964 * 1965 * Calculate all heap chunk sizes in all heap pools bound to a VM. If the VM 1966 * is active, record the size as active as well. 1967 */ 1968 void panthor_vm_heaps_sizes(struct panthor_file *pfile, struct drm_memory_stats *stats) 1969 { 1970 struct panthor_vm *vm; 1971 unsigned long i; 1972 1973 if (!pfile->vms) 1974 return; 1975 1976 xa_lock(&pfile->vms->xa); 1977 xa_for_each(&pfile->vms->xa, i, vm) { 1978 size_t size = panthor_heap_pool_size(vm->heaps.pool); 1979 stats->resident += size; 1980 if (vm->as.id >= 0) 1981 stats->active += size; 1982 } 1983 xa_unlock(&pfile->vms->xa); 1984 } 1985 1986 static u64 mair_to_memattr(u64 mair, bool coherent) 1987 { 1988 u64 memattr = 0; 1989 u32 i; 1990 1991 for (i = 0; i < 8; i++) { 1992 u8 in_attr = mair >> (8 * i), out_attr; 1993 u8 outer = in_attr >> 4, inner = in_attr & 0xf; 1994 1995 /* For caching to be enabled, inner and outer caching policy 1996 * have to be both write-back, if one of them is write-through 1997 * or non-cacheable, we just choose non-cacheable. Device 1998 * memory is also translated to non-cacheable. 1999 */ 2000 if (!(outer & 3) || !(outer & 4) || !(inner & 4)) { 2001 out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_NC | 2002 AS_MEMATTR_AARCH64_SH_MIDGARD_INNER | 2003 AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(false, false); 2004 } else { 2005 out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_WB | 2006 AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(inner & 1, inner & 2); 2007 /* Use SH_MIDGARD_INNER mode when device isn't coherent, 2008 * so SH_IS, which is used when IOMMU_CACHE is set, maps 2009 * to Mali's internal-shareable mode. As per the Mali 2010 * Spec, inner and outer-shareable modes aren't allowed 2011 * for WB memory when coherency is disabled. 2012 * Use SH_CPU_INNER mode when coherency is enabled, so 2013 * that SH_IS actually maps to the standard definition of 2014 * inner-shareable. 2015 */ 2016 if (!coherent) 2017 out_attr |= AS_MEMATTR_AARCH64_SH_MIDGARD_INNER; 2018 else 2019 out_attr |= AS_MEMATTR_AARCH64_SH_CPU_INNER; 2020 } 2021 2022 memattr |= (u64)out_attr << (8 * i); 2023 } 2024 2025 return memattr; 2026 } 2027 2028 static void panthor_vma_link(struct panthor_vm *vm, 2029 struct panthor_vma *vma, 2030 struct drm_gpuvm_bo *vm_bo) 2031 { 2032 struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj); 2033 2034 mutex_lock(&bo->base.base.gpuva.lock); 2035 drm_gpuva_link(&vma->base, vm_bo); 2036 drm_WARN_ON(&vm->ptdev->base, drm_gpuvm_bo_put(vm_bo)); 2037 mutex_unlock(&bo->base.base.gpuva.lock); 2038 } 2039 2040 static void panthor_vma_unlink(struct panthor_vm *vm, 2041 struct panthor_vma *vma) 2042 { 2043 struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj); 2044 struct drm_gpuvm_bo *vm_bo = drm_gpuvm_bo_get(vma->base.vm_bo); 2045 2046 mutex_lock(&bo->base.base.gpuva.lock); 2047 drm_gpuva_unlink(&vma->base); 2048 mutex_unlock(&bo->base.base.gpuva.lock); 2049 2050 /* drm_gpuva_unlink() release the vm_bo, but we manually retained it 2051 * when entering this function, so we can implement deferred VMA 2052 * destruction. Re-assign it here. 2053 */ 2054 vma->base.vm_bo = vm_bo; 2055 list_add_tail(&vma->node, &vm->op_ctx->returned_vmas); 2056 } 2057 2058 static void panthor_vma_init(struct panthor_vma *vma, u32 flags) 2059 { 2060 INIT_LIST_HEAD(&vma->node); 2061 vma->flags = flags; 2062 } 2063 2064 #define PANTHOR_VM_MAP_FLAGS \ 2065 (DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \ 2066 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \ 2067 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED) 2068 2069 static int panthor_gpuva_sm_step_map(struct drm_gpuva_op *op, void *priv) 2070 { 2071 struct panthor_vm *vm = priv; 2072 struct panthor_vm_op_ctx *op_ctx = vm->op_ctx; 2073 struct panthor_vma *vma = panthor_vm_op_ctx_get_vma(op_ctx); 2074 int ret; 2075 2076 if (!vma) 2077 return -EINVAL; 2078 2079 panthor_vma_init(vma, op_ctx->flags & PANTHOR_VM_MAP_FLAGS); 2080 2081 ret = panthor_vm_map_pages(vm, op->map.va.addr, flags_to_prot(vma->flags), 2082 op_ctx->map.sgt, op->map.gem.offset, 2083 op->map.va.range); 2084 if (ret) 2085 return ret; 2086 2087 /* Ref owned by the mapping now, clear the obj field so we don't release the 2088 * pinning/obj ref behind GPUVA's back. 2089 */ 2090 drm_gpuva_map(&vm->base, &vma->base, &op->map); 2091 panthor_vma_link(vm, vma, op_ctx->map.vm_bo); 2092 op_ctx->map.vm_bo = NULL; 2093 return 0; 2094 } 2095 2096 static int panthor_gpuva_sm_step_remap(struct drm_gpuva_op *op, 2097 void *priv) 2098 { 2099 struct panthor_vma *unmap_vma = container_of(op->remap.unmap->va, struct panthor_vma, base); 2100 struct panthor_vm *vm = priv; 2101 struct panthor_vm_op_ctx *op_ctx = vm->op_ctx; 2102 struct panthor_vma *prev_vma = NULL, *next_vma = NULL; 2103 u64 unmap_start, unmap_range; 2104 int ret; 2105 2106 drm_gpuva_op_remap_to_unmap_range(&op->remap, &unmap_start, &unmap_range); 2107 ret = panthor_vm_unmap_pages(vm, unmap_start, unmap_range); 2108 if (ret) 2109 return ret; 2110 2111 if (op->remap.prev) { 2112 prev_vma = panthor_vm_op_ctx_get_vma(op_ctx); 2113 panthor_vma_init(prev_vma, unmap_vma->flags); 2114 } 2115 2116 if (op->remap.next) { 2117 next_vma = panthor_vm_op_ctx_get_vma(op_ctx); 2118 panthor_vma_init(next_vma, unmap_vma->flags); 2119 } 2120 2121 drm_gpuva_remap(prev_vma ? &prev_vma->base : NULL, 2122 next_vma ? &next_vma->base : NULL, 2123 &op->remap); 2124 2125 if (prev_vma) { 2126 /* panthor_vma_link() transfers the vm_bo ownership to 2127 * the VMA object. Since the vm_bo we're passing is still 2128 * owned by the old mapping which will be released when this 2129 * mapping is destroyed, we need to grab a ref here. 2130 */ 2131 panthor_vma_link(vm, prev_vma, 2132 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo)); 2133 } 2134 2135 if (next_vma) { 2136 panthor_vma_link(vm, next_vma, 2137 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo)); 2138 } 2139 2140 panthor_vma_unlink(vm, unmap_vma); 2141 return 0; 2142 } 2143 2144 static int panthor_gpuva_sm_step_unmap(struct drm_gpuva_op *op, 2145 void *priv) 2146 { 2147 struct panthor_vma *unmap_vma = container_of(op->unmap.va, struct panthor_vma, base); 2148 struct panthor_vm *vm = priv; 2149 int ret; 2150 2151 ret = panthor_vm_unmap_pages(vm, unmap_vma->base.va.addr, 2152 unmap_vma->base.va.range); 2153 if (drm_WARN_ON(&vm->ptdev->base, ret)) 2154 return ret; 2155 2156 drm_gpuva_unmap(&op->unmap); 2157 panthor_vma_unlink(vm, unmap_vma); 2158 return 0; 2159 } 2160 2161 static const struct drm_gpuvm_ops panthor_gpuvm_ops = { 2162 .vm_free = panthor_vm_free, 2163 .sm_step_map = panthor_gpuva_sm_step_map, 2164 .sm_step_remap = panthor_gpuva_sm_step_remap, 2165 .sm_step_unmap = panthor_gpuva_sm_step_unmap, 2166 }; 2167 2168 /** 2169 * panthor_vm_resv() - Get the dma_resv object attached to a VM. 2170 * @vm: VM to get the dma_resv of. 2171 * 2172 * Return: A dma_resv object. 2173 */ 2174 struct dma_resv *panthor_vm_resv(struct panthor_vm *vm) 2175 { 2176 return drm_gpuvm_resv(&vm->base); 2177 } 2178 2179 struct drm_gem_object *panthor_vm_root_gem(struct panthor_vm *vm) 2180 { 2181 if (!vm) 2182 return NULL; 2183 2184 return vm->base.r_obj; 2185 } 2186 2187 static int 2188 panthor_vm_exec_op(struct panthor_vm *vm, struct panthor_vm_op_ctx *op, 2189 bool flag_vm_unusable_on_failure) 2190 { 2191 u32 op_type = op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK; 2192 int ret; 2193 2194 if (op_type == DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY) 2195 return 0; 2196 2197 mutex_lock(&vm->op_lock); 2198 vm->op_ctx = op; 2199 switch (op_type) { 2200 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: { 2201 const struct drm_gpuvm_map_req map_req = { 2202 .map.va.addr = op->va.addr, 2203 .map.va.range = op->va.range, 2204 .map.gem.obj = op->map.vm_bo->obj, 2205 .map.gem.offset = op->map.bo_offset, 2206 }; 2207 2208 if (vm->unusable) { 2209 ret = -EINVAL; 2210 break; 2211 } 2212 2213 ret = drm_gpuvm_sm_map(&vm->base, vm, &map_req); 2214 break; 2215 } 2216 2217 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP: 2218 ret = drm_gpuvm_sm_unmap(&vm->base, vm, op->va.addr, op->va.range); 2219 break; 2220 2221 default: 2222 ret = -EINVAL; 2223 break; 2224 } 2225 2226 if (ret && flag_vm_unusable_on_failure) 2227 vm->unusable = true; 2228 2229 vm->op_ctx = NULL; 2230 mutex_unlock(&vm->op_lock); 2231 2232 return ret; 2233 } 2234 2235 static struct dma_fence * 2236 panthor_vm_bind_run_job(struct drm_sched_job *sched_job) 2237 { 2238 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base); 2239 bool cookie; 2240 int ret; 2241 2242 /* Not only we report an error whose result is propagated to the 2243 * drm_sched finished fence, but we also flag the VM as unusable, because 2244 * a failure in the async VM_BIND results in an inconsistent state. VM needs 2245 * to be destroyed and recreated. 2246 */ 2247 cookie = dma_fence_begin_signalling(); 2248 ret = panthor_vm_exec_op(job->vm, &job->ctx, true); 2249 dma_fence_end_signalling(cookie); 2250 2251 return ret ? ERR_PTR(ret) : NULL; 2252 } 2253 2254 static void panthor_vm_bind_job_release(struct kref *kref) 2255 { 2256 struct panthor_vm_bind_job *job = container_of(kref, struct panthor_vm_bind_job, refcount); 2257 2258 if (job->base.s_fence) 2259 drm_sched_job_cleanup(&job->base); 2260 2261 panthor_vm_cleanup_op_ctx(&job->ctx, job->vm); 2262 panthor_vm_put(job->vm); 2263 kfree(job); 2264 } 2265 2266 /** 2267 * panthor_vm_bind_job_put() - Release a VM_BIND job reference 2268 * @sched_job: Job to release the reference on. 2269 */ 2270 void panthor_vm_bind_job_put(struct drm_sched_job *sched_job) 2271 { 2272 struct panthor_vm_bind_job *job = 2273 container_of(sched_job, struct panthor_vm_bind_job, base); 2274 2275 if (sched_job) 2276 kref_put(&job->refcount, panthor_vm_bind_job_release); 2277 } 2278 2279 static void 2280 panthor_vm_bind_free_job(struct drm_sched_job *sched_job) 2281 { 2282 struct panthor_vm_bind_job *job = 2283 container_of(sched_job, struct panthor_vm_bind_job, base); 2284 2285 drm_sched_job_cleanup(sched_job); 2286 2287 /* Do the heavy cleanups asynchronously, so we're out of the 2288 * dma-signaling path and can acquire dma-resv locks safely. 2289 */ 2290 queue_work(panthor_cleanup_wq, &job->cleanup_op_ctx_work); 2291 } 2292 2293 static enum drm_gpu_sched_stat 2294 panthor_vm_bind_timedout_job(struct drm_sched_job *sched_job) 2295 { 2296 WARN(1, "VM_BIND ops are synchronous for now, there should be no timeout!"); 2297 return DRM_GPU_SCHED_STAT_RESET; 2298 } 2299 2300 static const struct drm_sched_backend_ops panthor_vm_bind_ops = { 2301 .run_job = panthor_vm_bind_run_job, 2302 .free_job = panthor_vm_bind_free_job, 2303 .timedout_job = panthor_vm_bind_timedout_job, 2304 }; 2305 2306 /** 2307 * panthor_vm_create() - Create a VM 2308 * @ptdev: Device. 2309 * @for_mcu: True if this is the FW MCU VM. 2310 * @kernel_va_start: Start of the range reserved for kernel BO mapping. 2311 * @kernel_va_size: Size of the range reserved for kernel BO mapping. 2312 * @auto_kernel_va_start: Start of the auto-VA kernel range. 2313 * @auto_kernel_va_size: Size of the auto-VA kernel range. 2314 * 2315 * Return: A valid pointer on success, an ERR_PTR() otherwise. 2316 */ 2317 struct panthor_vm * 2318 panthor_vm_create(struct panthor_device *ptdev, bool for_mcu, 2319 u64 kernel_va_start, u64 kernel_va_size, 2320 u64 auto_kernel_va_start, u64 auto_kernel_va_size) 2321 { 2322 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 2323 u32 pa_bits = GPU_MMU_FEATURES_PA_BITS(ptdev->gpu_info.mmu_features); 2324 u64 full_va_range = 1ull << va_bits; 2325 struct drm_gem_object *dummy_gem; 2326 struct drm_gpu_scheduler *sched; 2327 const struct drm_sched_init_args sched_args = { 2328 .ops = &panthor_vm_bind_ops, 2329 .submit_wq = ptdev->mmu->vm.wq, 2330 .num_rqs = 1, 2331 .credit_limit = 1, 2332 /* Bind operations are synchronous for now, no timeout needed. */ 2333 .timeout = MAX_SCHEDULE_TIMEOUT, 2334 .name = "panthor-vm-bind", 2335 .dev = ptdev->base.dev, 2336 }; 2337 struct io_pgtable_cfg pgtbl_cfg; 2338 u64 mair, min_va, va_range; 2339 struct panthor_vm *vm; 2340 int ret; 2341 2342 vm = kzalloc(sizeof(*vm), GFP_KERNEL); 2343 if (!vm) 2344 return ERR_PTR(-ENOMEM); 2345 2346 /* We allocate a dummy GEM for the VM. */ 2347 dummy_gem = drm_gpuvm_resv_object_alloc(&ptdev->base); 2348 if (!dummy_gem) { 2349 ret = -ENOMEM; 2350 goto err_free_vm; 2351 } 2352 2353 mutex_init(&vm->heaps.lock); 2354 vm->for_mcu = for_mcu; 2355 vm->ptdev = ptdev; 2356 mutex_init(&vm->op_lock); 2357 2358 if (for_mcu) { 2359 /* CSF MCU is a cortex M7, and can only address 4G */ 2360 min_va = 0; 2361 va_range = SZ_4G; 2362 } else { 2363 min_va = 0; 2364 va_range = full_va_range; 2365 } 2366 2367 mutex_init(&vm->mm_lock); 2368 drm_mm_init(&vm->mm, kernel_va_start, kernel_va_size); 2369 vm->kernel_auto_va.start = auto_kernel_va_start; 2370 vm->kernel_auto_va.end = vm->kernel_auto_va.start + auto_kernel_va_size - 1; 2371 2372 INIT_LIST_HEAD(&vm->node); 2373 INIT_LIST_HEAD(&vm->as.lru_node); 2374 vm->as.id = -1; 2375 refcount_set(&vm->as.active_cnt, 0); 2376 2377 pgtbl_cfg = (struct io_pgtable_cfg) { 2378 .pgsize_bitmap = SZ_4K | SZ_2M, 2379 .ias = va_bits, 2380 .oas = pa_bits, 2381 .coherent_walk = ptdev->coherent, 2382 .tlb = &mmu_tlb_ops, 2383 .iommu_dev = ptdev->base.dev, 2384 .alloc = alloc_pt, 2385 .free = free_pt, 2386 }; 2387 2388 vm->pgtbl_ops = alloc_io_pgtable_ops(ARM_64_LPAE_S1, &pgtbl_cfg, vm); 2389 if (!vm->pgtbl_ops) { 2390 ret = -EINVAL; 2391 goto err_mm_takedown; 2392 } 2393 2394 ret = drm_sched_init(&vm->sched, &sched_args); 2395 if (ret) 2396 goto err_free_io_pgtable; 2397 2398 sched = &vm->sched; 2399 ret = drm_sched_entity_init(&vm->entity, 0, &sched, 1, NULL); 2400 if (ret) 2401 goto err_sched_fini; 2402 2403 mair = io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg.arm_lpae_s1_cfg.mair; 2404 vm->memattr = mair_to_memattr(mair, ptdev->coherent); 2405 2406 mutex_lock(&ptdev->mmu->vm.lock); 2407 list_add_tail(&vm->node, &ptdev->mmu->vm.list); 2408 2409 /* If a reset is in progress, stop the scheduler. */ 2410 if (ptdev->mmu->vm.reset_in_progress) 2411 panthor_vm_stop(vm); 2412 mutex_unlock(&ptdev->mmu->vm.lock); 2413 2414 /* We intentionally leave the reserved range to zero, because we want kernel VMAs 2415 * to be handled the same way user VMAs are. 2416 */ 2417 drm_gpuvm_init(&vm->base, for_mcu ? "panthor-MCU-VM" : "panthor-GPU-VM", 2418 DRM_GPUVM_RESV_PROTECTED | DRM_GPUVM_IMMEDIATE_MODE, 2419 &ptdev->base, dummy_gem, min_va, va_range, 0, 0, 2420 &panthor_gpuvm_ops); 2421 drm_gem_object_put(dummy_gem); 2422 return vm; 2423 2424 err_sched_fini: 2425 drm_sched_fini(&vm->sched); 2426 2427 err_free_io_pgtable: 2428 free_io_pgtable_ops(vm->pgtbl_ops); 2429 2430 err_mm_takedown: 2431 drm_mm_takedown(&vm->mm); 2432 drm_gem_object_put(dummy_gem); 2433 2434 err_free_vm: 2435 kfree(vm); 2436 return ERR_PTR(ret); 2437 } 2438 2439 static int 2440 panthor_vm_bind_prepare_op_ctx(struct drm_file *file, 2441 struct panthor_vm *vm, 2442 const struct drm_panthor_vm_bind_op *op, 2443 struct panthor_vm_op_ctx *op_ctx) 2444 { 2445 ssize_t vm_pgsz = panthor_vm_page_size(vm); 2446 struct drm_gem_object *gem; 2447 int ret; 2448 2449 /* Aligned on page size. */ 2450 if (!IS_ALIGNED(op->va | op->size | op->bo_offset, vm_pgsz)) 2451 return -EINVAL; 2452 2453 switch (op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) { 2454 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: 2455 gem = drm_gem_object_lookup(file, op->bo_handle); 2456 ret = panthor_vm_prepare_map_op_ctx(op_ctx, vm, 2457 gem ? to_panthor_bo(gem) : NULL, 2458 op->bo_offset, 2459 op->size, 2460 op->va, 2461 op->flags); 2462 drm_gem_object_put(gem); 2463 return ret; 2464 2465 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP: 2466 if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) 2467 return -EINVAL; 2468 2469 if (op->bo_handle || op->bo_offset) 2470 return -EINVAL; 2471 2472 return panthor_vm_prepare_unmap_op_ctx(op_ctx, vm, op->va, op->size); 2473 2474 case DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY: 2475 if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) 2476 return -EINVAL; 2477 2478 if (op->bo_handle || op->bo_offset) 2479 return -EINVAL; 2480 2481 if (op->va || op->size) 2482 return -EINVAL; 2483 2484 if (!op->syncs.count) 2485 return -EINVAL; 2486 2487 panthor_vm_prepare_sync_only_op_ctx(op_ctx, vm); 2488 return 0; 2489 2490 default: 2491 return -EINVAL; 2492 } 2493 } 2494 2495 static void panthor_vm_bind_job_cleanup_op_ctx_work(struct work_struct *work) 2496 { 2497 struct panthor_vm_bind_job *job = 2498 container_of(work, struct panthor_vm_bind_job, cleanup_op_ctx_work); 2499 2500 panthor_vm_bind_job_put(&job->base); 2501 } 2502 2503 /** 2504 * panthor_vm_bind_job_create() - Create a VM_BIND job 2505 * @file: File. 2506 * @vm: VM targeted by the VM_BIND job. 2507 * @op: VM operation data. 2508 * 2509 * Return: A valid pointer on success, an ERR_PTR() otherwise. 2510 */ 2511 struct drm_sched_job * 2512 panthor_vm_bind_job_create(struct drm_file *file, 2513 struct panthor_vm *vm, 2514 const struct drm_panthor_vm_bind_op *op) 2515 { 2516 struct panthor_vm_bind_job *job; 2517 int ret; 2518 2519 if (!vm) 2520 return ERR_PTR(-EINVAL); 2521 2522 if (vm->destroyed || vm->unusable) 2523 return ERR_PTR(-EINVAL); 2524 2525 job = kzalloc(sizeof(*job), GFP_KERNEL); 2526 if (!job) 2527 return ERR_PTR(-ENOMEM); 2528 2529 ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &job->ctx); 2530 if (ret) { 2531 kfree(job); 2532 return ERR_PTR(ret); 2533 } 2534 2535 INIT_WORK(&job->cleanup_op_ctx_work, panthor_vm_bind_job_cleanup_op_ctx_work); 2536 kref_init(&job->refcount); 2537 job->vm = panthor_vm_get(vm); 2538 2539 ret = drm_sched_job_init(&job->base, &vm->entity, 1, vm, file->client_id); 2540 if (ret) 2541 goto err_put_job; 2542 2543 return &job->base; 2544 2545 err_put_job: 2546 panthor_vm_bind_job_put(&job->base); 2547 return ERR_PTR(ret); 2548 } 2549 2550 /** 2551 * panthor_vm_bind_job_prepare_resvs() - Prepare VM_BIND job dma_resvs 2552 * @exec: The locking/preparation context. 2553 * @sched_job: The job to prepare resvs on. 2554 * 2555 * Locks and prepare the VM resv. 2556 * 2557 * If this is a map operation, locks and prepares the GEM resv. 2558 * 2559 * Return: 0 on success, a negative error code otherwise. 2560 */ 2561 int panthor_vm_bind_job_prepare_resvs(struct drm_exec *exec, 2562 struct drm_sched_job *sched_job) 2563 { 2564 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base); 2565 int ret; 2566 2567 /* Acquire the VM lock an reserve a slot for this VM bind job. */ 2568 ret = drm_gpuvm_prepare_vm(&job->vm->base, exec, 1); 2569 if (ret) 2570 return ret; 2571 2572 if (job->ctx.map.vm_bo) { 2573 /* Lock/prepare the GEM being mapped. */ 2574 ret = drm_exec_prepare_obj(exec, job->ctx.map.vm_bo->obj, 1); 2575 if (ret) 2576 return ret; 2577 } 2578 2579 return 0; 2580 } 2581 2582 /** 2583 * panthor_vm_bind_job_update_resvs() - Update the resv objects touched by a job 2584 * @exec: drm_exec context. 2585 * @sched_job: Job to update the resvs on. 2586 */ 2587 void panthor_vm_bind_job_update_resvs(struct drm_exec *exec, 2588 struct drm_sched_job *sched_job) 2589 { 2590 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base); 2591 2592 /* Explicit sync => we just register our job finished fence as bookkeep. */ 2593 drm_gpuvm_resv_add_fence(&job->vm->base, exec, 2594 &sched_job->s_fence->finished, 2595 DMA_RESV_USAGE_BOOKKEEP, 2596 DMA_RESV_USAGE_BOOKKEEP); 2597 } 2598 2599 void panthor_vm_update_resvs(struct panthor_vm *vm, struct drm_exec *exec, 2600 struct dma_fence *fence, 2601 enum dma_resv_usage private_usage, 2602 enum dma_resv_usage extobj_usage) 2603 { 2604 drm_gpuvm_resv_add_fence(&vm->base, exec, fence, private_usage, extobj_usage); 2605 } 2606 2607 /** 2608 * panthor_vm_bind_exec_sync_op() - Execute a VM_BIND operation synchronously. 2609 * @file: File. 2610 * @vm: VM targeted by the VM operation. 2611 * @op: Data describing the VM operation. 2612 * 2613 * Return: 0 on success, a negative error code otherwise. 2614 */ 2615 int panthor_vm_bind_exec_sync_op(struct drm_file *file, 2616 struct panthor_vm *vm, 2617 struct drm_panthor_vm_bind_op *op) 2618 { 2619 struct panthor_vm_op_ctx op_ctx; 2620 int ret; 2621 2622 /* No sync objects allowed on synchronous operations. */ 2623 if (op->syncs.count) 2624 return -EINVAL; 2625 2626 if (!op->size) 2627 return 0; 2628 2629 ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &op_ctx); 2630 if (ret) 2631 return ret; 2632 2633 ret = panthor_vm_exec_op(vm, &op_ctx, false); 2634 panthor_vm_cleanup_op_ctx(&op_ctx, vm); 2635 2636 return ret; 2637 } 2638 2639 /** 2640 * panthor_vm_map_bo_range() - Map a GEM object range to a VM 2641 * @vm: VM to map the GEM to. 2642 * @bo: GEM object to map. 2643 * @offset: Offset in the GEM object. 2644 * @size: Size to map. 2645 * @va: Virtual address to map the object to. 2646 * @flags: Combination of drm_panthor_vm_bind_op_flags flags. 2647 * Only map-related flags are valid. 2648 * 2649 * Internal use only. For userspace requests, use 2650 * panthor_vm_bind_exec_sync_op() instead. 2651 * 2652 * Return: 0 on success, a negative error code otherwise. 2653 */ 2654 int panthor_vm_map_bo_range(struct panthor_vm *vm, struct panthor_gem_object *bo, 2655 u64 offset, u64 size, u64 va, u32 flags) 2656 { 2657 struct panthor_vm_op_ctx op_ctx; 2658 int ret; 2659 2660 ret = panthor_vm_prepare_map_op_ctx(&op_ctx, vm, bo, offset, size, va, flags); 2661 if (ret) 2662 return ret; 2663 2664 ret = panthor_vm_exec_op(vm, &op_ctx, false); 2665 panthor_vm_cleanup_op_ctx(&op_ctx, vm); 2666 2667 return ret; 2668 } 2669 2670 /** 2671 * panthor_vm_unmap_range() - Unmap a portion of the VA space 2672 * @vm: VM to unmap the region from. 2673 * @va: Virtual address to unmap. Must be 4k aligned. 2674 * @size: Size of the region to unmap. Must be 4k aligned. 2675 * 2676 * Internal use only. For userspace requests, use 2677 * panthor_vm_bind_exec_sync_op() instead. 2678 * 2679 * Return: 0 on success, a negative error code otherwise. 2680 */ 2681 int panthor_vm_unmap_range(struct panthor_vm *vm, u64 va, u64 size) 2682 { 2683 struct panthor_vm_op_ctx op_ctx; 2684 int ret; 2685 2686 ret = panthor_vm_prepare_unmap_op_ctx(&op_ctx, vm, va, size); 2687 if (ret) 2688 return ret; 2689 2690 ret = panthor_vm_exec_op(vm, &op_ctx, false); 2691 panthor_vm_cleanup_op_ctx(&op_ctx, vm); 2692 2693 return ret; 2694 } 2695 2696 /** 2697 * panthor_vm_prepare_mapped_bos_resvs() - Prepare resvs on VM BOs. 2698 * @exec: Locking/preparation context. 2699 * @vm: VM targeted by the GPU job. 2700 * @slot_count: Number of slots to reserve. 2701 * 2702 * GPU jobs assume all BOs bound to the VM at the time the job is submitted 2703 * are available when the job is executed. In order to guarantee that, we 2704 * need to reserve a slot on all BOs mapped to a VM and update this slot with 2705 * the job fence after its submission. 2706 * 2707 * Return: 0 on success, a negative error code otherwise. 2708 */ 2709 int panthor_vm_prepare_mapped_bos_resvs(struct drm_exec *exec, struct panthor_vm *vm, 2710 u32 slot_count) 2711 { 2712 int ret; 2713 2714 /* Acquire the VM lock and reserve a slot for this GPU job. */ 2715 ret = drm_gpuvm_prepare_vm(&vm->base, exec, slot_count); 2716 if (ret) 2717 return ret; 2718 2719 return drm_gpuvm_prepare_objects(&vm->base, exec, slot_count); 2720 } 2721 2722 /** 2723 * panthor_mmu_unplug() - Unplug the MMU logic 2724 * @ptdev: Device. 2725 * 2726 * No access to the MMU regs should be done after this function is called. 2727 * We suspend the IRQ and disable all VMs to guarantee that. 2728 */ 2729 void panthor_mmu_unplug(struct panthor_device *ptdev) 2730 { 2731 if (!IS_ENABLED(CONFIG_PM) || pm_runtime_active(ptdev->base.dev)) 2732 panthor_mmu_irq_suspend(&ptdev->mmu->irq); 2733 2734 mutex_lock(&ptdev->mmu->as.slots_lock); 2735 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) { 2736 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm; 2737 2738 if (vm) { 2739 drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i)); 2740 panthor_vm_release_as_locked(vm); 2741 } 2742 } 2743 mutex_unlock(&ptdev->mmu->as.slots_lock); 2744 } 2745 2746 static void panthor_mmu_release_wq(struct drm_device *ddev, void *res) 2747 { 2748 destroy_workqueue(res); 2749 } 2750 2751 /** 2752 * panthor_mmu_init() - Initialize the MMU logic. 2753 * @ptdev: Device. 2754 * 2755 * Return: 0 on success, a negative error code otherwise. 2756 */ 2757 int panthor_mmu_init(struct panthor_device *ptdev) 2758 { 2759 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 2760 struct panthor_mmu *mmu; 2761 int ret, irq; 2762 2763 mmu = drmm_kzalloc(&ptdev->base, sizeof(*mmu), GFP_KERNEL); 2764 if (!mmu) 2765 return -ENOMEM; 2766 2767 INIT_LIST_HEAD(&mmu->as.lru_list); 2768 2769 ret = drmm_mutex_init(&ptdev->base, &mmu->as.slots_lock); 2770 if (ret) 2771 return ret; 2772 2773 INIT_LIST_HEAD(&mmu->vm.list); 2774 ret = drmm_mutex_init(&ptdev->base, &mmu->vm.lock); 2775 if (ret) 2776 return ret; 2777 2778 ptdev->mmu = mmu; 2779 2780 irq = platform_get_irq_byname(to_platform_device(ptdev->base.dev), "mmu"); 2781 if (irq <= 0) 2782 return -ENODEV; 2783 2784 ret = panthor_request_mmu_irq(ptdev, &mmu->irq, irq, 2785 panthor_mmu_fault_mask(ptdev, ~0)); 2786 if (ret) 2787 return ret; 2788 2789 mmu->vm.wq = alloc_workqueue("panthor-vm-bind", WQ_UNBOUND, 0); 2790 if (!mmu->vm.wq) 2791 return -ENOMEM; 2792 2793 /* On 32-bit kernels, the VA space is limited by the io_pgtable_ops abstraction, 2794 * which passes iova as an unsigned long. Patch the mmu_features to reflect this 2795 * limitation. 2796 */ 2797 if (va_bits > BITS_PER_LONG) { 2798 ptdev->gpu_info.mmu_features &= ~GENMASK(7, 0); 2799 ptdev->gpu_info.mmu_features |= BITS_PER_LONG; 2800 } 2801 2802 return drmm_add_action_or_reset(&ptdev->base, panthor_mmu_release_wq, mmu->vm.wq); 2803 } 2804 2805 #ifdef CONFIG_DEBUG_FS 2806 static int show_vm_gpuvas(struct panthor_vm *vm, struct seq_file *m) 2807 { 2808 int ret; 2809 2810 mutex_lock(&vm->op_lock); 2811 ret = drm_debugfs_gpuva_info(m, &vm->base); 2812 mutex_unlock(&vm->op_lock); 2813 2814 return ret; 2815 } 2816 2817 static int show_each_vm(struct seq_file *m, void *arg) 2818 { 2819 struct drm_info_node *node = (struct drm_info_node *)m->private; 2820 struct drm_device *ddev = node->minor->dev; 2821 struct panthor_device *ptdev = container_of(ddev, struct panthor_device, base); 2822 int (*show)(struct panthor_vm *, struct seq_file *) = node->info_ent->data; 2823 struct panthor_vm *vm; 2824 int ret = 0; 2825 2826 mutex_lock(&ptdev->mmu->vm.lock); 2827 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) { 2828 ret = show(vm, m); 2829 if (ret < 0) 2830 break; 2831 2832 seq_puts(m, "\n"); 2833 } 2834 mutex_unlock(&ptdev->mmu->vm.lock); 2835 2836 return ret; 2837 } 2838 2839 static struct drm_info_list panthor_mmu_debugfs_list[] = { 2840 DRM_DEBUGFS_GPUVA_INFO(show_each_vm, show_vm_gpuvas), 2841 }; 2842 2843 /** 2844 * panthor_mmu_debugfs_init() - Initialize MMU debugfs entries 2845 * @minor: Minor. 2846 */ 2847 void panthor_mmu_debugfs_init(struct drm_minor *minor) 2848 { 2849 drm_debugfs_create_files(panthor_mmu_debugfs_list, 2850 ARRAY_SIZE(panthor_mmu_debugfs_list), 2851 minor->debugfs_root, minor); 2852 } 2853 #endif /* CONFIG_DEBUG_FS */ 2854 2855 /** 2856 * panthor_mmu_pt_cache_init() - Initialize the page table cache. 2857 * 2858 * Return: 0 on success, a negative error code otherwise. 2859 */ 2860 int panthor_mmu_pt_cache_init(void) 2861 { 2862 pt_cache = kmem_cache_create("panthor-mmu-pt", SZ_4K, SZ_4K, 0, NULL); 2863 if (!pt_cache) 2864 return -ENOMEM; 2865 2866 return 0; 2867 } 2868 2869 /** 2870 * panthor_mmu_pt_cache_fini() - Destroy the page table cache. 2871 */ 2872 void panthor_mmu_pt_cache_fini(void) 2873 { 2874 kmem_cache_destroy(pt_cache); 2875 } 2876