xref: /linux/drivers/gpu/drm/i915/gvt/handlers.c (revision f6e8dc9edf963dbc99085e54f6ced6da9daa6100)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Kevin Tian <kevin.tian@intel.com>
25  *    Eddie Dong <eddie.dong@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Tina Zhang <tina.zhang@intel.com>
31  *    Pei Zhang <pei.zhang@intel.com>
32  *    Niu Bing <bing.niu@intel.com>
33  *    Ping Gao <ping.a.gao@intel.com>
34  *    Zhi Wang <zhi.a.wang@intel.com>
35  *
36 
37  */
38 
39 #include <drm/display/drm_dp.h>
40 #include <drm/drm_print.h>
41 
42 #include "i915_drv.h"
43 #include "i915_reg.h"
44 #include "display/intel_display_regs.h"
45 #include "gvt.h"
46 #include "i915_pvinfo.h"
47 #include "intel_mchbar_regs.h"
48 #include "display/bxt_dpio_phy_regs.h"
49 #include "display/i9xx_plane_regs.h"
50 #include "display/intel_crt_regs.h"
51 #include "display/intel_cursor_regs.h"
52 #include "display/intel_display_core.h"
53 #include "display/intel_display_types.h"
54 #include "display/intel_dmc_regs.h"
55 #include "display/intel_dp_aux_regs.h"
56 #include "display/intel_dpio_phy.h"
57 #include "display/intel_fbc.h"
58 #include "display/intel_fdi_regs.h"
59 #include "display/intel_pps_regs.h"
60 #include "display/intel_psr_regs.h"
61 #include "display/intel_sbi_regs.h"
62 #include "display/intel_sprite_regs.h"
63 #include "display/intel_vga_regs.h"
64 #include "display/skl_universal_plane_regs.h"
65 #include "display/skl_watermark_regs.h"
66 #include "display/vlv_dsi_pll_regs.h"
67 #include "gt/intel_gt_regs.h"
68 #include <linux/vmalloc.h>
69 
70 /* XXX FIXME i915 has changed PP_XXX definition */
71 #define PCH_PP_STATUS  _MMIO(0xc7200)
72 #define PCH_PP_CONTROL _MMIO(0xc7204)
73 #define PCH_PP_ON_DELAYS _MMIO(0xc7208)
74 #define PCH_PP_OFF_DELAYS _MMIO(0xc720c)
75 #define PCH_PP_DIVISOR _MMIO(0xc7210)
76 
77 unsigned long intel_gvt_get_device_type(struct intel_gvt *gvt)
78 {
79 	struct drm_i915_private *i915 = gvt->gt->i915;
80 
81 	if (IS_BROADWELL(i915))
82 		return D_BDW;
83 	else if (IS_SKYLAKE(i915))
84 		return D_SKL;
85 	else if (IS_KABYLAKE(i915))
86 		return D_KBL;
87 	else if (IS_BROXTON(i915))
88 		return D_BXT;
89 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
90 		return D_CFL;
91 
92 	return 0;
93 }
94 
95 static bool intel_gvt_match_device(struct intel_gvt *gvt,
96 		unsigned long device)
97 {
98 	return intel_gvt_get_device_type(gvt) & device;
99 }
100 
101 static void read_vreg(struct intel_vgpu *vgpu, unsigned int offset,
102 	void *p_data, unsigned int bytes)
103 {
104 	memcpy(p_data, &vgpu_vreg(vgpu, offset), bytes);
105 }
106 
107 static void write_vreg(struct intel_vgpu *vgpu, unsigned int offset,
108 	void *p_data, unsigned int bytes)
109 {
110 	memcpy(&vgpu_vreg(vgpu, offset), p_data, bytes);
111 }
112 
113 struct intel_gvt_mmio_info *intel_gvt_find_mmio_info(struct intel_gvt *gvt,
114 						  unsigned int offset)
115 {
116 	struct intel_gvt_mmio_info *e;
117 
118 	hash_for_each_possible(gvt->mmio.mmio_info_table, e, node, offset) {
119 		if (e->offset == offset)
120 			return e;
121 	}
122 	return NULL;
123 }
124 
125 static int setup_mmio_info(struct intel_gvt *gvt, u32 offset, u32 size,
126 			   u16 flags, u32 addr_mask, u32 ro_mask, u32 device,
127 			   gvt_mmio_func read, gvt_mmio_func write)
128 {
129 	struct intel_gvt_mmio_info *p;
130 	u32 start, end, i;
131 
132 	if (!intel_gvt_match_device(gvt, device))
133 		return 0;
134 
135 	if (WARN_ON(!IS_ALIGNED(offset, 4)))
136 		return -EINVAL;
137 
138 	start = offset;
139 	end = offset + size;
140 
141 	for (i = start; i < end; i += 4) {
142 		p = intel_gvt_find_mmio_info(gvt, i);
143 		if (!p) {
144 			WARN(1, "assign a handler to a non-tracked mmio %x\n",
145 				i);
146 			return -ENODEV;
147 		}
148 		p->ro_mask = ro_mask;
149 		gvt->mmio.mmio_attribute[i / 4] = flags;
150 		if (read)
151 			p->read = read;
152 		if (write)
153 			p->write = write;
154 	}
155 	return 0;
156 }
157 
158 /**
159  * intel_gvt_render_mmio_to_engine - convert a mmio offset into the engine
160  * @gvt: a GVT device
161  * @offset: register offset
162  *
163  * Returns:
164  * The engine containing the offset within its mmio page.
165  */
166 const struct intel_engine_cs *
167 intel_gvt_render_mmio_to_engine(struct intel_gvt *gvt, unsigned int offset)
168 {
169 	struct intel_engine_cs *engine;
170 	enum intel_engine_id id;
171 
172 	offset &= ~GENMASK(11, 0);
173 	for_each_engine(engine, gvt->gt, id)
174 		if (engine->mmio_base == offset)
175 			return engine;
176 
177 	return NULL;
178 }
179 
180 #define offset_to_fence_num(offset) \
181 	((offset - i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0))) >> 3)
182 
183 #define fence_num_to_offset(num) \
184 	(num * 8 + i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0)))
185 
186 
187 void enter_failsafe_mode(struct intel_vgpu *vgpu, int reason)
188 {
189 	switch (reason) {
190 	case GVT_FAILSAFE_UNSUPPORTED_GUEST:
191 		pr_err("Detected your guest driver doesn't support GVT-g.\n");
192 		break;
193 	case GVT_FAILSAFE_INSUFFICIENT_RESOURCE:
194 		pr_err("Graphics resource is not enough for the guest\n");
195 		break;
196 	case GVT_FAILSAFE_GUEST_ERR:
197 		pr_err("GVT Internal error  for the guest\n");
198 		break;
199 	default:
200 		break;
201 	}
202 	pr_err("Now vgpu %d will enter failsafe mode.\n", vgpu->id);
203 	vgpu->failsafe = true;
204 }
205 
206 static int sanitize_fence_mmio_access(struct intel_vgpu *vgpu,
207 		unsigned int fence_num, void *p_data, unsigned int bytes)
208 {
209 	unsigned int max_fence = vgpu_fence_sz(vgpu);
210 
211 	if (fence_num >= max_fence) {
212 		gvt_vgpu_err("access oob fence reg %d/%d\n",
213 			     fence_num, max_fence);
214 
215 		/* When guest access oob fence regs without access
216 		 * pv_info first, we treat guest not supporting GVT,
217 		 * and we will let vgpu enter failsafe mode.
218 		 */
219 		if (!vgpu->pv_notified)
220 			enter_failsafe_mode(vgpu,
221 					GVT_FAILSAFE_UNSUPPORTED_GUEST);
222 
223 		memset(p_data, 0, bytes);
224 		return -EINVAL;
225 	}
226 	return 0;
227 }
228 
229 static int gamw_echo_dev_rw_ia_write(struct intel_vgpu *vgpu,
230 		unsigned int offset, void *p_data, unsigned int bytes)
231 {
232 	u32 ips = (*(u32 *)p_data) & GAMW_ECO_ENABLE_64K_IPS_FIELD;
233 
234 	if (GRAPHICS_VER(vgpu->gvt->gt->i915) <= 10) {
235 		if (ips == GAMW_ECO_ENABLE_64K_IPS_FIELD)
236 			gvt_dbg_core("vgpu%d: ips enabled\n", vgpu->id);
237 		else if (!ips)
238 			gvt_dbg_core("vgpu%d: ips disabled\n", vgpu->id);
239 		else {
240 			/* All engines must be enabled together for vGPU,
241 			 * since we don't know which engine the ppgtt will
242 			 * bind to when shadowing.
243 			 */
244 			gvt_vgpu_err("Unsupported IPS setting %x, cannot enable 64K gtt.\n",
245 				     ips);
246 			return -EINVAL;
247 		}
248 	}
249 
250 	write_vreg(vgpu, offset, p_data, bytes);
251 	return 0;
252 }
253 
254 static int fence_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
255 		void *p_data, unsigned int bytes)
256 {
257 	int ret;
258 
259 	ret = sanitize_fence_mmio_access(vgpu, offset_to_fence_num(off),
260 			p_data, bytes);
261 	if (ret)
262 		return ret;
263 	read_vreg(vgpu, off, p_data, bytes);
264 	return 0;
265 }
266 
267 static int fence_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
268 		void *p_data, unsigned int bytes)
269 {
270 	struct intel_gvt *gvt = vgpu->gvt;
271 	unsigned int fence_num = offset_to_fence_num(off);
272 	intel_wakeref_t wakeref;
273 	int ret;
274 
275 	ret = sanitize_fence_mmio_access(vgpu, fence_num, p_data, bytes);
276 	if (ret)
277 		return ret;
278 	write_vreg(vgpu, off, p_data, bytes);
279 
280 	wakeref = mmio_hw_access_pre(gvt->gt);
281 	intel_vgpu_write_fence(vgpu, fence_num,
282 			vgpu_vreg64(vgpu, fence_num_to_offset(fence_num)));
283 	mmio_hw_access_post(gvt->gt, wakeref);
284 	return 0;
285 }
286 
287 #define CALC_MODE_MASK_REG(old, new) \
288 	(((new) & GENMASK(31, 16)) \
289 	 | ((((old) & GENMASK(15, 0)) & ~((new) >> 16)) \
290 	 | ((new) & ((new) >> 16))))
291 
292 static int mul_force_wake_write(struct intel_vgpu *vgpu,
293 		unsigned int offset, void *p_data, unsigned int bytes)
294 {
295 	u32 old, new;
296 	u32 ack_reg_offset;
297 
298 	old = vgpu_vreg(vgpu, offset);
299 	new = CALC_MODE_MASK_REG(old, *(u32 *)p_data);
300 
301 	if (GRAPHICS_VER(vgpu->gvt->gt->i915)  >=  9) {
302 		switch (offset) {
303 		case FORCEWAKE_RENDER_GEN9_REG:
304 			ack_reg_offset = FORCEWAKE_ACK_RENDER_GEN9_REG;
305 			break;
306 		case FORCEWAKE_GT_GEN9_REG:
307 			ack_reg_offset = FORCEWAKE_ACK_GT_GEN9_REG;
308 			break;
309 		case FORCEWAKE_MEDIA_GEN9_REG:
310 			ack_reg_offset = FORCEWAKE_ACK_MEDIA_GEN9_REG;
311 			break;
312 		default:
313 			/*should not hit here*/
314 			gvt_vgpu_err("invalid forcewake offset 0x%x\n", offset);
315 			return -EINVAL;
316 		}
317 	} else {
318 		ack_reg_offset = FORCEWAKE_ACK_HSW_REG;
319 	}
320 
321 	vgpu_vreg(vgpu, offset) = new;
322 	vgpu_vreg(vgpu, ack_reg_offset) = (new & GENMASK(15, 0));
323 	return 0;
324 }
325 
326 static int gdrst_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
327 			    void *p_data, unsigned int bytes)
328 {
329 	intel_engine_mask_t engine_mask = 0;
330 	u32 data;
331 
332 	write_vreg(vgpu, offset, p_data, bytes);
333 	data = vgpu_vreg(vgpu, offset);
334 
335 	if (data & GEN6_GRDOM_FULL) {
336 		gvt_dbg_mmio("vgpu%d: request full GPU reset\n", vgpu->id);
337 		engine_mask = ALL_ENGINES;
338 	} else {
339 		if (data & GEN6_GRDOM_RENDER) {
340 			gvt_dbg_mmio("vgpu%d: request RCS reset\n", vgpu->id);
341 			engine_mask |= BIT(RCS0);
342 		}
343 		if (data & GEN6_GRDOM_MEDIA) {
344 			gvt_dbg_mmio("vgpu%d: request VCS reset\n", vgpu->id);
345 			engine_mask |= BIT(VCS0);
346 		}
347 		if (data & GEN6_GRDOM_BLT) {
348 			gvt_dbg_mmio("vgpu%d: request BCS Reset\n", vgpu->id);
349 			engine_mask |= BIT(BCS0);
350 		}
351 		if (data & GEN6_GRDOM_VECS) {
352 			gvt_dbg_mmio("vgpu%d: request VECS Reset\n", vgpu->id);
353 			engine_mask |= BIT(VECS0);
354 		}
355 		if (data & GEN8_GRDOM_MEDIA2) {
356 			gvt_dbg_mmio("vgpu%d: request VCS2 Reset\n", vgpu->id);
357 			engine_mask |= BIT(VCS1);
358 		}
359 		if (data & GEN9_GRDOM_GUC) {
360 			gvt_dbg_mmio("vgpu%d: request GUC Reset\n", vgpu->id);
361 			vgpu_vreg_t(vgpu, GUC_STATUS) |= GS_MIA_IN_RESET;
362 		}
363 		engine_mask &= vgpu->gvt->gt->info.engine_mask;
364 	}
365 
366 	/* vgpu_lock already hold by emulate mmio r/w */
367 	intel_gvt_reset_vgpu_locked(vgpu, false, engine_mask);
368 
369 	/* sw will wait for the device to ack the reset request */
370 	vgpu_vreg(vgpu, offset) = 0;
371 
372 	return 0;
373 }
374 
375 static int gmbus_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
376 		void *p_data, unsigned int bytes)
377 {
378 	return intel_gvt_i2c_handle_gmbus_read(vgpu, offset, p_data, bytes);
379 }
380 
381 static int gmbus_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
382 		void *p_data, unsigned int bytes)
383 {
384 	return intel_gvt_i2c_handle_gmbus_write(vgpu, offset, p_data, bytes);
385 }
386 
387 static int pch_pp_control_mmio_write(struct intel_vgpu *vgpu,
388 		unsigned int offset, void *p_data, unsigned int bytes)
389 {
390 	write_vreg(vgpu, offset, p_data, bytes);
391 
392 	if (vgpu_vreg(vgpu, offset) & PANEL_POWER_ON) {
393 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) |= PP_ON;
394 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) |= PP_SEQUENCE_STATE_ON_IDLE;
395 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= ~PP_SEQUENCE_POWER_DOWN;
396 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= ~PP_CYCLE_DELAY_ACTIVE;
397 
398 	} else
399 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) &=
400 			~(PP_ON | PP_SEQUENCE_POWER_DOWN
401 					| PP_CYCLE_DELAY_ACTIVE);
402 	return 0;
403 }
404 
405 static int transconf_mmio_write(struct intel_vgpu *vgpu,
406 		unsigned int offset, void *p_data, unsigned int bytes)
407 {
408 	write_vreg(vgpu, offset, p_data, bytes);
409 
410 	if (vgpu_vreg(vgpu, offset) & TRANS_ENABLE)
411 		vgpu_vreg(vgpu, offset) |= TRANS_STATE_ENABLE;
412 	else
413 		vgpu_vreg(vgpu, offset) &= ~TRANS_STATE_ENABLE;
414 	return 0;
415 }
416 
417 static int lcpll_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
418 		void *p_data, unsigned int bytes)
419 {
420 	write_vreg(vgpu, offset, p_data, bytes);
421 
422 	if (vgpu_vreg(vgpu, offset) & LCPLL_PLL_DISABLE)
423 		vgpu_vreg(vgpu, offset) &= ~LCPLL_PLL_LOCK;
424 	else
425 		vgpu_vreg(vgpu, offset) |= LCPLL_PLL_LOCK;
426 
427 	if (vgpu_vreg(vgpu, offset) & LCPLL_CD_SOURCE_FCLK)
428 		vgpu_vreg(vgpu, offset) |= LCPLL_CD_SOURCE_FCLK_DONE;
429 	else
430 		vgpu_vreg(vgpu, offset) &= ~LCPLL_CD_SOURCE_FCLK_DONE;
431 
432 	return 0;
433 }
434 
435 static int dpy_reg_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
436 		void *p_data, unsigned int bytes)
437 {
438 	switch (offset) {
439 	case 0xe651c:
440 	case 0xe661c:
441 	case 0xe671c:
442 	case 0xe681c:
443 		vgpu_vreg(vgpu, offset) = 1 << 17;
444 		break;
445 	case 0xe6c04:
446 		vgpu_vreg(vgpu, offset) = 0x3;
447 		break;
448 	case 0xe6e1c:
449 		vgpu_vreg(vgpu, offset) = 0x2f << 16;
450 		break;
451 	default:
452 		return -EINVAL;
453 	}
454 
455 	read_vreg(vgpu, offset, p_data, bytes);
456 	return 0;
457 }
458 
459 /*
460  * Only PIPE_A is enabled in current vGPU display and PIPE_A is tied to
461  *   TRANSCODER_A in HW. DDI/PORT could be PORT_x depends on
462  *   setup_virtual_dp_monitor().
463  * emulate_monitor_status_change() set up PLL for PORT_x as the initial enabled
464  *   DPLL. Later guest driver may setup a different DPLLx when setting mode.
465  * So the correct sequence to find DP stream clock is:
466  *   Check TRANS_DDI_FUNC_CTL on TRANSCODER_A to get PORT_x.
467  *   Check correct PLLx for PORT_x to get PLL frequency and DP bitrate.
468  * Then Refresh rate then can be calculated based on follow equations:
469  *   Pixel clock = h_total * v_total * refresh_rate
470  *   stream clock = Pixel clock
471  *   ls_clk = DP bitrate
472  *   Link M/N = strm_clk / ls_clk
473  */
474 
475 static u32 bdw_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
476 {
477 	u32 dp_br = 0;
478 	u32 ddi_pll_sel = vgpu_vreg_t(vgpu, PORT_CLK_SEL(port));
479 
480 	switch (ddi_pll_sel) {
481 	case PORT_CLK_SEL_LCPLL_2700:
482 		dp_br = 270000 * 2;
483 		break;
484 	case PORT_CLK_SEL_LCPLL_1350:
485 		dp_br = 135000 * 2;
486 		break;
487 	case PORT_CLK_SEL_LCPLL_810:
488 		dp_br = 81000 * 2;
489 		break;
490 	case PORT_CLK_SEL_SPLL:
491 	{
492 		switch (vgpu_vreg_t(vgpu, SPLL_CTL) & SPLL_FREQ_MASK) {
493 		case SPLL_FREQ_810MHz:
494 			dp_br = 81000 * 2;
495 			break;
496 		case SPLL_FREQ_1350MHz:
497 			dp_br = 135000 * 2;
498 			break;
499 		case SPLL_FREQ_2700MHz:
500 			dp_br = 270000 * 2;
501 			break;
502 		default:
503 			gvt_dbg_dpy("vgpu-%d PORT_%c can't get freq from SPLL 0x%08x\n",
504 				    vgpu->id, port_name(port), vgpu_vreg_t(vgpu, SPLL_CTL));
505 			break;
506 		}
507 		break;
508 	}
509 	case PORT_CLK_SEL_WRPLL1:
510 	case PORT_CLK_SEL_WRPLL2:
511 	{
512 		u32 wrpll_ctl;
513 		int refclk, n, p, r;
514 
515 		if (ddi_pll_sel == PORT_CLK_SEL_WRPLL1)
516 			wrpll_ctl = vgpu_vreg_t(vgpu, WRPLL_CTL(DPLL_ID_WRPLL1));
517 		else
518 			wrpll_ctl = vgpu_vreg_t(vgpu, WRPLL_CTL(DPLL_ID_WRPLL2));
519 
520 		switch (wrpll_ctl & WRPLL_REF_MASK) {
521 		case WRPLL_REF_PCH_SSC:
522 			refclk = 135000;
523 			break;
524 		case WRPLL_REF_LCPLL:
525 			refclk = 2700000;
526 			break;
527 		default:
528 			gvt_dbg_dpy("vgpu-%d PORT_%c WRPLL can't get refclk 0x%08x\n",
529 				    vgpu->id, port_name(port), wrpll_ctl);
530 			goto out;
531 		}
532 
533 		r = wrpll_ctl & WRPLL_DIVIDER_REF_MASK;
534 		p = (wrpll_ctl & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
535 		n = (wrpll_ctl & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
536 
537 		dp_br = (refclk * n / 10) / (p * r) * 2;
538 		break;
539 	}
540 	default:
541 		gvt_dbg_dpy("vgpu-%d PORT_%c has invalid clock select 0x%08x\n",
542 			    vgpu->id, port_name(port), vgpu_vreg_t(vgpu, PORT_CLK_SEL(port)));
543 		break;
544 	}
545 
546 out:
547 	return dp_br;
548 }
549 
550 static u32 bxt_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
551 {
552 	u32 dp_br = 0;
553 	int refclk = 100000;
554 	enum dpio_phy phy = DPIO_PHY0;
555 	enum dpio_channel ch = DPIO_CH0;
556 	struct dpll clock = {};
557 	u32 temp;
558 
559 	/* Port to PHY mapping is fixed, see bxt_ddi_phy_info{} */
560 	switch (port) {
561 	case PORT_A:
562 		phy = DPIO_PHY1;
563 		ch = DPIO_CH0;
564 		break;
565 	case PORT_B:
566 		phy = DPIO_PHY0;
567 		ch = DPIO_CH0;
568 		break;
569 	case PORT_C:
570 		phy = DPIO_PHY0;
571 		ch = DPIO_CH1;
572 		break;
573 	default:
574 		gvt_dbg_dpy("vgpu-%d no PHY for PORT_%c\n", vgpu->id, port_name(port));
575 		goto out;
576 	}
577 
578 	temp = vgpu_vreg_t(vgpu, BXT_PORT_PLL_ENABLE(port));
579 	if (!(temp & PORT_PLL_ENABLE) || !(temp & PORT_PLL_LOCK)) {
580 		gvt_dbg_dpy("vgpu-%d PORT_%c PLL_ENABLE 0x%08x isn't enabled or locked\n",
581 			    vgpu->id, port_name(port), temp);
582 		goto out;
583 	}
584 
585 	clock.m1 = 2;
586 	clock.m2 = REG_FIELD_GET(PORT_PLL_M2_INT_MASK,
587 				 vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 0))) << 22;
588 	if (vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 3)) & PORT_PLL_M2_FRAC_ENABLE)
589 		clock.m2 |= REG_FIELD_GET(PORT_PLL_M2_FRAC_MASK,
590 					  vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 2)));
591 	clock.n = REG_FIELD_GET(PORT_PLL_N_MASK,
592 				vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 1)));
593 	clock.p1 = REG_FIELD_GET(PORT_PLL_P1_MASK,
594 				 vgpu_vreg_t(vgpu, BXT_PORT_PLL_EBB_0(phy, ch)));
595 	clock.p2 = REG_FIELD_GET(PORT_PLL_P2_MASK,
596 				 vgpu_vreg_t(vgpu, BXT_PORT_PLL_EBB_0(phy, ch)));
597 	clock.m = clock.m1 * clock.m2;
598 	clock.p = clock.p1 * clock.p2 * 5;
599 
600 	if (clock.n == 0 || clock.p == 0) {
601 		gvt_dbg_dpy("vgpu-%d PORT_%c PLL has invalid divider\n", vgpu->id, port_name(port));
602 		goto out;
603 	}
604 
605 	clock.vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock.m), clock.n << 22);
606 	clock.dot = DIV_ROUND_CLOSEST(clock.vco, clock.p);
607 
608 	dp_br = clock.dot;
609 
610 out:
611 	return dp_br;
612 }
613 
614 static u32 skl_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
615 {
616 	u32 dp_br = 0;
617 	enum intel_dpll_id dpll_id = DPLL_ID_SKL_DPLL0;
618 
619 	/* Find the enabled DPLL for the DDI/PORT */
620 	if (!(vgpu_vreg_t(vgpu, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_OFF(port)) &&
621 	    (vgpu_vreg_t(vgpu, DPLL_CTRL2) & DPLL_CTRL2_DDI_SEL_OVERRIDE(port))) {
622 		dpll_id += (vgpu_vreg_t(vgpu, DPLL_CTRL2) &
623 			DPLL_CTRL2_DDI_CLK_SEL_MASK(port)) >>
624 			DPLL_CTRL2_DDI_CLK_SEL_SHIFT(port);
625 	} else {
626 		gvt_dbg_dpy("vgpu-%d DPLL for PORT_%c isn't turned on\n",
627 			    vgpu->id, port_name(port));
628 		return dp_br;
629 	}
630 
631 	/* Find PLL output frequency from correct DPLL, and get bir rate */
632 	switch ((vgpu_vreg_t(vgpu, DPLL_CTRL1) &
633 		DPLL_CTRL1_LINK_RATE_MASK(dpll_id)) >>
634 		DPLL_CTRL1_LINK_RATE_SHIFT(dpll_id)) {
635 		case DPLL_CTRL1_LINK_RATE_810:
636 			dp_br = 81000 * 2;
637 			break;
638 		case DPLL_CTRL1_LINK_RATE_1080:
639 			dp_br = 108000 * 2;
640 			break;
641 		case DPLL_CTRL1_LINK_RATE_1350:
642 			dp_br = 135000 * 2;
643 			break;
644 		case DPLL_CTRL1_LINK_RATE_1620:
645 			dp_br = 162000 * 2;
646 			break;
647 		case DPLL_CTRL1_LINK_RATE_2160:
648 			dp_br = 216000 * 2;
649 			break;
650 		case DPLL_CTRL1_LINK_RATE_2700:
651 			dp_br = 270000 * 2;
652 			break;
653 		default:
654 			dp_br = 0;
655 			gvt_dbg_dpy("vgpu-%d PORT_%c fail to get DPLL-%d freq\n",
656 				    vgpu->id, port_name(port), dpll_id);
657 	}
658 
659 	return dp_br;
660 }
661 
662 static void vgpu_update_refresh_rate(struct intel_vgpu *vgpu)
663 {
664 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
665 	struct intel_display *display = dev_priv->display;
666 	enum port port;
667 	u32 dp_br, link_m, link_n, htotal, vtotal;
668 
669 	/* Find DDI/PORT assigned to TRANSCODER_A, expect B or D */
670 	port = (vgpu_vreg_t(vgpu, TRANS_DDI_FUNC_CTL(display, TRANSCODER_A)) &
671 		TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
672 	if (port != PORT_B && port != PORT_D) {
673 		gvt_dbg_dpy("vgpu-%d unsupported PORT_%c\n", vgpu->id, port_name(port));
674 		return;
675 	}
676 
677 	/* Calculate DP bitrate from PLL */
678 	if (IS_BROADWELL(dev_priv))
679 		dp_br = bdw_vgpu_get_dp_bitrate(vgpu, port);
680 	else if (IS_BROXTON(dev_priv))
681 		dp_br = bxt_vgpu_get_dp_bitrate(vgpu, port);
682 	else
683 		dp_br = skl_vgpu_get_dp_bitrate(vgpu, port);
684 
685 	/* Get DP link symbol clock M/N */
686 	link_m = vgpu_vreg_t(vgpu, PIPE_LINK_M1(display, TRANSCODER_A));
687 	link_n = vgpu_vreg_t(vgpu, PIPE_LINK_N1(display, TRANSCODER_A));
688 
689 	/* Get H/V total from transcoder timing */
690 	htotal = (vgpu_vreg_t(vgpu, TRANS_HTOTAL(display, TRANSCODER_A)) >> TRANS_HTOTAL_SHIFT);
691 	vtotal = (vgpu_vreg_t(vgpu, TRANS_VTOTAL(display, TRANSCODER_A)) >> TRANS_VTOTAL_SHIFT);
692 
693 	if (dp_br && link_n && htotal && vtotal) {
694 		u64 pixel_clk = 0;
695 		u32 new_rate = 0;
696 		u32 *old_rate = &(intel_vgpu_port(vgpu, vgpu->display.port_num)->vrefresh_k);
697 
698 		/* Calculate pixel clock by (ls_clk * M / N) */
699 		pixel_clk = div_u64(mul_u32_u32(link_m, dp_br), link_n);
700 		pixel_clk *= MSEC_PER_SEC;
701 
702 		/* Calculate refresh rate by (pixel_clk / (h_total * v_total)) */
703 		new_rate = DIV64_U64_ROUND_CLOSEST(mul_u64_u32_shr(pixel_clk, MSEC_PER_SEC, 0), mul_u32_u32(htotal + 1, vtotal + 1));
704 
705 		if (*old_rate != new_rate)
706 			*old_rate = new_rate;
707 
708 		gvt_dbg_dpy("vgpu-%d PIPE_%c refresh rate updated to %d\n",
709 			    vgpu->id, pipe_name(PIPE_A), new_rate);
710 	}
711 }
712 
713 static int pipeconf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
714 		void *p_data, unsigned int bytes)
715 {
716 	u32 data;
717 
718 	write_vreg(vgpu, offset, p_data, bytes);
719 	data = vgpu_vreg(vgpu, offset);
720 
721 	if (data & TRANSCONF_ENABLE) {
722 		vgpu_vreg(vgpu, offset) |= TRANSCONF_STATE_ENABLE;
723 		vgpu_update_refresh_rate(vgpu);
724 		vgpu_update_vblank_emulation(vgpu, true);
725 	} else {
726 		vgpu_vreg(vgpu, offset) &= ~TRANSCONF_STATE_ENABLE;
727 		vgpu_update_vblank_emulation(vgpu, false);
728 	}
729 	return 0;
730 }
731 
732 /* sorted in ascending order */
733 static i915_reg_t force_nonpriv_white_list[] = {
734 	_MMIO(0xd80),
735 	GEN9_CS_DEBUG_MODE1, //_MMIO(0x20ec)
736 	GEN9_CTX_PREEMPT_REG,//_MMIO(0x2248)
737 	CL_PRIMITIVES_COUNT, //_MMIO(0x2340)
738 	PS_INVOCATION_COUNT, //_MMIO(0x2348)
739 	PS_DEPTH_COUNT, //_MMIO(0x2350)
740 	GEN8_CS_CHICKEN1,//_MMIO(0x2580)
741 	_MMIO(0x2690),
742 	_MMIO(0x2694),
743 	_MMIO(0x2698),
744 	_MMIO(0x2754),
745 	_MMIO(0x28a0),
746 	_MMIO(0x4de0),
747 	_MMIO(0x4de4),
748 	_MMIO(0x4dfc),
749 	GEN7_COMMON_SLICE_CHICKEN1,//_MMIO(0x7010)
750 	_MMIO(0x7014),
751 	HDC_CHICKEN0,//_MMIO(0x7300)
752 	GEN8_HDC_CHICKEN1,//_MMIO(0x7304)
753 	_MMIO(0x7700),
754 	_MMIO(0x7704),
755 	_MMIO(0x7708),
756 	_MMIO(0x770c),
757 	_MMIO(0x83a8),
758 	_MMIO(0xb110),
759 	_MMIO(0xb118),
760 	_MMIO(0xe100),
761 	_MMIO(0xe18c),
762 	_MMIO(0xe48c),
763 	_MMIO(0xe5f4),
764 	_MMIO(0x64844),
765 };
766 
767 /* a simple bsearch */
768 static inline bool in_whitelist(u32 reg)
769 {
770 	int left = 0, right = ARRAY_SIZE(force_nonpriv_white_list);
771 	i915_reg_t *array = force_nonpriv_white_list;
772 
773 	while (left < right) {
774 		int mid = (left + right)/2;
775 
776 		if (reg > array[mid].reg)
777 			left = mid + 1;
778 		else if (reg < array[mid].reg)
779 			right = mid;
780 		else
781 			return true;
782 	}
783 	return false;
784 }
785 
786 static int force_nonpriv_write(struct intel_vgpu *vgpu,
787 	unsigned int offset, void *p_data, unsigned int bytes)
788 {
789 	u32 reg_nonpriv = (*(u32 *)p_data) & REG_GENMASK(25, 2);
790 	const struct intel_engine_cs *engine =
791 		intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
792 
793 	if (bytes != 4 || !IS_ALIGNED(offset, bytes) || !engine) {
794 		gvt_err("vgpu(%d) Invalid FORCE_NONPRIV offset %x(%dB)\n",
795 			vgpu->id, offset, bytes);
796 		return -EINVAL;
797 	}
798 
799 	if (!in_whitelist(reg_nonpriv) &&
800 	    reg_nonpriv != i915_mmio_reg_offset(RING_NOPID(engine->mmio_base))) {
801 		gvt_err("vgpu(%d) Invalid FORCE_NONPRIV write %x at offset %x\n",
802 			vgpu->id, reg_nonpriv, offset);
803 	} else
804 		intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes);
805 
806 	return 0;
807 }
808 
809 static int ddi_buf_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
810 		void *p_data, unsigned int bytes)
811 {
812 	write_vreg(vgpu, offset, p_data, bytes);
813 
814 	if (vgpu_vreg(vgpu, offset) & DDI_BUF_CTL_ENABLE) {
815 		vgpu_vreg(vgpu, offset) &= ~DDI_BUF_IS_IDLE;
816 	} else {
817 		vgpu_vreg(vgpu, offset) |= DDI_BUF_IS_IDLE;
818 		if (offset == i915_mmio_reg_offset(DDI_BUF_CTL(PORT_E)))
819 			vgpu_vreg_t(vgpu, DP_TP_STATUS(PORT_E))
820 				&= ~DP_TP_STATUS_AUTOTRAIN_DONE;
821 	}
822 	return 0;
823 }
824 
825 static int fdi_rx_iir_mmio_write(struct intel_vgpu *vgpu,
826 		unsigned int offset, void *p_data, unsigned int bytes)
827 {
828 	vgpu_vreg(vgpu, offset) &= ~*(u32 *)p_data;
829 	return 0;
830 }
831 
832 #define FDI_LINK_TRAIN_PATTERN1         0
833 #define FDI_LINK_TRAIN_PATTERN2         1
834 
835 static int fdi_auto_training_started(struct intel_vgpu *vgpu)
836 {
837 	u32 ddi_buf_ctl = vgpu_vreg_t(vgpu, DDI_BUF_CTL(PORT_E));
838 	u32 rx_ctl = vgpu_vreg(vgpu, _FDI_RXA_CTL);
839 	u32 tx_ctl = vgpu_vreg_t(vgpu, DP_TP_CTL(PORT_E));
840 
841 	if ((ddi_buf_ctl & DDI_BUF_CTL_ENABLE) &&
842 			(rx_ctl & FDI_RX_ENABLE) &&
843 			(rx_ctl & FDI_AUTO_TRAINING) &&
844 			(tx_ctl & DP_TP_CTL_ENABLE) &&
845 			(tx_ctl & DP_TP_CTL_FDI_AUTOTRAIN))
846 		return 1;
847 	else
848 		return 0;
849 }
850 
851 static int check_fdi_rx_train_status(struct intel_vgpu *vgpu,
852 		enum pipe pipe, unsigned int train_pattern)
853 {
854 	i915_reg_t fdi_rx_imr, fdi_tx_ctl, fdi_rx_ctl;
855 	unsigned int fdi_rx_check_bits, fdi_tx_check_bits;
856 	unsigned int fdi_rx_train_bits, fdi_tx_train_bits;
857 	unsigned int fdi_iir_check_bits;
858 
859 	fdi_rx_imr = FDI_RX_IMR(pipe);
860 	fdi_tx_ctl = FDI_TX_CTL(pipe);
861 	fdi_rx_ctl = FDI_RX_CTL(pipe);
862 
863 	if (train_pattern == FDI_LINK_TRAIN_PATTERN1) {
864 		fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_1_CPT;
865 		fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_1;
866 		fdi_iir_check_bits = FDI_RX_BIT_LOCK;
867 	} else if (train_pattern == FDI_LINK_TRAIN_PATTERN2) {
868 		fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_2_CPT;
869 		fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_2;
870 		fdi_iir_check_bits = FDI_RX_SYMBOL_LOCK;
871 	} else {
872 		gvt_vgpu_err("Invalid train pattern %d\n", train_pattern);
873 		return -EINVAL;
874 	}
875 
876 	fdi_rx_check_bits = FDI_RX_ENABLE | fdi_rx_train_bits;
877 	fdi_tx_check_bits = FDI_TX_ENABLE | fdi_tx_train_bits;
878 
879 	/* If imr bit has been masked */
880 	if (vgpu_vreg_t(vgpu, fdi_rx_imr) & fdi_iir_check_bits)
881 		return 0;
882 
883 	if (((vgpu_vreg_t(vgpu, fdi_tx_ctl) & fdi_tx_check_bits)
884 			== fdi_tx_check_bits)
885 		&& ((vgpu_vreg_t(vgpu, fdi_rx_ctl) & fdi_rx_check_bits)
886 			== fdi_rx_check_bits))
887 		return 1;
888 	else
889 		return 0;
890 }
891 
892 #define INVALID_INDEX (~0U)
893 
894 static unsigned int calc_index(unsigned int offset, i915_reg_t _start,
895 			       i915_reg_t _next, i915_reg_t _end)
896 {
897 	u32 start = i915_mmio_reg_offset(_start);
898 	u32 next = i915_mmio_reg_offset(_next);
899 	u32 end = i915_mmio_reg_offset(_end);
900 	u32 stride = next - start;
901 
902 	if (offset < start || offset > end)
903 		return INVALID_INDEX;
904 	offset -= start;
905 	return offset / stride;
906 }
907 
908 #define FDI_RX_CTL_TO_PIPE(offset) \
909 	calc_index(offset, FDI_RX_CTL(PIPE_A), FDI_RX_CTL(PIPE_B), FDI_RX_CTL(PIPE_C))
910 
911 #define FDI_TX_CTL_TO_PIPE(offset) \
912 	calc_index(offset, FDI_TX_CTL(PIPE_A), FDI_TX_CTL(PIPE_B), FDI_TX_CTL(PIPE_C))
913 
914 #define FDI_RX_IMR_TO_PIPE(offset) \
915 	calc_index(offset, FDI_RX_IMR(PIPE_A), FDI_RX_IMR(PIPE_B), FDI_RX_IMR(PIPE_C))
916 
917 static int update_fdi_rx_iir_status(struct intel_vgpu *vgpu,
918 		unsigned int offset, void *p_data, unsigned int bytes)
919 {
920 	i915_reg_t fdi_rx_iir;
921 	unsigned int index;
922 	int ret;
923 
924 	if (FDI_RX_CTL_TO_PIPE(offset) != INVALID_INDEX)
925 		index = FDI_RX_CTL_TO_PIPE(offset);
926 	else if (FDI_TX_CTL_TO_PIPE(offset) != INVALID_INDEX)
927 		index = FDI_TX_CTL_TO_PIPE(offset);
928 	else if (FDI_RX_IMR_TO_PIPE(offset) != INVALID_INDEX)
929 		index = FDI_RX_IMR_TO_PIPE(offset);
930 	else {
931 		gvt_vgpu_err("Unsupported registers %x\n", offset);
932 		return -EINVAL;
933 	}
934 
935 	write_vreg(vgpu, offset, p_data, bytes);
936 
937 	fdi_rx_iir = FDI_RX_IIR(index);
938 
939 	ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN1);
940 	if (ret < 0)
941 		return ret;
942 	if (ret)
943 		vgpu_vreg_t(vgpu, fdi_rx_iir) |= FDI_RX_BIT_LOCK;
944 
945 	ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN2);
946 	if (ret < 0)
947 		return ret;
948 	if (ret)
949 		vgpu_vreg_t(vgpu, fdi_rx_iir) |= FDI_RX_SYMBOL_LOCK;
950 
951 	if (offset == _FDI_RXA_CTL)
952 		if (fdi_auto_training_started(vgpu))
953 			vgpu_vreg_t(vgpu, DP_TP_STATUS(PORT_E)) |=
954 				DP_TP_STATUS_AUTOTRAIN_DONE;
955 	return 0;
956 }
957 
958 #define DP_TP_CTL_TO_PORT(offset) \
959 	calc_index(offset, DP_TP_CTL(PORT_A), DP_TP_CTL(PORT_B), DP_TP_CTL(PORT_E))
960 
961 static int dp_tp_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
962 		void *p_data, unsigned int bytes)
963 {
964 	i915_reg_t status_reg;
965 	unsigned int index;
966 	u32 data;
967 
968 	write_vreg(vgpu, offset, p_data, bytes);
969 
970 	index = DP_TP_CTL_TO_PORT(offset);
971 	data = (vgpu_vreg(vgpu, offset) & GENMASK(10, 8)) >> 8;
972 	if (data == 0x2) {
973 		status_reg = DP_TP_STATUS(index);
974 		vgpu_vreg_t(vgpu, status_reg) |= (1 << 25);
975 	}
976 	return 0;
977 }
978 
979 static int dp_tp_status_mmio_write(struct intel_vgpu *vgpu,
980 		unsigned int offset, void *p_data, unsigned int bytes)
981 {
982 	u32 reg_val;
983 	u32 sticky_mask;
984 
985 	reg_val = *((u32 *)p_data);
986 	sticky_mask = GENMASK(27, 26) | (1 << 24);
987 
988 	vgpu_vreg(vgpu, offset) = (reg_val & ~sticky_mask) |
989 		(vgpu_vreg(vgpu, offset) & sticky_mask);
990 	vgpu_vreg(vgpu, offset) &= ~(reg_val & sticky_mask);
991 	return 0;
992 }
993 
994 static int pch_adpa_mmio_write(struct intel_vgpu *vgpu,
995 		unsigned int offset, void *p_data, unsigned int bytes)
996 {
997 	u32 data;
998 
999 	write_vreg(vgpu, offset, p_data, bytes);
1000 	data = vgpu_vreg(vgpu, offset);
1001 
1002 	if (data & ADPA_CRT_HOTPLUG_FORCE_TRIGGER)
1003 		vgpu_vreg(vgpu, offset) &= ~ADPA_CRT_HOTPLUG_FORCE_TRIGGER;
1004 	return 0;
1005 }
1006 
1007 static int south_chicken2_mmio_write(struct intel_vgpu *vgpu,
1008 		unsigned int offset, void *p_data, unsigned int bytes)
1009 {
1010 	u32 data;
1011 
1012 	write_vreg(vgpu, offset, p_data, bytes);
1013 	data = vgpu_vreg(vgpu, offset);
1014 
1015 	if (data & FDI_MPHY_IOSFSB_RESET_CTL)
1016 		vgpu_vreg(vgpu, offset) |= FDI_MPHY_IOSFSB_RESET_STATUS;
1017 	else
1018 		vgpu_vreg(vgpu, offset) &= ~FDI_MPHY_IOSFSB_RESET_STATUS;
1019 	return 0;
1020 }
1021 
1022 #define DSPSURF_TO_PIPE(display, offset) \
1023 	calc_index(offset, DSPSURF(display, PIPE_A), DSPSURF(display, PIPE_B), DSPSURF(display, PIPE_C))
1024 
1025 static int pri_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1026 		void *p_data, unsigned int bytes)
1027 {
1028 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1029 	struct intel_display *display = dev_priv->display;
1030 	u32 pipe = DSPSURF_TO_PIPE(display, offset);
1031 	int event = SKL_FLIP_EVENT(pipe, PLANE_PRIMARY);
1032 
1033 	write_vreg(vgpu, offset, p_data, bytes);
1034 	vgpu_vreg_t(vgpu, DSPSURFLIVE(display, pipe)) = vgpu_vreg(vgpu, offset);
1035 
1036 	vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(display, pipe))++;
1037 
1038 	if (vgpu_vreg_t(vgpu, DSPCNTR(display, pipe)) & PLANE_CTL_ASYNC_FLIP)
1039 		intel_vgpu_trigger_virtual_event(vgpu, event);
1040 	else
1041 		set_bit(event, vgpu->irq.flip_done_event[pipe]);
1042 
1043 	return 0;
1044 }
1045 
1046 #define SPRSURF_TO_PIPE(offset) \
1047 	calc_index(offset, SPRSURF(PIPE_A), SPRSURF(PIPE_B), SPRSURF(PIPE_C))
1048 
1049 static int spr_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1050 		void *p_data, unsigned int bytes)
1051 {
1052 	u32 pipe = SPRSURF_TO_PIPE(offset);
1053 	int event = SKL_FLIP_EVENT(pipe, PLANE_SPRITE0);
1054 
1055 	write_vreg(vgpu, offset, p_data, bytes);
1056 	vgpu_vreg_t(vgpu, SPRSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
1057 
1058 	if (vgpu_vreg_t(vgpu, SPRCTL(pipe)) & PLANE_CTL_ASYNC_FLIP)
1059 		intel_vgpu_trigger_virtual_event(vgpu, event);
1060 	else
1061 		set_bit(event, vgpu->irq.flip_done_event[pipe]);
1062 
1063 	return 0;
1064 }
1065 
1066 static int reg50080_mmio_write(struct intel_vgpu *vgpu,
1067 			       unsigned int offset, void *p_data,
1068 			       unsigned int bytes)
1069 {
1070 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1071 	struct intel_display *display = dev_priv->display;
1072 	enum pipe pipe = REG_50080_TO_PIPE(offset);
1073 	enum plane_id plane = REG_50080_TO_PLANE(offset);
1074 	int event = SKL_FLIP_EVENT(pipe, plane);
1075 
1076 	write_vreg(vgpu, offset, p_data, bytes);
1077 	if (plane == PLANE_PRIMARY) {
1078 		vgpu_vreg_t(vgpu, DSPSURFLIVE(display, pipe)) = vgpu_vreg(vgpu, offset);
1079 		vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(display, pipe))++;
1080 	} else {
1081 		vgpu_vreg_t(vgpu, SPRSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
1082 	}
1083 
1084 	if ((vgpu_vreg(vgpu, offset) & REG50080_FLIP_TYPE_MASK) == REG50080_FLIP_TYPE_ASYNC)
1085 		intel_vgpu_trigger_virtual_event(vgpu, event);
1086 	else
1087 		set_bit(event, vgpu->irq.flip_done_event[pipe]);
1088 
1089 	return 0;
1090 }
1091 
1092 static int trigger_aux_channel_interrupt(struct intel_vgpu *vgpu,
1093 		unsigned int reg)
1094 {
1095 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1096 	enum intel_gvt_event_type event;
1097 
1098 	if (reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_A)))
1099 		event = AUX_CHANNEL_A;
1100 	else if (reg == i915_mmio_reg_offset(PCH_DP_AUX_CH_CTL(AUX_CH_B)) ||
1101 		 reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_B)))
1102 		event = AUX_CHANNEL_B;
1103 	else if (reg == i915_mmio_reg_offset(PCH_DP_AUX_CH_CTL(AUX_CH_C)) ||
1104 		 reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_C)))
1105 		event = AUX_CHANNEL_C;
1106 	else if (reg == i915_mmio_reg_offset(PCH_DP_AUX_CH_CTL(AUX_CH_D)) ||
1107 		 reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_D)))
1108 		event = AUX_CHANNEL_D;
1109 	else {
1110 		drm_WARN_ON(&dev_priv->drm, true);
1111 		return -EINVAL;
1112 	}
1113 
1114 	intel_vgpu_trigger_virtual_event(vgpu, event);
1115 	return 0;
1116 }
1117 
1118 static int dp_aux_ch_ctl_trans_done(struct intel_vgpu *vgpu, u32 value,
1119 		unsigned int reg, int len, bool data_valid)
1120 {
1121 	/* mark transaction done */
1122 	value |= DP_AUX_CH_CTL_DONE;
1123 	value &= ~DP_AUX_CH_CTL_SEND_BUSY;
1124 	value &= ~DP_AUX_CH_CTL_RECEIVE_ERROR;
1125 
1126 	if (data_valid)
1127 		value &= ~DP_AUX_CH_CTL_TIME_OUT_ERROR;
1128 	else
1129 		value |= DP_AUX_CH_CTL_TIME_OUT_ERROR;
1130 
1131 	/* message size */
1132 	value &= ~(0xf << 20);
1133 	value |= (len << 20);
1134 	vgpu_vreg(vgpu, reg) = value;
1135 
1136 	if (value & DP_AUX_CH_CTL_INTERRUPT)
1137 		return trigger_aux_channel_interrupt(vgpu, reg);
1138 	return 0;
1139 }
1140 
1141 static void dp_aux_ch_ctl_link_training(struct intel_vgpu_dpcd_data *dpcd,
1142 		u8 t)
1143 {
1144 	if ((t & DP_TRAINING_PATTERN_MASK) == DP_TRAINING_PATTERN_1) {
1145 		/* training pattern 1 for CR */
1146 		/* set LANE0_CR_DONE, LANE1_CR_DONE */
1147 		dpcd->data[DP_LANE0_1_STATUS] |= DP_LANE_CR_DONE |
1148 			DP_LANE_CR_DONE << 4;
1149 		/* set LANE2_CR_DONE, LANE3_CR_DONE */
1150 		dpcd->data[DP_LANE2_3_STATUS] |= DP_LANE_CR_DONE |
1151 			DP_LANE_CR_DONE << 4;
1152 	} else if ((t & DP_TRAINING_PATTERN_MASK) ==
1153 			DP_TRAINING_PATTERN_2) {
1154 		/* training pattern 2 for EQ */
1155 		/* Set CHANNEL_EQ_DONE and  SYMBOL_LOCKED for Lane0_1 */
1156 		dpcd->data[DP_LANE0_1_STATUS] |= DP_LANE_CHANNEL_EQ_DONE |
1157 			DP_LANE_CHANNEL_EQ_DONE << 4;
1158 		dpcd->data[DP_LANE0_1_STATUS] |= DP_LANE_SYMBOL_LOCKED |
1159 			DP_LANE_SYMBOL_LOCKED << 4;
1160 		/* Set CHANNEL_EQ_DONE and  SYMBOL_LOCKED for Lane2_3 */
1161 		dpcd->data[DP_LANE2_3_STATUS] |= DP_LANE_CHANNEL_EQ_DONE |
1162 			DP_LANE_CHANNEL_EQ_DONE << 4;
1163 		dpcd->data[DP_LANE2_3_STATUS] |= DP_LANE_SYMBOL_LOCKED |
1164 			DP_LANE_SYMBOL_LOCKED << 4;
1165 		/* set INTERLANE_ALIGN_DONE */
1166 		dpcd->data[DP_LANE_ALIGN_STATUS_UPDATED] |=
1167 			DP_INTERLANE_ALIGN_DONE;
1168 	} else if ((t & DP_TRAINING_PATTERN_MASK) ==
1169 			DP_TRAINING_PATTERN_DISABLE) {
1170 		/* finish link training */
1171 		/* set sink status as synchronized */
1172 		dpcd->data[DP_SINK_STATUS] = DP_RECEIVE_PORT_0_STATUS |
1173 			DP_RECEIVE_PORT_1_STATUS;
1174 	}
1175 }
1176 
1177 #define OFFSET_TO_DP_AUX_PORT(offset) (((offset) & 0xF00) >> 8)
1178 
1179 #define dpy_is_valid_port(port)	\
1180 		(((port) >= PORT_A) && ((port) < I915_MAX_PORTS))
1181 
1182 static int dp_aux_ch_ctl_mmio_write(struct intel_vgpu *vgpu,
1183 		unsigned int offset, void *p_data, unsigned int bytes)
1184 {
1185 	struct intel_vgpu_display *display = &vgpu->display;
1186 	int msg, addr, ctrl, op, len;
1187 	int port_index = OFFSET_TO_DP_AUX_PORT(offset);
1188 	struct intel_vgpu_dpcd_data *dpcd = NULL;
1189 	struct intel_vgpu_port *port = NULL;
1190 	u32 data;
1191 
1192 	if (!dpy_is_valid_port(port_index)) {
1193 		gvt_vgpu_err("Unsupported DP port access!\n");
1194 		return 0;
1195 	}
1196 
1197 	write_vreg(vgpu, offset, p_data, bytes);
1198 	data = vgpu_vreg(vgpu, offset);
1199 
1200 	if (GRAPHICS_VER(vgpu->gvt->gt->i915) >= 9 &&
1201 	    offset != i915_mmio_reg_offset(DP_AUX_CH_CTL(port_index))) {
1202 		/* SKL DPB/C/D aux ctl register changed */
1203 		return 0;
1204 	} else if (IS_BROADWELL(vgpu->gvt->gt->i915) &&
1205 		   offset != i915_mmio_reg_offset(port_index ?
1206 						  PCH_DP_AUX_CH_CTL(port_index) :
1207 						  DP_AUX_CH_CTL(port_index))) {
1208 		/* write to the data registers */
1209 		return 0;
1210 	}
1211 
1212 	if (!(data & DP_AUX_CH_CTL_SEND_BUSY)) {
1213 		/* just want to clear the sticky bits */
1214 		vgpu_vreg(vgpu, offset) = 0;
1215 		return 0;
1216 	}
1217 
1218 	port = &display->ports[port_index];
1219 	dpcd = port->dpcd;
1220 
1221 	/* read out message from DATA1 register */
1222 	msg = vgpu_vreg(vgpu, offset + 4);
1223 	addr = (msg >> 8) & 0xffff;
1224 	ctrl = (msg >> 24) & 0xff;
1225 	len = msg & 0xff;
1226 	op = ctrl >> 4;
1227 
1228 	if (op == DP_AUX_NATIVE_WRITE) {
1229 		int t;
1230 		u8 buf[16];
1231 
1232 		if ((addr + len + 1) >= DPCD_SIZE) {
1233 			/*
1234 			 * Write request exceeds what we supported,
1235 			 * DCPD spec: When a Source Device is writing a DPCD
1236 			 * address not supported by the Sink Device, the Sink
1237 			 * Device shall reply with AUX NACK and “M” equal to
1238 			 * zero.
1239 			 */
1240 
1241 			/* NAK the write */
1242 			vgpu_vreg(vgpu, offset + 4) = AUX_NATIVE_REPLY_NAK;
1243 			dp_aux_ch_ctl_trans_done(vgpu, data, offset, 2, true);
1244 			return 0;
1245 		}
1246 
1247 		/*
1248 		 * Write request format: Headr (command + address + size) occupies
1249 		 * 4 bytes, followed by (len + 1) bytes of data. See details at
1250 		 * intel_dp_aux_transfer().
1251 		 */
1252 		if ((len + 1 + 4) > AUX_BURST_SIZE) {
1253 			gvt_vgpu_err("dp_aux_header: len %d is too large\n", len);
1254 			return -EINVAL;
1255 		}
1256 
1257 		/* unpack data from vreg to buf */
1258 		for (t = 0; t < 4; t++) {
1259 			u32 r = vgpu_vreg(vgpu, offset + 8 + t * 4);
1260 
1261 			buf[t * 4] = (r >> 24) & 0xff;
1262 			buf[t * 4 + 1] = (r >> 16) & 0xff;
1263 			buf[t * 4 + 2] = (r >> 8) & 0xff;
1264 			buf[t * 4 + 3] = r & 0xff;
1265 		}
1266 
1267 		/* write to virtual DPCD */
1268 		if (dpcd && dpcd->data_valid) {
1269 			for (t = 0; t <= len; t++) {
1270 				int p = addr + t;
1271 
1272 				dpcd->data[p] = buf[t];
1273 				/* check for link training */
1274 				if (p == DP_TRAINING_PATTERN_SET)
1275 					dp_aux_ch_ctl_link_training(dpcd,
1276 							buf[t]);
1277 			}
1278 		}
1279 
1280 		/* ACK the write */
1281 		vgpu_vreg(vgpu, offset + 4) = 0;
1282 		dp_aux_ch_ctl_trans_done(vgpu, data, offset, 1,
1283 				dpcd && dpcd->data_valid);
1284 		return 0;
1285 	}
1286 
1287 	if (op == DP_AUX_NATIVE_READ) {
1288 		int idx, i, ret = 0;
1289 
1290 		if ((addr + len + 1) >= DPCD_SIZE) {
1291 			/*
1292 			 * read request exceeds what we supported
1293 			 * DPCD spec: A Sink Device receiving a Native AUX CH
1294 			 * read request for an unsupported DPCD address must
1295 			 * reply with an AUX ACK and read data set equal to
1296 			 * zero instead of replying with AUX NACK.
1297 			 */
1298 
1299 			/* ACK the READ*/
1300 			vgpu_vreg(vgpu, offset + 4) = 0;
1301 			vgpu_vreg(vgpu, offset + 8) = 0;
1302 			vgpu_vreg(vgpu, offset + 12) = 0;
1303 			vgpu_vreg(vgpu, offset + 16) = 0;
1304 			vgpu_vreg(vgpu, offset + 20) = 0;
1305 
1306 			dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2,
1307 					true);
1308 			return 0;
1309 		}
1310 
1311 		for (idx = 1; idx <= 5; idx++) {
1312 			/* clear the data registers */
1313 			vgpu_vreg(vgpu, offset + 4 * idx) = 0;
1314 		}
1315 
1316 		/*
1317 		 * Read reply format: ACK (1 byte) plus (len + 1) bytes of data.
1318 		 */
1319 		if ((len + 2) > AUX_BURST_SIZE) {
1320 			gvt_vgpu_err("dp_aux_header: len %d is too large\n", len);
1321 			return -EINVAL;
1322 		}
1323 
1324 		/* read from virtual DPCD to vreg */
1325 		/* first 4 bytes: [ACK][addr][addr+1][addr+2] */
1326 		if (dpcd && dpcd->data_valid) {
1327 			for (i = 1; i <= (len + 1); i++) {
1328 				int t;
1329 
1330 				t = dpcd->data[addr + i - 1];
1331 				t <<= (24 - 8 * (i % 4));
1332 				ret |= t;
1333 
1334 				if ((i % 4 == 3) || (i == (len + 1))) {
1335 					vgpu_vreg(vgpu, offset +
1336 							(i / 4 + 1) * 4) = ret;
1337 					ret = 0;
1338 				}
1339 			}
1340 		}
1341 		dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2,
1342 				dpcd && dpcd->data_valid);
1343 		return 0;
1344 	}
1345 
1346 	/* i2c transaction starts */
1347 	intel_gvt_i2c_handle_aux_ch_write(vgpu, port_index, offset, p_data);
1348 
1349 	if (data & DP_AUX_CH_CTL_INTERRUPT)
1350 		trigger_aux_channel_interrupt(vgpu, offset);
1351 	return 0;
1352 }
1353 
1354 static int mbctl_write(struct intel_vgpu *vgpu, unsigned int offset,
1355 		void *p_data, unsigned int bytes)
1356 {
1357 	*(u32 *)p_data &= (~GEN6_MBCTL_ENABLE_BOOT_FETCH);
1358 	write_vreg(vgpu, offset, p_data, bytes);
1359 	return 0;
1360 }
1361 
1362 static int vga_control_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1363 		void *p_data, unsigned int bytes)
1364 {
1365 	bool vga_disable;
1366 
1367 	write_vreg(vgpu, offset, p_data, bytes);
1368 	vga_disable = vgpu_vreg(vgpu, offset) & VGA_DISP_DISABLE;
1369 
1370 	gvt_dbg_core("vgpu%d: %s VGA mode\n", vgpu->id,
1371 			vga_disable ? "Disable" : "Enable");
1372 	return 0;
1373 }
1374 
1375 static u32 read_virtual_sbi_register(struct intel_vgpu *vgpu,
1376 		unsigned int sbi_offset)
1377 {
1378 	struct intel_vgpu_display *display = &vgpu->display;
1379 	int num = display->sbi.number;
1380 	int i;
1381 
1382 	for (i = 0; i < num; ++i)
1383 		if (display->sbi.registers[i].offset == sbi_offset)
1384 			break;
1385 
1386 	if (i == num)
1387 		return 0;
1388 
1389 	return display->sbi.registers[i].value;
1390 }
1391 
1392 static void write_virtual_sbi_register(struct intel_vgpu *vgpu,
1393 		unsigned int offset, u32 value)
1394 {
1395 	struct intel_vgpu_display *display = &vgpu->display;
1396 	int num = display->sbi.number;
1397 	int i;
1398 
1399 	for (i = 0; i < num; ++i) {
1400 		if (display->sbi.registers[i].offset == offset)
1401 			break;
1402 	}
1403 
1404 	if (i == num) {
1405 		if (num == SBI_REG_MAX) {
1406 			gvt_vgpu_err("SBI caching meets maximum limits\n");
1407 			return;
1408 		}
1409 		display->sbi.number++;
1410 	}
1411 
1412 	display->sbi.registers[i].offset = offset;
1413 	display->sbi.registers[i].value = value;
1414 }
1415 
1416 static int sbi_data_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
1417 		void *p_data, unsigned int bytes)
1418 {
1419 	if ((vgpu_vreg_t(vgpu, SBI_CTL_STAT) & SBI_CTL_OP_MASK) == SBI_CTL_OP_CRRD) {
1420 		unsigned int sbi_offset;
1421 
1422 		sbi_offset = REG_FIELD_GET(SBI_ADDR_MASK, vgpu_vreg_t(vgpu, SBI_ADDR));
1423 
1424 		vgpu_vreg(vgpu, offset) = read_virtual_sbi_register(vgpu, sbi_offset);
1425 	}
1426 	read_vreg(vgpu, offset, p_data, bytes);
1427 	return 0;
1428 }
1429 
1430 static int sbi_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1431 		void *p_data, unsigned int bytes)
1432 {
1433 	u32 data;
1434 
1435 	write_vreg(vgpu, offset, p_data, bytes);
1436 	data = vgpu_vreg(vgpu, offset);
1437 
1438 	data &= ~SBI_STATUS_MASK;
1439 	data |= SBI_STATUS_READY;
1440 
1441 	data &= ~SBI_RESPONSE_MASK;
1442 	data |= SBI_RESPONSE_SUCCESS;
1443 
1444 	vgpu_vreg(vgpu, offset) = data;
1445 
1446 	if ((vgpu_vreg_t(vgpu, SBI_CTL_STAT) & SBI_CTL_OP_MASK) == SBI_CTL_OP_CRWR) {
1447 		unsigned int sbi_offset;
1448 
1449 		sbi_offset = REG_FIELD_GET(SBI_ADDR_MASK, vgpu_vreg_t(vgpu, SBI_ADDR));
1450 
1451 		write_virtual_sbi_register(vgpu, sbi_offset, vgpu_vreg_t(vgpu, SBI_DATA));
1452 	}
1453 	return 0;
1454 }
1455 
1456 #define _vgtif_reg(x) \
1457 	(VGT_PVINFO_PAGE + offsetof(struct vgt_if, x))
1458 
1459 static int pvinfo_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
1460 		void *p_data, unsigned int bytes)
1461 {
1462 	bool invalid_read = false;
1463 
1464 	read_vreg(vgpu, offset, p_data, bytes);
1465 
1466 	switch (offset) {
1467 	case _vgtif_reg(magic) ... _vgtif_reg(vgt_id):
1468 		if (offset + bytes > _vgtif_reg(vgt_id) + 4)
1469 			invalid_read = true;
1470 		break;
1471 	case _vgtif_reg(avail_rs.mappable_gmadr.base) ...
1472 		_vgtif_reg(avail_rs.fence_num):
1473 		if (offset + bytes >
1474 			_vgtif_reg(avail_rs.fence_num) + 4)
1475 			invalid_read = true;
1476 		break;
1477 	case 0x78010:	/* vgt_caps */
1478 	case 0x7881c:
1479 		break;
1480 	default:
1481 		invalid_read = true;
1482 		break;
1483 	}
1484 	if (invalid_read)
1485 		gvt_vgpu_err("invalid pvinfo read: [%x:%x] = %x\n",
1486 				offset, bytes, *(u32 *)p_data);
1487 	vgpu->pv_notified = true;
1488 	return 0;
1489 }
1490 
1491 static int handle_g2v_notification(struct intel_vgpu *vgpu, int notification)
1492 {
1493 	enum intel_gvt_gtt_type root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1494 	struct intel_vgpu_mm *mm;
1495 	u64 *pdps;
1496 
1497 	pdps = (u64 *)&vgpu_vreg64_t(vgpu, vgtif_reg(pdp[0]));
1498 
1499 	switch (notification) {
1500 	case VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE:
1501 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1502 		fallthrough;
1503 	case VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE:
1504 		mm = intel_vgpu_get_ppgtt_mm(vgpu, root_entry_type, pdps);
1505 		return PTR_ERR_OR_ZERO(mm);
1506 	case VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY:
1507 	case VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY:
1508 		return intel_vgpu_put_ppgtt_mm(vgpu, pdps);
1509 	case VGT_G2V_EXECLIST_CONTEXT_CREATE:
1510 	case VGT_G2V_EXECLIST_CONTEXT_DESTROY:
1511 	case 1:	/* Remove this in guest driver. */
1512 		break;
1513 	default:
1514 		gvt_vgpu_err("Invalid PV notification %d\n", notification);
1515 	}
1516 	return 0;
1517 }
1518 
1519 static int send_display_ready_uevent(struct intel_vgpu *vgpu, int ready)
1520 {
1521 	struct kobject *kobj = &vgpu->gvt->gt->i915->drm.primary->kdev->kobj;
1522 	char *env[3] = {NULL, NULL, NULL};
1523 	char vmid_str[20];
1524 	char display_ready_str[20];
1525 
1526 	snprintf(display_ready_str, 20, "GVT_DISPLAY_READY=%d", ready);
1527 	env[0] = display_ready_str;
1528 
1529 	snprintf(vmid_str, 20, "VMID=%d", vgpu->id);
1530 	env[1] = vmid_str;
1531 
1532 	return kobject_uevent_env(kobj, KOBJ_ADD, env);
1533 }
1534 
1535 static int pvinfo_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1536 		void *p_data, unsigned int bytes)
1537 {
1538 	u32 data = *(u32 *)p_data;
1539 	bool invalid_write = false;
1540 
1541 	switch (offset) {
1542 	case _vgtif_reg(display_ready):
1543 		send_display_ready_uevent(vgpu, data ? 1 : 0);
1544 		break;
1545 	case _vgtif_reg(g2v_notify):
1546 		handle_g2v_notification(vgpu, data);
1547 		break;
1548 	/* add xhot and yhot to handled list to avoid error log */
1549 	case _vgtif_reg(cursor_x_hot):
1550 	case _vgtif_reg(cursor_y_hot):
1551 	case _vgtif_reg(pdp[0].lo):
1552 	case _vgtif_reg(pdp[0].hi):
1553 	case _vgtif_reg(pdp[1].lo):
1554 	case _vgtif_reg(pdp[1].hi):
1555 	case _vgtif_reg(pdp[2].lo):
1556 	case _vgtif_reg(pdp[2].hi):
1557 	case _vgtif_reg(pdp[3].lo):
1558 	case _vgtif_reg(pdp[3].hi):
1559 	case _vgtif_reg(execlist_context_descriptor_lo):
1560 	case _vgtif_reg(execlist_context_descriptor_hi):
1561 		break;
1562 	case _vgtif_reg(rsv5[0])..._vgtif_reg(rsv5[3]):
1563 		invalid_write = true;
1564 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_INSUFFICIENT_RESOURCE);
1565 		break;
1566 	default:
1567 		invalid_write = true;
1568 		gvt_vgpu_err("invalid pvinfo write offset %x bytes %x data %x\n",
1569 				offset, bytes, data);
1570 		break;
1571 	}
1572 
1573 	if (!invalid_write)
1574 		write_vreg(vgpu, offset, p_data, bytes);
1575 
1576 	return 0;
1577 }
1578 
1579 static int pf_write(struct intel_vgpu *vgpu,
1580 		unsigned int offset, void *p_data, unsigned int bytes)
1581 {
1582 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1583 	u32 val = *(u32 *)p_data;
1584 
1585 	if ((offset == _PS_1A_CTRL || offset == _PS_2A_CTRL ||
1586 	   offset == _PS_1B_CTRL || offset == _PS_2B_CTRL ||
1587 	   offset == _PS_1C_CTRL) && (val & PS_BINDING_MASK) != PS_BINDING_PIPE) {
1588 		drm_WARN_ONCE(&i915->drm, true,
1589 			      "VM(%d): guest is trying to scaling a plane\n",
1590 			      vgpu->id);
1591 		return 0;
1592 	}
1593 
1594 	return intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes);
1595 }
1596 
1597 static int power_well_ctl_mmio_write(struct intel_vgpu *vgpu,
1598 		unsigned int offset, void *p_data, unsigned int bytes)
1599 {
1600 	write_vreg(vgpu, offset, p_data, bytes);
1601 
1602 	if (vgpu_vreg(vgpu, offset) &
1603 	    HSW_PWR_WELL_CTL_REQ(HSW_PW_CTL_IDX_GLOBAL))
1604 		vgpu_vreg(vgpu, offset) |=
1605 			HSW_PWR_WELL_CTL_STATE(HSW_PW_CTL_IDX_GLOBAL);
1606 	else
1607 		vgpu_vreg(vgpu, offset) &=
1608 			~HSW_PWR_WELL_CTL_STATE(HSW_PW_CTL_IDX_GLOBAL);
1609 	return 0;
1610 }
1611 
1612 static int gen9_dbuf_ctl_mmio_write(struct intel_vgpu *vgpu,
1613 		unsigned int offset, void *p_data, unsigned int bytes)
1614 {
1615 	write_vreg(vgpu, offset, p_data, bytes);
1616 
1617 	if (vgpu_vreg(vgpu, offset) & DBUF_POWER_REQUEST)
1618 		vgpu_vreg(vgpu, offset) |= DBUF_POWER_STATE;
1619 	else
1620 		vgpu_vreg(vgpu, offset) &= ~DBUF_POWER_STATE;
1621 
1622 	return 0;
1623 }
1624 
1625 static int fpga_dbg_mmio_write(struct intel_vgpu *vgpu,
1626 	unsigned int offset, void *p_data, unsigned int bytes)
1627 {
1628 	write_vreg(vgpu, offset, p_data, bytes);
1629 
1630 	if (vgpu_vreg(vgpu, offset) & FPGA_DBG_RM_NOCLAIM)
1631 		vgpu_vreg(vgpu, offset) &= ~FPGA_DBG_RM_NOCLAIM;
1632 	return 0;
1633 }
1634 
1635 static int dma_ctrl_write(struct intel_vgpu *vgpu, unsigned int offset,
1636 		void *p_data, unsigned int bytes)
1637 {
1638 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1639 	u32 mode;
1640 
1641 	write_vreg(vgpu, offset, p_data, bytes);
1642 	mode = vgpu_vreg(vgpu, offset);
1643 
1644 	if (GFX_MODE_BIT_SET_IN_MASK(mode, START_DMA)) {
1645 		drm_WARN_ONCE(&i915->drm, 1,
1646 				"VM(%d): iGVT-g doesn't support GuC\n",
1647 				vgpu->id);
1648 		return 0;
1649 	}
1650 
1651 	return 0;
1652 }
1653 
1654 static int gen9_trtte_write(struct intel_vgpu *vgpu, unsigned int offset,
1655 		void *p_data, unsigned int bytes)
1656 {
1657 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1658 	u32 trtte = *(u32 *)p_data;
1659 
1660 	if ((trtte & 1) && (trtte & (1 << 1)) == 0) {
1661 		drm_WARN(&i915->drm, 1,
1662 				"VM(%d): Use physical address for TRTT!\n",
1663 				vgpu->id);
1664 		return -EINVAL;
1665 	}
1666 	write_vreg(vgpu, offset, p_data, bytes);
1667 
1668 	return 0;
1669 }
1670 
1671 static int gen9_trtt_chicken_write(struct intel_vgpu *vgpu, unsigned int offset,
1672 		void *p_data, unsigned int bytes)
1673 {
1674 	write_vreg(vgpu, offset, p_data, bytes);
1675 	return 0;
1676 }
1677 
1678 static int dpll_status_read(struct intel_vgpu *vgpu, unsigned int offset,
1679 		void *p_data, unsigned int bytes)
1680 {
1681 	u32 v = 0;
1682 
1683 	if (vgpu_vreg(vgpu, 0x46010) & (1 << 31))
1684 		v |= (1 << 0);
1685 
1686 	if (vgpu_vreg(vgpu, 0x46014) & (1 << 31))
1687 		v |= (1 << 8);
1688 
1689 	if (vgpu_vreg(vgpu, 0x46040) & (1 << 31))
1690 		v |= (1 << 16);
1691 
1692 	if (vgpu_vreg(vgpu, 0x46060) & (1 << 31))
1693 		v |= (1 << 24);
1694 
1695 	vgpu_vreg(vgpu, offset) = v;
1696 
1697 	return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
1698 }
1699 
1700 static int mailbox_write(struct intel_vgpu *vgpu, unsigned int offset,
1701 		void *p_data, unsigned int bytes)
1702 {
1703 	u32 value = *(u32 *)p_data;
1704 	u32 cmd = value & 0xff;
1705 	u32 *data0 = &vgpu_vreg_t(vgpu, GEN6_PCODE_DATA);
1706 
1707 	switch (cmd) {
1708 	case GEN9_PCODE_READ_MEM_LATENCY:
1709 		if (IS_SKYLAKE(vgpu->gvt->gt->i915) ||
1710 		    IS_KABYLAKE(vgpu->gvt->gt->i915) ||
1711 		    IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
1712 		    IS_COMETLAKE(vgpu->gvt->gt->i915)) {
1713 			/**
1714 			 * "Read memory latency" command on gen9.
1715 			 * Below memory latency values are read
1716 			 * from skylake platform.
1717 			 */
1718 			if (!*data0)
1719 				*data0 = 0x1e1a1100;
1720 			else
1721 				*data0 = 0x61514b3d;
1722 		} else if (IS_BROXTON(vgpu->gvt->gt->i915)) {
1723 			/**
1724 			 * "Read memory latency" command on gen9.
1725 			 * Below memory latency values are read
1726 			 * from Broxton MRB.
1727 			 */
1728 			if (!*data0)
1729 				*data0 = 0x16080707;
1730 			else
1731 				*data0 = 0x16161616;
1732 		}
1733 		break;
1734 	case SKL_PCODE_CDCLK_CONTROL:
1735 		if (IS_SKYLAKE(vgpu->gvt->gt->i915) ||
1736 		    IS_KABYLAKE(vgpu->gvt->gt->i915) ||
1737 		    IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
1738 		    IS_COMETLAKE(vgpu->gvt->gt->i915))
1739 			*data0 = SKL_CDCLK_READY_FOR_CHANGE;
1740 		break;
1741 	case GEN6_PCODE_READ_RC6VIDS:
1742 		*data0 |= 0x1;
1743 		break;
1744 	}
1745 
1746 	gvt_dbg_core("VM(%d) write %x to mailbox, return data0 %x\n",
1747 		     vgpu->id, value, *data0);
1748 	/**
1749 	 * PCODE_READY clear means ready for pcode read/write,
1750 	 * PCODE_ERROR_MASK clear means no error happened. In GVT-g we
1751 	 * always emulate as pcode read/write success and ready for access
1752 	 * anytime, since we don't touch real physical registers here.
1753 	 */
1754 	value &= ~(GEN6_PCODE_READY | GEN6_PCODE_ERROR_MASK);
1755 	return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes);
1756 }
1757 
1758 static int hws_pga_write(struct intel_vgpu *vgpu, unsigned int offset,
1759 		void *p_data, unsigned int bytes)
1760 {
1761 	u32 value = *(u32 *)p_data;
1762 	const struct intel_engine_cs *engine =
1763 		intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
1764 
1765 	if (value != 0 &&
1766 	    !intel_gvt_ggtt_validate_range(vgpu, value, I915_GTT_PAGE_SIZE)) {
1767 		gvt_vgpu_err("write invalid HWSP address, reg:0x%x, value:0x%x\n",
1768 			      offset, value);
1769 		return -EINVAL;
1770 	}
1771 
1772 	/*
1773 	 * Need to emulate all the HWSP register write to ensure host can
1774 	 * update the VM CSB status correctly. Here listed registers can
1775 	 * support BDW, SKL or other platforms with same HWSP registers.
1776 	 */
1777 	if (unlikely(!engine)) {
1778 		gvt_vgpu_err("access unknown hardware status page register:0x%x\n",
1779 			     offset);
1780 		return -EINVAL;
1781 	}
1782 	vgpu->hws_pga[engine->id] = value;
1783 	gvt_dbg_mmio("VM(%d) write: 0x%x to HWSP: 0x%x\n",
1784 		     vgpu->id, value, offset);
1785 
1786 	return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes);
1787 }
1788 
1789 static int skl_power_well_ctl_write(struct intel_vgpu *vgpu,
1790 		unsigned int offset, void *p_data, unsigned int bytes)
1791 {
1792 	u32 v = *(u32 *)p_data;
1793 
1794 	if (IS_BROXTON(vgpu->gvt->gt->i915))
1795 		v &= (1 << 31) | (1 << 29);
1796 	else
1797 		v &= (1 << 31) | (1 << 29) | (1 << 9) |
1798 			(1 << 7) | (1 << 5) | (1 << 3) | (1 << 1);
1799 	v |= (v >> 1);
1800 
1801 	return intel_vgpu_default_mmio_write(vgpu, offset, &v, bytes);
1802 }
1803 
1804 static int skl_lcpll_write(struct intel_vgpu *vgpu, unsigned int offset,
1805 		void *p_data, unsigned int bytes)
1806 {
1807 	u32 v = *(u32 *)p_data;
1808 
1809 	/* other bits are MBZ. */
1810 	v &= (1 << 31) | (1 << 30);
1811 	v & (1 << 31) ? (v |= (1 << 30)) : (v &= ~(1 << 30));
1812 
1813 	vgpu_vreg(vgpu, offset) = v;
1814 
1815 	return 0;
1816 }
1817 
1818 static int bxt_de_pll_enable_write(struct intel_vgpu *vgpu,
1819 		unsigned int offset, void *p_data, unsigned int bytes)
1820 {
1821 	u32 v = *(u32 *)p_data;
1822 
1823 	if (v & BXT_DE_PLL_PLL_ENABLE)
1824 		v |= BXT_DE_PLL_LOCK;
1825 
1826 	vgpu_vreg(vgpu, offset) = v;
1827 
1828 	return 0;
1829 }
1830 
1831 static int bxt_port_pll_enable_write(struct intel_vgpu *vgpu,
1832 		unsigned int offset, void *p_data, unsigned int bytes)
1833 {
1834 	u32 v = *(u32 *)p_data;
1835 
1836 	if (v & PORT_PLL_ENABLE)
1837 		v |= PORT_PLL_LOCK;
1838 
1839 	vgpu_vreg(vgpu, offset) = v;
1840 
1841 	return 0;
1842 }
1843 
1844 static int bxt_phy_ctl_family_write(struct intel_vgpu *vgpu,
1845 		unsigned int offset, void *p_data, unsigned int bytes)
1846 {
1847 	u32 v = *(u32 *)p_data;
1848 	u32 data = v & COMMON_RESET_DIS ? BXT_PHY_LANE_ENABLED : 0;
1849 
1850 	switch (offset) {
1851 	case _PHY_CTL_FAMILY_EDP:
1852 		vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_A) = data;
1853 		break;
1854 	case _PHY_CTL_FAMILY_DDI:
1855 		vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_B) = data;
1856 		vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_C) = data;
1857 		break;
1858 	}
1859 
1860 	vgpu_vreg(vgpu, offset) = v;
1861 
1862 	return 0;
1863 }
1864 
1865 static int bxt_port_tx_dw3_read(struct intel_vgpu *vgpu,
1866 		unsigned int offset, void *p_data, unsigned int bytes)
1867 {
1868 	u32 v = vgpu_vreg(vgpu, offset);
1869 
1870 	v &= ~UNIQUE_TRANGE_EN_METHOD;
1871 
1872 	vgpu_vreg(vgpu, offset) = v;
1873 
1874 	return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
1875 }
1876 
1877 static int bxt_pcs_dw12_grp_write(struct intel_vgpu *vgpu,
1878 		unsigned int offset, void *p_data, unsigned int bytes)
1879 {
1880 	u32 v = *(u32 *)p_data;
1881 
1882 	if (offset == _PORT_PCS_DW12_GRP_A || offset == _PORT_PCS_DW12_GRP_B) {
1883 		vgpu_vreg(vgpu, offset - 0x600) = v;
1884 		vgpu_vreg(vgpu, offset - 0x800) = v;
1885 	} else {
1886 		vgpu_vreg(vgpu, offset - 0x400) = v;
1887 		vgpu_vreg(vgpu, offset - 0x600) = v;
1888 	}
1889 
1890 	vgpu_vreg(vgpu, offset) = v;
1891 
1892 	return 0;
1893 }
1894 
1895 static int bxt_gt_disp_pwron_write(struct intel_vgpu *vgpu,
1896 		unsigned int offset, void *p_data, unsigned int bytes)
1897 {
1898 	u32 v = *(u32 *)p_data;
1899 
1900 	if (v & BIT(0)) {
1901 		vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY0)) &=
1902 			~PHY_RESERVED;
1903 		vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY0)) |=
1904 			PHY_POWER_GOOD;
1905 	}
1906 
1907 	if (v & BIT(1)) {
1908 		vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY1)) &=
1909 			~PHY_RESERVED;
1910 		vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY1)) |=
1911 			PHY_POWER_GOOD;
1912 	}
1913 
1914 
1915 	vgpu_vreg(vgpu, offset) = v;
1916 
1917 	return 0;
1918 }
1919 
1920 static int edp_psr_imr_iir_write(struct intel_vgpu *vgpu,
1921 		unsigned int offset, void *p_data, unsigned int bytes)
1922 {
1923 	vgpu_vreg(vgpu, offset) = 0;
1924 	return 0;
1925 }
1926 
1927 /*
1928  * FixMe:
1929  * If guest fills non-priv batch buffer on ApolloLake/Broxton as Mesa i965 did:
1930  * 717e7539124d (i965: Use a WC map and memcpy for the batch instead of pwrite.)
1931  * Due to the missing flush of bb filled by VM vCPU, host GPU hangs on executing
1932  * these MI_BATCH_BUFFER.
1933  * Temporarily workaround this by setting SNOOP bit for PAT3 used by PPGTT
1934  * PML4 PTE: PAT(0) PCD(1) PWT(1).
1935  * The performance is still expected to be low, will need further improvement.
1936  */
1937 static int bxt_ppat_low_write(struct intel_vgpu *vgpu, unsigned int offset,
1938 			      void *p_data, unsigned int bytes)
1939 {
1940 	u64 pat =
1941 		GEN8_PPAT(0, CHV_PPAT_SNOOP) |
1942 		GEN8_PPAT(1, 0) |
1943 		GEN8_PPAT(2, 0) |
1944 		GEN8_PPAT(3, CHV_PPAT_SNOOP) |
1945 		GEN8_PPAT(4, CHV_PPAT_SNOOP) |
1946 		GEN8_PPAT(5, CHV_PPAT_SNOOP) |
1947 		GEN8_PPAT(6, CHV_PPAT_SNOOP) |
1948 		GEN8_PPAT(7, CHV_PPAT_SNOOP);
1949 
1950 	vgpu_vreg(vgpu, offset) = lower_32_bits(pat);
1951 
1952 	return 0;
1953 }
1954 
1955 static int guc_status_read(struct intel_vgpu *vgpu,
1956 			   unsigned int offset, void *p_data,
1957 			   unsigned int bytes)
1958 {
1959 	/* keep MIA_IN_RESET before clearing */
1960 	read_vreg(vgpu, offset, p_data, bytes);
1961 	vgpu_vreg(vgpu, offset) &= ~GS_MIA_IN_RESET;
1962 	return 0;
1963 }
1964 
1965 static int mmio_read_from_hw(struct intel_vgpu *vgpu,
1966 		unsigned int offset, void *p_data, unsigned int bytes)
1967 {
1968 	struct intel_gvt *gvt = vgpu->gvt;
1969 	const struct intel_engine_cs *engine =
1970 		intel_gvt_render_mmio_to_engine(gvt, offset);
1971 
1972 	/**
1973 	 * Read HW reg in following case
1974 	 * a. the offset isn't a ring mmio
1975 	 * b. the offset's ring is running on hw.
1976 	 * c. the offset is ring time stamp mmio
1977 	 */
1978 
1979 	if (!engine ||
1980 	    vgpu == gvt->scheduler.engine_owner[engine->id] ||
1981 	    offset == i915_mmio_reg_offset(RING_TIMESTAMP(engine->mmio_base)) ||
1982 	    offset == i915_mmio_reg_offset(RING_TIMESTAMP_UDW(engine->mmio_base))) {
1983 		intel_wakeref_t wakeref;
1984 
1985 		wakeref = mmio_hw_access_pre(gvt->gt);
1986 		vgpu_vreg(vgpu, offset) =
1987 			intel_uncore_read(gvt->gt->uncore, _MMIO(offset));
1988 		mmio_hw_access_post(gvt->gt, wakeref);
1989 	}
1990 
1991 	return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
1992 }
1993 
1994 static int elsp_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1995 		void *p_data, unsigned int bytes)
1996 {
1997 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1998 	const struct intel_engine_cs *engine = intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
1999 	struct intel_vgpu_execlist *execlist;
2000 	u32 data = *(u32 *)p_data;
2001 	int ret = 0;
2002 
2003 	if (drm_WARN_ON(&i915->drm, !engine))
2004 		return -EINVAL;
2005 
2006 	/*
2007 	 * Due to d3_entered is used to indicate skipping PPGTT invalidation on
2008 	 * vGPU reset, it's set on D0->D3 on PCI config write, and cleared after
2009 	 * vGPU reset if in resuming.
2010 	 * In S0ix exit, the device power state also transite from D3 to D0 as
2011 	 * S3 resume, but no vGPU reset (triggered by QEMU device model). After
2012 	 * S0ix exit, all engines continue to work. However the d3_entered
2013 	 * remains set which will break next vGPU reset logic (miss the expected
2014 	 * PPGTT invalidation).
2015 	 * Engines can only work in D0. Thus the 1st elsp write gives GVT a
2016 	 * chance to clear d3_entered.
2017 	 */
2018 	if (vgpu->d3_entered)
2019 		vgpu->d3_entered = false;
2020 
2021 	execlist = &vgpu->submission.execlist[engine->id];
2022 
2023 	execlist->elsp_dwords.data[3 - execlist->elsp_dwords.index] = data;
2024 	if (execlist->elsp_dwords.index == 3) {
2025 		ret = intel_vgpu_submit_execlist(vgpu, engine);
2026 		if(ret)
2027 			gvt_vgpu_err("fail submit workload on ring %s\n",
2028 				     engine->name);
2029 	}
2030 
2031 	++execlist->elsp_dwords.index;
2032 	execlist->elsp_dwords.index &= 0x3;
2033 	return ret;
2034 }
2035 
2036 static int ring_mode_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
2037 		void *p_data, unsigned int bytes)
2038 {
2039 	u32 data = *(u32 *)p_data;
2040 	const struct intel_engine_cs *engine =
2041 		intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
2042 	bool enable_execlist;
2043 	int ret;
2044 
2045 	(*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(1);
2046 	if (IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
2047 	    IS_COMETLAKE(vgpu->gvt->gt->i915))
2048 		(*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(2);
2049 	write_vreg(vgpu, offset, p_data, bytes);
2050 
2051 	if (IS_MASKED_BITS_ENABLED(data, 1)) {
2052 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2053 		return 0;
2054 	}
2055 
2056 	if ((IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
2057 	     IS_COMETLAKE(vgpu->gvt->gt->i915)) &&
2058 	    IS_MASKED_BITS_ENABLED(data, 2)) {
2059 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2060 		return 0;
2061 	}
2062 
2063 	/* when PPGTT mode enabled, we will check if guest has called
2064 	 * pvinfo, if not, we will treat this guest as non-gvtg-aware
2065 	 * guest, and stop emulating its cfg space, mmio, gtt, etc.
2066 	 */
2067 	if ((IS_MASKED_BITS_ENABLED(data, GFX_PPGTT_ENABLE) ||
2068 	    IS_MASKED_BITS_ENABLED(data, GFX_RUN_LIST_ENABLE)) &&
2069 	    !vgpu->pv_notified) {
2070 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2071 		return 0;
2072 	}
2073 	if (IS_MASKED_BITS_ENABLED(data, GFX_RUN_LIST_ENABLE) ||
2074 	    IS_MASKED_BITS_DISABLED(data, GFX_RUN_LIST_ENABLE)) {
2075 		enable_execlist = !!(data & GFX_RUN_LIST_ENABLE);
2076 
2077 		gvt_dbg_core("EXECLIST %s on ring %s\n",
2078 			     (enable_execlist ? "enabling" : "disabling"),
2079 			     engine->name);
2080 
2081 		if (!enable_execlist)
2082 			return 0;
2083 
2084 		ret = intel_vgpu_select_submission_ops(vgpu,
2085 						       engine->mask,
2086 						       INTEL_VGPU_EXECLIST_SUBMISSION);
2087 		if (ret)
2088 			return ret;
2089 
2090 		intel_vgpu_start_schedule(vgpu);
2091 	}
2092 	return 0;
2093 }
2094 
2095 static int gvt_reg_tlb_control_handler(struct intel_vgpu *vgpu,
2096 		unsigned int offset, void *p_data, unsigned int bytes)
2097 {
2098 	unsigned int id = 0;
2099 
2100 	write_vreg(vgpu, offset, p_data, bytes);
2101 	vgpu_vreg(vgpu, offset) = 0;
2102 
2103 	switch (offset) {
2104 	case 0x4260:
2105 		id = RCS0;
2106 		break;
2107 	case 0x4264:
2108 		id = VCS0;
2109 		break;
2110 	case 0x4268:
2111 		id = VCS1;
2112 		break;
2113 	case 0x426c:
2114 		id = BCS0;
2115 		break;
2116 	case 0x4270:
2117 		id = VECS0;
2118 		break;
2119 	default:
2120 		return -EINVAL;
2121 	}
2122 	set_bit(id, (void *)vgpu->submission.tlb_handle_pending);
2123 
2124 	return 0;
2125 }
2126 
2127 static int ring_reset_ctl_write(struct intel_vgpu *vgpu,
2128 	unsigned int offset, void *p_data, unsigned int bytes)
2129 {
2130 	u32 data;
2131 
2132 	write_vreg(vgpu, offset, p_data, bytes);
2133 	data = vgpu_vreg(vgpu, offset);
2134 
2135 	if (IS_MASKED_BITS_ENABLED(data, RESET_CTL_REQUEST_RESET))
2136 		data |= RESET_CTL_READY_TO_RESET;
2137 	else if (data & _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET))
2138 		data &= ~RESET_CTL_READY_TO_RESET;
2139 
2140 	vgpu_vreg(vgpu, offset) = data;
2141 	return 0;
2142 }
2143 
2144 static int csfe_chicken1_mmio_write(struct intel_vgpu *vgpu,
2145 				    unsigned int offset, void *p_data,
2146 				    unsigned int bytes)
2147 {
2148 	u32 data = *(u32 *)p_data;
2149 
2150 	(*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(0x18);
2151 	write_vreg(vgpu, offset, p_data, bytes);
2152 
2153 	if (IS_MASKED_BITS_ENABLED(data, 0x10) ||
2154 	    IS_MASKED_BITS_ENABLED(data, 0x8))
2155 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2156 
2157 	return 0;
2158 }
2159 
2160 #define MMIO_F(reg, s, f, am, rm, d, r, w) do { \
2161 	ret = setup_mmio_info(gvt, i915_mmio_reg_offset(reg), \
2162 		s, f, am, rm, d, r, w); \
2163 	if (ret) \
2164 		return ret; \
2165 } while (0)
2166 
2167 #define MMIO_DH(reg, d, r, w) \
2168 	MMIO_F(reg, 4, 0, 0, 0, d, r, w)
2169 
2170 #define MMIO_DFH(reg, d, f, r, w) \
2171 	MMIO_F(reg, 4, f, 0, 0, d, r, w)
2172 
2173 #define MMIO_GM(reg, d, r, w) \
2174 	MMIO_F(reg, 4, F_GMADR, 0xFFFFF000, 0, d, r, w)
2175 
2176 #define MMIO_GM_RDR(reg, d, r, w) \
2177 	MMIO_F(reg, 4, F_GMADR | F_CMD_ACCESS, 0xFFFFF000, 0, d, r, w)
2178 
2179 #define MMIO_RO(reg, d, f, rm, r, w) \
2180 	MMIO_F(reg, 4, F_RO | f, 0, rm, d, r, w)
2181 
2182 #define MMIO_RING_F(prefix, s, f, am, rm, d, r, w) do { \
2183 	MMIO_F(prefix(RENDER_RING_BASE), s, f, am, rm, d, r, w); \
2184 	MMIO_F(prefix(BLT_RING_BASE), s, f, am, rm, d, r, w); \
2185 	MMIO_F(prefix(GEN6_BSD_RING_BASE), s, f, am, rm, d, r, w); \
2186 	MMIO_F(prefix(VEBOX_RING_BASE), s, f, am, rm, d, r, w); \
2187 	if (HAS_ENGINE(gvt->gt, VCS1)) \
2188 		MMIO_F(prefix(GEN8_BSD2_RING_BASE), s, f, am, rm, d, r, w); \
2189 } while (0)
2190 
2191 #define MMIO_RING_DFH(prefix, d, f, r, w) \
2192 	MMIO_RING_F(prefix, 4, f, 0, 0, d, r, w)
2193 
2194 #define MMIO_RING_GM(prefix, d, r, w) \
2195 	MMIO_RING_F(prefix, 4, F_GMADR, 0xFFFF0000, 0, d, r, w)
2196 
2197 #define MMIO_RING_GM_RDR(prefix, d, r, w) \
2198 	MMIO_RING_F(prefix, 4, F_GMADR | F_CMD_ACCESS, 0xFFFF0000, 0, d, r, w)
2199 
2200 #define MMIO_RING_RO(prefix, d, f, rm, r, w) \
2201 	MMIO_RING_F(prefix, 4, F_RO | f, 0, rm, d, r, w)
2202 
2203 static int init_generic_mmio_info(struct intel_gvt *gvt)
2204 {
2205 	struct drm_i915_private *dev_priv = gvt->gt->i915;
2206 	struct intel_display *display = dev_priv->display;
2207 	int ret;
2208 
2209 	MMIO_RING_DFH(RING_IMR, D_ALL, 0, NULL,
2210 		intel_vgpu_reg_imr_handler);
2211 
2212 	MMIO_DFH(SDEIMR, D_ALL, 0, NULL, intel_vgpu_reg_imr_handler);
2213 	MMIO_DFH(SDEIER, D_ALL, 0, NULL, intel_vgpu_reg_ier_handler);
2214 	MMIO_DFH(SDEIIR, D_ALL, 0, NULL, intel_vgpu_reg_iir_handler);
2215 
2216 	MMIO_RING_DFH(RING_HWSTAM, D_ALL, 0, NULL, NULL);
2217 
2218 
2219 	MMIO_DH(GEN8_GAMW_ECO_DEV_RW_IA, D_BDW_PLUS, NULL,
2220 		gamw_echo_dev_rw_ia_write);
2221 
2222 	MMIO_GM_RDR(BSD_HWS_PGA_GEN7, D_ALL, NULL, NULL);
2223 	MMIO_GM_RDR(BLT_HWS_PGA_GEN7, D_ALL, NULL, NULL);
2224 	MMIO_GM_RDR(VEBOX_HWS_PGA_GEN7, D_ALL, NULL, NULL);
2225 
2226 #define RING_REG(base) _MMIO((base) + 0x28)
2227 	MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL);
2228 #undef RING_REG
2229 
2230 #define RING_REG(base) _MMIO((base) + 0x134)
2231 	MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL);
2232 #undef RING_REG
2233 
2234 #define RING_REG(base) _MMIO((base) + 0x6c)
2235 	MMIO_RING_DFH(RING_REG, D_ALL, 0, mmio_read_from_hw, NULL);
2236 #undef RING_REG
2237 	MMIO_DH(GEN7_SC_INSTDONE, D_BDW_PLUS, mmio_read_from_hw, NULL);
2238 
2239 	MMIO_GM_RDR(_MMIO(0x2148), D_ALL, NULL, NULL);
2240 	MMIO_GM_RDR(CCID(RENDER_RING_BASE), D_ALL, NULL, NULL);
2241 	MMIO_GM_RDR(_MMIO(0x12198), D_ALL, NULL, NULL);
2242 
2243 	MMIO_RING_DFH(RING_TAIL, D_ALL, 0, NULL, NULL);
2244 	MMIO_RING_DFH(RING_HEAD, D_ALL, 0, NULL, NULL);
2245 	MMIO_RING_DFH(RING_CTL, D_ALL, 0, NULL, NULL);
2246 	MMIO_RING_DFH(RING_ACTHD, D_ALL, 0, mmio_read_from_hw, NULL);
2247 	MMIO_RING_GM(RING_START, D_ALL, NULL, NULL);
2248 
2249 	/* RING MODE */
2250 #define RING_REG(base) _MMIO((base) + 0x29c)
2251 	MMIO_RING_DFH(RING_REG, D_ALL,
2252 		F_MODE_MASK | F_CMD_ACCESS | F_CMD_WRITE_PATCH, NULL,
2253 		ring_mode_mmio_write);
2254 #undef RING_REG
2255 
2256 	MMIO_RING_DFH(RING_MI_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2257 		NULL, NULL);
2258 	MMIO_RING_DFH(RING_INSTPM, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2259 			NULL, NULL);
2260 	MMIO_RING_DFH(RING_TIMESTAMP, D_ALL, F_CMD_ACCESS,
2261 			mmio_read_from_hw, NULL);
2262 	MMIO_RING_DFH(RING_TIMESTAMP_UDW, D_ALL, F_CMD_ACCESS,
2263 			mmio_read_from_hw, NULL);
2264 
2265 	MMIO_DFH(GEN7_GT_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2266 	MMIO_DFH(CACHE_MODE_0_GEN7, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2267 		NULL, NULL);
2268 	MMIO_DFH(CACHE_MODE_1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2269 	MMIO_DFH(CACHE_MODE_0, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2270 	MMIO_DFH(_MMIO(0x2124), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2271 
2272 	MMIO_DFH(_MMIO(0x20dc), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2273 	MMIO_DFH(_3D_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2274 	MMIO_DFH(_MMIO(0x2088), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2275 	MMIO_DFH(FF_SLICE_CS_CHICKEN2, D_ALL,
2276 		 F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2277 	MMIO_DFH(_MMIO(0x2470), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2278 	MMIO_DFH(GAM_ECOCHK, D_ALL, F_CMD_ACCESS, NULL, NULL);
2279 	MMIO_DFH(GEN7_COMMON_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2280 		NULL, NULL);
2281 	MMIO_DFH(COMMON_SLICE_CHICKEN2, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2282 		 NULL, NULL);
2283 	MMIO_DFH(_MMIO(0x9030), D_ALL, F_CMD_ACCESS, NULL, NULL);
2284 	MMIO_DFH(_MMIO(0x20a0), D_ALL, F_CMD_ACCESS, NULL, NULL);
2285 	MMIO_DFH(_MMIO(0x2420), D_ALL, F_CMD_ACCESS, NULL, NULL);
2286 	MMIO_DFH(_MMIO(0x2430), D_ALL, F_CMD_ACCESS, NULL, NULL);
2287 	MMIO_DFH(_MMIO(0x2434), D_ALL, F_CMD_ACCESS, NULL, NULL);
2288 	MMIO_DFH(_MMIO(0x2438), D_ALL, F_CMD_ACCESS, NULL, NULL);
2289 	MMIO_DFH(_MMIO(0x243c), D_ALL, F_CMD_ACCESS, NULL, NULL);
2290 	MMIO_DFH(_MMIO(0x7018), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2291 	MMIO_DFH(HSW_HALF_SLICE_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2292 	MMIO_DFH(GEN7_HALF_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2293 
2294 	/* display */
2295 	MMIO_DH(TRANSCONF(display, TRANSCODER_A), D_ALL, NULL,
2296 		pipeconf_mmio_write);
2297 	MMIO_DH(TRANSCONF(display, TRANSCODER_B), D_ALL, NULL,
2298 		pipeconf_mmio_write);
2299 	MMIO_DH(TRANSCONF(display, TRANSCODER_C), D_ALL, NULL,
2300 		pipeconf_mmio_write);
2301 	MMIO_DH(TRANSCONF(display, TRANSCODER_EDP), D_ALL, NULL,
2302 		pipeconf_mmio_write);
2303 	MMIO_DH(DSPSURF(display, PIPE_A), D_ALL, NULL, pri_surf_mmio_write);
2304 	MMIO_DH(REG_50080(PIPE_A, PLANE_PRIMARY), D_ALL, NULL,
2305 		reg50080_mmio_write);
2306 	MMIO_DH(DSPSURF(display, PIPE_B), D_ALL, NULL, pri_surf_mmio_write);
2307 	MMIO_DH(REG_50080(PIPE_B, PLANE_PRIMARY), D_ALL, NULL,
2308 		reg50080_mmio_write);
2309 	MMIO_DH(DSPSURF(display, PIPE_C), D_ALL, NULL, pri_surf_mmio_write);
2310 	MMIO_DH(REG_50080(PIPE_C, PLANE_PRIMARY), D_ALL, NULL,
2311 		reg50080_mmio_write);
2312 	MMIO_DH(SPRSURF(PIPE_A), D_ALL, NULL, spr_surf_mmio_write);
2313 	MMIO_DH(REG_50080(PIPE_A, PLANE_SPRITE0), D_ALL, NULL,
2314 		reg50080_mmio_write);
2315 	MMIO_DH(SPRSURF(PIPE_B), D_ALL, NULL, spr_surf_mmio_write);
2316 	MMIO_DH(REG_50080(PIPE_B, PLANE_SPRITE0), D_ALL, NULL,
2317 		reg50080_mmio_write);
2318 	MMIO_DH(SPRSURF(PIPE_C), D_ALL, NULL, spr_surf_mmio_write);
2319 	MMIO_DH(REG_50080(PIPE_C, PLANE_SPRITE0), D_ALL, NULL,
2320 		reg50080_mmio_write);
2321 
2322 	MMIO_F(PCH_GMBUS0, 4 * 4, 0, 0, 0, D_ALL, gmbus_mmio_read,
2323 		gmbus_mmio_write);
2324 	MMIO_F(PCH_GPIO_BASE, 6 * 4, F_UNALIGN, 0, 0, D_ALL, NULL, NULL);
2325 
2326 	MMIO_F(PCH_DP_AUX_CH_CTL(AUX_CH_B), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
2327 	       dp_aux_ch_ctl_mmio_write);
2328 	MMIO_F(PCH_DP_AUX_CH_CTL(AUX_CH_C), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
2329 	       dp_aux_ch_ctl_mmio_write);
2330 	MMIO_F(PCH_DP_AUX_CH_CTL(AUX_CH_D), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
2331 	       dp_aux_ch_ctl_mmio_write);
2332 
2333 	MMIO_DH(PCH_ADPA, D_PRE_SKL, NULL, pch_adpa_mmio_write);
2334 
2335 	MMIO_DH(_MMIO(_PCH_TRANSACONF), D_ALL, NULL, transconf_mmio_write);
2336 	MMIO_DH(_MMIO(_PCH_TRANSBCONF), D_ALL, NULL, transconf_mmio_write);
2337 
2338 	MMIO_DH(FDI_RX_IIR(PIPE_A), D_ALL, NULL, fdi_rx_iir_mmio_write);
2339 	MMIO_DH(FDI_RX_IIR(PIPE_B), D_ALL, NULL, fdi_rx_iir_mmio_write);
2340 	MMIO_DH(FDI_RX_IIR(PIPE_C), D_ALL, NULL, fdi_rx_iir_mmio_write);
2341 	MMIO_DH(FDI_RX_IMR(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status);
2342 	MMIO_DH(FDI_RX_IMR(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status);
2343 	MMIO_DH(FDI_RX_IMR(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status);
2344 	MMIO_DH(FDI_RX_CTL(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status);
2345 	MMIO_DH(FDI_RX_CTL(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status);
2346 	MMIO_DH(FDI_RX_CTL(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status);
2347 	MMIO_DH(PCH_PP_CONTROL, D_ALL, NULL, pch_pp_control_mmio_write);
2348 	MMIO_DH(_MMIO(0xe651c), D_ALL, dpy_reg_mmio_read, NULL);
2349 	MMIO_DH(_MMIO(0xe661c), D_ALL, dpy_reg_mmio_read, NULL);
2350 	MMIO_DH(_MMIO(0xe671c), D_ALL, dpy_reg_mmio_read, NULL);
2351 	MMIO_DH(_MMIO(0xe681c), D_ALL, dpy_reg_mmio_read, NULL);
2352 	MMIO_DH(_MMIO(0xe6c04), D_ALL, dpy_reg_mmio_read, NULL);
2353 	MMIO_DH(_MMIO(0xe6e1c), D_ALL, dpy_reg_mmio_read, NULL);
2354 
2355 	MMIO_RO(PCH_PORT_HOTPLUG, D_ALL, 0,
2356 		PORTA_HOTPLUG_STATUS_MASK
2357 		| PORTB_HOTPLUG_STATUS_MASK
2358 		| PORTC_HOTPLUG_STATUS_MASK
2359 		| PORTD_HOTPLUG_STATUS_MASK,
2360 		NULL, NULL);
2361 
2362 	MMIO_DH(LCPLL_CTL, D_ALL, NULL, lcpll_ctl_mmio_write);
2363 	MMIO_DH(SOUTH_CHICKEN2, D_ALL, NULL, south_chicken2_mmio_write);
2364 	MMIO_DH(SFUSE_STRAP, D_ALL, NULL, NULL);
2365 	MMIO_DH(SBI_DATA, D_ALL, sbi_data_mmio_read, NULL);
2366 	MMIO_DH(SBI_CTL_STAT, D_ALL, NULL, sbi_ctl_mmio_write);
2367 
2368 	MMIO_F(DP_AUX_CH_CTL(AUX_CH_A), 6 * 4, 0, 0, 0, D_ALL, NULL,
2369 	       dp_aux_ch_ctl_mmio_write);
2370 
2371 	MMIO_DH(DDI_BUF_CTL(PORT_A), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2372 	MMIO_DH(DDI_BUF_CTL(PORT_B), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2373 	MMIO_DH(DDI_BUF_CTL(PORT_C), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2374 	MMIO_DH(DDI_BUF_CTL(PORT_D), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2375 	MMIO_DH(DDI_BUF_CTL(PORT_E), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2376 
2377 	MMIO_DH(DP_TP_CTL(PORT_A), D_ALL, NULL, dp_tp_ctl_mmio_write);
2378 	MMIO_DH(DP_TP_CTL(PORT_B), D_ALL, NULL, dp_tp_ctl_mmio_write);
2379 	MMIO_DH(DP_TP_CTL(PORT_C), D_ALL, NULL, dp_tp_ctl_mmio_write);
2380 	MMIO_DH(DP_TP_CTL(PORT_D), D_ALL, NULL, dp_tp_ctl_mmio_write);
2381 	MMIO_DH(DP_TP_CTL(PORT_E), D_ALL, NULL, dp_tp_ctl_mmio_write);
2382 
2383 	MMIO_DH(DP_TP_STATUS(PORT_A), D_ALL, NULL, dp_tp_status_mmio_write);
2384 	MMIO_DH(DP_TP_STATUS(PORT_B), D_ALL, NULL, dp_tp_status_mmio_write);
2385 	MMIO_DH(DP_TP_STATUS(PORT_C), D_ALL, NULL, dp_tp_status_mmio_write);
2386 	MMIO_DH(DP_TP_STATUS(PORT_D), D_ALL, NULL, dp_tp_status_mmio_write);
2387 	MMIO_DH(DP_TP_STATUS(PORT_E), D_ALL, NULL, NULL);
2388 
2389 	MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_A), D_ALL, NULL, NULL);
2390 	MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_B), D_ALL, NULL, NULL);
2391 	MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_C), D_ALL, NULL, NULL);
2392 	MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_EDP), D_ALL, NULL, NULL);
2393 
2394 	MMIO_DH(FORCEWAKE, D_ALL, NULL, NULL);
2395 	MMIO_DFH(GTFIFODBG, D_ALL, F_CMD_ACCESS, NULL, NULL);
2396 	MMIO_DFH(GTFIFOCTL, D_ALL, F_CMD_ACCESS, NULL, NULL);
2397 	MMIO_DH(FORCEWAKE_MT, D_PRE_SKL, NULL, mul_force_wake_write);
2398 	MMIO_DH(FORCEWAKE_ACK_HSW, D_BDW, NULL, NULL);
2399 	MMIO_DH(GEN6_RC_CONTROL, D_ALL, NULL, NULL);
2400 	MMIO_DH(GEN6_RC_STATE, D_ALL, NULL, NULL);
2401 	MMIO_DH(HSW_PWR_WELL_CTL1, D_BDW, NULL, power_well_ctl_mmio_write);
2402 	MMIO_DH(HSW_PWR_WELL_CTL2, D_BDW, NULL, power_well_ctl_mmio_write);
2403 	MMIO_DH(HSW_PWR_WELL_CTL3, D_BDW, NULL, power_well_ctl_mmio_write);
2404 	MMIO_DH(HSW_PWR_WELL_CTL4, D_BDW, NULL, power_well_ctl_mmio_write);
2405 	MMIO_DH(HSW_PWR_WELL_CTL5, D_BDW, NULL, power_well_ctl_mmio_write);
2406 	MMIO_DH(HSW_PWR_WELL_CTL6, D_BDW, NULL, power_well_ctl_mmio_write);
2407 
2408 	MMIO_DH(GEN6_GDRST, D_ALL, NULL, gdrst_mmio_write);
2409 	MMIO_F(FENCE_REG_GEN6_LO(0), 0x80, 0, 0, 0, D_ALL, fence_mmio_read, fence_mmio_write);
2410 	MMIO_DH(CPU_VGACNTRL, D_ALL, NULL, vga_control_mmio_write);
2411 
2412 	MMIO_DH(GEN7_ERR_INT, D_ALL, NULL, NULL);
2413 	MMIO_DH(GFX_FLSH_CNTL_GEN6, D_ALL, NULL, NULL);
2414 
2415 	MMIO_DH(GEN6_MBCTL, D_ALL, NULL, mbctl_write);
2416 	MMIO_DFH(GEN7_UCGCTL4, D_ALL, F_CMD_ACCESS, NULL, NULL);
2417 
2418 	MMIO_DH(FPGA_DBG, D_ALL, NULL, fpga_dbg_mmio_write);
2419 	MMIO_DFH(_MMIO(0x215c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2420 	MMIO_DFH(_MMIO(0x2178), D_ALL, F_CMD_ACCESS, NULL, NULL);
2421 	MMIO_DFH(_MMIO(0x217c), D_ALL, F_CMD_ACCESS, NULL, NULL);
2422 	MMIO_DFH(_MMIO(0x12178), D_ALL, F_CMD_ACCESS, NULL, NULL);
2423 	MMIO_DFH(_MMIO(0x1217c), D_ALL, F_CMD_ACCESS, NULL, NULL);
2424 
2425 	MMIO_F(_MMIO(0x2290), 8, F_CMD_ACCESS, 0, 0, D_BDW_PLUS, NULL, NULL);
2426 	MMIO_F(_MMIO(0x5200), 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2427 	MMIO_F(_MMIO(0x5240), 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2428 	MMIO_F(_MMIO(0x5280), 16, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2429 
2430 	MMIO_DFH(_MMIO(0x1c17c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2431 	MMIO_DFH(_MMIO(0x1c178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2432 	MMIO_DFH(BCS_SWCTRL, D_ALL, F_CMD_ACCESS, NULL, NULL);
2433 
2434 	MMIO_F(HS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2435 	MMIO_F(DS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2436 	MMIO_F(IA_VERTICES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2437 	MMIO_F(IA_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2438 	MMIO_F(VS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2439 	MMIO_F(GS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2440 	MMIO_F(GS_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2441 	MMIO_F(CL_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2442 	MMIO_F(CL_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2443 	MMIO_F(PS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2444 	MMIO_F(PS_DEPTH_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2445 	MMIO_DH(_MMIO(0x4260), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2446 	MMIO_DH(_MMIO(0x4264), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2447 	MMIO_DH(_MMIO(0x4268), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2448 	MMIO_DH(_MMIO(0x426c), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2449 	MMIO_DH(_MMIO(0x4270), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2450 	MMIO_DFH(_MMIO(0x4094), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2451 
2452 	MMIO_DFH(ARB_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2453 	MMIO_RING_GM(RING_BBADDR, D_ALL, NULL, NULL);
2454 	MMIO_DFH(_MMIO(0x2220), D_ALL, F_CMD_ACCESS, NULL, NULL);
2455 	MMIO_DFH(_MMIO(0x12220), D_ALL, F_CMD_ACCESS, NULL, NULL);
2456 	MMIO_DFH(_MMIO(0x22220), D_ALL, F_CMD_ACCESS, NULL, NULL);
2457 	MMIO_RING_DFH(RING_SYNC_1, D_ALL, F_CMD_ACCESS, NULL, NULL);
2458 	MMIO_RING_DFH(RING_SYNC_0, D_ALL, F_CMD_ACCESS, NULL, NULL);
2459 	MMIO_DFH(_MMIO(0x22178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2460 	MMIO_DFH(_MMIO(0x1a178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2461 	MMIO_DFH(_MMIO(0x1a17c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2462 	MMIO_DFH(_MMIO(0x2217c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2463 
2464 	MMIO_DH(EDP_PSR_IMR, D_BDW_PLUS, NULL, edp_psr_imr_iir_write);
2465 	MMIO_DH(EDP_PSR_IIR, D_BDW_PLUS, NULL, edp_psr_imr_iir_write);
2466 	MMIO_DH(GUC_STATUS, D_ALL, guc_status_read, NULL);
2467 
2468 	return 0;
2469 }
2470 
2471 static int init_bdw_mmio_info(struct intel_gvt *gvt)
2472 {
2473 	int ret;
2474 
2475 	MMIO_DH(GEN8_GT_IMR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2476 	MMIO_DH(GEN8_GT_IER(0), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2477 	MMIO_DH(GEN8_GT_IIR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2478 
2479 	MMIO_DH(GEN8_GT_IMR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2480 	MMIO_DH(GEN8_GT_IER(1), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2481 	MMIO_DH(GEN8_GT_IIR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2482 
2483 	MMIO_DH(GEN8_GT_IMR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2484 	MMIO_DH(GEN8_GT_IER(2), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2485 	MMIO_DH(GEN8_GT_IIR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2486 
2487 	MMIO_DH(GEN8_GT_IMR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2488 	MMIO_DH(GEN8_GT_IER(3), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2489 	MMIO_DH(GEN8_GT_IIR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2490 
2491 	MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_A), D_BDW_PLUS, NULL,
2492 		intel_vgpu_reg_imr_handler);
2493 	MMIO_DH(GEN8_DE_PIPE_IER(PIPE_A), D_BDW_PLUS, NULL,
2494 		intel_vgpu_reg_ier_handler);
2495 	MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_A), D_BDW_PLUS, NULL,
2496 		intel_vgpu_reg_iir_handler);
2497 
2498 	MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_B), D_BDW_PLUS, NULL,
2499 		intel_vgpu_reg_imr_handler);
2500 	MMIO_DH(GEN8_DE_PIPE_IER(PIPE_B), D_BDW_PLUS, NULL,
2501 		intel_vgpu_reg_ier_handler);
2502 	MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_B), D_BDW_PLUS, NULL,
2503 		intel_vgpu_reg_iir_handler);
2504 
2505 	MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_C), D_BDW_PLUS, NULL,
2506 		intel_vgpu_reg_imr_handler);
2507 	MMIO_DH(GEN8_DE_PIPE_IER(PIPE_C), D_BDW_PLUS, NULL,
2508 		intel_vgpu_reg_ier_handler);
2509 	MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_C), D_BDW_PLUS, NULL,
2510 		intel_vgpu_reg_iir_handler);
2511 
2512 	MMIO_DH(GEN8_DE_PORT_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2513 	MMIO_DH(GEN8_DE_PORT_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2514 	MMIO_DH(GEN8_DE_PORT_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2515 
2516 	MMIO_DH(GEN8_DE_MISC_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2517 	MMIO_DH(GEN8_DE_MISC_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2518 	MMIO_DH(GEN8_DE_MISC_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2519 
2520 	MMIO_DH(GEN8_PCU_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2521 	MMIO_DH(GEN8_PCU_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2522 	MMIO_DH(GEN8_PCU_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2523 
2524 	MMIO_DH(GEN8_MASTER_IRQ, D_BDW_PLUS, NULL,
2525 		intel_vgpu_reg_master_irq_handler);
2526 
2527 	MMIO_RING_DFH(RING_ACTHD_UDW, D_BDW_PLUS, 0,
2528 		mmio_read_from_hw, NULL);
2529 
2530 #define RING_REG(base) _MMIO((base) + 0xd0)
2531 	MMIO_RING_F(RING_REG, 4, F_RO, 0,
2532 		~_MASKED_BIT_ENABLE(RESET_CTL_REQUEST_RESET), D_BDW_PLUS, NULL,
2533 		ring_reset_ctl_write);
2534 #undef RING_REG
2535 
2536 #define RING_REG(base) _MMIO((base) + 0x230)
2537 	MMIO_RING_DFH(RING_REG, D_BDW_PLUS, 0, NULL, elsp_mmio_write);
2538 #undef RING_REG
2539 
2540 #define RING_REG(base) _MMIO((base) + 0x234)
2541 	MMIO_RING_F(RING_REG, 8, F_RO, 0, ~0, D_BDW_PLUS,
2542 		NULL, NULL);
2543 #undef RING_REG
2544 
2545 #define RING_REG(base) _MMIO((base) + 0x244)
2546 	MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2547 #undef RING_REG
2548 
2549 #define RING_REG(base) _MMIO((base) + 0x370)
2550 	MMIO_RING_F(RING_REG, 48, F_RO, 0, ~0, D_BDW_PLUS, NULL, NULL);
2551 #undef RING_REG
2552 
2553 #define RING_REG(base) _MMIO((base) + 0x3a0)
2554 	MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_MODE_MASK, NULL, NULL);
2555 #undef RING_REG
2556 
2557 	MMIO_DH(GEN6_PCODE_MAILBOX, D_BDW_PLUS, NULL, mailbox_write);
2558 
2559 #define RING_REG(base) _MMIO((base) + 0x270)
2560 	MMIO_RING_F(RING_REG, 32, F_CMD_ACCESS, 0, 0, D_BDW_PLUS, NULL, NULL);
2561 #undef RING_REG
2562 
2563 	MMIO_RING_GM(RING_HWS_PGA, D_BDW_PLUS, NULL, hws_pga_write);
2564 
2565 	MMIO_DFH(HDC_CHICKEN0, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2566 
2567 	MMIO_DFH(GEN8_ROW_CHICKEN, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2568 		NULL, NULL);
2569 	MMIO_DFH(GEN7_ROW_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2570 		NULL, NULL);
2571 	MMIO_DFH(GEN8_UCGCTL6, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2572 
2573 	MMIO_DFH(_MMIO(0xb1f0), D_BDW, F_CMD_ACCESS, NULL, NULL);
2574 	MMIO_DFH(_MMIO(0xb1c0), D_BDW, F_CMD_ACCESS, NULL, NULL);
2575 	MMIO_DFH(GEN8_L3SQCREG4, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2576 	MMIO_DFH(_MMIO(0xb100), D_BDW, F_CMD_ACCESS, NULL, NULL);
2577 	MMIO_DFH(_MMIO(0xb10c), D_BDW, F_CMD_ACCESS, NULL, NULL);
2578 
2579 	MMIO_F(_MMIO(0x24d0), 48, F_CMD_ACCESS | F_CMD_WRITE_PATCH, 0, 0,
2580 		D_BDW_PLUS, NULL, force_nonpriv_write);
2581 
2582 	MMIO_DFH(_MMIO(0x83a4), D_BDW, F_CMD_ACCESS, NULL, NULL);
2583 
2584 	MMIO_DFH(_MMIO(0x8430), D_BDW, F_CMD_ACCESS, NULL, NULL);
2585 
2586 	MMIO_DFH(_MMIO(0xe194), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2587 	MMIO_DFH(_MMIO(0xe188), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2588 	MMIO_DFH(HALF_SLICE_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2589 	MMIO_DFH(_MMIO(0x2580), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2590 
2591 	MMIO_DFH(_MMIO(0x2248), D_BDW, F_CMD_ACCESS, NULL, NULL);
2592 
2593 	MMIO_DFH(_MMIO(0xe220), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2594 	MMIO_DFH(_MMIO(0xe230), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2595 	MMIO_DFH(_MMIO(0xe240), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2596 	MMIO_DFH(_MMIO(0xe260), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2597 	MMIO_DFH(_MMIO(0xe270), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2598 	MMIO_DFH(_MMIO(0xe280), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2599 	MMIO_DFH(_MMIO(0xe2a0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2600 	MMIO_DFH(_MMIO(0xe2b0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2601 	MMIO_DFH(_MMIO(0xe2c0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2602 	MMIO_DFH(_MMIO(0x21f0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2603 	return 0;
2604 }
2605 
2606 static int init_skl_mmio_info(struct intel_gvt *gvt)
2607 {
2608 	int ret;
2609 
2610 	MMIO_DH(FORCEWAKE_RENDER_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
2611 	MMIO_DH(FORCEWAKE_ACK_RENDER_GEN9, D_SKL_PLUS, NULL, NULL);
2612 	MMIO_DH(FORCEWAKE_GT_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
2613 	MMIO_DH(FORCEWAKE_ACK_GT_GEN9, D_SKL_PLUS, NULL, NULL);
2614 	MMIO_DH(FORCEWAKE_MEDIA_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
2615 	MMIO_DH(FORCEWAKE_ACK_MEDIA_GEN9, D_SKL_PLUS, NULL, NULL);
2616 
2617 	MMIO_F(DP_AUX_CH_CTL(AUX_CH_B), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
2618 						dp_aux_ch_ctl_mmio_write);
2619 	MMIO_F(DP_AUX_CH_CTL(AUX_CH_C), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
2620 						dp_aux_ch_ctl_mmio_write);
2621 	MMIO_F(DP_AUX_CH_CTL(AUX_CH_D), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
2622 						dp_aux_ch_ctl_mmio_write);
2623 
2624 	MMIO_DH(HSW_PWR_WELL_CTL2, D_SKL_PLUS, NULL, skl_power_well_ctl_write);
2625 
2626 	MMIO_DH(DBUF_CTL_S(0), D_SKL_PLUS, NULL, gen9_dbuf_ctl_mmio_write);
2627 
2628 	MMIO_DFH(GEN9_GAMT_ECO_REG_RW_IA, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2629 	MMIO_DFH(MMCD_MISC_CTRL, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2630 	MMIO_DH(CHICKEN_PAR1_1, D_SKL_PLUS, NULL, NULL);
2631 	MMIO_DH(LCPLL1_CTL, D_SKL_PLUS, NULL, skl_lcpll_write);
2632 	MMIO_DH(LCPLL2_CTL, D_SKL_PLUS, NULL, skl_lcpll_write);
2633 	MMIO_DH(DPLL_STATUS, D_SKL_PLUS, dpll_status_read, NULL);
2634 
2635 	MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
2636 	MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
2637 	MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
2638 	MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
2639 	MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
2640 	MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
2641 
2642 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
2643 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
2644 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
2645 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
2646 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
2647 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
2648 
2649 	MMIO_DH(SKL_PS_CTRL(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
2650 	MMIO_DH(SKL_PS_CTRL(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
2651 	MMIO_DH(SKL_PS_CTRL(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
2652 	MMIO_DH(SKL_PS_CTRL(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
2653 	MMIO_DH(SKL_PS_CTRL(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
2654 	MMIO_DH(SKL_PS_CTRL(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
2655 
2656 	MMIO_DH(PLANE_BUF_CFG(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2657 	MMIO_DH(PLANE_BUF_CFG(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2658 	MMIO_DH(PLANE_BUF_CFG(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2659 	MMIO_DH(PLANE_BUF_CFG(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
2660 
2661 	MMIO_DH(PLANE_BUF_CFG(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2662 	MMIO_DH(PLANE_BUF_CFG(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2663 	MMIO_DH(PLANE_BUF_CFG(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2664 	MMIO_DH(PLANE_BUF_CFG(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
2665 
2666 	MMIO_DH(PLANE_BUF_CFG(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2667 	MMIO_DH(PLANE_BUF_CFG(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2668 	MMIO_DH(PLANE_BUF_CFG(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2669 	MMIO_DH(PLANE_BUF_CFG(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
2670 
2671 	MMIO_DH(CUR_BUF_CFG(PIPE_A), D_SKL_PLUS, NULL, NULL);
2672 	MMIO_DH(CUR_BUF_CFG(PIPE_B), D_SKL_PLUS, NULL, NULL);
2673 	MMIO_DH(CUR_BUF_CFG(PIPE_C), D_SKL_PLUS, NULL, NULL);
2674 
2675 	MMIO_DH(PLANE_WM_TRANS(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2676 	MMIO_DH(PLANE_WM_TRANS(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2677 	MMIO_DH(PLANE_WM_TRANS(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2678 
2679 	MMIO_DH(PLANE_WM_TRANS(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2680 	MMIO_DH(PLANE_WM_TRANS(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2681 	MMIO_DH(PLANE_WM_TRANS(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2682 
2683 	MMIO_DH(PLANE_WM_TRANS(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2684 	MMIO_DH(PLANE_WM_TRANS(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2685 	MMIO_DH(PLANE_WM_TRANS(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2686 
2687 	MMIO_DH(CUR_WM_TRANS(PIPE_A), D_SKL_PLUS, NULL, NULL);
2688 	MMIO_DH(CUR_WM_TRANS(PIPE_B), D_SKL_PLUS, NULL, NULL);
2689 	MMIO_DH(CUR_WM_TRANS(PIPE_C), D_SKL_PLUS, NULL, NULL);
2690 
2691 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2692 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2693 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2694 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
2695 
2696 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2697 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2698 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2699 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
2700 
2701 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2702 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2703 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2704 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
2705 
2706 	MMIO_DH(PLANE_AUX_DIST(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2707 	MMIO_DH(PLANE_AUX_DIST(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2708 	MMIO_DH(PLANE_AUX_DIST(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2709 	MMIO_DH(PLANE_AUX_DIST(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
2710 
2711 	MMIO_DH(PLANE_AUX_DIST(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2712 	MMIO_DH(PLANE_AUX_DIST(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2713 	MMIO_DH(PLANE_AUX_DIST(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2714 	MMIO_DH(PLANE_AUX_DIST(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
2715 
2716 	MMIO_DH(PLANE_AUX_DIST(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2717 	MMIO_DH(PLANE_AUX_DIST(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2718 	MMIO_DH(PLANE_AUX_DIST(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2719 	MMIO_DH(PLANE_AUX_DIST(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
2720 
2721 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2722 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2723 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2724 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
2725 
2726 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2727 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2728 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2729 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
2730 
2731 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2732 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2733 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2734 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
2735 
2736 	MMIO_DFH(BDW_SCRATCH1, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2737 
2738 	MMIO_F(GEN9_GFX_MOCS(0), 0x7f8, F_CMD_ACCESS, 0, 0, D_SKL_PLUS,
2739 		NULL, NULL);
2740 	MMIO_F(GEN7_L3CNTLREG2, 0x80, F_CMD_ACCESS, 0, 0, D_SKL_PLUS,
2741 		NULL, NULL);
2742 
2743 	MMIO_DFH(GEN7_FF_SLICE_CS_CHICKEN1, D_SKL_PLUS,
2744 		 F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2745 	MMIO_DFH(GEN9_CS_DEBUG_MODE1, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2746 		NULL, NULL);
2747 
2748 	/* TRTT */
2749 	MMIO_DFH(TRVATTL3PTRDW(0), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2750 	MMIO_DFH(TRVATTL3PTRDW(1), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2751 	MMIO_DFH(TRVATTL3PTRDW(2), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2752 	MMIO_DFH(TRVATTL3PTRDW(3), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2753 	MMIO_DFH(TRVADR, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2754 	MMIO_DFH(TRTTE, D_SKL_PLUS, F_CMD_ACCESS | F_PM_SAVE,
2755 		 NULL, gen9_trtte_write);
2756 	MMIO_DFH(_MMIO(0x4dfc), D_SKL_PLUS, F_PM_SAVE,
2757 		 NULL, gen9_trtt_chicken_write);
2758 
2759 	MMIO_DFH(GEN8_GARBCNTL, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2760 	MMIO_DH(DMA_CTRL, D_SKL_PLUS, NULL, dma_ctrl_write);
2761 
2762 #define CSFE_CHICKEN1_REG(base) _MMIO((base) + 0xD4)
2763 	MMIO_RING_DFH(CSFE_CHICKEN1_REG, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2764 		      NULL, csfe_chicken1_mmio_write);
2765 #undef CSFE_CHICKEN1_REG
2766 	MMIO_DFH(GEN8_HDC_CHICKEN1, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2767 		 NULL, NULL);
2768 	MMIO_DFH(GEN9_WM_CHICKEN3, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2769 		 NULL, NULL);
2770 
2771 	MMIO_DFH(GAMT_CHKN_BIT_REG, D_KBL | D_CFL, F_CMD_ACCESS, NULL, NULL);
2772 	MMIO_DFH(_MMIO(0xe4cc), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2773 
2774 	return 0;
2775 }
2776 
2777 static int init_bxt_mmio_info(struct intel_gvt *gvt)
2778 {
2779 	int ret;
2780 
2781 	MMIO_DH(BXT_P_CR_GT_DISP_PWRON, D_BXT, NULL, bxt_gt_disp_pwron_write);
2782 	MMIO_DH(BXT_PHY_CTL_FAMILY(DPIO_PHY0), D_BXT,
2783 		NULL, bxt_phy_ctl_family_write);
2784 	MMIO_DH(BXT_PHY_CTL_FAMILY(DPIO_PHY1), D_BXT,
2785 		NULL, bxt_phy_ctl_family_write);
2786 	MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_A), D_BXT,
2787 		NULL, bxt_port_pll_enable_write);
2788 	MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_B), D_BXT,
2789 		NULL, bxt_port_pll_enable_write);
2790 	MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_C), D_BXT, NULL,
2791 		bxt_port_pll_enable_write);
2792 
2793 	MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY0, DPIO_CH0), D_BXT,
2794 		NULL, bxt_pcs_dw12_grp_write);
2795 	MMIO_DH(BXT_PORT_TX_DW3_LN(DPIO_PHY0, DPIO_CH0, 0), D_BXT,
2796 		bxt_port_tx_dw3_read, NULL);
2797 	MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY0, DPIO_CH1), D_BXT,
2798 		NULL, bxt_pcs_dw12_grp_write);
2799 	MMIO_DH(BXT_PORT_TX_DW3_LN(DPIO_PHY0, DPIO_CH1, 0), D_BXT,
2800 		bxt_port_tx_dw3_read, NULL);
2801 	MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY1, DPIO_CH0), D_BXT,
2802 		NULL, bxt_pcs_dw12_grp_write);
2803 	MMIO_DH(BXT_PORT_TX_DW3_LN(DPIO_PHY1, DPIO_CH0, 0), D_BXT,
2804 		bxt_port_tx_dw3_read, NULL);
2805 	MMIO_DH(BXT_DE_PLL_ENABLE, D_BXT, NULL, bxt_de_pll_enable_write);
2806 	MMIO_DFH(GEN8_L3SQCREG1, D_BXT, F_CMD_ACCESS, NULL, NULL);
2807 	MMIO_DFH(GEN8_L3CNTLREG, D_BXT, F_CMD_ACCESS, NULL, NULL);
2808 	MMIO_DFH(_MMIO(0x20D8), D_BXT, F_CMD_ACCESS, NULL, NULL);
2809 	MMIO_F(GEN8_RING_CS_GPR(RENDER_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2810 	       0, 0, D_BXT, NULL, NULL);
2811 	MMIO_F(GEN8_RING_CS_GPR(GEN6_BSD_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2812 	       0, 0, D_BXT, NULL, NULL);
2813 	MMIO_F(GEN8_RING_CS_GPR(BLT_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2814 	       0, 0, D_BXT, NULL, NULL);
2815 	MMIO_F(GEN8_RING_CS_GPR(VEBOX_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2816 	       0, 0, D_BXT, NULL, NULL);
2817 
2818 	MMIO_DFH(GEN9_CTX_PREEMPT_REG, D_BXT, F_CMD_ACCESS, NULL, NULL);
2819 
2820 	MMIO_DH(GEN8_PRIVATE_PAT_LO, D_BXT, NULL, bxt_ppat_low_write);
2821 
2822 	return 0;
2823 }
2824 
2825 static struct gvt_mmio_block *find_mmio_block(struct intel_gvt *gvt,
2826 					      unsigned int offset)
2827 {
2828 	struct gvt_mmio_block *block = gvt->mmio.mmio_block;
2829 	int num = gvt->mmio.num_mmio_block;
2830 	int i;
2831 
2832 	for (i = 0; i < num; i++, block++) {
2833 		if (offset >= i915_mmio_reg_offset(block->offset) &&
2834 		    offset < i915_mmio_reg_offset(block->offset) + block->size)
2835 			return block;
2836 	}
2837 	return NULL;
2838 }
2839 
2840 /**
2841  * intel_gvt_clean_mmio_info - clean up MMIO information table for GVT device
2842  * @gvt: GVT device
2843  *
2844  * This function is called at the driver unloading stage, to clean up the MMIO
2845  * information table of GVT device
2846  *
2847  */
2848 void intel_gvt_clean_mmio_info(struct intel_gvt *gvt)
2849 {
2850 	struct hlist_node *tmp;
2851 	struct intel_gvt_mmio_info *e;
2852 	int i;
2853 
2854 	hash_for_each_safe(gvt->mmio.mmio_info_table, i, tmp, e, node)
2855 		kfree(e);
2856 
2857 	kfree(gvt->mmio.mmio_block);
2858 	gvt->mmio.mmio_block = NULL;
2859 	gvt->mmio.num_mmio_block = 0;
2860 
2861 	vfree(gvt->mmio.mmio_attribute);
2862 	gvt->mmio.mmio_attribute = NULL;
2863 }
2864 
2865 static int handle_mmio(struct intel_gvt_mmio_table_iter *iter, u32 offset,
2866 		       u32 size)
2867 {
2868 	struct intel_gvt *gvt = iter->data;
2869 	struct intel_gvt_mmio_info *info, *p;
2870 	u32 start, end, i;
2871 
2872 	if (WARN_ON(!IS_ALIGNED(offset, 4)))
2873 		return -EINVAL;
2874 
2875 	start = offset;
2876 	end = offset + size;
2877 
2878 	for (i = start; i < end; i += 4) {
2879 		p = intel_gvt_find_mmio_info(gvt, i);
2880 		if (p) {
2881 			WARN(1, "dup mmio definition offset %x\n", i);
2882 
2883 			/* We return -EEXIST here to make GVT-g load fail.
2884 			 * So duplicated MMIO can be found as soon as
2885 			 * possible.
2886 			 */
2887 			return -EEXIST;
2888 		}
2889 
2890 		info = kzalloc(sizeof(*info), GFP_KERNEL);
2891 		if (!info)
2892 			return -ENOMEM;
2893 
2894 		info->offset = i;
2895 		info->read = intel_vgpu_default_mmio_read;
2896 		info->write = intel_vgpu_default_mmio_write;
2897 		INIT_HLIST_NODE(&info->node);
2898 		hash_add(gvt->mmio.mmio_info_table, &info->node, info->offset);
2899 		gvt->mmio.num_tracked_mmio++;
2900 	}
2901 	return 0;
2902 }
2903 
2904 static int handle_mmio_block(struct intel_gvt_mmio_table_iter *iter,
2905 			     u32 offset, u32 size)
2906 {
2907 	struct intel_gvt *gvt = iter->data;
2908 	struct gvt_mmio_block *block = gvt->mmio.mmio_block;
2909 	void *ret;
2910 
2911 	ret = krealloc(block,
2912 			 (gvt->mmio.num_mmio_block + 1) * sizeof(*block),
2913 			 GFP_KERNEL);
2914 	if (!ret)
2915 		return -ENOMEM;
2916 
2917 	gvt->mmio.mmio_block = block = ret;
2918 
2919 	block += gvt->mmio.num_mmio_block;
2920 
2921 	memset(block, 0, sizeof(*block));
2922 
2923 	block->offset = _MMIO(offset);
2924 	block->size = size;
2925 
2926 	gvt->mmio.num_mmio_block++;
2927 
2928 	return 0;
2929 }
2930 
2931 static int handle_mmio_cb(struct intel_gvt_mmio_table_iter *iter, u32 offset,
2932 			  u32 size)
2933 {
2934 	if (size < 1024 || offset == i915_mmio_reg_offset(GEN9_GFX_MOCS(0)))
2935 		return handle_mmio(iter, offset, size);
2936 	else
2937 		return handle_mmio_block(iter, offset, size);
2938 }
2939 
2940 static int init_mmio_info(struct intel_gvt *gvt)
2941 {
2942 	struct intel_gvt_mmio_table_iter iter = {
2943 		.i915 = gvt->gt->i915,
2944 		.data = gvt,
2945 		.handle_mmio_cb = handle_mmio_cb,
2946 	};
2947 
2948 	return intel_gvt_iterate_mmio_table(&iter);
2949 }
2950 
2951 static int init_mmio_block_handlers(struct intel_gvt *gvt)
2952 {
2953 	struct gvt_mmio_block *block;
2954 
2955 	block = find_mmio_block(gvt, VGT_PVINFO_PAGE);
2956 	if (!block) {
2957 		WARN(1, "fail to assign handlers to mmio block %x\n",
2958 		     i915_mmio_reg_offset(gvt->mmio.mmio_block->offset));
2959 		return -ENODEV;
2960 	}
2961 
2962 	block->read = pvinfo_mmio_read;
2963 	block->write = pvinfo_mmio_write;
2964 
2965 	return 0;
2966 }
2967 
2968 /**
2969  * intel_gvt_setup_mmio_info - setup MMIO information table for GVT device
2970  * @gvt: GVT device
2971  *
2972  * This function is called at the initialization stage, to setup the MMIO
2973  * information table for GVT device
2974  *
2975  * Returns:
2976  * zero on success, negative if failed.
2977  */
2978 int intel_gvt_setup_mmio_info(struct intel_gvt *gvt)
2979 {
2980 	struct intel_gvt_device_info *info = &gvt->device_info;
2981 	struct drm_i915_private *i915 = gvt->gt->i915;
2982 	int size = info->mmio_size / 4 * sizeof(*gvt->mmio.mmio_attribute);
2983 	int ret;
2984 
2985 	gvt->mmio.mmio_attribute = vzalloc(size);
2986 	if (!gvt->mmio.mmio_attribute)
2987 		return -ENOMEM;
2988 
2989 	ret = init_mmio_info(gvt);
2990 	if (ret)
2991 		goto err;
2992 
2993 	ret = init_mmio_block_handlers(gvt);
2994 	if (ret)
2995 		goto err;
2996 
2997 	ret = init_generic_mmio_info(gvt);
2998 	if (ret)
2999 		goto err;
3000 
3001 	if (IS_BROADWELL(i915)) {
3002 		ret = init_bdw_mmio_info(gvt);
3003 		if (ret)
3004 			goto err;
3005 	} else if (IS_SKYLAKE(i915) ||
3006 		   IS_KABYLAKE(i915) ||
3007 		   IS_COFFEELAKE(i915) ||
3008 		   IS_COMETLAKE(i915)) {
3009 		ret = init_bdw_mmio_info(gvt);
3010 		if (ret)
3011 			goto err;
3012 		ret = init_skl_mmio_info(gvt);
3013 		if (ret)
3014 			goto err;
3015 	} else if (IS_BROXTON(i915)) {
3016 		ret = init_bdw_mmio_info(gvt);
3017 		if (ret)
3018 			goto err;
3019 		ret = init_skl_mmio_info(gvt);
3020 		if (ret)
3021 			goto err;
3022 		ret = init_bxt_mmio_info(gvt);
3023 		if (ret)
3024 			goto err;
3025 	}
3026 
3027 	return 0;
3028 err:
3029 	intel_gvt_clean_mmio_info(gvt);
3030 	return ret;
3031 }
3032 
3033 /**
3034  * intel_gvt_for_each_tracked_mmio - iterate each tracked mmio
3035  * @gvt: a GVT device
3036  * @handler: the handler
3037  * @data: private data given to handler
3038  *
3039  * Returns:
3040  * Zero on success, negative error code if failed.
3041  */
3042 int intel_gvt_for_each_tracked_mmio(struct intel_gvt *gvt,
3043 	int (*handler)(struct intel_gvt *gvt, u32 offset, void *data),
3044 	void *data)
3045 {
3046 	struct gvt_mmio_block *block = gvt->mmio.mmio_block;
3047 	struct intel_gvt_mmio_info *e;
3048 	int i, j, ret;
3049 
3050 	hash_for_each(gvt->mmio.mmio_info_table, i, e, node) {
3051 		ret = handler(gvt, e->offset, data);
3052 		if (ret)
3053 			return ret;
3054 	}
3055 
3056 	for (i = 0; i < gvt->mmio.num_mmio_block; i++, block++) {
3057 		/* pvinfo data doesn't come from hw mmio */
3058 		if (i915_mmio_reg_offset(block->offset) == VGT_PVINFO_PAGE)
3059 			continue;
3060 
3061 		for (j = 0; j < block->size; j += 4) {
3062 			ret = handler(gvt, i915_mmio_reg_offset(block->offset) + j, data);
3063 			if (ret)
3064 				return ret;
3065 		}
3066 	}
3067 	return 0;
3068 }
3069 
3070 /**
3071  * intel_vgpu_default_mmio_read - default MMIO read handler
3072  * @vgpu: a vGPU
3073  * @offset: access offset
3074  * @p_data: data return buffer
3075  * @bytes: access data length
3076  *
3077  * Returns:
3078  * Zero on success, negative error code if failed.
3079  */
3080 int intel_vgpu_default_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
3081 		void *p_data, unsigned int bytes)
3082 {
3083 	read_vreg(vgpu, offset, p_data, bytes);
3084 	return 0;
3085 }
3086 
3087 /**
3088  * intel_vgpu_default_mmio_write() - default MMIO write handler
3089  * @vgpu: a vGPU
3090  * @offset: access offset
3091  * @p_data: write data buffer
3092  * @bytes: access data length
3093  *
3094  * Returns:
3095  * Zero on success, negative error code if failed.
3096  */
3097 int intel_vgpu_default_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
3098 		void *p_data, unsigned int bytes)
3099 {
3100 	write_vreg(vgpu, offset, p_data, bytes);
3101 	return 0;
3102 }
3103 
3104 /**
3105  * intel_vgpu_mask_mmio_write - write mask register
3106  * @vgpu: a vGPU
3107  * @offset: access offset
3108  * @p_data: write data buffer
3109  * @bytes: access data length
3110  *
3111  * Returns:
3112  * Zero on success, negative error code if failed.
3113  */
3114 int intel_vgpu_mask_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
3115 		void *p_data, unsigned int bytes)
3116 {
3117 	u32 mask, old_vreg;
3118 
3119 	old_vreg = vgpu_vreg(vgpu, offset);
3120 	write_vreg(vgpu, offset, p_data, bytes);
3121 	mask = vgpu_vreg(vgpu, offset) >> 16;
3122 	vgpu_vreg(vgpu, offset) = (old_vreg & ~mask) |
3123 				(vgpu_vreg(vgpu, offset) & mask);
3124 
3125 	return 0;
3126 }
3127 
3128 /**
3129  * intel_vgpu_mmio_reg_rw - emulate tracked mmio registers
3130  * @vgpu: a vGPU
3131  * @offset: register offset
3132  * @pdata: data buffer
3133  * @bytes: data length
3134  * @is_read: read or write
3135  *
3136  * Returns:
3137  * Zero on success, negative error code if failed.
3138  */
3139 int intel_vgpu_mmio_reg_rw(struct intel_vgpu *vgpu, unsigned int offset,
3140 			   void *pdata, unsigned int bytes, bool is_read)
3141 {
3142 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
3143 	struct intel_gvt *gvt = vgpu->gvt;
3144 	struct intel_gvt_mmio_info *mmio_info;
3145 	struct gvt_mmio_block *mmio_block;
3146 	gvt_mmio_func func;
3147 	int ret;
3148 
3149 	if (drm_WARN_ON(&i915->drm, bytes > 8))
3150 		return -EINVAL;
3151 
3152 	/*
3153 	 * Handle special MMIO blocks.
3154 	 */
3155 	mmio_block = find_mmio_block(gvt, offset);
3156 	if (mmio_block) {
3157 		func = is_read ? mmio_block->read : mmio_block->write;
3158 		if (func)
3159 			return func(vgpu, offset, pdata, bytes);
3160 		goto default_rw;
3161 	}
3162 
3163 	/*
3164 	 * Normal tracked MMIOs.
3165 	 */
3166 	mmio_info = intel_gvt_find_mmio_info(gvt, offset);
3167 	if (!mmio_info) {
3168 		gvt_dbg_mmio("untracked MMIO %08x len %d\n", offset, bytes);
3169 		goto default_rw;
3170 	}
3171 
3172 	if (is_read)
3173 		return mmio_info->read(vgpu, offset, pdata, bytes);
3174 	else {
3175 		u64 ro_mask = mmio_info->ro_mask;
3176 		u32 old_vreg = 0;
3177 		u64 data = 0;
3178 
3179 		if (intel_gvt_mmio_has_mode_mask(gvt, mmio_info->offset)) {
3180 			old_vreg = vgpu_vreg(vgpu, offset);
3181 		}
3182 
3183 		if (likely(!ro_mask))
3184 			ret = mmio_info->write(vgpu, offset, pdata, bytes);
3185 		else if (!~ro_mask) {
3186 			gvt_vgpu_err("try to write RO reg %x\n", offset);
3187 			return 0;
3188 		} else {
3189 			/* keep the RO bits in the virtual register */
3190 			memcpy(&data, pdata, bytes);
3191 			data &= ~ro_mask;
3192 			data |= vgpu_vreg(vgpu, offset) & ro_mask;
3193 			ret = mmio_info->write(vgpu, offset, &data, bytes);
3194 		}
3195 
3196 		/* higher 16bits of mode ctl regs are mask bits for change */
3197 		if (intel_gvt_mmio_has_mode_mask(gvt, mmio_info->offset)) {
3198 			u32 mask = vgpu_vreg(vgpu, offset) >> 16;
3199 
3200 			vgpu_vreg(vgpu, offset) = (old_vreg & ~mask)
3201 					| (vgpu_vreg(vgpu, offset) & mask);
3202 		}
3203 	}
3204 
3205 	return ret;
3206 
3207 default_rw:
3208 	return is_read ?
3209 		intel_vgpu_default_mmio_read(vgpu, offset, pdata, bytes) :
3210 		intel_vgpu_default_mmio_write(vgpu, offset, pdata, bytes);
3211 }
3212 
3213 void intel_gvt_restore_fence(struct intel_gvt *gvt)
3214 {
3215 	struct intel_vgpu *vgpu;
3216 	int i, id;
3217 
3218 	idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
3219 		intel_wakeref_t wakeref;
3220 
3221 		wakeref = mmio_hw_access_pre(gvt->gt);
3222 		for (i = 0; i < vgpu_fence_sz(vgpu); i++)
3223 			intel_vgpu_write_fence(vgpu, i, vgpu_vreg64(vgpu, fence_num_to_offset(i)));
3224 		mmio_hw_access_post(gvt->gt, wakeref);
3225 	}
3226 }
3227 
3228 static int mmio_pm_restore_handler(struct intel_gvt *gvt, u32 offset, void *data)
3229 {
3230 	struct intel_vgpu *vgpu = data;
3231 	struct drm_i915_private *dev_priv = gvt->gt->i915;
3232 
3233 	if (gvt->mmio.mmio_attribute[offset >> 2] & F_PM_SAVE)
3234 		intel_uncore_write(&dev_priv->uncore, _MMIO(offset), vgpu_vreg(vgpu, offset));
3235 
3236 	return 0;
3237 }
3238 
3239 void intel_gvt_restore_mmio(struct intel_gvt *gvt)
3240 {
3241 	struct intel_vgpu *vgpu;
3242 	int id;
3243 
3244 	idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
3245 		intel_wakeref_t wakeref;
3246 
3247 		wakeref = mmio_hw_access_pre(gvt->gt);
3248 		intel_gvt_for_each_tracked_mmio(gvt, mmio_pm_restore_handler, vgpu);
3249 		mmio_hw_access_post(gvt->gt, wakeref);
3250 	}
3251 }
3252