1 // SPDX-License-Identifier: GPL-2.0 or MIT 2 /* Copyright 2019 Linaro, Ltd, Rob Herring <robh@kernel.org> */ 3 /* Copyright 2023 Collabora ltd. */ 4 5 #include <drm/drm_debugfs.h> 6 #include <drm/drm_drv.h> 7 #include <drm/drm_exec.h> 8 #include <drm/drm_gpuvm.h> 9 #include <drm/drm_managed.h> 10 #include <drm/gpu_scheduler.h> 11 #include <drm/panthor_drm.h> 12 13 #include <linux/atomic.h> 14 #include <linux/bitfield.h> 15 #include <linux/delay.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/interrupt.h> 18 #include <linux/io.h> 19 #include <linux/iopoll.h> 20 #include <linux/io-pgtable.h> 21 #include <linux/iommu.h> 22 #include <linux/kmemleak.h> 23 #include <linux/platform_device.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/rwsem.h> 26 #include <linux/sched.h> 27 #include <linux/shmem_fs.h> 28 #include <linux/sizes.h> 29 30 #include "panthor_device.h" 31 #include "panthor_gem.h" 32 #include "panthor_heap.h" 33 #include "panthor_mmu.h" 34 #include "panthor_regs.h" 35 #include "panthor_sched.h" 36 37 #define MAX_AS_SLOTS 32 38 39 struct panthor_vm; 40 41 /** 42 * struct panthor_as_slot - Address space slot 43 */ 44 struct panthor_as_slot { 45 /** @vm: VM bound to this slot. NULL is no VM is bound. */ 46 struct panthor_vm *vm; 47 }; 48 49 /** 50 * struct panthor_mmu - MMU related data 51 */ 52 struct panthor_mmu { 53 /** @irq: The MMU irq. */ 54 struct panthor_irq irq; 55 56 /** @as: Address space related fields. 57 * 58 * The GPU has a limited number of address spaces (AS) slots, forcing 59 * us to re-assign them to re-assign slots on-demand. 60 */ 61 struct { 62 /** @slots_lock: Lock protecting access to all other AS fields. */ 63 struct mutex slots_lock; 64 65 /** @alloc_mask: Bitmask encoding the allocated slots. */ 66 unsigned long alloc_mask; 67 68 /** @faulty_mask: Bitmask encoding the faulty slots. */ 69 unsigned long faulty_mask; 70 71 /** @slots: VMs currently bound to the AS slots. */ 72 struct panthor_as_slot slots[MAX_AS_SLOTS]; 73 74 /** 75 * @lru_list: List of least recently used VMs. 76 * 77 * We use this list to pick a VM to evict when all slots are 78 * used. 79 * 80 * There should be no more active VMs than there are AS slots, 81 * so this LRU is just here to keep VMs bound until there's 82 * a need to release a slot, thus avoid unnecessary TLB/cache 83 * flushes. 84 */ 85 struct list_head lru_list; 86 } as; 87 88 /** @vm: VMs management fields */ 89 struct { 90 /** @lock: Lock protecting access to list. */ 91 struct mutex lock; 92 93 /** @list: List containing all VMs. */ 94 struct list_head list; 95 96 /** @reset_in_progress: True if a reset is in progress. */ 97 bool reset_in_progress; 98 99 /** @wq: Workqueue used for the VM_BIND queues. */ 100 struct workqueue_struct *wq; 101 } vm; 102 }; 103 104 /** 105 * struct panthor_vm_pool - VM pool object 106 */ 107 struct panthor_vm_pool { 108 /** @xa: Array used for VM handle tracking. */ 109 struct xarray xa; 110 }; 111 112 /** 113 * struct panthor_vma - GPU mapping object 114 * 115 * This is used to track GEM mappings in GPU space. 116 */ 117 struct panthor_vma { 118 /** @base: Inherits from drm_gpuva. */ 119 struct drm_gpuva base; 120 121 /** @node: Used to implement deferred release of VMAs. */ 122 struct list_head node; 123 124 /** 125 * @flags: Combination of drm_panthor_vm_bind_op_flags. 126 * 127 * Only map related flags are accepted. 128 */ 129 u32 flags; 130 }; 131 132 /** 133 * struct panthor_vm_op_ctx - VM operation context 134 * 135 * With VM operations potentially taking place in a dma-signaling path, we 136 * need to make sure everything that might require resource allocation is 137 * pre-allocated upfront. This is what this operation context is far. 138 * 139 * We also collect resources that have been freed, so we can release them 140 * asynchronously, and let the VM_BIND scheduler process the next VM_BIND 141 * request. 142 */ 143 struct panthor_vm_op_ctx { 144 /** @rsvd_page_tables: Pages reserved for the MMU page table update. */ 145 struct { 146 /** @count: Number of pages reserved. */ 147 u32 count; 148 149 /** @ptr: Point to the first unused page in the @pages table. */ 150 u32 ptr; 151 152 /** 153 * @page: Array of pages that can be used for an MMU page table update. 154 * 155 * After an VM operation, there might be free pages left in this array. 156 * They should be returned to the pt_cache as part of the op_ctx cleanup. 157 */ 158 void **pages; 159 } rsvd_page_tables; 160 161 /** 162 * @preallocated_vmas: Pre-allocated VMAs to handle the remap case. 163 * 164 * Partial unmap requests or map requests overlapping existing mappings will 165 * trigger a remap call, which need to register up to three panthor_vma objects 166 * (one for the new mapping, and two for the previous and next mappings). 167 */ 168 struct panthor_vma *preallocated_vmas[3]; 169 170 /** @flags: Combination of drm_panthor_vm_bind_op_flags. */ 171 u32 flags; 172 173 /** @va: Virtual range targeted by the VM operation. */ 174 struct { 175 /** @addr: Start address. */ 176 u64 addr; 177 178 /** @range: Range size. */ 179 u64 range; 180 } va; 181 182 /** 183 * @returned_vmas: List of panthor_vma objects returned after a VM operation. 184 * 185 * For unmap operations, this will contain all VMAs that were covered by the 186 * specified VA range. 187 * 188 * For map operations, this will contain all VMAs that previously mapped to 189 * the specified VA range. 190 * 191 * Those VMAs, and the resources they point to will be released as part of 192 * the op_ctx cleanup operation. 193 */ 194 struct list_head returned_vmas; 195 196 /** @map: Fields specific to a map operation. */ 197 struct { 198 /** @vm_bo: Buffer object to map. */ 199 struct drm_gpuvm_bo *vm_bo; 200 201 /** @bo_offset: Offset in the buffer object. */ 202 u64 bo_offset; 203 204 /** 205 * @sgt: sg-table pointing to pages backing the GEM object. 206 * 207 * This is gathered at job creation time, such that we don't have 208 * to allocate in ::run_job(). 209 */ 210 struct sg_table *sgt; 211 212 /** 213 * @new_vma: The new VMA object that will be inserted to the VA tree. 214 */ 215 struct panthor_vma *new_vma; 216 } map; 217 }; 218 219 /** 220 * struct panthor_vm - VM object 221 * 222 * A VM is an object representing a GPU (or MCU) virtual address space. 223 * It embeds the MMU page table for this address space, a tree containing 224 * all the virtual mappings of GEM objects, and other things needed to manage 225 * the VM. 226 * 227 * Except for the MCU VM, which is managed by the kernel, all other VMs are 228 * created by userspace and mostly managed by userspace, using the 229 * %DRM_IOCTL_PANTHOR_VM_BIND ioctl. 230 * 231 * A portion of the virtual address space is reserved for kernel objects, 232 * like heap chunks, and userspace gets to decide how much of the virtual 233 * address space is left to the kernel (half of the virtual address space 234 * by default). 235 */ 236 struct panthor_vm { 237 /** 238 * @base: Inherit from drm_gpuvm. 239 * 240 * We delegate all the VA management to the common drm_gpuvm framework 241 * and only implement hooks to update the MMU page table. 242 */ 243 struct drm_gpuvm base; 244 245 /** 246 * @sched: Scheduler used for asynchronous VM_BIND request. 247 * 248 * We use a 1:1 scheduler here. 249 */ 250 struct drm_gpu_scheduler sched; 251 252 /** 253 * @entity: Scheduling entity representing the VM_BIND queue. 254 * 255 * There's currently one bind queue per VM. It doesn't make sense to 256 * allow more given the VM operations are serialized anyway. 257 */ 258 struct drm_sched_entity entity; 259 260 /** @ptdev: Device. */ 261 struct panthor_device *ptdev; 262 263 /** @memattr: Value to program to the AS_MEMATTR register. */ 264 u64 memattr; 265 266 /** @pgtbl_ops: Page table operations. */ 267 struct io_pgtable_ops *pgtbl_ops; 268 269 /** @root_page_table: Stores the root page table pointer. */ 270 void *root_page_table; 271 272 /** 273 * @op_lock: Lock used to serialize operations on a VM. 274 * 275 * The serialization of jobs queued to the VM_BIND queue is already 276 * taken care of by drm_sched, but we need to serialize synchronous 277 * and asynchronous VM_BIND request. This is what this lock is for. 278 */ 279 struct mutex op_lock; 280 281 /** 282 * @op_ctx: The context attached to the currently executing VM operation. 283 * 284 * NULL when no operation is in progress. 285 */ 286 struct panthor_vm_op_ctx *op_ctx; 287 288 /** 289 * @mm: Memory management object representing the auto-VA/kernel-VA. 290 * 291 * Used to auto-allocate VA space for kernel-managed objects (tiler 292 * heaps, ...). 293 * 294 * For the MCU VM, this is managing the VA range that's used to map 295 * all shared interfaces. 296 * 297 * For user VMs, the range is specified by userspace, and must not 298 * exceed half of the VA space addressable. 299 */ 300 struct drm_mm mm; 301 302 /** @mm_lock: Lock protecting the @mm field. */ 303 struct mutex mm_lock; 304 305 /** @kernel_auto_va: Automatic VA-range for kernel BOs. */ 306 struct { 307 /** @start: Start of the automatic VA-range for kernel BOs. */ 308 u64 start; 309 310 /** @size: Size of the automatic VA-range for kernel BOs. */ 311 u64 end; 312 } kernel_auto_va; 313 314 /** @as: Address space related fields. */ 315 struct { 316 /** 317 * @id: ID of the address space this VM is bound to. 318 * 319 * A value of -1 means the VM is inactive/not bound. 320 */ 321 int id; 322 323 /** @active_cnt: Number of active users of this VM. */ 324 refcount_t active_cnt; 325 326 /** 327 * @lru_node: Used to instead the VM in the panthor_mmu::as::lru_list. 328 * 329 * Active VMs should not be inserted in the LRU list. 330 */ 331 struct list_head lru_node; 332 } as; 333 334 /** 335 * @heaps: Tiler heap related fields. 336 */ 337 struct { 338 /** 339 * @pool: The heap pool attached to this VM. 340 * 341 * Will stay NULL until someone creates a heap context on this VM. 342 */ 343 struct panthor_heap_pool *pool; 344 345 /** @lock: Lock used to protect access to @pool. */ 346 struct mutex lock; 347 } heaps; 348 349 /** @node: Used to insert the VM in the panthor_mmu::vm::list. */ 350 struct list_head node; 351 352 /** @for_mcu: True if this is the MCU VM. */ 353 bool for_mcu; 354 355 /** 356 * @destroyed: True if the VM was destroyed. 357 * 358 * No further bind requests should be queued to a destroyed VM. 359 */ 360 bool destroyed; 361 362 /** 363 * @unusable: True if the VM has turned unusable because something 364 * bad happened during an asynchronous request. 365 * 366 * We don't try to recover from such failures, because this implies 367 * informing userspace about the specific operation that failed, and 368 * hoping the userspace driver can replay things from there. This all 369 * sounds very complicated for little gain. 370 * 371 * Instead, we should just flag the VM as unusable, and fail any 372 * further request targeting this VM. 373 * 374 * We also provide a way to query a VM state, so userspace can destroy 375 * it and create a new one. 376 * 377 * As an analogy, this would be mapped to a VK_ERROR_DEVICE_LOST 378 * situation, where the logical device needs to be re-created. 379 */ 380 bool unusable; 381 382 /** 383 * @unhandled_fault: Unhandled fault happened. 384 * 385 * This should be reported to the scheduler, and the queue/group be 386 * flagged as faulty as a result. 387 */ 388 bool unhandled_fault; 389 }; 390 391 /** 392 * struct panthor_vm_bind_job - VM bind job 393 */ 394 struct panthor_vm_bind_job { 395 /** @base: Inherit from drm_sched_job. */ 396 struct drm_sched_job base; 397 398 /** @refcount: Reference count. */ 399 struct kref refcount; 400 401 /** @cleanup_op_ctx_work: Work used to cleanup the VM operation context. */ 402 struct work_struct cleanup_op_ctx_work; 403 404 /** @vm: VM targeted by the VM operation. */ 405 struct panthor_vm *vm; 406 407 /** @ctx: Operation context. */ 408 struct panthor_vm_op_ctx ctx; 409 }; 410 411 /** 412 * @pt_cache: Cache used to allocate MMU page tables. 413 * 414 * The pre-allocation pattern forces us to over-allocate to plan for 415 * the worst case scenario, and return the pages we didn't use. 416 * 417 * Having a kmem_cache allows us to speed allocations. 418 */ 419 static struct kmem_cache *pt_cache; 420 421 /** 422 * alloc_pt() - Custom page table allocator 423 * @cookie: Cookie passed at page table allocation time. 424 * @size: Size of the page table. This size should be fixed, 425 * and determined at creation time based on the granule size. 426 * @gfp: GFP flags. 427 * 428 * We want a custom allocator so we can use a cache for page table 429 * allocations and amortize the cost of the over-reservation that's 430 * done to allow asynchronous VM operations. 431 * 432 * Return: non-NULL on success, NULL if the allocation failed for any 433 * reason. 434 */ 435 static void *alloc_pt(void *cookie, size_t size, gfp_t gfp) 436 { 437 struct panthor_vm *vm = cookie; 438 void *page; 439 440 /* Allocation of the root page table happening during init. */ 441 if (unlikely(!vm->root_page_table)) { 442 struct page *p; 443 444 drm_WARN_ON(&vm->ptdev->base, vm->op_ctx); 445 p = alloc_pages_node(dev_to_node(vm->ptdev->base.dev), 446 gfp | __GFP_ZERO, get_order(size)); 447 page = p ? page_address(p) : NULL; 448 vm->root_page_table = page; 449 return page; 450 } 451 452 /* We're not supposed to have anything bigger than 4k here, because we picked a 453 * 4k granule size at init time. 454 */ 455 if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K)) 456 return NULL; 457 458 /* We must have some op_ctx attached to the VM and it must have at least one 459 * free page. 460 */ 461 if (drm_WARN_ON(&vm->ptdev->base, !vm->op_ctx) || 462 drm_WARN_ON(&vm->ptdev->base, 463 vm->op_ctx->rsvd_page_tables.ptr >= vm->op_ctx->rsvd_page_tables.count)) 464 return NULL; 465 466 page = vm->op_ctx->rsvd_page_tables.pages[vm->op_ctx->rsvd_page_tables.ptr++]; 467 memset(page, 0, SZ_4K); 468 469 /* Page table entries don't use virtual addresses, which trips out 470 * kmemleak. kmemleak_alloc_phys() might work, but physical addresses 471 * are mixed with other fields, and I fear kmemleak won't detect that 472 * either. 473 * 474 * Let's just ignore memory passed to the page-table driver for now. 475 */ 476 kmemleak_ignore(page); 477 return page; 478 } 479 480 /** 481 * @free_pt() - Custom page table free function 482 * @cookie: Cookie passed at page table allocation time. 483 * @data: Page table to free. 484 * @size: Size of the page table. This size should be fixed, 485 * and determined at creation time based on the granule size. 486 */ 487 static void free_pt(void *cookie, void *data, size_t size) 488 { 489 struct panthor_vm *vm = cookie; 490 491 if (unlikely(vm->root_page_table == data)) { 492 free_pages((unsigned long)data, get_order(size)); 493 vm->root_page_table = NULL; 494 return; 495 } 496 497 if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K)) 498 return; 499 500 /* Return the page to the pt_cache. */ 501 kmem_cache_free(pt_cache, data); 502 } 503 504 static int wait_ready(struct panthor_device *ptdev, u32 as_nr) 505 { 506 int ret; 507 u32 val; 508 509 /* Wait for the MMU status to indicate there is no active command, in 510 * case one is pending. 511 */ 512 ret = readl_relaxed_poll_timeout_atomic(ptdev->iomem + AS_STATUS(as_nr), 513 val, !(val & AS_STATUS_AS_ACTIVE), 514 10, 100000); 515 516 if (ret) { 517 panthor_device_schedule_reset(ptdev); 518 drm_err(&ptdev->base, "AS_ACTIVE bit stuck\n"); 519 } 520 521 return ret; 522 } 523 524 static int write_cmd(struct panthor_device *ptdev, u32 as_nr, u32 cmd) 525 { 526 int status; 527 528 /* write AS_COMMAND when MMU is ready to accept another command */ 529 status = wait_ready(ptdev, as_nr); 530 if (!status) 531 gpu_write(ptdev, AS_COMMAND(as_nr), cmd); 532 533 return status; 534 } 535 536 static void lock_region(struct panthor_device *ptdev, u32 as_nr, 537 u64 region_start, u64 size) 538 { 539 u8 region_width; 540 u64 region; 541 u64 region_end = region_start + size; 542 543 if (!size) 544 return; 545 546 /* 547 * The locked region is a naturally aligned power of 2 block encoded as 548 * log2 minus(1). 549 * Calculate the desired start/end and look for the highest bit which 550 * differs. The smallest naturally aligned block must include this bit 551 * change, the desired region starts with this bit (and subsequent bits) 552 * zeroed and ends with the bit (and subsequent bits) set to one. 553 */ 554 region_width = max(fls64(region_start ^ (region_end - 1)), 555 const_ilog2(AS_LOCK_REGION_MIN_SIZE)) - 1; 556 557 /* 558 * Mask off the low bits of region_start (which would be ignored by 559 * the hardware anyway) 560 */ 561 region_start &= GENMASK_ULL(63, region_width); 562 563 region = region_width | region_start; 564 565 /* Lock the region that needs to be updated */ 566 gpu_write(ptdev, AS_LOCKADDR_LO(as_nr), lower_32_bits(region)); 567 gpu_write(ptdev, AS_LOCKADDR_HI(as_nr), upper_32_bits(region)); 568 write_cmd(ptdev, as_nr, AS_COMMAND_LOCK); 569 } 570 571 static int mmu_hw_do_operation_locked(struct panthor_device *ptdev, int as_nr, 572 u64 iova, u64 size, u32 op) 573 { 574 lockdep_assert_held(&ptdev->mmu->as.slots_lock); 575 576 if (as_nr < 0) 577 return 0; 578 579 /* 580 * If the AS number is greater than zero, then we can be sure 581 * the device is up and running, so we don't need to explicitly 582 * power it up 583 */ 584 585 if (op != AS_COMMAND_UNLOCK) 586 lock_region(ptdev, as_nr, iova, size); 587 588 /* Run the MMU operation */ 589 write_cmd(ptdev, as_nr, op); 590 591 /* Wait for the flush to complete */ 592 return wait_ready(ptdev, as_nr); 593 } 594 595 static int mmu_hw_do_operation(struct panthor_vm *vm, 596 u64 iova, u64 size, u32 op) 597 { 598 struct panthor_device *ptdev = vm->ptdev; 599 int ret; 600 601 mutex_lock(&ptdev->mmu->as.slots_lock); 602 ret = mmu_hw_do_operation_locked(ptdev, vm->as.id, iova, size, op); 603 mutex_unlock(&ptdev->mmu->as.slots_lock); 604 605 return ret; 606 } 607 608 static int panthor_mmu_as_enable(struct panthor_device *ptdev, u32 as_nr, 609 u64 transtab, u64 transcfg, u64 memattr) 610 { 611 int ret; 612 613 ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM); 614 if (ret) 615 return ret; 616 617 gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), lower_32_bits(transtab)); 618 gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), upper_32_bits(transtab)); 619 620 gpu_write(ptdev, AS_MEMATTR_LO(as_nr), lower_32_bits(memattr)); 621 gpu_write(ptdev, AS_MEMATTR_HI(as_nr), upper_32_bits(memattr)); 622 623 gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), lower_32_bits(transcfg)); 624 gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), upper_32_bits(transcfg)); 625 626 return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE); 627 } 628 629 static int panthor_mmu_as_disable(struct panthor_device *ptdev, u32 as_nr) 630 { 631 int ret; 632 633 ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM); 634 if (ret) 635 return ret; 636 637 gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), 0); 638 gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), 0); 639 640 gpu_write(ptdev, AS_MEMATTR_LO(as_nr), 0); 641 gpu_write(ptdev, AS_MEMATTR_HI(as_nr), 0); 642 643 gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), AS_TRANSCFG_ADRMODE_UNMAPPED); 644 gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), 0); 645 646 return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE); 647 } 648 649 static u32 panthor_mmu_fault_mask(struct panthor_device *ptdev, u32 value) 650 { 651 /* Bits 16 to 31 mean REQ_COMPLETE. */ 652 return value & GENMASK(15, 0); 653 } 654 655 static u32 panthor_mmu_as_fault_mask(struct panthor_device *ptdev, u32 as) 656 { 657 return BIT(as); 658 } 659 660 /** 661 * panthor_vm_has_unhandled_faults() - Check if a VM has unhandled faults 662 * @vm: VM to check. 663 * 664 * Return: true if the VM has unhandled faults, false otherwise. 665 */ 666 bool panthor_vm_has_unhandled_faults(struct panthor_vm *vm) 667 { 668 return vm->unhandled_fault; 669 } 670 671 /** 672 * panthor_vm_is_unusable() - Check if the VM is still usable 673 * @vm: VM to check. 674 * 675 * Return: true if the VM is unusable, false otherwise. 676 */ 677 bool panthor_vm_is_unusable(struct panthor_vm *vm) 678 { 679 return vm->unusable; 680 } 681 682 static void panthor_vm_release_as_locked(struct panthor_vm *vm) 683 { 684 struct panthor_device *ptdev = vm->ptdev; 685 686 lockdep_assert_held(&ptdev->mmu->as.slots_lock); 687 688 if (drm_WARN_ON(&ptdev->base, vm->as.id < 0)) 689 return; 690 691 ptdev->mmu->as.slots[vm->as.id].vm = NULL; 692 clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask); 693 refcount_set(&vm->as.active_cnt, 0); 694 list_del_init(&vm->as.lru_node); 695 vm->as.id = -1; 696 } 697 698 /** 699 * panthor_vm_active() - Flag a VM as active 700 * @VM: VM to flag as active. 701 * 702 * Assigns an address space to a VM so it can be used by the GPU/MCU. 703 * 704 * Return: 0 on success, a negative error code otherwise. 705 */ 706 int panthor_vm_active(struct panthor_vm *vm) 707 { 708 struct panthor_device *ptdev = vm->ptdev; 709 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 710 struct io_pgtable_cfg *cfg = &io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg; 711 int ret = 0, as, cookie; 712 u64 transtab, transcfg; 713 714 if (!drm_dev_enter(&ptdev->base, &cookie)) 715 return -ENODEV; 716 717 if (refcount_inc_not_zero(&vm->as.active_cnt)) 718 goto out_dev_exit; 719 720 mutex_lock(&ptdev->mmu->as.slots_lock); 721 722 if (refcount_inc_not_zero(&vm->as.active_cnt)) 723 goto out_unlock; 724 725 as = vm->as.id; 726 if (as >= 0) { 727 /* Unhandled pagefault on this AS, the MMU was disabled. We need to 728 * re-enable the MMU after clearing+unmasking the AS interrupts. 729 */ 730 if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) 731 goto out_enable_as; 732 733 goto out_make_active; 734 } 735 736 /* Check for a free AS */ 737 if (vm->for_mcu) { 738 drm_WARN_ON(&ptdev->base, ptdev->mmu->as.alloc_mask & BIT(0)); 739 as = 0; 740 } else { 741 as = ffz(ptdev->mmu->as.alloc_mask | BIT(0)); 742 } 743 744 if (!(BIT(as) & ptdev->gpu_info.as_present)) { 745 struct panthor_vm *lru_vm; 746 747 lru_vm = list_first_entry_or_null(&ptdev->mmu->as.lru_list, 748 struct panthor_vm, 749 as.lru_node); 750 if (drm_WARN_ON(&ptdev->base, !lru_vm)) { 751 ret = -EBUSY; 752 goto out_unlock; 753 } 754 755 drm_WARN_ON(&ptdev->base, refcount_read(&lru_vm->as.active_cnt)); 756 as = lru_vm->as.id; 757 panthor_vm_release_as_locked(lru_vm); 758 } 759 760 /* Assign the free or reclaimed AS to the FD */ 761 vm->as.id = as; 762 set_bit(as, &ptdev->mmu->as.alloc_mask); 763 ptdev->mmu->as.slots[as].vm = vm; 764 765 out_enable_as: 766 transtab = cfg->arm_lpae_s1_cfg.ttbr; 767 transcfg = AS_TRANSCFG_PTW_MEMATTR_WB | 768 AS_TRANSCFG_PTW_RA | 769 AS_TRANSCFG_ADRMODE_AARCH64_4K | 770 AS_TRANSCFG_INA_BITS(55 - va_bits); 771 if (ptdev->coherent) 772 transcfg |= AS_TRANSCFG_PTW_SH_OS; 773 774 /* If the VM is re-activated, we clear the fault. */ 775 vm->unhandled_fault = false; 776 777 /* Unhandled pagefault on this AS, clear the fault and re-enable interrupts 778 * before enabling the AS. 779 */ 780 if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) { 781 gpu_write(ptdev, MMU_INT_CLEAR, panthor_mmu_as_fault_mask(ptdev, as)); 782 ptdev->mmu->as.faulty_mask &= ~panthor_mmu_as_fault_mask(ptdev, as); 783 gpu_write(ptdev, MMU_INT_MASK, ~ptdev->mmu->as.faulty_mask); 784 } 785 786 ret = panthor_mmu_as_enable(vm->ptdev, vm->as.id, transtab, transcfg, vm->memattr); 787 788 out_make_active: 789 if (!ret) { 790 refcount_set(&vm->as.active_cnt, 1); 791 list_del_init(&vm->as.lru_node); 792 } 793 794 out_unlock: 795 mutex_unlock(&ptdev->mmu->as.slots_lock); 796 797 out_dev_exit: 798 drm_dev_exit(cookie); 799 return ret; 800 } 801 802 /** 803 * panthor_vm_idle() - Flag a VM idle 804 * @VM: VM to flag as idle. 805 * 806 * When we know the GPU is done with the VM (no more jobs to process), 807 * we can relinquish the AS slot attached to this VM, if any. 808 * 809 * We don't release the slot immediately, but instead place the VM in 810 * the LRU list, so it can be evicted if another VM needs an AS slot. 811 * This way, VMs keep attached to the AS they were given until we run 812 * out of free slot, limiting the number of MMU operations (TLB flush 813 * and other AS updates). 814 */ 815 void panthor_vm_idle(struct panthor_vm *vm) 816 { 817 struct panthor_device *ptdev = vm->ptdev; 818 819 if (!refcount_dec_and_mutex_lock(&vm->as.active_cnt, &ptdev->mmu->as.slots_lock)) 820 return; 821 822 if (!drm_WARN_ON(&ptdev->base, vm->as.id == -1 || !list_empty(&vm->as.lru_node))) 823 list_add_tail(&vm->as.lru_node, &ptdev->mmu->as.lru_list); 824 825 refcount_set(&vm->as.active_cnt, 0); 826 mutex_unlock(&ptdev->mmu->as.slots_lock); 827 } 828 829 static void panthor_vm_stop(struct panthor_vm *vm) 830 { 831 drm_sched_stop(&vm->sched, NULL); 832 } 833 834 static void panthor_vm_start(struct panthor_vm *vm) 835 { 836 drm_sched_start(&vm->sched); 837 } 838 839 /** 840 * panthor_vm_as() - Get the AS slot attached to a VM 841 * @vm: VM to get the AS slot of. 842 * 843 * Return: -1 if the VM is not assigned an AS slot yet, >= 0 otherwise. 844 */ 845 int panthor_vm_as(struct panthor_vm *vm) 846 { 847 return vm->as.id; 848 } 849 850 static size_t get_pgsize(u64 addr, size_t size, size_t *count) 851 { 852 /* 853 * io-pgtable only operates on multiple pages within a single table 854 * entry, so we need to split at boundaries of the table size, i.e. 855 * the next block size up. The distance from address A to the next 856 * boundary of block size B is logically B - A % B, but in unsigned 857 * two's complement where B is a power of two we get the equivalence 858 * B - A % B == (B - A) % B == (n * B - A) % B, and choose n = 0 :) 859 */ 860 size_t blk_offset = -addr % SZ_2M; 861 862 if (blk_offset || size < SZ_2M) { 863 *count = min_not_zero(blk_offset, size) / SZ_4K; 864 return SZ_4K; 865 } 866 blk_offset = -addr % SZ_1G ?: SZ_1G; 867 *count = min(blk_offset, size) / SZ_2M; 868 return SZ_2M; 869 } 870 871 static int panthor_vm_flush_range(struct panthor_vm *vm, u64 iova, u64 size) 872 { 873 struct panthor_device *ptdev = vm->ptdev; 874 int ret = 0, cookie; 875 876 if (vm->as.id < 0) 877 return 0; 878 879 /* If the device is unplugged, we just silently skip the flush. */ 880 if (!drm_dev_enter(&ptdev->base, &cookie)) 881 return 0; 882 883 ret = mmu_hw_do_operation(vm, iova, size, AS_COMMAND_FLUSH_PT); 884 885 drm_dev_exit(cookie); 886 return ret; 887 } 888 889 /** 890 * panthor_vm_flush_all() - Flush L2 caches for the entirety of a VM's AS 891 * @vm: VM whose cache to flush 892 * 893 * Return: 0 on success, a negative error code if flush failed. 894 */ 895 int panthor_vm_flush_all(struct panthor_vm *vm) 896 { 897 return panthor_vm_flush_range(vm, vm->base.mm_start, vm->base.mm_range); 898 } 899 900 static int panthor_vm_unmap_pages(struct panthor_vm *vm, u64 iova, u64 size) 901 { 902 struct panthor_device *ptdev = vm->ptdev; 903 struct io_pgtable_ops *ops = vm->pgtbl_ops; 904 u64 offset = 0; 905 906 drm_dbg(&ptdev->base, "unmap: as=%d, iova=%llx, len=%llx", vm->as.id, iova, size); 907 908 while (offset < size) { 909 size_t unmapped_sz = 0, pgcount; 910 size_t pgsize = get_pgsize(iova + offset, size - offset, &pgcount); 911 912 unmapped_sz = ops->unmap_pages(ops, iova + offset, pgsize, pgcount, NULL); 913 914 if (drm_WARN_ON(&ptdev->base, unmapped_sz != pgsize * pgcount)) { 915 drm_err(&ptdev->base, "failed to unmap range %llx-%llx (requested range %llx-%llx)\n", 916 iova + offset + unmapped_sz, 917 iova + offset + pgsize * pgcount, 918 iova, iova + size); 919 panthor_vm_flush_range(vm, iova, offset + unmapped_sz); 920 return -EINVAL; 921 } 922 offset += unmapped_sz; 923 } 924 925 return panthor_vm_flush_range(vm, iova, size); 926 } 927 928 static int 929 panthor_vm_map_pages(struct panthor_vm *vm, u64 iova, int prot, 930 struct sg_table *sgt, u64 offset, u64 size) 931 { 932 struct panthor_device *ptdev = vm->ptdev; 933 unsigned int count; 934 struct scatterlist *sgl; 935 struct io_pgtable_ops *ops = vm->pgtbl_ops; 936 u64 start_iova = iova; 937 int ret; 938 939 if (!size) 940 return 0; 941 942 for_each_sgtable_dma_sg(sgt, sgl, count) { 943 dma_addr_t paddr = sg_dma_address(sgl); 944 size_t len = sg_dma_len(sgl); 945 946 if (len <= offset) { 947 offset -= len; 948 continue; 949 } 950 951 paddr += offset; 952 len -= offset; 953 len = min_t(size_t, len, size); 954 size -= len; 955 956 drm_dbg(&ptdev->base, "map: as=%d, iova=%llx, paddr=%pad, len=%zx", 957 vm->as.id, iova, &paddr, len); 958 959 while (len) { 960 size_t pgcount, mapped = 0; 961 size_t pgsize = get_pgsize(iova | paddr, len, &pgcount); 962 963 ret = ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot, 964 GFP_KERNEL, &mapped); 965 iova += mapped; 966 paddr += mapped; 967 len -= mapped; 968 969 if (drm_WARN_ON(&ptdev->base, !ret && !mapped)) 970 ret = -ENOMEM; 971 972 if (ret) { 973 /* If something failed, unmap what we've already mapped before 974 * returning. The unmap call is not supposed to fail. 975 */ 976 drm_WARN_ON(&ptdev->base, 977 panthor_vm_unmap_pages(vm, start_iova, 978 iova - start_iova)); 979 return ret; 980 } 981 } 982 983 if (!size) 984 break; 985 } 986 987 return panthor_vm_flush_range(vm, start_iova, iova - start_iova); 988 } 989 990 static int flags_to_prot(u32 flags) 991 { 992 int prot = 0; 993 994 if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC) 995 prot |= IOMMU_NOEXEC; 996 997 if (!(flags & DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED)) 998 prot |= IOMMU_CACHE; 999 1000 if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_READONLY) 1001 prot |= IOMMU_READ; 1002 else 1003 prot |= IOMMU_READ | IOMMU_WRITE; 1004 1005 return prot; 1006 } 1007 1008 /** 1009 * panthor_vm_alloc_va() - Allocate a region in the auto-va space 1010 * @VM: VM to allocate a region on. 1011 * @va: start of the VA range. Can be PANTHOR_VM_KERNEL_AUTO_VA if the user 1012 * wants the VA to be automatically allocated from the auto-VA range. 1013 * @size: size of the VA range. 1014 * @va_node: drm_mm_node to initialize. Must be zero-initialized. 1015 * 1016 * Some GPU objects, like heap chunks, are fully managed by the kernel and 1017 * need to be mapped to the userspace VM, in the region reserved for kernel 1018 * objects. 1019 * 1020 * This function takes care of allocating a region in the kernel auto-VA space. 1021 * 1022 * Return: 0 on success, an error code otherwise. 1023 */ 1024 int 1025 panthor_vm_alloc_va(struct panthor_vm *vm, u64 va, u64 size, 1026 struct drm_mm_node *va_node) 1027 { 1028 int ret; 1029 1030 if (!size || (size & ~PAGE_MASK)) 1031 return -EINVAL; 1032 1033 if (va != PANTHOR_VM_KERNEL_AUTO_VA && (va & ~PAGE_MASK)) 1034 return -EINVAL; 1035 1036 mutex_lock(&vm->mm_lock); 1037 if (va != PANTHOR_VM_KERNEL_AUTO_VA) { 1038 va_node->start = va; 1039 va_node->size = size; 1040 ret = drm_mm_reserve_node(&vm->mm, va_node); 1041 } else { 1042 ret = drm_mm_insert_node_in_range(&vm->mm, va_node, size, 1043 size >= SZ_2M ? SZ_2M : SZ_4K, 1044 0, vm->kernel_auto_va.start, 1045 vm->kernel_auto_va.end, 1046 DRM_MM_INSERT_BEST); 1047 } 1048 mutex_unlock(&vm->mm_lock); 1049 1050 return ret; 1051 } 1052 1053 /** 1054 * panthor_vm_free_va() - Free a region allocated with panthor_vm_alloc_va() 1055 * @VM: VM to free the region on. 1056 * @va_node: Memory node representing the region to free. 1057 */ 1058 void panthor_vm_free_va(struct panthor_vm *vm, struct drm_mm_node *va_node) 1059 { 1060 mutex_lock(&vm->mm_lock); 1061 drm_mm_remove_node(va_node); 1062 mutex_unlock(&vm->mm_lock); 1063 } 1064 1065 static void panthor_vm_bo_put(struct drm_gpuvm_bo *vm_bo) 1066 { 1067 struct panthor_gem_object *bo = to_panthor_bo(vm_bo->obj); 1068 struct drm_gpuvm *vm = vm_bo->vm; 1069 bool unpin; 1070 1071 /* We must retain the GEM before calling drm_gpuvm_bo_put(), 1072 * otherwise the mutex might be destroyed while we hold it. 1073 * Same goes for the VM, since we take the VM resv lock. 1074 */ 1075 drm_gem_object_get(&bo->base.base); 1076 drm_gpuvm_get(vm); 1077 1078 /* We take the resv lock to protect against concurrent accesses to the 1079 * gpuvm evicted/extobj lists that are modified in 1080 * drm_gpuvm_bo_destroy(), which is called if drm_gpuvm_bo_put() 1081 * releases sthe last vm_bo reference. 1082 * We take the BO GPUVA list lock to protect the vm_bo removal from the 1083 * GEM vm_bo list. 1084 */ 1085 dma_resv_lock(drm_gpuvm_resv(vm), NULL); 1086 mutex_lock(&bo->gpuva_list_lock); 1087 unpin = drm_gpuvm_bo_put(vm_bo); 1088 mutex_unlock(&bo->gpuva_list_lock); 1089 dma_resv_unlock(drm_gpuvm_resv(vm)); 1090 1091 /* If the vm_bo object was destroyed, release the pin reference that 1092 * was hold by this object. 1093 */ 1094 if (unpin && !bo->base.base.import_attach) 1095 drm_gem_shmem_unpin(&bo->base); 1096 1097 drm_gpuvm_put(vm); 1098 drm_gem_object_put(&bo->base.base); 1099 } 1100 1101 static void panthor_vm_cleanup_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1102 struct panthor_vm *vm) 1103 { 1104 struct panthor_vma *vma, *tmp_vma; 1105 1106 u32 remaining_pt_count = op_ctx->rsvd_page_tables.count - 1107 op_ctx->rsvd_page_tables.ptr; 1108 1109 if (remaining_pt_count) { 1110 kmem_cache_free_bulk(pt_cache, remaining_pt_count, 1111 op_ctx->rsvd_page_tables.pages + 1112 op_ctx->rsvd_page_tables.ptr); 1113 } 1114 1115 kfree(op_ctx->rsvd_page_tables.pages); 1116 1117 if (op_ctx->map.vm_bo) 1118 panthor_vm_bo_put(op_ctx->map.vm_bo); 1119 1120 for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) 1121 kfree(op_ctx->preallocated_vmas[i]); 1122 1123 list_for_each_entry_safe(vma, tmp_vma, &op_ctx->returned_vmas, node) { 1124 list_del(&vma->node); 1125 panthor_vm_bo_put(vma->base.vm_bo); 1126 kfree(vma); 1127 } 1128 } 1129 1130 static struct panthor_vma * 1131 panthor_vm_op_ctx_get_vma(struct panthor_vm_op_ctx *op_ctx) 1132 { 1133 for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) { 1134 struct panthor_vma *vma = op_ctx->preallocated_vmas[i]; 1135 1136 if (vma) { 1137 op_ctx->preallocated_vmas[i] = NULL; 1138 return vma; 1139 } 1140 } 1141 1142 return NULL; 1143 } 1144 1145 static int 1146 panthor_vm_op_ctx_prealloc_vmas(struct panthor_vm_op_ctx *op_ctx) 1147 { 1148 u32 vma_count; 1149 1150 switch (op_ctx->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) { 1151 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: 1152 /* One VMA for the new mapping, and two more VMAs for the remap case 1153 * which might contain both a prev and next VA. 1154 */ 1155 vma_count = 3; 1156 break; 1157 1158 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP: 1159 /* Partial unmaps might trigger a remap with either a prev or a next VA, 1160 * but not both. 1161 */ 1162 vma_count = 1; 1163 break; 1164 1165 default: 1166 return 0; 1167 } 1168 1169 for (u32 i = 0; i < vma_count; i++) { 1170 struct panthor_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL); 1171 1172 if (!vma) 1173 return -ENOMEM; 1174 1175 op_ctx->preallocated_vmas[i] = vma; 1176 } 1177 1178 return 0; 1179 } 1180 1181 #define PANTHOR_VM_BIND_OP_MAP_FLAGS \ 1182 (DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \ 1183 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \ 1184 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED | \ 1185 DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) 1186 1187 static int panthor_vm_prepare_map_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1188 struct panthor_vm *vm, 1189 struct panthor_gem_object *bo, 1190 u64 offset, 1191 u64 size, u64 va, 1192 u32 flags) 1193 { 1194 struct drm_gpuvm_bo *preallocated_vm_bo; 1195 struct sg_table *sgt = NULL; 1196 u64 pt_count; 1197 int ret; 1198 1199 if (!bo) 1200 return -EINVAL; 1201 1202 if ((flags & ~PANTHOR_VM_BIND_OP_MAP_FLAGS) || 1203 (flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) != DRM_PANTHOR_VM_BIND_OP_TYPE_MAP) 1204 return -EINVAL; 1205 1206 /* Make sure the VA and size are aligned and in-bounds. */ 1207 if (size > bo->base.base.size || offset > bo->base.base.size - size) 1208 return -EINVAL; 1209 1210 /* If the BO has an exclusive VM attached, it can't be mapped to other VMs. */ 1211 if (bo->exclusive_vm_root_gem && 1212 bo->exclusive_vm_root_gem != panthor_vm_root_gem(vm)) 1213 return -EINVAL; 1214 1215 memset(op_ctx, 0, sizeof(*op_ctx)); 1216 INIT_LIST_HEAD(&op_ctx->returned_vmas); 1217 op_ctx->flags = flags; 1218 op_ctx->va.range = size; 1219 op_ctx->va.addr = va; 1220 1221 ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx); 1222 if (ret) 1223 goto err_cleanup; 1224 1225 if (!bo->base.base.import_attach) { 1226 /* Pre-reserve the BO pages, so the map operation doesn't have to 1227 * allocate. 1228 */ 1229 ret = drm_gem_shmem_pin(&bo->base); 1230 if (ret) 1231 goto err_cleanup; 1232 } 1233 1234 sgt = drm_gem_shmem_get_pages_sgt(&bo->base); 1235 if (IS_ERR(sgt)) { 1236 if (!bo->base.base.import_attach) 1237 drm_gem_shmem_unpin(&bo->base); 1238 1239 ret = PTR_ERR(sgt); 1240 goto err_cleanup; 1241 } 1242 1243 op_ctx->map.sgt = sgt; 1244 1245 preallocated_vm_bo = drm_gpuvm_bo_create(&vm->base, &bo->base.base); 1246 if (!preallocated_vm_bo) { 1247 if (!bo->base.base.import_attach) 1248 drm_gem_shmem_unpin(&bo->base); 1249 1250 ret = -ENOMEM; 1251 goto err_cleanup; 1252 } 1253 1254 /* drm_gpuvm_bo_obtain_prealloc() will call drm_gpuvm_bo_put() on our 1255 * pre-allocated BO if the <BO,VM> association exists. Given we 1256 * only have one ref on preallocated_vm_bo, drm_gpuvm_bo_destroy() will 1257 * be called immediately, and we have to hold the VM resv lock when 1258 * calling this function. 1259 */ 1260 dma_resv_lock(panthor_vm_resv(vm), NULL); 1261 mutex_lock(&bo->gpuva_list_lock); 1262 op_ctx->map.vm_bo = drm_gpuvm_bo_obtain_prealloc(preallocated_vm_bo); 1263 mutex_unlock(&bo->gpuva_list_lock); 1264 dma_resv_unlock(panthor_vm_resv(vm)); 1265 1266 /* If the a vm_bo for this <VM,BO> combination exists, it already 1267 * retains a pin ref, and we can release the one we took earlier. 1268 * 1269 * If our pre-allocated vm_bo is picked, it now retains the pin ref, 1270 * which will be released in panthor_vm_bo_put(). 1271 */ 1272 if (preallocated_vm_bo != op_ctx->map.vm_bo && 1273 !bo->base.base.import_attach) 1274 drm_gem_shmem_unpin(&bo->base); 1275 1276 op_ctx->map.bo_offset = offset; 1277 1278 /* L1, L2 and L3 page tables. 1279 * We could optimize L3 allocation by iterating over the sgt and merging 1280 * 2M contiguous blocks, but it's simpler to over-provision and return 1281 * the pages if they're not used. 1282 */ 1283 pt_count = ((ALIGN(va + size, 1ull << 39) - ALIGN_DOWN(va, 1ull << 39)) >> 39) + 1284 ((ALIGN(va + size, 1ull << 30) - ALIGN_DOWN(va, 1ull << 30)) >> 30) + 1285 ((ALIGN(va + size, 1ull << 21) - ALIGN_DOWN(va, 1ull << 21)) >> 21); 1286 1287 op_ctx->rsvd_page_tables.pages = kcalloc(pt_count, 1288 sizeof(*op_ctx->rsvd_page_tables.pages), 1289 GFP_KERNEL); 1290 if (!op_ctx->rsvd_page_tables.pages) { 1291 ret = -ENOMEM; 1292 goto err_cleanup; 1293 } 1294 1295 ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count, 1296 op_ctx->rsvd_page_tables.pages); 1297 op_ctx->rsvd_page_tables.count = ret; 1298 if (ret != pt_count) { 1299 ret = -ENOMEM; 1300 goto err_cleanup; 1301 } 1302 1303 /* Insert BO into the extobj list last, when we know nothing can fail. */ 1304 dma_resv_lock(panthor_vm_resv(vm), NULL); 1305 drm_gpuvm_bo_extobj_add(op_ctx->map.vm_bo); 1306 dma_resv_unlock(panthor_vm_resv(vm)); 1307 1308 return 0; 1309 1310 err_cleanup: 1311 panthor_vm_cleanup_op_ctx(op_ctx, vm); 1312 return ret; 1313 } 1314 1315 static int panthor_vm_prepare_unmap_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1316 struct panthor_vm *vm, 1317 u64 va, u64 size) 1318 { 1319 u32 pt_count = 0; 1320 int ret; 1321 1322 memset(op_ctx, 0, sizeof(*op_ctx)); 1323 INIT_LIST_HEAD(&op_ctx->returned_vmas); 1324 op_ctx->va.range = size; 1325 op_ctx->va.addr = va; 1326 op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP; 1327 1328 /* Pre-allocate L3 page tables to account for the split-2M-block 1329 * situation on unmap. 1330 */ 1331 if (va != ALIGN(va, SZ_2M)) 1332 pt_count++; 1333 1334 if (va + size != ALIGN(va + size, SZ_2M) && 1335 ALIGN(va + size, SZ_2M) != ALIGN(va, SZ_2M)) 1336 pt_count++; 1337 1338 ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx); 1339 if (ret) 1340 goto err_cleanup; 1341 1342 if (pt_count) { 1343 op_ctx->rsvd_page_tables.pages = kcalloc(pt_count, 1344 sizeof(*op_ctx->rsvd_page_tables.pages), 1345 GFP_KERNEL); 1346 if (!op_ctx->rsvd_page_tables.pages) { 1347 ret = -ENOMEM; 1348 goto err_cleanup; 1349 } 1350 1351 ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count, 1352 op_ctx->rsvd_page_tables.pages); 1353 if (ret != pt_count) { 1354 ret = -ENOMEM; 1355 goto err_cleanup; 1356 } 1357 op_ctx->rsvd_page_tables.count = pt_count; 1358 } 1359 1360 return 0; 1361 1362 err_cleanup: 1363 panthor_vm_cleanup_op_ctx(op_ctx, vm); 1364 return ret; 1365 } 1366 1367 static void panthor_vm_prepare_sync_only_op_ctx(struct panthor_vm_op_ctx *op_ctx, 1368 struct panthor_vm *vm) 1369 { 1370 memset(op_ctx, 0, sizeof(*op_ctx)); 1371 INIT_LIST_HEAD(&op_ctx->returned_vmas); 1372 op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY; 1373 } 1374 1375 /** 1376 * panthor_vm_get_bo_for_va() - Get the GEM object mapped at a virtual address 1377 * @vm: VM to look into. 1378 * @va: Virtual address to search for. 1379 * @bo_offset: Offset of the GEM object mapped at this virtual address. 1380 * Only valid on success. 1381 * 1382 * The object returned by this function might no longer be mapped when the 1383 * function returns. It's the caller responsibility to ensure there's no 1384 * concurrent map/unmap operations making the returned value invalid, or 1385 * make sure it doesn't matter if the object is no longer mapped. 1386 * 1387 * Return: A valid pointer on success, an ERR_PTR() otherwise. 1388 */ 1389 struct panthor_gem_object * 1390 panthor_vm_get_bo_for_va(struct panthor_vm *vm, u64 va, u64 *bo_offset) 1391 { 1392 struct panthor_gem_object *bo = ERR_PTR(-ENOENT); 1393 struct drm_gpuva *gpuva; 1394 struct panthor_vma *vma; 1395 1396 /* Take the VM lock to prevent concurrent map/unmap operations. */ 1397 mutex_lock(&vm->op_lock); 1398 gpuva = drm_gpuva_find_first(&vm->base, va, 1); 1399 vma = gpuva ? container_of(gpuva, struct panthor_vma, base) : NULL; 1400 if (vma && vma->base.gem.obj) { 1401 drm_gem_object_get(vma->base.gem.obj); 1402 bo = to_panthor_bo(vma->base.gem.obj); 1403 *bo_offset = vma->base.gem.offset + (va - vma->base.va.addr); 1404 } 1405 mutex_unlock(&vm->op_lock); 1406 1407 return bo; 1408 } 1409 1410 #define PANTHOR_VM_MIN_KERNEL_VA_SIZE SZ_256M 1411 1412 static u64 1413 panthor_vm_create_get_user_va_range(const struct drm_panthor_vm_create *args, 1414 u64 full_va_range) 1415 { 1416 u64 user_va_range; 1417 1418 /* Make sure we have a minimum amount of VA space for kernel objects. */ 1419 if (full_va_range < PANTHOR_VM_MIN_KERNEL_VA_SIZE) 1420 return 0; 1421 1422 if (args->user_va_range) { 1423 /* Use the user provided value if != 0. */ 1424 user_va_range = args->user_va_range; 1425 } else if (TASK_SIZE_OF(current) < full_va_range) { 1426 /* If the task VM size is smaller than the GPU VA range, pick this 1427 * as our default user VA range, so userspace can CPU/GPU map buffers 1428 * at the same address. 1429 */ 1430 user_va_range = TASK_SIZE_OF(current); 1431 } else { 1432 /* If the GPU VA range is smaller than the task VM size, we 1433 * just have to live with the fact we won't be able to map 1434 * all buffers at the same GPU/CPU address. 1435 * 1436 * If the GPU VA range is bigger than 4G (more than 32-bit of 1437 * VA), we split the range in two, and assign half of it to 1438 * the user and the other half to the kernel, if it's not, we 1439 * keep the kernel VA space as small as possible. 1440 */ 1441 user_va_range = full_va_range > SZ_4G ? 1442 full_va_range / 2 : 1443 full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE; 1444 } 1445 1446 if (full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE < user_va_range) 1447 user_va_range = full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE; 1448 1449 return user_va_range; 1450 } 1451 1452 #define PANTHOR_VM_CREATE_FLAGS 0 1453 1454 static int 1455 panthor_vm_create_check_args(const struct panthor_device *ptdev, 1456 const struct drm_panthor_vm_create *args, 1457 u64 *kernel_va_start, u64 *kernel_va_range) 1458 { 1459 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 1460 u64 full_va_range = 1ull << va_bits; 1461 u64 user_va_range; 1462 1463 if (args->flags & ~PANTHOR_VM_CREATE_FLAGS) 1464 return -EINVAL; 1465 1466 user_va_range = panthor_vm_create_get_user_va_range(args, full_va_range); 1467 if (!user_va_range || (args->user_va_range && args->user_va_range > user_va_range)) 1468 return -EINVAL; 1469 1470 /* Pick a kernel VA range that's a power of two, to have a clear split. */ 1471 *kernel_va_range = rounddown_pow_of_two(full_va_range - user_va_range); 1472 *kernel_va_start = full_va_range - *kernel_va_range; 1473 return 0; 1474 } 1475 1476 /* 1477 * Only 32 VMs per open file. If that becomes a limiting factor, we can 1478 * increase this number. 1479 */ 1480 #define PANTHOR_MAX_VMS_PER_FILE 32 1481 1482 /** 1483 * panthor_vm_pool_create_vm() - Create a VM 1484 * @pool: The VM to create this VM on. 1485 * @kernel_va_start: Start of the region reserved for kernel objects. 1486 * @kernel_va_range: Size of the region reserved for kernel objects. 1487 * 1488 * Return: a positive VM ID on success, a negative error code otherwise. 1489 */ 1490 int panthor_vm_pool_create_vm(struct panthor_device *ptdev, 1491 struct panthor_vm_pool *pool, 1492 struct drm_panthor_vm_create *args) 1493 { 1494 u64 kernel_va_start, kernel_va_range; 1495 struct panthor_vm *vm; 1496 int ret; 1497 u32 id; 1498 1499 ret = panthor_vm_create_check_args(ptdev, args, &kernel_va_start, &kernel_va_range); 1500 if (ret) 1501 return ret; 1502 1503 vm = panthor_vm_create(ptdev, false, kernel_va_start, kernel_va_range, 1504 kernel_va_start, kernel_va_range); 1505 if (IS_ERR(vm)) 1506 return PTR_ERR(vm); 1507 1508 ret = xa_alloc(&pool->xa, &id, vm, 1509 XA_LIMIT(1, PANTHOR_MAX_VMS_PER_FILE), GFP_KERNEL); 1510 1511 if (ret) { 1512 panthor_vm_put(vm); 1513 return ret; 1514 } 1515 1516 args->user_va_range = kernel_va_start; 1517 return id; 1518 } 1519 1520 static void panthor_vm_destroy(struct panthor_vm *vm) 1521 { 1522 if (!vm) 1523 return; 1524 1525 vm->destroyed = true; 1526 1527 mutex_lock(&vm->heaps.lock); 1528 panthor_heap_pool_destroy(vm->heaps.pool); 1529 vm->heaps.pool = NULL; 1530 mutex_unlock(&vm->heaps.lock); 1531 1532 drm_WARN_ON(&vm->ptdev->base, 1533 panthor_vm_unmap_range(vm, vm->base.mm_start, vm->base.mm_range)); 1534 panthor_vm_put(vm); 1535 } 1536 1537 /** 1538 * panthor_vm_pool_destroy_vm() - Destroy a VM. 1539 * @pool: VM pool. 1540 * @handle: VM handle. 1541 * 1542 * This function doesn't free the VM object or its resources, it just kills 1543 * all mappings, and makes sure nothing can be mapped after that point. 1544 * 1545 * If there was any active jobs at the time this function is called, these 1546 * jobs should experience page faults and be killed as a result. 1547 * 1548 * The VM resources are freed when the last reference on the VM object is 1549 * dropped. 1550 */ 1551 int panthor_vm_pool_destroy_vm(struct panthor_vm_pool *pool, u32 handle) 1552 { 1553 struct panthor_vm *vm; 1554 1555 vm = xa_erase(&pool->xa, handle); 1556 1557 panthor_vm_destroy(vm); 1558 1559 return vm ? 0 : -EINVAL; 1560 } 1561 1562 /** 1563 * panthor_vm_pool_get_vm() - Retrieve VM object bound to a VM handle 1564 * @pool: VM pool to check. 1565 * @handle: Handle of the VM to retrieve. 1566 * 1567 * Return: A valid pointer if the VM exists, NULL otherwise. 1568 */ 1569 struct panthor_vm * 1570 panthor_vm_pool_get_vm(struct panthor_vm_pool *pool, u32 handle) 1571 { 1572 struct panthor_vm *vm; 1573 1574 vm = panthor_vm_get(xa_load(&pool->xa, handle)); 1575 1576 return vm; 1577 } 1578 1579 /** 1580 * panthor_vm_pool_destroy() - Destroy a VM pool. 1581 * @pfile: File. 1582 * 1583 * Destroy all VMs in the pool, and release the pool resources. 1584 * 1585 * Note that VMs can outlive the pool they were created from if other 1586 * objects hold a reference to there VMs. 1587 */ 1588 void panthor_vm_pool_destroy(struct panthor_file *pfile) 1589 { 1590 struct panthor_vm *vm; 1591 unsigned long i; 1592 1593 if (!pfile->vms) 1594 return; 1595 1596 xa_for_each(&pfile->vms->xa, i, vm) 1597 panthor_vm_destroy(vm); 1598 1599 xa_destroy(&pfile->vms->xa); 1600 kfree(pfile->vms); 1601 } 1602 1603 /** 1604 * panthor_vm_pool_create() - Create a VM pool 1605 * @pfile: File. 1606 * 1607 * Return: 0 on success, a negative error code otherwise. 1608 */ 1609 int panthor_vm_pool_create(struct panthor_file *pfile) 1610 { 1611 pfile->vms = kzalloc(sizeof(*pfile->vms), GFP_KERNEL); 1612 if (!pfile->vms) 1613 return -ENOMEM; 1614 1615 xa_init_flags(&pfile->vms->xa, XA_FLAGS_ALLOC1); 1616 return 0; 1617 } 1618 1619 /* dummy TLB ops, the real TLB flush happens in panthor_vm_flush_range() */ 1620 static void mmu_tlb_flush_all(void *cookie) 1621 { 1622 } 1623 1624 static void mmu_tlb_flush_walk(unsigned long iova, size_t size, size_t granule, void *cookie) 1625 { 1626 } 1627 1628 static const struct iommu_flush_ops mmu_tlb_ops = { 1629 .tlb_flush_all = mmu_tlb_flush_all, 1630 .tlb_flush_walk = mmu_tlb_flush_walk, 1631 }; 1632 1633 static const char *access_type_name(struct panthor_device *ptdev, 1634 u32 fault_status) 1635 { 1636 switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) { 1637 case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC: 1638 return "ATOMIC"; 1639 case AS_FAULTSTATUS_ACCESS_TYPE_READ: 1640 return "READ"; 1641 case AS_FAULTSTATUS_ACCESS_TYPE_WRITE: 1642 return "WRITE"; 1643 case AS_FAULTSTATUS_ACCESS_TYPE_EX: 1644 return "EXECUTE"; 1645 default: 1646 drm_WARN_ON(&ptdev->base, 1); 1647 return NULL; 1648 } 1649 } 1650 1651 static void panthor_mmu_irq_handler(struct panthor_device *ptdev, u32 status) 1652 { 1653 bool has_unhandled_faults = false; 1654 1655 status = panthor_mmu_fault_mask(ptdev, status); 1656 while (status) { 1657 u32 as = ffs(status | (status >> 16)) - 1; 1658 u32 mask = panthor_mmu_as_fault_mask(ptdev, as); 1659 u32 new_int_mask; 1660 u64 addr; 1661 u32 fault_status; 1662 u32 exception_type; 1663 u32 access_type; 1664 u32 source_id; 1665 1666 fault_status = gpu_read(ptdev, AS_FAULTSTATUS(as)); 1667 addr = gpu_read(ptdev, AS_FAULTADDRESS_LO(as)); 1668 addr |= (u64)gpu_read(ptdev, AS_FAULTADDRESS_HI(as)) << 32; 1669 1670 /* decode the fault status */ 1671 exception_type = fault_status & 0xFF; 1672 access_type = (fault_status >> 8) & 0x3; 1673 source_id = (fault_status >> 16); 1674 1675 mutex_lock(&ptdev->mmu->as.slots_lock); 1676 1677 ptdev->mmu->as.faulty_mask |= mask; 1678 new_int_mask = 1679 panthor_mmu_fault_mask(ptdev, ~ptdev->mmu->as.faulty_mask); 1680 1681 /* terminal fault, print info about the fault */ 1682 drm_err(&ptdev->base, 1683 "Unhandled Page fault in AS%d at VA 0x%016llX\n" 1684 "raw fault status: 0x%X\n" 1685 "decoded fault status: %s\n" 1686 "exception type 0x%X: %s\n" 1687 "access type 0x%X: %s\n" 1688 "source id 0x%X\n", 1689 as, addr, 1690 fault_status, 1691 (fault_status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"), 1692 exception_type, panthor_exception_name(ptdev, exception_type), 1693 access_type, access_type_name(ptdev, fault_status), 1694 source_id); 1695 1696 /* Ignore MMU interrupts on this AS until it's been 1697 * re-enabled. 1698 */ 1699 ptdev->mmu->irq.mask = new_int_mask; 1700 gpu_write(ptdev, MMU_INT_MASK, new_int_mask); 1701 1702 if (ptdev->mmu->as.slots[as].vm) 1703 ptdev->mmu->as.slots[as].vm->unhandled_fault = true; 1704 1705 /* Disable the MMU to kill jobs on this AS. */ 1706 panthor_mmu_as_disable(ptdev, as); 1707 mutex_unlock(&ptdev->mmu->as.slots_lock); 1708 1709 status &= ~mask; 1710 has_unhandled_faults = true; 1711 } 1712 1713 if (has_unhandled_faults) 1714 panthor_sched_report_mmu_fault(ptdev); 1715 } 1716 PANTHOR_IRQ_HANDLER(mmu, MMU, panthor_mmu_irq_handler); 1717 1718 /** 1719 * panthor_mmu_suspend() - Suspend the MMU logic 1720 * @ptdev: Device. 1721 * 1722 * All we do here is de-assign the AS slots on all active VMs, so things 1723 * get flushed to the main memory, and no further access to these VMs are 1724 * possible. 1725 * 1726 * We also suspend the MMU IRQ. 1727 */ 1728 void panthor_mmu_suspend(struct panthor_device *ptdev) 1729 { 1730 mutex_lock(&ptdev->mmu->as.slots_lock); 1731 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) { 1732 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm; 1733 1734 if (vm) { 1735 drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i)); 1736 panthor_vm_release_as_locked(vm); 1737 } 1738 } 1739 mutex_unlock(&ptdev->mmu->as.slots_lock); 1740 1741 panthor_mmu_irq_suspend(&ptdev->mmu->irq); 1742 } 1743 1744 /** 1745 * panthor_mmu_resume() - Resume the MMU logic 1746 * @ptdev: Device. 1747 * 1748 * Resume the IRQ. 1749 * 1750 * We don't re-enable previously active VMs. We assume other parts of the 1751 * driver will call panthor_vm_active() on the VMs they intend to use. 1752 */ 1753 void panthor_mmu_resume(struct panthor_device *ptdev) 1754 { 1755 mutex_lock(&ptdev->mmu->as.slots_lock); 1756 ptdev->mmu->as.alloc_mask = 0; 1757 ptdev->mmu->as.faulty_mask = 0; 1758 mutex_unlock(&ptdev->mmu->as.slots_lock); 1759 1760 panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0)); 1761 } 1762 1763 /** 1764 * panthor_mmu_pre_reset() - Prepare for a reset 1765 * @ptdev: Device. 1766 * 1767 * Suspend the IRQ, and make sure all VM_BIND queues are stopped, so we 1768 * don't get asked to do a VM operation while the GPU is down. 1769 * 1770 * We don't cleanly shutdown the AS slots here, because the reset might 1771 * come from an AS_ACTIVE_BIT stuck situation. 1772 */ 1773 void panthor_mmu_pre_reset(struct panthor_device *ptdev) 1774 { 1775 struct panthor_vm *vm; 1776 1777 panthor_mmu_irq_suspend(&ptdev->mmu->irq); 1778 1779 mutex_lock(&ptdev->mmu->vm.lock); 1780 ptdev->mmu->vm.reset_in_progress = true; 1781 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) 1782 panthor_vm_stop(vm); 1783 mutex_unlock(&ptdev->mmu->vm.lock); 1784 } 1785 1786 /** 1787 * panthor_mmu_post_reset() - Restore things after a reset 1788 * @ptdev: Device. 1789 * 1790 * Put the MMU logic back in action after a reset. That implies resuming the 1791 * IRQ and re-enabling the VM_BIND queues. 1792 */ 1793 void panthor_mmu_post_reset(struct panthor_device *ptdev) 1794 { 1795 struct panthor_vm *vm; 1796 1797 mutex_lock(&ptdev->mmu->as.slots_lock); 1798 1799 /* Now that the reset is effective, we can assume that none of the 1800 * AS slots are setup, and clear the faulty flags too. 1801 */ 1802 ptdev->mmu->as.alloc_mask = 0; 1803 ptdev->mmu->as.faulty_mask = 0; 1804 1805 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) { 1806 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm; 1807 1808 if (vm) 1809 panthor_vm_release_as_locked(vm); 1810 } 1811 1812 mutex_unlock(&ptdev->mmu->as.slots_lock); 1813 1814 panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0)); 1815 1816 /* Restart the VM_BIND queues. */ 1817 mutex_lock(&ptdev->mmu->vm.lock); 1818 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) { 1819 panthor_vm_start(vm); 1820 } 1821 ptdev->mmu->vm.reset_in_progress = false; 1822 mutex_unlock(&ptdev->mmu->vm.lock); 1823 } 1824 1825 static void panthor_vm_free(struct drm_gpuvm *gpuvm) 1826 { 1827 struct panthor_vm *vm = container_of(gpuvm, struct panthor_vm, base); 1828 struct panthor_device *ptdev = vm->ptdev; 1829 1830 mutex_lock(&vm->heaps.lock); 1831 if (drm_WARN_ON(&ptdev->base, vm->heaps.pool)) 1832 panthor_heap_pool_destroy(vm->heaps.pool); 1833 mutex_unlock(&vm->heaps.lock); 1834 mutex_destroy(&vm->heaps.lock); 1835 1836 mutex_lock(&ptdev->mmu->vm.lock); 1837 list_del(&vm->node); 1838 /* Restore the scheduler state so we can call drm_sched_entity_destroy() 1839 * and drm_sched_fini(). If get there, that means we have no job left 1840 * and no new jobs can be queued, so we can start the scheduler without 1841 * risking interfering with the reset. 1842 */ 1843 if (ptdev->mmu->vm.reset_in_progress) 1844 panthor_vm_start(vm); 1845 mutex_unlock(&ptdev->mmu->vm.lock); 1846 1847 drm_sched_entity_destroy(&vm->entity); 1848 drm_sched_fini(&vm->sched); 1849 1850 mutex_lock(&ptdev->mmu->as.slots_lock); 1851 if (vm->as.id >= 0) { 1852 int cookie; 1853 1854 if (drm_dev_enter(&ptdev->base, &cookie)) { 1855 panthor_mmu_as_disable(ptdev, vm->as.id); 1856 drm_dev_exit(cookie); 1857 } 1858 1859 ptdev->mmu->as.slots[vm->as.id].vm = NULL; 1860 clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask); 1861 list_del(&vm->as.lru_node); 1862 } 1863 mutex_unlock(&ptdev->mmu->as.slots_lock); 1864 1865 free_io_pgtable_ops(vm->pgtbl_ops); 1866 1867 drm_mm_takedown(&vm->mm); 1868 kfree(vm); 1869 } 1870 1871 /** 1872 * panthor_vm_put() - Release a reference on a VM 1873 * @vm: VM to release the reference on. Can be NULL. 1874 */ 1875 void panthor_vm_put(struct panthor_vm *vm) 1876 { 1877 drm_gpuvm_put(vm ? &vm->base : NULL); 1878 } 1879 1880 /** 1881 * panthor_vm_get() - Get a VM reference 1882 * @vm: VM to get the reference on. Can be NULL. 1883 * 1884 * Return: @vm value. 1885 */ 1886 struct panthor_vm *panthor_vm_get(struct panthor_vm *vm) 1887 { 1888 if (vm) 1889 drm_gpuvm_get(&vm->base); 1890 1891 return vm; 1892 } 1893 1894 /** 1895 * panthor_vm_get_heap_pool() - Get the heap pool attached to a VM 1896 * @vm: VM to query the heap pool on. 1897 * @create: True if the heap pool should be created when it doesn't exist. 1898 * 1899 * Heap pools are per-VM. This function allows one to retrieve the heap pool 1900 * attached to a VM. 1901 * 1902 * If no heap pool exists yet, and @create is true, we create one. 1903 * 1904 * The returned panthor_heap_pool should be released with panthor_heap_pool_put(). 1905 * 1906 * Return: A valid pointer on success, an ERR_PTR() otherwise. 1907 */ 1908 struct panthor_heap_pool *panthor_vm_get_heap_pool(struct panthor_vm *vm, bool create) 1909 { 1910 struct panthor_heap_pool *pool; 1911 1912 mutex_lock(&vm->heaps.lock); 1913 if (!vm->heaps.pool && create) { 1914 if (vm->destroyed) 1915 pool = ERR_PTR(-EINVAL); 1916 else 1917 pool = panthor_heap_pool_create(vm->ptdev, vm); 1918 1919 if (!IS_ERR(pool)) 1920 vm->heaps.pool = panthor_heap_pool_get(pool); 1921 } else { 1922 pool = panthor_heap_pool_get(vm->heaps.pool); 1923 if (!pool) 1924 pool = ERR_PTR(-ENOENT); 1925 } 1926 mutex_unlock(&vm->heaps.lock); 1927 1928 return pool; 1929 } 1930 1931 static u64 mair_to_memattr(u64 mair) 1932 { 1933 u64 memattr = 0; 1934 u32 i; 1935 1936 for (i = 0; i < 8; i++) { 1937 u8 in_attr = mair >> (8 * i), out_attr; 1938 u8 outer = in_attr >> 4, inner = in_attr & 0xf; 1939 1940 /* For caching to be enabled, inner and outer caching policy 1941 * have to be both write-back, if one of them is write-through 1942 * or non-cacheable, we just choose non-cacheable. Device 1943 * memory is also translated to non-cacheable. 1944 */ 1945 if (!(outer & 3) || !(outer & 4) || !(inner & 4)) { 1946 out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_NC | 1947 AS_MEMATTR_AARCH64_SH_MIDGARD_INNER | 1948 AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(false, false); 1949 } else { 1950 /* Use SH_CPU_INNER mode so SH_IS, which is used when 1951 * IOMMU_CACHE is set, actually maps to the standard 1952 * definition of inner-shareable and not Mali's 1953 * internal-shareable mode. 1954 */ 1955 out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_WB | 1956 AS_MEMATTR_AARCH64_SH_CPU_INNER | 1957 AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(inner & 1, inner & 2); 1958 } 1959 1960 memattr |= (u64)out_attr << (8 * i); 1961 } 1962 1963 return memattr; 1964 } 1965 1966 static void panthor_vma_link(struct panthor_vm *vm, 1967 struct panthor_vma *vma, 1968 struct drm_gpuvm_bo *vm_bo) 1969 { 1970 struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj); 1971 1972 mutex_lock(&bo->gpuva_list_lock); 1973 drm_gpuva_link(&vma->base, vm_bo); 1974 drm_WARN_ON(&vm->ptdev->base, drm_gpuvm_bo_put(vm_bo)); 1975 mutex_unlock(&bo->gpuva_list_lock); 1976 } 1977 1978 static void panthor_vma_unlink(struct panthor_vm *vm, 1979 struct panthor_vma *vma) 1980 { 1981 struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj); 1982 struct drm_gpuvm_bo *vm_bo = drm_gpuvm_bo_get(vma->base.vm_bo); 1983 1984 mutex_lock(&bo->gpuva_list_lock); 1985 drm_gpuva_unlink(&vma->base); 1986 mutex_unlock(&bo->gpuva_list_lock); 1987 1988 /* drm_gpuva_unlink() release the vm_bo, but we manually retained it 1989 * when entering this function, so we can implement deferred VMA 1990 * destruction. Re-assign it here. 1991 */ 1992 vma->base.vm_bo = vm_bo; 1993 list_add_tail(&vma->node, &vm->op_ctx->returned_vmas); 1994 } 1995 1996 static void panthor_vma_init(struct panthor_vma *vma, u32 flags) 1997 { 1998 INIT_LIST_HEAD(&vma->node); 1999 vma->flags = flags; 2000 } 2001 2002 #define PANTHOR_VM_MAP_FLAGS \ 2003 (DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \ 2004 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \ 2005 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED) 2006 2007 static int panthor_gpuva_sm_step_map(struct drm_gpuva_op *op, void *priv) 2008 { 2009 struct panthor_vm *vm = priv; 2010 struct panthor_vm_op_ctx *op_ctx = vm->op_ctx; 2011 struct panthor_vma *vma = panthor_vm_op_ctx_get_vma(op_ctx); 2012 int ret; 2013 2014 if (!vma) 2015 return -EINVAL; 2016 2017 panthor_vma_init(vma, op_ctx->flags & PANTHOR_VM_MAP_FLAGS); 2018 2019 ret = panthor_vm_map_pages(vm, op->map.va.addr, flags_to_prot(vma->flags), 2020 op_ctx->map.sgt, op->map.gem.offset, 2021 op->map.va.range); 2022 if (ret) 2023 return ret; 2024 2025 /* Ref owned by the mapping now, clear the obj field so we don't release the 2026 * pinning/obj ref behind GPUVA's back. 2027 */ 2028 drm_gpuva_map(&vm->base, &vma->base, &op->map); 2029 panthor_vma_link(vm, vma, op_ctx->map.vm_bo); 2030 op_ctx->map.vm_bo = NULL; 2031 return 0; 2032 } 2033 2034 static int panthor_gpuva_sm_step_remap(struct drm_gpuva_op *op, 2035 void *priv) 2036 { 2037 struct panthor_vma *unmap_vma = container_of(op->remap.unmap->va, struct panthor_vma, base); 2038 struct panthor_vm *vm = priv; 2039 struct panthor_vm_op_ctx *op_ctx = vm->op_ctx; 2040 struct panthor_vma *prev_vma = NULL, *next_vma = NULL; 2041 u64 unmap_start, unmap_range; 2042 int ret; 2043 2044 drm_gpuva_op_remap_to_unmap_range(&op->remap, &unmap_start, &unmap_range); 2045 ret = panthor_vm_unmap_pages(vm, unmap_start, unmap_range); 2046 if (ret) 2047 return ret; 2048 2049 if (op->remap.prev) { 2050 prev_vma = panthor_vm_op_ctx_get_vma(op_ctx); 2051 panthor_vma_init(prev_vma, unmap_vma->flags); 2052 } 2053 2054 if (op->remap.next) { 2055 next_vma = panthor_vm_op_ctx_get_vma(op_ctx); 2056 panthor_vma_init(next_vma, unmap_vma->flags); 2057 } 2058 2059 drm_gpuva_remap(prev_vma ? &prev_vma->base : NULL, 2060 next_vma ? &next_vma->base : NULL, 2061 &op->remap); 2062 2063 if (prev_vma) { 2064 /* panthor_vma_link() transfers the vm_bo ownership to 2065 * the VMA object. Since the vm_bo we're passing is still 2066 * owned by the old mapping which will be released when this 2067 * mapping is destroyed, we need to grab a ref here. 2068 */ 2069 panthor_vma_link(vm, prev_vma, 2070 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo)); 2071 } 2072 2073 if (next_vma) { 2074 panthor_vma_link(vm, next_vma, 2075 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo)); 2076 } 2077 2078 panthor_vma_unlink(vm, unmap_vma); 2079 return 0; 2080 } 2081 2082 static int panthor_gpuva_sm_step_unmap(struct drm_gpuva_op *op, 2083 void *priv) 2084 { 2085 struct panthor_vma *unmap_vma = container_of(op->unmap.va, struct panthor_vma, base); 2086 struct panthor_vm *vm = priv; 2087 int ret; 2088 2089 ret = panthor_vm_unmap_pages(vm, unmap_vma->base.va.addr, 2090 unmap_vma->base.va.range); 2091 if (drm_WARN_ON(&vm->ptdev->base, ret)) 2092 return ret; 2093 2094 drm_gpuva_unmap(&op->unmap); 2095 panthor_vma_unlink(vm, unmap_vma); 2096 return 0; 2097 } 2098 2099 static const struct drm_gpuvm_ops panthor_gpuvm_ops = { 2100 .vm_free = panthor_vm_free, 2101 .sm_step_map = panthor_gpuva_sm_step_map, 2102 .sm_step_remap = panthor_gpuva_sm_step_remap, 2103 .sm_step_unmap = panthor_gpuva_sm_step_unmap, 2104 }; 2105 2106 /** 2107 * panthor_vm_resv() - Get the dma_resv object attached to a VM. 2108 * @vm: VM to get the dma_resv of. 2109 * 2110 * Return: A dma_resv object. 2111 */ 2112 struct dma_resv *panthor_vm_resv(struct panthor_vm *vm) 2113 { 2114 return drm_gpuvm_resv(&vm->base); 2115 } 2116 2117 struct drm_gem_object *panthor_vm_root_gem(struct panthor_vm *vm) 2118 { 2119 if (!vm) 2120 return NULL; 2121 2122 return vm->base.r_obj; 2123 } 2124 2125 static int 2126 panthor_vm_exec_op(struct panthor_vm *vm, struct panthor_vm_op_ctx *op, 2127 bool flag_vm_unusable_on_failure) 2128 { 2129 u32 op_type = op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK; 2130 int ret; 2131 2132 if (op_type == DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY) 2133 return 0; 2134 2135 mutex_lock(&vm->op_lock); 2136 vm->op_ctx = op; 2137 switch (op_type) { 2138 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: 2139 if (vm->unusable) { 2140 ret = -EINVAL; 2141 break; 2142 } 2143 2144 ret = drm_gpuvm_sm_map(&vm->base, vm, op->va.addr, op->va.range, 2145 op->map.vm_bo->obj, op->map.bo_offset); 2146 break; 2147 2148 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP: 2149 ret = drm_gpuvm_sm_unmap(&vm->base, vm, op->va.addr, op->va.range); 2150 break; 2151 2152 default: 2153 ret = -EINVAL; 2154 break; 2155 } 2156 2157 if (ret && flag_vm_unusable_on_failure) 2158 vm->unusable = true; 2159 2160 vm->op_ctx = NULL; 2161 mutex_unlock(&vm->op_lock); 2162 2163 return ret; 2164 } 2165 2166 static struct dma_fence * 2167 panthor_vm_bind_run_job(struct drm_sched_job *sched_job) 2168 { 2169 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base); 2170 bool cookie; 2171 int ret; 2172 2173 /* Not only we report an error whose result is propagated to the 2174 * drm_sched finished fence, but we also flag the VM as unusable, because 2175 * a failure in the async VM_BIND results in an inconsistent state. VM needs 2176 * to be destroyed and recreated. 2177 */ 2178 cookie = dma_fence_begin_signalling(); 2179 ret = panthor_vm_exec_op(job->vm, &job->ctx, true); 2180 dma_fence_end_signalling(cookie); 2181 2182 return ret ? ERR_PTR(ret) : NULL; 2183 } 2184 2185 static void panthor_vm_bind_job_release(struct kref *kref) 2186 { 2187 struct panthor_vm_bind_job *job = container_of(kref, struct panthor_vm_bind_job, refcount); 2188 2189 if (job->base.s_fence) 2190 drm_sched_job_cleanup(&job->base); 2191 2192 panthor_vm_cleanup_op_ctx(&job->ctx, job->vm); 2193 panthor_vm_put(job->vm); 2194 kfree(job); 2195 } 2196 2197 /** 2198 * panthor_vm_bind_job_put() - Release a VM_BIND job reference 2199 * @sched_job: Job to release the reference on. 2200 */ 2201 void panthor_vm_bind_job_put(struct drm_sched_job *sched_job) 2202 { 2203 struct panthor_vm_bind_job *job = 2204 container_of(sched_job, struct panthor_vm_bind_job, base); 2205 2206 if (sched_job) 2207 kref_put(&job->refcount, panthor_vm_bind_job_release); 2208 } 2209 2210 static void 2211 panthor_vm_bind_free_job(struct drm_sched_job *sched_job) 2212 { 2213 struct panthor_vm_bind_job *job = 2214 container_of(sched_job, struct panthor_vm_bind_job, base); 2215 2216 drm_sched_job_cleanup(sched_job); 2217 2218 /* Do the heavy cleanups asynchronously, so we're out of the 2219 * dma-signaling path and can acquire dma-resv locks safely. 2220 */ 2221 queue_work(panthor_cleanup_wq, &job->cleanup_op_ctx_work); 2222 } 2223 2224 static enum drm_gpu_sched_stat 2225 panthor_vm_bind_timedout_job(struct drm_sched_job *sched_job) 2226 { 2227 WARN(1, "VM_BIND ops are synchronous for now, there should be no timeout!"); 2228 return DRM_GPU_SCHED_STAT_NOMINAL; 2229 } 2230 2231 static const struct drm_sched_backend_ops panthor_vm_bind_ops = { 2232 .run_job = panthor_vm_bind_run_job, 2233 .free_job = panthor_vm_bind_free_job, 2234 .timedout_job = panthor_vm_bind_timedout_job, 2235 }; 2236 2237 /** 2238 * panthor_vm_create() - Create a VM 2239 * @ptdev: Device. 2240 * @for_mcu: True if this is the FW MCU VM. 2241 * @kernel_va_start: Start of the range reserved for kernel BO mapping. 2242 * @kernel_va_size: Size of the range reserved for kernel BO mapping. 2243 * @auto_kernel_va_start: Start of the auto-VA kernel range. 2244 * @auto_kernel_va_size: Size of the auto-VA kernel range. 2245 * 2246 * Return: A valid pointer on success, an ERR_PTR() otherwise. 2247 */ 2248 struct panthor_vm * 2249 panthor_vm_create(struct panthor_device *ptdev, bool for_mcu, 2250 u64 kernel_va_start, u64 kernel_va_size, 2251 u64 auto_kernel_va_start, u64 auto_kernel_va_size) 2252 { 2253 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 2254 u32 pa_bits = GPU_MMU_FEATURES_PA_BITS(ptdev->gpu_info.mmu_features); 2255 u64 full_va_range = 1ull << va_bits; 2256 struct drm_gem_object *dummy_gem; 2257 struct drm_gpu_scheduler *sched; 2258 struct io_pgtable_cfg pgtbl_cfg; 2259 u64 mair, min_va, va_range; 2260 struct panthor_vm *vm; 2261 int ret; 2262 2263 vm = kzalloc(sizeof(*vm), GFP_KERNEL); 2264 if (!vm) 2265 return ERR_PTR(-ENOMEM); 2266 2267 /* We allocate a dummy GEM for the VM. */ 2268 dummy_gem = drm_gpuvm_resv_object_alloc(&ptdev->base); 2269 if (!dummy_gem) { 2270 ret = -ENOMEM; 2271 goto err_free_vm; 2272 } 2273 2274 mutex_init(&vm->heaps.lock); 2275 vm->for_mcu = for_mcu; 2276 vm->ptdev = ptdev; 2277 mutex_init(&vm->op_lock); 2278 2279 if (for_mcu) { 2280 /* CSF MCU is a cortex M7, and can only address 4G */ 2281 min_va = 0; 2282 va_range = SZ_4G; 2283 } else { 2284 min_va = 0; 2285 va_range = full_va_range; 2286 } 2287 2288 mutex_init(&vm->mm_lock); 2289 drm_mm_init(&vm->mm, kernel_va_start, kernel_va_size); 2290 vm->kernel_auto_va.start = auto_kernel_va_start; 2291 vm->kernel_auto_va.end = vm->kernel_auto_va.start + auto_kernel_va_size - 1; 2292 2293 INIT_LIST_HEAD(&vm->node); 2294 INIT_LIST_HEAD(&vm->as.lru_node); 2295 vm->as.id = -1; 2296 refcount_set(&vm->as.active_cnt, 0); 2297 2298 pgtbl_cfg = (struct io_pgtable_cfg) { 2299 .pgsize_bitmap = SZ_4K | SZ_2M, 2300 .ias = va_bits, 2301 .oas = pa_bits, 2302 .coherent_walk = ptdev->coherent, 2303 .tlb = &mmu_tlb_ops, 2304 .iommu_dev = ptdev->base.dev, 2305 .alloc = alloc_pt, 2306 .free = free_pt, 2307 }; 2308 2309 vm->pgtbl_ops = alloc_io_pgtable_ops(ARM_64_LPAE_S1, &pgtbl_cfg, vm); 2310 if (!vm->pgtbl_ops) { 2311 ret = -EINVAL; 2312 goto err_mm_takedown; 2313 } 2314 2315 /* Bind operations are synchronous for now, no timeout needed. */ 2316 ret = drm_sched_init(&vm->sched, &panthor_vm_bind_ops, ptdev->mmu->vm.wq, 2317 1, 1, 0, 2318 MAX_SCHEDULE_TIMEOUT, NULL, NULL, 2319 "panthor-vm-bind", ptdev->base.dev); 2320 if (ret) 2321 goto err_free_io_pgtable; 2322 2323 sched = &vm->sched; 2324 ret = drm_sched_entity_init(&vm->entity, 0, &sched, 1, NULL); 2325 if (ret) 2326 goto err_sched_fini; 2327 2328 mair = io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg.arm_lpae_s1_cfg.mair; 2329 vm->memattr = mair_to_memattr(mair); 2330 2331 mutex_lock(&ptdev->mmu->vm.lock); 2332 list_add_tail(&vm->node, &ptdev->mmu->vm.list); 2333 2334 /* If a reset is in progress, stop the scheduler. */ 2335 if (ptdev->mmu->vm.reset_in_progress) 2336 panthor_vm_stop(vm); 2337 mutex_unlock(&ptdev->mmu->vm.lock); 2338 2339 /* We intentionally leave the reserved range to zero, because we want kernel VMAs 2340 * to be handled the same way user VMAs are. 2341 */ 2342 drm_gpuvm_init(&vm->base, for_mcu ? "panthor-MCU-VM" : "panthor-GPU-VM", 2343 DRM_GPUVM_RESV_PROTECTED, &ptdev->base, dummy_gem, 2344 min_va, va_range, 0, 0, &panthor_gpuvm_ops); 2345 drm_gem_object_put(dummy_gem); 2346 return vm; 2347 2348 err_sched_fini: 2349 drm_sched_fini(&vm->sched); 2350 2351 err_free_io_pgtable: 2352 free_io_pgtable_ops(vm->pgtbl_ops); 2353 2354 err_mm_takedown: 2355 drm_mm_takedown(&vm->mm); 2356 drm_gem_object_put(dummy_gem); 2357 2358 err_free_vm: 2359 kfree(vm); 2360 return ERR_PTR(ret); 2361 } 2362 2363 static int 2364 panthor_vm_bind_prepare_op_ctx(struct drm_file *file, 2365 struct panthor_vm *vm, 2366 const struct drm_panthor_vm_bind_op *op, 2367 struct panthor_vm_op_ctx *op_ctx) 2368 { 2369 struct drm_gem_object *gem; 2370 int ret; 2371 2372 /* Aligned on page size. */ 2373 if ((op->va | op->size) & ~PAGE_MASK) 2374 return -EINVAL; 2375 2376 switch (op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) { 2377 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: 2378 gem = drm_gem_object_lookup(file, op->bo_handle); 2379 ret = panthor_vm_prepare_map_op_ctx(op_ctx, vm, 2380 gem ? to_panthor_bo(gem) : NULL, 2381 op->bo_offset, 2382 op->size, 2383 op->va, 2384 op->flags); 2385 drm_gem_object_put(gem); 2386 return ret; 2387 2388 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP: 2389 if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) 2390 return -EINVAL; 2391 2392 if (op->bo_handle || op->bo_offset) 2393 return -EINVAL; 2394 2395 return panthor_vm_prepare_unmap_op_ctx(op_ctx, vm, op->va, op->size); 2396 2397 case DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY: 2398 if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) 2399 return -EINVAL; 2400 2401 if (op->bo_handle || op->bo_offset) 2402 return -EINVAL; 2403 2404 if (op->va || op->size) 2405 return -EINVAL; 2406 2407 if (!op->syncs.count) 2408 return -EINVAL; 2409 2410 panthor_vm_prepare_sync_only_op_ctx(op_ctx, vm); 2411 return 0; 2412 2413 default: 2414 return -EINVAL; 2415 } 2416 } 2417 2418 static void panthor_vm_bind_job_cleanup_op_ctx_work(struct work_struct *work) 2419 { 2420 struct panthor_vm_bind_job *job = 2421 container_of(work, struct panthor_vm_bind_job, cleanup_op_ctx_work); 2422 2423 panthor_vm_bind_job_put(&job->base); 2424 } 2425 2426 /** 2427 * panthor_vm_bind_job_create() - Create a VM_BIND job 2428 * @file: File. 2429 * @vm: VM targeted by the VM_BIND job. 2430 * @op: VM operation data. 2431 * 2432 * Return: A valid pointer on success, an ERR_PTR() otherwise. 2433 */ 2434 struct drm_sched_job * 2435 panthor_vm_bind_job_create(struct drm_file *file, 2436 struct panthor_vm *vm, 2437 const struct drm_panthor_vm_bind_op *op) 2438 { 2439 struct panthor_vm_bind_job *job; 2440 int ret; 2441 2442 if (!vm) 2443 return ERR_PTR(-EINVAL); 2444 2445 if (vm->destroyed || vm->unusable) 2446 return ERR_PTR(-EINVAL); 2447 2448 job = kzalloc(sizeof(*job), GFP_KERNEL); 2449 if (!job) 2450 return ERR_PTR(-ENOMEM); 2451 2452 ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &job->ctx); 2453 if (ret) { 2454 kfree(job); 2455 return ERR_PTR(ret); 2456 } 2457 2458 INIT_WORK(&job->cleanup_op_ctx_work, panthor_vm_bind_job_cleanup_op_ctx_work); 2459 kref_init(&job->refcount); 2460 job->vm = panthor_vm_get(vm); 2461 2462 ret = drm_sched_job_init(&job->base, &vm->entity, 1, vm); 2463 if (ret) 2464 goto err_put_job; 2465 2466 return &job->base; 2467 2468 err_put_job: 2469 panthor_vm_bind_job_put(&job->base); 2470 return ERR_PTR(ret); 2471 } 2472 2473 /** 2474 * panthor_vm_bind_job_prepare_resvs() - Prepare VM_BIND job dma_resvs 2475 * @exec: The locking/preparation context. 2476 * @sched_job: The job to prepare resvs on. 2477 * 2478 * Locks and prepare the VM resv. 2479 * 2480 * If this is a map operation, locks and prepares the GEM resv. 2481 * 2482 * Return: 0 on success, a negative error code otherwise. 2483 */ 2484 int panthor_vm_bind_job_prepare_resvs(struct drm_exec *exec, 2485 struct drm_sched_job *sched_job) 2486 { 2487 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base); 2488 int ret; 2489 2490 /* Acquire the VM lock an reserve a slot for this VM bind job. */ 2491 ret = drm_gpuvm_prepare_vm(&job->vm->base, exec, 1); 2492 if (ret) 2493 return ret; 2494 2495 if (job->ctx.map.vm_bo) { 2496 /* Lock/prepare the GEM being mapped. */ 2497 ret = drm_exec_prepare_obj(exec, job->ctx.map.vm_bo->obj, 1); 2498 if (ret) 2499 return ret; 2500 } 2501 2502 return 0; 2503 } 2504 2505 /** 2506 * panthor_vm_bind_job_update_resvs() - Update the resv objects touched by a job 2507 * @exec: drm_exec context. 2508 * @sched_job: Job to update the resvs on. 2509 */ 2510 void panthor_vm_bind_job_update_resvs(struct drm_exec *exec, 2511 struct drm_sched_job *sched_job) 2512 { 2513 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base); 2514 2515 /* Explicit sync => we just register our job finished fence as bookkeep. */ 2516 drm_gpuvm_resv_add_fence(&job->vm->base, exec, 2517 &sched_job->s_fence->finished, 2518 DMA_RESV_USAGE_BOOKKEEP, 2519 DMA_RESV_USAGE_BOOKKEEP); 2520 } 2521 2522 void panthor_vm_update_resvs(struct panthor_vm *vm, struct drm_exec *exec, 2523 struct dma_fence *fence, 2524 enum dma_resv_usage private_usage, 2525 enum dma_resv_usage extobj_usage) 2526 { 2527 drm_gpuvm_resv_add_fence(&vm->base, exec, fence, private_usage, extobj_usage); 2528 } 2529 2530 /** 2531 * panthor_vm_bind_exec_sync_op() - Execute a VM_BIND operation synchronously. 2532 * @file: File. 2533 * @vm: VM targeted by the VM operation. 2534 * @op: Data describing the VM operation. 2535 * 2536 * Return: 0 on success, a negative error code otherwise. 2537 */ 2538 int panthor_vm_bind_exec_sync_op(struct drm_file *file, 2539 struct panthor_vm *vm, 2540 struct drm_panthor_vm_bind_op *op) 2541 { 2542 struct panthor_vm_op_ctx op_ctx; 2543 int ret; 2544 2545 /* No sync objects allowed on synchronous operations. */ 2546 if (op->syncs.count) 2547 return -EINVAL; 2548 2549 if (!op->size) 2550 return 0; 2551 2552 ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &op_ctx); 2553 if (ret) 2554 return ret; 2555 2556 ret = panthor_vm_exec_op(vm, &op_ctx, false); 2557 panthor_vm_cleanup_op_ctx(&op_ctx, vm); 2558 2559 return ret; 2560 } 2561 2562 /** 2563 * panthor_vm_map_bo_range() - Map a GEM object range to a VM 2564 * @vm: VM to map the GEM to. 2565 * @bo: GEM object to map. 2566 * @offset: Offset in the GEM object. 2567 * @size: Size to map. 2568 * @va: Virtual address to map the object to. 2569 * @flags: Combination of drm_panthor_vm_bind_op_flags flags. 2570 * Only map-related flags are valid. 2571 * 2572 * Internal use only. For userspace requests, use 2573 * panthor_vm_bind_exec_sync_op() instead. 2574 * 2575 * Return: 0 on success, a negative error code otherwise. 2576 */ 2577 int panthor_vm_map_bo_range(struct panthor_vm *vm, struct panthor_gem_object *bo, 2578 u64 offset, u64 size, u64 va, u32 flags) 2579 { 2580 struct panthor_vm_op_ctx op_ctx; 2581 int ret; 2582 2583 ret = panthor_vm_prepare_map_op_ctx(&op_ctx, vm, bo, offset, size, va, flags); 2584 if (ret) 2585 return ret; 2586 2587 ret = panthor_vm_exec_op(vm, &op_ctx, false); 2588 panthor_vm_cleanup_op_ctx(&op_ctx, vm); 2589 2590 return ret; 2591 } 2592 2593 /** 2594 * panthor_vm_unmap_range() - Unmap a portion of the VA space 2595 * @vm: VM to unmap the region from. 2596 * @va: Virtual address to unmap. Must be 4k aligned. 2597 * @size: Size of the region to unmap. Must be 4k aligned. 2598 * 2599 * Internal use only. For userspace requests, use 2600 * panthor_vm_bind_exec_sync_op() instead. 2601 * 2602 * Return: 0 on success, a negative error code otherwise. 2603 */ 2604 int panthor_vm_unmap_range(struct panthor_vm *vm, u64 va, u64 size) 2605 { 2606 struct panthor_vm_op_ctx op_ctx; 2607 int ret; 2608 2609 ret = panthor_vm_prepare_unmap_op_ctx(&op_ctx, vm, va, size); 2610 if (ret) 2611 return ret; 2612 2613 ret = panthor_vm_exec_op(vm, &op_ctx, false); 2614 panthor_vm_cleanup_op_ctx(&op_ctx, vm); 2615 2616 return ret; 2617 } 2618 2619 /** 2620 * panthor_vm_prepare_mapped_bos_resvs() - Prepare resvs on VM BOs. 2621 * @exec: Locking/preparation context. 2622 * @vm: VM targeted by the GPU job. 2623 * @slot_count: Number of slots to reserve. 2624 * 2625 * GPU jobs assume all BOs bound to the VM at the time the job is submitted 2626 * are available when the job is executed. In order to guarantee that, we 2627 * need to reserve a slot on all BOs mapped to a VM and update this slot with 2628 * the job fence after its submission. 2629 * 2630 * Return: 0 on success, a negative error code otherwise. 2631 */ 2632 int panthor_vm_prepare_mapped_bos_resvs(struct drm_exec *exec, struct panthor_vm *vm, 2633 u32 slot_count) 2634 { 2635 int ret; 2636 2637 /* Acquire the VM lock and reserve a slot for this GPU job. */ 2638 ret = drm_gpuvm_prepare_vm(&vm->base, exec, slot_count); 2639 if (ret) 2640 return ret; 2641 2642 return drm_gpuvm_prepare_objects(&vm->base, exec, slot_count); 2643 } 2644 2645 /** 2646 * panthor_mmu_unplug() - Unplug the MMU logic 2647 * @ptdev: Device. 2648 * 2649 * No access to the MMU regs should be done after this function is called. 2650 * We suspend the IRQ and disable all VMs to guarantee that. 2651 */ 2652 void panthor_mmu_unplug(struct panthor_device *ptdev) 2653 { 2654 panthor_mmu_irq_suspend(&ptdev->mmu->irq); 2655 2656 mutex_lock(&ptdev->mmu->as.slots_lock); 2657 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) { 2658 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm; 2659 2660 if (vm) { 2661 drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i)); 2662 panthor_vm_release_as_locked(vm); 2663 } 2664 } 2665 mutex_unlock(&ptdev->mmu->as.slots_lock); 2666 } 2667 2668 static void panthor_mmu_release_wq(struct drm_device *ddev, void *res) 2669 { 2670 destroy_workqueue(res); 2671 } 2672 2673 /** 2674 * panthor_mmu_init() - Initialize the MMU logic. 2675 * @ptdev: Device. 2676 * 2677 * Return: 0 on success, a negative error code otherwise. 2678 */ 2679 int panthor_mmu_init(struct panthor_device *ptdev) 2680 { 2681 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); 2682 struct panthor_mmu *mmu; 2683 int ret, irq; 2684 2685 mmu = drmm_kzalloc(&ptdev->base, sizeof(*mmu), GFP_KERNEL); 2686 if (!mmu) 2687 return -ENOMEM; 2688 2689 INIT_LIST_HEAD(&mmu->as.lru_list); 2690 2691 ret = drmm_mutex_init(&ptdev->base, &mmu->as.slots_lock); 2692 if (ret) 2693 return ret; 2694 2695 INIT_LIST_HEAD(&mmu->vm.list); 2696 ret = drmm_mutex_init(&ptdev->base, &mmu->vm.lock); 2697 if (ret) 2698 return ret; 2699 2700 ptdev->mmu = mmu; 2701 2702 irq = platform_get_irq_byname(to_platform_device(ptdev->base.dev), "mmu"); 2703 if (irq <= 0) 2704 return -ENODEV; 2705 2706 ret = panthor_request_mmu_irq(ptdev, &mmu->irq, irq, 2707 panthor_mmu_fault_mask(ptdev, ~0)); 2708 if (ret) 2709 return ret; 2710 2711 mmu->vm.wq = alloc_workqueue("panthor-vm-bind", WQ_UNBOUND, 0); 2712 if (!mmu->vm.wq) 2713 return -ENOMEM; 2714 2715 /* On 32-bit kernels, the VA space is limited by the io_pgtable_ops abstraction, 2716 * which passes iova as an unsigned long. Patch the mmu_features to reflect this 2717 * limitation. 2718 */ 2719 if (sizeof(unsigned long) * 8 < va_bits) { 2720 ptdev->gpu_info.mmu_features &= ~GENMASK(7, 0); 2721 ptdev->gpu_info.mmu_features |= sizeof(unsigned long) * 8; 2722 } 2723 2724 return drmm_add_action_or_reset(&ptdev->base, panthor_mmu_release_wq, mmu->vm.wq); 2725 } 2726 2727 #ifdef CONFIG_DEBUG_FS 2728 static int show_vm_gpuvas(struct panthor_vm *vm, struct seq_file *m) 2729 { 2730 int ret; 2731 2732 mutex_lock(&vm->op_lock); 2733 ret = drm_debugfs_gpuva_info(m, &vm->base); 2734 mutex_unlock(&vm->op_lock); 2735 2736 return ret; 2737 } 2738 2739 static int show_each_vm(struct seq_file *m, void *arg) 2740 { 2741 struct drm_info_node *node = (struct drm_info_node *)m->private; 2742 struct drm_device *ddev = node->minor->dev; 2743 struct panthor_device *ptdev = container_of(ddev, struct panthor_device, base); 2744 int (*show)(struct panthor_vm *, struct seq_file *) = node->info_ent->data; 2745 struct panthor_vm *vm; 2746 int ret = 0; 2747 2748 mutex_lock(&ptdev->mmu->vm.lock); 2749 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) { 2750 ret = show(vm, m); 2751 if (ret < 0) 2752 break; 2753 2754 seq_puts(m, "\n"); 2755 } 2756 mutex_unlock(&ptdev->mmu->vm.lock); 2757 2758 return ret; 2759 } 2760 2761 static struct drm_info_list panthor_mmu_debugfs_list[] = { 2762 DRM_DEBUGFS_GPUVA_INFO(show_each_vm, show_vm_gpuvas), 2763 }; 2764 2765 /** 2766 * panthor_mmu_debugfs_init() - Initialize MMU debugfs entries 2767 * @minor: Minor. 2768 */ 2769 void panthor_mmu_debugfs_init(struct drm_minor *minor) 2770 { 2771 drm_debugfs_create_files(panthor_mmu_debugfs_list, 2772 ARRAY_SIZE(panthor_mmu_debugfs_list), 2773 minor->debugfs_root, minor); 2774 } 2775 #endif /* CONFIG_DEBUG_FS */ 2776 2777 /** 2778 * panthor_mmu_pt_cache_init() - Initialize the page table cache. 2779 * 2780 * Return: 0 on success, a negative error code otherwise. 2781 */ 2782 int panthor_mmu_pt_cache_init(void) 2783 { 2784 pt_cache = kmem_cache_create("panthor-mmu-pt", SZ_4K, SZ_4K, 0, NULL); 2785 if (!pt_cache) 2786 return -ENOMEM; 2787 2788 return 0; 2789 } 2790 2791 /** 2792 * panthor_mmu_pt_cache_fini() - Destroy the page table cache. 2793 */ 2794 void panthor_mmu_pt_cache_fini(void) 2795 { 2796 kmem_cache_destroy(pt_cache); 2797 } 2798