xref: /linux/drivers/gpu/drm/i915/gvt/handlers.c (revision a4871e6201c46c8e1d04308265b4b4c5753c8209)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Kevin Tian <kevin.tian@intel.com>
25  *    Eddie Dong <eddie.dong@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Tina Zhang <tina.zhang@intel.com>
31  *    Pei Zhang <pei.zhang@intel.com>
32  *    Niu Bing <bing.niu@intel.com>
33  *    Ping Gao <ping.a.gao@intel.com>
34  *    Zhi Wang <zhi.a.wang@intel.com>
35  *
36 
37  */
38 
39 #include <drm/display/drm_dp.h>
40 
41 #include "i915_drv.h"
42 #include "i915_reg.h"
43 #include "gvt.h"
44 #include "i915_pvinfo.h"
45 #include "intel_mchbar_regs.h"
46 #include "display/bxt_dpio_phy_regs.h"
47 #include "display/i9xx_plane_regs.h"
48 #include "display/intel_crt_regs.h"
49 #include "display/intel_cursor_regs.h"
50 #include "display/intel_display_types.h"
51 #include "display/intel_dmc_regs.h"
52 #include "display/intel_dp_aux_regs.h"
53 #include "display/intel_dpio_phy.h"
54 #include "display/intel_fbc.h"
55 #include "display/intel_fdi_regs.h"
56 #include "display/intel_pps_regs.h"
57 #include "display/intel_psr_regs.h"
58 #include "display/intel_sprite_regs.h"
59 #include "display/skl_universal_plane_regs.h"
60 #include "display/skl_watermark_regs.h"
61 #include "display/vlv_dsi_pll_regs.h"
62 #include "gt/intel_gt_regs.h"
63 #include <linux/vmalloc.h>
64 
65 /* XXX FIXME i915 has changed PP_XXX definition */
66 #define PCH_PP_STATUS  _MMIO(0xc7200)
67 #define PCH_PP_CONTROL _MMIO(0xc7204)
68 #define PCH_PP_ON_DELAYS _MMIO(0xc7208)
69 #define PCH_PP_OFF_DELAYS _MMIO(0xc720c)
70 #define PCH_PP_DIVISOR _MMIO(0xc7210)
71 
72 unsigned long intel_gvt_get_device_type(struct intel_gvt *gvt)
73 {
74 	struct drm_i915_private *i915 = gvt->gt->i915;
75 
76 	if (IS_BROADWELL(i915))
77 		return D_BDW;
78 	else if (IS_SKYLAKE(i915))
79 		return D_SKL;
80 	else if (IS_KABYLAKE(i915))
81 		return D_KBL;
82 	else if (IS_BROXTON(i915))
83 		return D_BXT;
84 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
85 		return D_CFL;
86 
87 	return 0;
88 }
89 
90 static bool intel_gvt_match_device(struct intel_gvt *gvt,
91 		unsigned long device)
92 {
93 	return intel_gvt_get_device_type(gvt) & device;
94 }
95 
96 static void read_vreg(struct intel_vgpu *vgpu, unsigned int offset,
97 	void *p_data, unsigned int bytes)
98 {
99 	memcpy(p_data, &vgpu_vreg(vgpu, offset), bytes);
100 }
101 
102 static void write_vreg(struct intel_vgpu *vgpu, unsigned int offset,
103 	void *p_data, unsigned int bytes)
104 {
105 	memcpy(&vgpu_vreg(vgpu, offset), p_data, bytes);
106 }
107 
108 struct intel_gvt_mmio_info *intel_gvt_find_mmio_info(struct intel_gvt *gvt,
109 						  unsigned int offset)
110 {
111 	struct intel_gvt_mmio_info *e;
112 
113 	hash_for_each_possible(gvt->mmio.mmio_info_table, e, node, offset) {
114 		if (e->offset == offset)
115 			return e;
116 	}
117 	return NULL;
118 }
119 
120 static int setup_mmio_info(struct intel_gvt *gvt, u32 offset, u32 size,
121 			   u16 flags, u32 addr_mask, u32 ro_mask, u32 device,
122 			   gvt_mmio_func read, gvt_mmio_func write)
123 {
124 	struct intel_gvt_mmio_info *p;
125 	u32 start, end, i;
126 
127 	if (!intel_gvt_match_device(gvt, device))
128 		return 0;
129 
130 	if (WARN_ON(!IS_ALIGNED(offset, 4)))
131 		return -EINVAL;
132 
133 	start = offset;
134 	end = offset + size;
135 
136 	for (i = start; i < end; i += 4) {
137 		p = intel_gvt_find_mmio_info(gvt, i);
138 		if (!p) {
139 			WARN(1, "assign a handler to a non-tracked mmio %x\n",
140 				i);
141 			return -ENODEV;
142 		}
143 		p->ro_mask = ro_mask;
144 		gvt->mmio.mmio_attribute[i / 4] = flags;
145 		if (read)
146 			p->read = read;
147 		if (write)
148 			p->write = write;
149 	}
150 	return 0;
151 }
152 
153 /**
154  * intel_gvt_render_mmio_to_engine - convert a mmio offset into the engine
155  * @gvt: a GVT device
156  * @offset: register offset
157  *
158  * Returns:
159  * The engine containing the offset within its mmio page.
160  */
161 const struct intel_engine_cs *
162 intel_gvt_render_mmio_to_engine(struct intel_gvt *gvt, unsigned int offset)
163 {
164 	struct intel_engine_cs *engine;
165 	enum intel_engine_id id;
166 
167 	offset &= ~GENMASK(11, 0);
168 	for_each_engine(engine, gvt->gt, id)
169 		if (engine->mmio_base == offset)
170 			return engine;
171 
172 	return NULL;
173 }
174 
175 #define offset_to_fence_num(offset) \
176 	((offset - i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0))) >> 3)
177 
178 #define fence_num_to_offset(num) \
179 	(num * 8 + i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0)))
180 
181 
182 void enter_failsafe_mode(struct intel_vgpu *vgpu, int reason)
183 {
184 	switch (reason) {
185 	case GVT_FAILSAFE_UNSUPPORTED_GUEST:
186 		pr_err("Detected your guest driver doesn't support GVT-g.\n");
187 		break;
188 	case GVT_FAILSAFE_INSUFFICIENT_RESOURCE:
189 		pr_err("Graphics resource is not enough for the guest\n");
190 		break;
191 	case GVT_FAILSAFE_GUEST_ERR:
192 		pr_err("GVT Internal error  for the guest\n");
193 		break;
194 	default:
195 		break;
196 	}
197 	pr_err("Now vgpu %d will enter failsafe mode.\n", vgpu->id);
198 	vgpu->failsafe = true;
199 }
200 
201 static int sanitize_fence_mmio_access(struct intel_vgpu *vgpu,
202 		unsigned int fence_num, void *p_data, unsigned int bytes)
203 {
204 	unsigned int max_fence = vgpu_fence_sz(vgpu);
205 
206 	if (fence_num >= max_fence) {
207 		gvt_vgpu_err("access oob fence reg %d/%d\n",
208 			     fence_num, max_fence);
209 
210 		/* When guest access oob fence regs without access
211 		 * pv_info first, we treat guest not supporting GVT,
212 		 * and we will let vgpu enter failsafe mode.
213 		 */
214 		if (!vgpu->pv_notified)
215 			enter_failsafe_mode(vgpu,
216 					GVT_FAILSAFE_UNSUPPORTED_GUEST);
217 
218 		memset(p_data, 0, bytes);
219 		return -EINVAL;
220 	}
221 	return 0;
222 }
223 
224 static int gamw_echo_dev_rw_ia_write(struct intel_vgpu *vgpu,
225 		unsigned int offset, void *p_data, unsigned int bytes)
226 {
227 	u32 ips = (*(u32 *)p_data) & GAMW_ECO_ENABLE_64K_IPS_FIELD;
228 
229 	if (GRAPHICS_VER(vgpu->gvt->gt->i915) <= 10) {
230 		if (ips == GAMW_ECO_ENABLE_64K_IPS_FIELD)
231 			gvt_dbg_core("vgpu%d: ips enabled\n", vgpu->id);
232 		else if (!ips)
233 			gvt_dbg_core("vgpu%d: ips disabled\n", vgpu->id);
234 		else {
235 			/* All engines must be enabled together for vGPU,
236 			 * since we don't know which engine the ppgtt will
237 			 * bind to when shadowing.
238 			 */
239 			gvt_vgpu_err("Unsupported IPS setting %x, cannot enable 64K gtt.\n",
240 				     ips);
241 			return -EINVAL;
242 		}
243 	}
244 
245 	write_vreg(vgpu, offset, p_data, bytes);
246 	return 0;
247 }
248 
249 static int fence_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
250 		void *p_data, unsigned int bytes)
251 {
252 	int ret;
253 
254 	ret = sanitize_fence_mmio_access(vgpu, offset_to_fence_num(off),
255 			p_data, bytes);
256 	if (ret)
257 		return ret;
258 	read_vreg(vgpu, off, p_data, bytes);
259 	return 0;
260 }
261 
262 static int fence_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
263 		void *p_data, unsigned int bytes)
264 {
265 	struct intel_gvt *gvt = vgpu->gvt;
266 	unsigned int fence_num = offset_to_fence_num(off);
267 	intel_wakeref_t wakeref;
268 	int ret;
269 
270 	ret = sanitize_fence_mmio_access(vgpu, fence_num, p_data, bytes);
271 	if (ret)
272 		return ret;
273 	write_vreg(vgpu, off, p_data, bytes);
274 
275 	wakeref = mmio_hw_access_pre(gvt->gt);
276 	intel_vgpu_write_fence(vgpu, fence_num,
277 			vgpu_vreg64(vgpu, fence_num_to_offset(fence_num)));
278 	mmio_hw_access_post(gvt->gt, wakeref);
279 	return 0;
280 }
281 
282 #define CALC_MODE_MASK_REG(old, new) \
283 	(((new) & GENMASK(31, 16)) \
284 	 | ((((old) & GENMASK(15, 0)) & ~((new) >> 16)) \
285 	 | ((new) & ((new) >> 16))))
286 
287 static int mul_force_wake_write(struct intel_vgpu *vgpu,
288 		unsigned int offset, void *p_data, unsigned int bytes)
289 {
290 	u32 old, new;
291 	u32 ack_reg_offset;
292 
293 	old = vgpu_vreg(vgpu, offset);
294 	new = CALC_MODE_MASK_REG(old, *(u32 *)p_data);
295 
296 	if (GRAPHICS_VER(vgpu->gvt->gt->i915)  >=  9) {
297 		switch (offset) {
298 		case FORCEWAKE_RENDER_GEN9_REG:
299 			ack_reg_offset = FORCEWAKE_ACK_RENDER_GEN9_REG;
300 			break;
301 		case FORCEWAKE_GT_GEN9_REG:
302 			ack_reg_offset = FORCEWAKE_ACK_GT_GEN9_REG;
303 			break;
304 		case FORCEWAKE_MEDIA_GEN9_REG:
305 			ack_reg_offset = FORCEWAKE_ACK_MEDIA_GEN9_REG;
306 			break;
307 		default:
308 			/*should not hit here*/
309 			gvt_vgpu_err("invalid forcewake offset 0x%x\n", offset);
310 			return -EINVAL;
311 		}
312 	} else {
313 		ack_reg_offset = FORCEWAKE_ACK_HSW_REG;
314 	}
315 
316 	vgpu_vreg(vgpu, offset) = new;
317 	vgpu_vreg(vgpu, ack_reg_offset) = (new & GENMASK(15, 0));
318 	return 0;
319 }
320 
321 static int gdrst_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
322 			    void *p_data, unsigned int bytes)
323 {
324 	intel_engine_mask_t engine_mask = 0;
325 	u32 data;
326 
327 	write_vreg(vgpu, offset, p_data, bytes);
328 	data = vgpu_vreg(vgpu, offset);
329 
330 	if (data & GEN6_GRDOM_FULL) {
331 		gvt_dbg_mmio("vgpu%d: request full GPU reset\n", vgpu->id);
332 		engine_mask = ALL_ENGINES;
333 	} else {
334 		if (data & GEN6_GRDOM_RENDER) {
335 			gvt_dbg_mmio("vgpu%d: request RCS reset\n", vgpu->id);
336 			engine_mask |= BIT(RCS0);
337 		}
338 		if (data & GEN6_GRDOM_MEDIA) {
339 			gvt_dbg_mmio("vgpu%d: request VCS reset\n", vgpu->id);
340 			engine_mask |= BIT(VCS0);
341 		}
342 		if (data & GEN6_GRDOM_BLT) {
343 			gvt_dbg_mmio("vgpu%d: request BCS Reset\n", vgpu->id);
344 			engine_mask |= BIT(BCS0);
345 		}
346 		if (data & GEN6_GRDOM_VECS) {
347 			gvt_dbg_mmio("vgpu%d: request VECS Reset\n", vgpu->id);
348 			engine_mask |= BIT(VECS0);
349 		}
350 		if (data & GEN8_GRDOM_MEDIA2) {
351 			gvt_dbg_mmio("vgpu%d: request VCS2 Reset\n", vgpu->id);
352 			engine_mask |= BIT(VCS1);
353 		}
354 		if (data & GEN9_GRDOM_GUC) {
355 			gvt_dbg_mmio("vgpu%d: request GUC Reset\n", vgpu->id);
356 			vgpu_vreg_t(vgpu, GUC_STATUS) |= GS_MIA_IN_RESET;
357 		}
358 		engine_mask &= vgpu->gvt->gt->info.engine_mask;
359 	}
360 
361 	/* vgpu_lock already hold by emulate mmio r/w */
362 	intel_gvt_reset_vgpu_locked(vgpu, false, engine_mask);
363 
364 	/* sw will wait for the device to ack the reset request */
365 	vgpu_vreg(vgpu, offset) = 0;
366 
367 	return 0;
368 }
369 
370 static int gmbus_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
371 		void *p_data, unsigned int bytes)
372 {
373 	return intel_gvt_i2c_handle_gmbus_read(vgpu, offset, p_data, bytes);
374 }
375 
376 static int gmbus_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
377 		void *p_data, unsigned int bytes)
378 {
379 	return intel_gvt_i2c_handle_gmbus_write(vgpu, offset, p_data, bytes);
380 }
381 
382 static int pch_pp_control_mmio_write(struct intel_vgpu *vgpu,
383 		unsigned int offset, void *p_data, unsigned int bytes)
384 {
385 	write_vreg(vgpu, offset, p_data, bytes);
386 
387 	if (vgpu_vreg(vgpu, offset) & PANEL_POWER_ON) {
388 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) |= PP_ON;
389 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) |= PP_SEQUENCE_STATE_ON_IDLE;
390 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= ~PP_SEQUENCE_POWER_DOWN;
391 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= ~PP_CYCLE_DELAY_ACTIVE;
392 
393 	} else
394 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) &=
395 			~(PP_ON | PP_SEQUENCE_POWER_DOWN
396 					| PP_CYCLE_DELAY_ACTIVE);
397 	return 0;
398 }
399 
400 static int transconf_mmio_write(struct intel_vgpu *vgpu,
401 		unsigned int offset, void *p_data, unsigned int bytes)
402 {
403 	write_vreg(vgpu, offset, p_data, bytes);
404 
405 	if (vgpu_vreg(vgpu, offset) & TRANS_ENABLE)
406 		vgpu_vreg(vgpu, offset) |= TRANS_STATE_ENABLE;
407 	else
408 		vgpu_vreg(vgpu, offset) &= ~TRANS_STATE_ENABLE;
409 	return 0;
410 }
411 
412 static int lcpll_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
413 		void *p_data, unsigned int bytes)
414 {
415 	write_vreg(vgpu, offset, p_data, bytes);
416 
417 	if (vgpu_vreg(vgpu, offset) & LCPLL_PLL_DISABLE)
418 		vgpu_vreg(vgpu, offset) &= ~LCPLL_PLL_LOCK;
419 	else
420 		vgpu_vreg(vgpu, offset) |= LCPLL_PLL_LOCK;
421 
422 	if (vgpu_vreg(vgpu, offset) & LCPLL_CD_SOURCE_FCLK)
423 		vgpu_vreg(vgpu, offset) |= LCPLL_CD_SOURCE_FCLK_DONE;
424 	else
425 		vgpu_vreg(vgpu, offset) &= ~LCPLL_CD_SOURCE_FCLK_DONE;
426 
427 	return 0;
428 }
429 
430 static int dpy_reg_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
431 		void *p_data, unsigned int bytes)
432 {
433 	switch (offset) {
434 	case 0xe651c:
435 	case 0xe661c:
436 	case 0xe671c:
437 	case 0xe681c:
438 		vgpu_vreg(vgpu, offset) = 1 << 17;
439 		break;
440 	case 0xe6c04:
441 		vgpu_vreg(vgpu, offset) = 0x3;
442 		break;
443 	case 0xe6e1c:
444 		vgpu_vreg(vgpu, offset) = 0x2f << 16;
445 		break;
446 	default:
447 		return -EINVAL;
448 	}
449 
450 	read_vreg(vgpu, offset, p_data, bytes);
451 	return 0;
452 }
453 
454 /*
455  * Only PIPE_A is enabled in current vGPU display and PIPE_A is tied to
456  *   TRANSCODER_A in HW. DDI/PORT could be PORT_x depends on
457  *   setup_virtual_dp_monitor().
458  * emulate_monitor_status_change() set up PLL for PORT_x as the initial enabled
459  *   DPLL. Later guest driver may setup a different DPLLx when setting mode.
460  * So the correct sequence to find DP stream clock is:
461  *   Check TRANS_DDI_FUNC_CTL on TRANSCODER_A to get PORT_x.
462  *   Check correct PLLx for PORT_x to get PLL frequency and DP bitrate.
463  * Then Refresh rate then can be calculated based on follow equations:
464  *   Pixel clock = h_total * v_total * refresh_rate
465  *   stream clock = Pixel clock
466  *   ls_clk = DP bitrate
467  *   Link M/N = strm_clk / ls_clk
468  */
469 
470 static u32 bdw_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
471 {
472 	u32 dp_br = 0;
473 	u32 ddi_pll_sel = vgpu_vreg_t(vgpu, PORT_CLK_SEL(port));
474 
475 	switch (ddi_pll_sel) {
476 	case PORT_CLK_SEL_LCPLL_2700:
477 		dp_br = 270000 * 2;
478 		break;
479 	case PORT_CLK_SEL_LCPLL_1350:
480 		dp_br = 135000 * 2;
481 		break;
482 	case PORT_CLK_SEL_LCPLL_810:
483 		dp_br = 81000 * 2;
484 		break;
485 	case PORT_CLK_SEL_SPLL:
486 	{
487 		switch (vgpu_vreg_t(vgpu, SPLL_CTL) & SPLL_FREQ_MASK) {
488 		case SPLL_FREQ_810MHz:
489 			dp_br = 81000 * 2;
490 			break;
491 		case SPLL_FREQ_1350MHz:
492 			dp_br = 135000 * 2;
493 			break;
494 		case SPLL_FREQ_2700MHz:
495 			dp_br = 270000 * 2;
496 			break;
497 		default:
498 			gvt_dbg_dpy("vgpu-%d PORT_%c can't get freq from SPLL 0x%08x\n",
499 				    vgpu->id, port_name(port), vgpu_vreg_t(vgpu, SPLL_CTL));
500 			break;
501 		}
502 		break;
503 	}
504 	case PORT_CLK_SEL_WRPLL1:
505 	case PORT_CLK_SEL_WRPLL2:
506 	{
507 		u32 wrpll_ctl;
508 		int refclk, n, p, r;
509 
510 		if (ddi_pll_sel == PORT_CLK_SEL_WRPLL1)
511 			wrpll_ctl = vgpu_vreg_t(vgpu, WRPLL_CTL(DPLL_ID_WRPLL1));
512 		else
513 			wrpll_ctl = vgpu_vreg_t(vgpu, WRPLL_CTL(DPLL_ID_WRPLL2));
514 
515 		switch (wrpll_ctl & WRPLL_REF_MASK) {
516 		case WRPLL_REF_PCH_SSC:
517 			refclk = 135000;
518 			break;
519 		case WRPLL_REF_LCPLL:
520 			refclk = 2700000;
521 			break;
522 		default:
523 			gvt_dbg_dpy("vgpu-%d PORT_%c WRPLL can't get refclk 0x%08x\n",
524 				    vgpu->id, port_name(port), wrpll_ctl);
525 			goto out;
526 		}
527 
528 		r = wrpll_ctl & WRPLL_DIVIDER_REF_MASK;
529 		p = (wrpll_ctl & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
530 		n = (wrpll_ctl & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
531 
532 		dp_br = (refclk * n / 10) / (p * r) * 2;
533 		break;
534 	}
535 	default:
536 		gvt_dbg_dpy("vgpu-%d PORT_%c has invalid clock select 0x%08x\n",
537 			    vgpu->id, port_name(port), vgpu_vreg_t(vgpu, PORT_CLK_SEL(port)));
538 		break;
539 	}
540 
541 out:
542 	return dp_br;
543 }
544 
545 static u32 bxt_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
546 {
547 	u32 dp_br = 0;
548 	int refclk = 100000;
549 	enum dpio_phy phy = DPIO_PHY0;
550 	enum dpio_channel ch = DPIO_CH0;
551 	struct dpll clock = {};
552 	u32 temp;
553 
554 	/* Port to PHY mapping is fixed, see bxt_ddi_phy_info{} */
555 	switch (port) {
556 	case PORT_A:
557 		phy = DPIO_PHY1;
558 		ch = DPIO_CH0;
559 		break;
560 	case PORT_B:
561 		phy = DPIO_PHY0;
562 		ch = DPIO_CH0;
563 		break;
564 	case PORT_C:
565 		phy = DPIO_PHY0;
566 		ch = DPIO_CH1;
567 		break;
568 	default:
569 		gvt_dbg_dpy("vgpu-%d no PHY for PORT_%c\n", vgpu->id, port_name(port));
570 		goto out;
571 	}
572 
573 	temp = vgpu_vreg_t(vgpu, BXT_PORT_PLL_ENABLE(port));
574 	if (!(temp & PORT_PLL_ENABLE) || !(temp & PORT_PLL_LOCK)) {
575 		gvt_dbg_dpy("vgpu-%d PORT_%c PLL_ENABLE 0x%08x isn't enabled or locked\n",
576 			    vgpu->id, port_name(port), temp);
577 		goto out;
578 	}
579 
580 	clock.m1 = 2;
581 	clock.m2 = REG_FIELD_GET(PORT_PLL_M2_INT_MASK,
582 				 vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 0))) << 22;
583 	if (vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 3)) & PORT_PLL_M2_FRAC_ENABLE)
584 		clock.m2 |= REG_FIELD_GET(PORT_PLL_M2_FRAC_MASK,
585 					  vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 2)));
586 	clock.n = REG_FIELD_GET(PORT_PLL_N_MASK,
587 				vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 1)));
588 	clock.p1 = REG_FIELD_GET(PORT_PLL_P1_MASK,
589 				 vgpu_vreg_t(vgpu, BXT_PORT_PLL_EBB_0(phy, ch)));
590 	clock.p2 = REG_FIELD_GET(PORT_PLL_P2_MASK,
591 				 vgpu_vreg_t(vgpu, BXT_PORT_PLL_EBB_0(phy, ch)));
592 	clock.m = clock.m1 * clock.m2;
593 	clock.p = clock.p1 * clock.p2 * 5;
594 
595 	if (clock.n == 0 || clock.p == 0) {
596 		gvt_dbg_dpy("vgpu-%d PORT_%c PLL has invalid divider\n", vgpu->id, port_name(port));
597 		goto out;
598 	}
599 
600 	clock.vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock.m), clock.n << 22);
601 	clock.dot = DIV_ROUND_CLOSEST(clock.vco, clock.p);
602 
603 	dp_br = clock.dot;
604 
605 out:
606 	return dp_br;
607 }
608 
609 static u32 skl_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
610 {
611 	u32 dp_br = 0;
612 	enum intel_dpll_id dpll_id = DPLL_ID_SKL_DPLL0;
613 
614 	/* Find the enabled DPLL for the DDI/PORT */
615 	if (!(vgpu_vreg_t(vgpu, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_OFF(port)) &&
616 	    (vgpu_vreg_t(vgpu, DPLL_CTRL2) & DPLL_CTRL2_DDI_SEL_OVERRIDE(port))) {
617 		dpll_id += (vgpu_vreg_t(vgpu, DPLL_CTRL2) &
618 			DPLL_CTRL2_DDI_CLK_SEL_MASK(port)) >>
619 			DPLL_CTRL2_DDI_CLK_SEL_SHIFT(port);
620 	} else {
621 		gvt_dbg_dpy("vgpu-%d DPLL for PORT_%c isn't turned on\n",
622 			    vgpu->id, port_name(port));
623 		return dp_br;
624 	}
625 
626 	/* Find PLL output frequency from correct DPLL, and get bir rate */
627 	switch ((vgpu_vreg_t(vgpu, DPLL_CTRL1) &
628 		DPLL_CTRL1_LINK_RATE_MASK(dpll_id)) >>
629 		DPLL_CTRL1_LINK_RATE_SHIFT(dpll_id)) {
630 		case DPLL_CTRL1_LINK_RATE_810:
631 			dp_br = 81000 * 2;
632 			break;
633 		case DPLL_CTRL1_LINK_RATE_1080:
634 			dp_br = 108000 * 2;
635 			break;
636 		case DPLL_CTRL1_LINK_RATE_1350:
637 			dp_br = 135000 * 2;
638 			break;
639 		case DPLL_CTRL1_LINK_RATE_1620:
640 			dp_br = 162000 * 2;
641 			break;
642 		case DPLL_CTRL1_LINK_RATE_2160:
643 			dp_br = 216000 * 2;
644 			break;
645 		case DPLL_CTRL1_LINK_RATE_2700:
646 			dp_br = 270000 * 2;
647 			break;
648 		default:
649 			dp_br = 0;
650 			gvt_dbg_dpy("vgpu-%d PORT_%c fail to get DPLL-%d freq\n",
651 				    vgpu->id, port_name(port), dpll_id);
652 	}
653 
654 	return dp_br;
655 }
656 
657 static void vgpu_update_refresh_rate(struct intel_vgpu *vgpu)
658 {
659 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
660 	struct intel_display *display = &dev_priv->display;
661 	enum port port;
662 	u32 dp_br, link_m, link_n, htotal, vtotal;
663 
664 	/* Find DDI/PORT assigned to TRANSCODER_A, expect B or D */
665 	port = (vgpu_vreg_t(vgpu, TRANS_DDI_FUNC_CTL(display, TRANSCODER_A)) &
666 		TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
667 	if (port != PORT_B && port != PORT_D) {
668 		gvt_dbg_dpy("vgpu-%d unsupported PORT_%c\n", vgpu->id, port_name(port));
669 		return;
670 	}
671 
672 	/* Calculate DP bitrate from PLL */
673 	if (IS_BROADWELL(dev_priv))
674 		dp_br = bdw_vgpu_get_dp_bitrate(vgpu, port);
675 	else if (IS_BROXTON(dev_priv))
676 		dp_br = bxt_vgpu_get_dp_bitrate(vgpu, port);
677 	else
678 		dp_br = skl_vgpu_get_dp_bitrate(vgpu, port);
679 
680 	/* Get DP link symbol clock M/N */
681 	link_m = vgpu_vreg_t(vgpu, PIPE_LINK_M1(display, TRANSCODER_A));
682 	link_n = vgpu_vreg_t(vgpu, PIPE_LINK_N1(display, TRANSCODER_A));
683 
684 	/* Get H/V total from transcoder timing */
685 	htotal = (vgpu_vreg_t(vgpu, TRANS_HTOTAL(display, TRANSCODER_A)) >> TRANS_HTOTAL_SHIFT);
686 	vtotal = (vgpu_vreg_t(vgpu, TRANS_VTOTAL(display, TRANSCODER_A)) >> TRANS_VTOTAL_SHIFT);
687 
688 	if (dp_br && link_n && htotal && vtotal) {
689 		u64 pixel_clk = 0;
690 		u32 new_rate = 0;
691 		u32 *old_rate = &(intel_vgpu_port(vgpu, vgpu->display.port_num)->vrefresh_k);
692 
693 		/* Calculate pixel clock by (ls_clk * M / N) */
694 		pixel_clk = div_u64(mul_u32_u32(link_m, dp_br), link_n);
695 		pixel_clk *= MSEC_PER_SEC;
696 
697 		/* Calculate refresh rate by (pixel_clk / (h_total * v_total)) */
698 		new_rate = DIV64_U64_ROUND_CLOSEST(mul_u64_u32_shr(pixel_clk, MSEC_PER_SEC, 0), mul_u32_u32(htotal + 1, vtotal + 1));
699 
700 		if (*old_rate != new_rate)
701 			*old_rate = new_rate;
702 
703 		gvt_dbg_dpy("vgpu-%d PIPE_%c refresh rate updated to %d\n",
704 			    vgpu->id, pipe_name(PIPE_A), new_rate);
705 	}
706 }
707 
708 static int pipeconf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
709 		void *p_data, unsigned int bytes)
710 {
711 	u32 data;
712 
713 	write_vreg(vgpu, offset, p_data, bytes);
714 	data = vgpu_vreg(vgpu, offset);
715 
716 	if (data & TRANSCONF_ENABLE) {
717 		vgpu_vreg(vgpu, offset) |= TRANSCONF_STATE_ENABLE;
718 		vgpu_update_refresh_rate(vgpu);
719 		vgpu_update_vblank_emulation(vgpu, true);
720 	} else {
721 		vgpu_vreg(vgpu, offset) &= ~TRANSCONF_STATE_ENABLE;
722 		vgpu_update_vblank_emulation(vgpu, false);
723 	}
724 	return 0;
725 }
726 
727 /* sorted in ascending order */
728 static i915_reg_t force_nonpriv_white_list[] = {
729 	_MMIO(0xd80),
730 	GEN9_CS_DEBUG_MODE1, //_MMIO(0x20ec)
731 	GEN9_CTX_PREEMPT_REG,//_MMIO(0x2248)
732 	CL_PRIMITIVES_COUNT, //_MMIO(0x2340)
733 	PS_INVOCATION_COUNT, //_MMIO(0x2348)
734 	PS_DEPTH_COUNT, //_MMIO(0x2350)
735 	GEN8_CS_CHICKEN1,//_MMIO(0x2580)
736 	_MMIO(0x2690),
737 	_MMIO(0x2694),
738 	_MMIO(0x2698),
739 	_MMIO(0x2754),
740 	_MMIO(0x28a0),
741 	_MMIO(0x4de0),
742 	_MMIO(0x4de4),
743 	_MMIO(0x4dfc),
744 	GEN7_COMMON_SLICE_CHICKEN1,//_MMIO(0x7010)
745 	_MMIO(0x7014),
746 	HDC_CHICKEN0,//_MMIO(0x7300)
747 	GEN8_HDC_CHICKEN1,//_MMIO(0x7304)
748 	_MMIO(0x7700),
749 	_MMIO(0x7704),
750 	_MMIO(0x7708),
751 	_MMIO(0x770c),
752 	_MMIO(0x83a8),
753 	_MMIO(0xb110),
754 	_MMIO(0xb118),
755 	_MMIO(0xe100),
756 	_MMIO(0xe18c),
757 	_MMIO(0xe48c),
758 	_MMIO(0xe5f4),
759 	_MMIO(0x64844),
760 };
761 
762 /* a simple bsearch */
763 static inline bool in_whitelist(u32 reg)
764 {
765 	int left = 0, right = ARRAY_SIZE(force_nonpriv_white_list);
766 	i915_reg_t *array = force_nonpriv_white_list;
767 
768 	while (left < right) {
769 		int mid = (left + right)/2;
770 
771 		if (reg > array[mid].reg)
772 			left = mid + 1;
773 		else if (reg < array[mid].reg)
774 			right = mid;
775 		else
776 			return true;
777 	}
778 	return false;
779 }
780 
781 static int force_nonpriv_write(struct intel_vgpu *vgpu,
782 	unsigned int offset, void *p_data, unsigned int bytes)
783 {
784 	u32 reg_nonpriv = (*(u32 *)p_data) & REG_GENMASK(25, 2);
785 	const struct intel_engine_cs *engine =
786 		intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
787 
788 	if (bytes != 4 || !IS_ALIGNED(offset, bytes) || !engine) {
789 		gvt_err("vgpu(%d) Invalid FORCE_NONPRIV offset %x(%dB)\n",
790 			vgpu->id, offset, bytes);
791 		return -EINVAL;
792 	}
793 
794 	if (!in_whitelist(reg_nonpriv) &&
795 	    reg_nonpriv != i915_mmio_reg_offset(RING_NOPID(engine->mmio_base))) {
796 		gvt_err("vgpu(%d) Invalid FORCE_NONPRIV write %x at offset %x\n",
797 			vgpu->id, reg_nonpriv, offset);
798 	} else
799 		intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes);
800 
801 	return 0;
802 }
803 
804 static int ddi_buf_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
805 		void *p_data, unsigned int bytes)
806 {
807 	write_vreg(vgpu, offset, p_data, bytes);
808 
809 	if (vgpu_vreg(vgpu, offset) & DDI_BUF_CTL_ENABLE) {
810 		vgpu_vreg(vgpu, offset) &= ~DDI_BUF_IS_IDLE;
811 	} else {
812 		vgpu_vreg(vgpu, offset) |= DDI_BUF_IS_IDLE;
813 		if (offset == i915_mmio_reg_offset(DDI_BUF_CTL(PORT_E)))
814 			vgpu_vreg_t(vgpu, DP_TP_STATUS(PORT_E))
815 				&= ~DP_TP_STATUS_AUTOTRAIN_DONE;
816 	}
817 	return 0;
818 }
819 
820 static int fdi_rx_iir_mmio_write(struct intel_vgpu *vgpu,
821 		unsigned int offset, void *p_data, unsigned int bytes)
822 {
823 	vgpu_vreg(vgpu, offset) &= ~*(u32 *)p_data;
824 	return 0;
825 }
826 
827 #define FDI_LINK_TRAIN_PATTERN1         0
828 #define FDI_LINK_TRAIN_PATTERN2         1
829 
830 static int fdi_auto_training_started(struct intel_vgpu *vgpu)
831 {
832 	u32 ddi_buf_ctl = vgpu_vreg_t(vgpu, DDI_BUF_CTL(PORT_E));
833 	u32 rx_ctl = vgpu_vreg(vgpu, _FDI_RXA_CTL);
834 	u32 tx_ctl = vgpu_vreg_t(vgpu, DP_TP_CTL(PORT_E));
835 
836 	if ((ddi_buf_ctl & DDI_BUF_CTL_ENABLE) &&
837 			(rx_ctl & FDI_RX_ENABLE) &&
838 			(rx_ctl & FDI_AUTO_TRAINING) &&
839 			(tx_ctl & DP_TP_CTL_ENABLE) &&
840 			(tx_ctl & DP_TP_CTL_FDI_AUTOTRAIN))
841 		return 1;
842 	else
843 		return 0;
844 }
845 
846 static int check_fdi_rx_train_status(struct intel_vgpu *vgpu,
847 		enum pipe pipe, unsigned int train_pattern)
848 {
849 	i915_reg_t fdi_rx_imr, fdi_tx_ctl, fdi_rx_ctl;
850 	unsigned int fdi_rx_check_bits, fdi_tx_check_bits;
851 	unsigned int fdi_rx_train_bits, fdi_tx_train_bits;
852 	unsigned int fdi_iir_check_bits;
853 
854 	fdi_rx_imr = FDI_RX_IMR(pipe);
855 	fdi_tx_ctl = FDI_TX_CTL(pipe);
856 	fdi_rx_ctl = FDI_RX_CTL(pipe);
857 
858 	if (train_pattern == FDI_LINK_TRAIN_PATTERN1) {
859 		fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_1_CPT;
860 		fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_1;
861 		fdi_iir_check_bits = FDI_RX_BIT_LOCK;
862 	} else if (train_pattern == FDI_LINK_TRAIN_PATTERN2) {
863 		fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_2_CPT;
864 		fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_2;
865 		fdi_iir_check_bits = FDI_RX_SYMBOL_LOCK;
866 	} else {
867 		gvt_vgpu_err("Invalid train pattern %d\n", train_pattern);
868 		return -EINVAL;
869 	}
870 
871 	fdi_rx_check_bits = FDI_RX_ENABLE | fdi_rx_train_bits;
872 	fdi_tx_check_bits = FDI_TX_ENABLE | fdi_tx_train_bits;
873 
874 	/* If imr bit has been masked */
875 	if (vgpu_vreg_t(vgpu, fdi_rx_imr) & fdi_iir_check_bits)
876 		return 0;
877 
878 	if (((vgpu_vreg_t(vgpu, fdi_tx_ctl) & fdi_tx_check_bits)
879 			== fdi_tx_check_bits)
880 		&& ((vgpu_vreg_t(vgpu, fdi_rx_ctl) & fdi_rx_check_bits)
881 			== fdi_rx_check_bits))
882 		return 1;
883 	else
884 		return 0;
885 }
886 
887 #define INVALID_INDEX (~0U)
888 
889 static unsigned int calc_index(unsigned int offset, i915_reg_t _start,
890 			       i915_reg_t _next, i915_reg_t _end)
891 {
892 	u32 start = i915_mmio_reg_offset(_start);
893 	u32 next = i915_mmio_reg_offset(_next);
894 	u32 end = i915_mmio_reg_offset(_end);
895 	u32 stride = next - start;
896 
897 	if (offset < start || offset > end)
898 		return INVALID_INDEX;
899 	offset -= start;
900 	return offset / stride;
901 }
902 
903 #define FDI_RX_CTL_TO_PIPE(offset) \
904 	calc_index(offset, FDI_RX_CTL(PIPE_A), FDI_RX_CTL(PIPE_B), FDI_RX_CTL(PIPE_C))
905 
906 #define FDI_TX_CTL_TO_PIPE(offset) \
907 	calc_index(offset, FDI_TX_CTL(PIPE_A), FDI_TX_CTL(PIPE_B), FDI_TX_CTL(PIPE_C))
908 
909 #define FDI_RX_IMR_TO_PIPE(offset) \
910 	calc_index(offset, FDI_RX_IMR(PIPE_A), FDI_RX_IMR(PIPE_B), FDI_RX_IMR(PIPE_C))
911 
912 static int update_fdi_rx_iir_status(struct intel_vgpu *vgpu,
913 		unsigned int offset, void *p_data, unsigned int bytes)
914 {
915 	i915_reg_t fdi_rx_iir;
916 	unsigned int index;
917 	int ret;
918 
919 	if (FDI_RX_CTL_TO_PIPE(offset) != INVALID_INDEX)
920 		index = FDI_RX_CTL_TO_PIPE(offset);
921 	else if (FDI_TX_CTL_TO_PIPE(offset) != INVALID_INDEX)
922 		index = FDI_TX_CTL_TO_PIPE(offset);
923 	else if (FDI_RX_IMR_TO_PIPE(offset) != INVALID_INDEX)
924 		index = FDI_RX_IMR_TO_PIPE(offset);
925 	else {
926 		gvt_vgpu_err("Unsupported registers %x\n", offset);
927 		return -EINVAL;
928 	}
929 
930 	write_vreg(vgpu, offset, p_data, bytes);
931 
932 	fdi_rx_iir = FDI_RX_IIR(index);
933 
934 	ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN1);
935 	if (ret < 0)
936 		return ret;
937 	if (ret)
938 		vgpu_vreg_t(vgpu, fdi_rx_iir) |= FDI_RX_BIT_LOCK;
939 
940 	ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN2);
941 	if (ret < 0)
942 		return ret;
943 	if (ret)
944 		vgpu_vreg_t(vgpu, fdi_rx_iir) |= FDI_RX_SYMBOL_LOCK;
945 
946 	if (offset == _FDI_RXA_CTL)
947 		if (fdi_auto_training_started(vgpu))
948 			vgpu_vreg_t(vgpu, DP_TP_STATUS(PORT_E)) |=
949 				DP_TP_STATUS_AUTOTRAIN_DONE;
950 	return 0;
951 }
952 
953 #define DP_TP_CTL_TO_PORT(offset) \
954 	calc_index(offset, DP_TP_CTL(PORT_A), DP_TP_CTL(PORT_B), DP_TP_CTL(PORT_E))
955 
956 static int dp_tp_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
957 		void *p_data, unsigned int bytes)
958 {
959 	i915_reg_t status_reg;
960 	unsigned int index;
961 	u32 data;
962 
963 	write_vreg(vgpu, offset, p_data, bytes);
964 
965 	index = DP_TP_CTL_TO_PORT(offset);
966 	data = (vgpu_vreg(vgpu, offset) & GENMASK(10, 8)) >> 8;
967 	if (data == 0x2) {
968 		status_reg = DP_TP_STATUS(index);
969 		vgpu_vreg_t(vgpu, status_reg) |= (1 << 25);
970 	}
971 	return 0;
972 }
973 
974 static int dp_tp_status_mmio_write(struct intel_vgpu *vgpu,
975 		unsigned int offset, void *p_data, unsigned int bytes)
976 {
977 	u32 reg_val;
978 	u32 sticky_mask;
979 
980 	reg_val = *((u32 *)p_data);
981 	sticky_mask = GENMASK(27, 26) | (1 << 24);
982 
983 	vgpu_vreg(vgpu, offset) = (reg_val & ~sticky_mask) |
984 		(vgpu_vreg(vgpu, offset) & sticky_mask);
985 	vgpu_vreg(vgpu, offset) &= ~(reg_val & sticky_mask);
986 	return 0;
987 }
988 
989 static int pch_adpa_mmio_write(struct intel_vgpu *vgpu,
990 		unsigned int offset, void *p_data, unsigned int bytes)
991 {
992 	u32 data;
993 
994 	write_vreg(vgpu, offset, p_data, bytes);
995 	data = vgpu_vreg(vgpu, offset);
996 
997 	if (data & ADPA_CRT_HOTPLUG_FORCE_TRIGGER)
998 		vgpu_vreg(vgpu, offset) &= ~ADPA_CRT_HOTPLUG_FORCE_TRIGGER;
999 	return 0;
1000 }
1001 
1002 static int south_chicken2_mmio_write(struct intel_vgpu *vgpu,
1003 		unsigned int offset, void *p_data, unsigned int bytes)
1004 {
1005 	u32 data;
1006 
1007 	write_vreg(vgpu, offset, p_data, bytes);
1008 	data = vgpu_vreg(vgpu, offset);
1009 
1010 	if (data & FDI_MPHY_IOSFSB_RESET_CTL)
1011 		vgpu_vreg(vgpu, offset) |= FDI_MPHY_IOSFSB_RESET_STATUS;
1012 	else
1013 		vgpu_vreg(vgpu, offset) &= ~FDI_MPHY_IOSFSB_RESET_STATUS;
1014 	return 0;
1015 }
1016 
1017 #define DSPSURF_TO_PIPE(display, offset) \
1018 	calc_index(offset, DSPSURF(display, PIPE_A), DSPSURF(display, PIPE_B), DSPSURF(display, PIPE_C))
1019 
1020 static int pri_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1021 		void *p_data, unsigned int bytes)
1022 {
1023 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1024 	struct intel_display *display = &dev_priv->display;
1025 	u32 pipe = DSPSURF_TO_PIPE(display, offset);
1026 	int event = SKL_FLIP_EVENT(pipe, PLANE_PRIMARY);
1027 
1028 	write_vreg(vgpu, offset, p_data, bytes);
1029 	vgpu_vreg_t(vgpu, DSPSURFLIVE(display, pipe)) = vgpu_vreg(vgpu, offset);
1030 
1031 	vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(display, pipe))++;
1032 
1033 	if (vgpu_vreg_t(vgpu, DSPCNTR(display, pipe)) & PLANE_CTL_ASYNC_FLIP)
1034 		intel_vgpu_trigger_virtual_event(vgpu, event);
1035 	else
1036 		set_bit(event, vgpu->irq.flip_done_event[pipe]);
1037 
1038 	return 0;
1039 }
1040 
1041 #define SPRSURF_TO_PIPE(offset) \
1042 	calc_index(offset, SPRSURF(PIPE_A), SPRSURF(PIPE_B), SPRSURF(PIPE_C))
1043 
1044 static int spr_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1045 		void *p_data, unsigned int bytes)
1046 {
1047 	u32 pipe = SPRSURF_TO_PIPE(offset);
1048 	int event = SKL_FLIP_EVENT(pipe, PLANE_SPRITE0);
1049 
1050 	write_vreg(vgpu, offset, p_data, bytes);
1051 	vgpu_vreg_t(vgpu, SPRSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
1052 
1053 	if (vgpu_vreg_t(vgpu, SPRCTL(pipe)) & PLANE_CTL_ASYNC_FLIP)
1054 		intel_vgpu_trigger_virtual_event(vgpu, event);
1055 	else
1056 		set_bit(event, vgpu->irq.flip_done_event[pipe]);
1057 
1058 	return 0;
1059 }
1060 
1061 static int reg50080_mmio_write(struct intel_vgpu *vgpu,
1062 			       unsigned int offset, void *p_data,
1063 			       unsigned int bytes)
1064 {
1065 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1066 	struct intel_display *display = &dev_priv->display;
1067 	enum pipe pipe = REG_50080_TO_PIPE(offset);
1068 	enum plane_id plane = REG_50080_TO_PLANE(offset);
1069 	int event = SKL_FLIP_EVENT(pipe, plane);
1070 
1071 	write_vreg(vgpu, offset, p_data, bytes);
1072 	if (plane == PLANE_PRIMARY) {
1073 		vgpu_vreg_t(vgpu, DSPSURFLIVE(display, pipe)) = vgpu_vreg(vgpu, offset);
1074 		vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(display, pipe))++;
1075 	} else {
1076 		vgpu_vreg_t(vgpu, SPRSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
1077 	}
1078 
1079 	if ((vgpu_vreg(vgpu, offset) & REG50080_FLIP_TYPE_MASK) == REG50080_FLIP_TYPE_ASYNC)
1080 		intel_vgpu_trigger_virtual_event(vgpu, event);
1081 	else
1082 		set_bit(event, vgpu->irq.flip_done_event[pipe]);
1083 
1084 	return 0;
1085 }
1086 
1087 static int trigger_aux_channel_interrupt(struct intel_vgpu *vgpu,
1088 		unsigned int reg)
1089 {
1090 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1091 	enum intel_gvt_event_type event;
1092 
1093 	if (reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_A)))
1094 		event = AUX_CHANNEL_A;
1095 	else if (reg == i915_mmio_reg_offset(PCH_DP_AUX_CH_CTL(AUX_CH_B)) ||
1096 		 reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_B)))
1097 		event = AUX_CHANNEL_B;
1098 	else if (reg == i915_mmio_reg_offset(PCH_DP_AUX_CH_CTL(AUX_CH_C)) ||
1099 		 reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_C)))
1100 		event = AUX_CHANNEL_C;
1101 	else if (reg == i915_mmio_reg_offset(PCH_DP_AUX_CH_CTL(AUX_CH_D)) ||
1102 		 reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_D)))
1103 		event = AUX_CHANNEL_D;
1104 	else {
1105 		drm_WARN_ON(&dev_priv->drm, true);
1106 		return -EINVAL;
1107 	}
1108 
1109 	intel_vgpu_trigger_virtual_event(vgpu, event);
1110 	return 0;
1111 }
1112 
1113 static int dp_aux_ch_ctl_trans_done(struct intel_vgpu *vgpu, u32 value,
1114 		unsigned int reg, int len, bool data_valid)
1115 {
1116 	/* mark transaction done */
1117 	value |= DP_AUX_CH_CTL_DONE;
1118 	value &= ~DP_AUX_CH_CTL_SEND_BUSY;
1119 	value &= ~DP_AUX_CH_CTL_RECEIVE_ERROR;
1120 
1121 	if (data_valid)
1122 		value &= ~DP_AUX_CH_CTL_TIME_OUT_ERROR;
1123 	else
1124 		value |= DP_AUX_CH_CTL_TIME_OUT_ERROR;
1125 
1126 	/* message size */
1127 	value &= ~(0xf << 20);
1128 	value |= (len << 20);
1129 	vgpu_vreg(vgpu, reg) = value;
1130 
1131 	if (value & DP_AUX_CH_CTL_INTERRUPT)
1132 		return trigger_aux_channel_interrupt(vgpu, reg);
1133 	return 0;
1134 }
1135 
1136 static void dp_aux_ch_ctl_link_training(struct intel_vgpu_dpcd_data *dpcd,
1137 		u8 t)
1138 {
1139 	if ((t & DP_TRAINING_PATTERN_MASK) == DP_TRAINING_PATTERN_1) {
1140 		/* training pattern 1 for CR */
1141 		/* set LANE0_CR_DONE, LANE1_CR_DONE */
1142 		dpcd->data[DP_LANE0_1_STATUS] |= DP_LANE_CR_DONE |
1143 			DP_LANE_CR_DONE << 4;
1144 		/* set LANE2_CR_DONE, LANE3_CR_DONE */
1145 		dpcd->data[DP_LANE2_3_STATUS] |= DP_LANE_CR_DONE |
1146 			DP_LANE_CR_DONE << 4;
1147 	} else if ((t & DP_TRAINING_PATTERN_MASK) ==
1148 			DP_TRAINING_PATTERN_2) {
1149 		/* training pattern 2 for EQ */
1150 		/* Set CHANNEL_EQ_DONE and  SYMBOL_LOCKED for Lane0_1 */
1151 		dpcd->data[DP_LANE0_1_STATUS] |= DP_LANE_CHANNEL_EQ_DONE |
1152 			DP_LANE_CHANNEL_EQ_DONE << 4;
1153 		dpcd->data[DP_LANE0_1_STATUS] |= DP_LANE_SYMBOL_LOCKED |
1154 			DP_LANE_SYMBOL_LOCKED << 4;
1155 		/* Set CHANNEL_EQ_DONE and  SYMBOL_LOCKED for Lane2_3 */
1156 		dpcd->data[DP_LANE2_3_STATUS] |= DP_LANE_CHANNEL_EQ_DONE |
1157 			DP_LANE_CHANNEL_EQ_DONE << 4;
1158 		dpcd->data[DP_LANE2_3_STATUS] |= DP_LANE_SYMBOL_LOCKED |
1159 			DP_LANE_SYMBOL_LOCKED << 4;
1160 		/* set INTERLANE_ALIGN_DONE */
1161 		dpcd->data[DP_LANE_ALIGN_STATUS_UPDATED] |=
1162 			DP_INTERLANE_ALIGN_DONE;
1163 	} else if ((t & DP_TRAINING_PATTERN_MASK) ==
1164 			DP_TRAINING_PATTERN_DISABLE) {
1165 		/* finish link training */
1166 		/* set sink status as synchronized */
1167 		dpcd->data[DP_SINK_STATUS] = DP_RECEIVE_PORT_0_STATUS |
1168 			DP_RECEIVE_PORT_1_STATUS;
1169 	}
1170 }
1171 
1172 #define OFFSET_TO_DP_AUX_PORT(offset) (((offset) & 0xF00) >> 8)
1173 
1174 #define dpy_is_valid_port(port)	\
1175 		(((port) >= PORT_A) && ((port) < I915_MAX_PORTS))
1176 
1177 static int dp_aux_ch_ctl_mmio_write(struct intel_vgpu *vgpu,
1178 		unsigned int offset, void *p_data, unsigned int bytes)
1179 {
1180 	struct intel_vgpu_display *display = &vgpu->display;
1181 	int msg, addr, ctrl, op, len;
1182 	int port_index = OFFSET_TO_DP_AUX_PORT(offset);
1183 	struct intel_vgpu_dpcd_data *dpcd = NULL;
1184 	struct intel_vgpu_port *port = NULL;
1185 	u32 data;
1186 
1187 	if (!dpy_is_valid_port(port_index)) {
1188 		gvt_vgpu_err("Unsupported DP port access!\n");
1189 		return 0;
1190 	}
1191 
1192 	write_vreg(vgpu, offset, p_data, bytes);
1193 	data = vgpu_vreg(vgpu, offset);
1194 
1195 	if (GRAPHICS_VER(vgpu->gvt->gt->i915) >= 9 &&
1196 	    offset != i915_mmio_reg_offset(DP_AUX_CH_CTL(port_index))) {
1197 		/* SKL DPB/C/D aux ctl register changed */
1198 		return 0;
1199 	} else if (IS_BROADWELL(vgpu->gvt->gt->i915) &&
1200 		   offset != i915_mmio_reg_offset(port_index ?
1201 						  PCH_DP_AUX_CH_CTL(port_index) :
1202 						  DP_AUX_CH_CTL(port_index))) {
1203 		/* write to the data registers */
1204 		return 0;
1205 	}
1206 
1207 	if (!(data & DP_AUX_CH_CTL_SEND_BUSY)) {
1208 		/* just want to clear the sticky bits */
1209 		vgpu_vreg(vgpu, offset) = 0;
1210 		return 0;
1211 	}
1212 
1213 	port = &display->ports[port_index];
1214 	dpcd = port->dpcd;
1215 
1216 	/* read out message from DATA1 register */
1217 	msg = vgpu_vreg(vgpu, offset + 4);
1218 	addr = (msg >> 8) & 0xffff;
1219 	ctrl = (msg >> 24) & 0xff;
1220 	len = msg & 0xff;
1221 	op = ctrl >> 4;
1222 
1223 	if (op == DP_AUX_NATIVE_WRITE) {
1224 		int t;
1225 		u8 buf[16];
1226 
1227 		if ((addr + len + 1) >= DPCD_SIZE) {
1228 			/*
1229 			 * Write request exceeds what we supported,
1230 			 * DCPD spec: When a Source Device is writing a DPCD
1231 			 * address not supported by the Sink Device, the Sink
1232 			 * Device shall reply with AUX NACK and “M” equal to
1233 			 * zero.
1234 			 */
1235 
1236 			/* NAK the write */
1237 			vgpu_vreg(vgpu, offset + 4) = AUX_NATIVE_REPLY_NAK;
1238 			dp_aux_ch_ctl_trans_done(vgpu, data, offset, 2, true);
1239 			return 0;
1240 		}
1241 
1242 		/*
1243 		 * Write request format: Headr (command + address + size) occupies
1244 		 * 4 bytes, followed by (len + 1) bytes of data. See details at
1245 		 * intel_dp_aux_transfer().
1246 		 */
1247 		if ((len + 1 + 4) > AUX_BURST_SIZE) {
1248 			gvt_vgpu_err("dp_aux_header: len %d is too large\n", len);
1249 			return -EINVAL;
1250 		}
1251 
1252 		/* unpack data from vreg to buf */
1253 		for (t = 0; t < 4; t++) {
1254 			u32 r = vgpu_vreg(vgpu, offset + 8 + t * 4);
1255 
1256 			buf[t * 4] = (r >> 24) & 0xff;
1257 			buf[t * 4 + 1] = (r >> 16) & 0xff;
1258 			buf[t * 4 + 2] = (r >> 8) & 0xff;
1259 			buf[t * 4 + 3] = r & 0xff;
1260 		}
1261 
1262 		/* write to virtual DPCD */
1263 		if (dpcd && dpcd->data_valid) {
1264 			for (t = 0; t <= len; t++) {
1265 				int p = addr + t;
1266 
1267 				dpcd->data[p] = buf[t];
1268 				/* check for link training */
1269 				if (p == DP_TRAINING_PATTERN_SET)
1270 					dp_aux_ch_ctl_link_training(dpcd,
1271 							buf[t]);
1272 			}
1273 		}
1274 
1275 		/* ACK the write */
1276 		vgpu_vreg(vgpu, offset + 4) = 0;
1277 		dp_aux_ch_ctl_trans_done(vgpu, data, offset, 1,
1278 				dpcd && dpcd->data_valid);
1279 		return 0;
1280 	}
1281 
1282 	if (op == DP_AUX_NATIVE_READ) {
1283 		int idx, i, ret = 0;
1284 
1285 		if ((addr + len + 1) >= DPCD_SIZE) {
1286 			/*
1287 			 * read request exceeds what we supported
1288 			 * DPCD spec: A Sink Device receiving a Native AUX CH
1289 			 * read request for an unsupported DPCD address must
1290 			 * reply with an AUX ACK and read data set equal to
1291 			 * zero instead of replying with AUX NACK.
1292 			 */
1293 
1294 			/* ACK the READ*/
1295 			vgpu_vreg(vgpu, offset + 4) = 0;
1296 			vgpu_vreg(vgpu, offset + 8) = 0;
1297 			vgpu_vreg(vgpu, offset + 12) = 0;
1298 			vgpu_vreg(vgpu, offset + 16) = 0;
1299 			vgpu_vreg(vgpu, offset + 20) = 0;
1300 
1301 			dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2,
1302 					true);
1303 			return 0;
1304 		}
1305 
1306 		for (idx = 1; idx <= 5; idx++) {
1307 			/* clear the data registers */
1308 			vgpu_vreg(vgpu, offset + 4 * idx) = 0;
1309 		}
1310 
1311 		/*
1312 		 * Read reply format: ACK (1 byte) plus (len + 1) bytes of data.
1313 		 */
1314 		if ((len + 2) > AUX_BURST_SIZE) {
1315 			gvt_vgpu_err("dp_aux_header: len %d is too large\n", len);
1316 			return -EINVAL;
1317 		}
1318 
1319 		/* read from virtual DPCD to vreg */
1320 		/* first 4 bytes: [ACK][addr][addr+1][addr+2] */
1321 		if (dpcd && dpcd->data_valid) {
1322 			for (i = 1; i <= (len + 1); i++) {
1323 				int t;
1324 
1325 				t = dpcd->data[addr + i - 1];
1326 				t <<= (24 - 8 * (i % 4));
1327 				ret |= t;
1328 
1329 				if ((i % 4 == 3) || (i == (len + 1))) {
1330 					vgpu_vreg(vgpu, offset +
1331 							(i / 4 + 1) * 4) = ret;
1332 					ret = 0;
1333 				}
1334 			}
1335 		}
1336 		dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2,
1337 				dpcd && dpcd->data_valid);
1338 		return 0;
1339 	}
1340 
1341 	/* i2c transaction starts */
1342 	intel_gvt_i2c_handle_aux_ch_write(vgpu, port_index, offset, p_data);
1343 
1344 	if (data & DP_AUX_CH_CTL_INTERRUPT)
1345 		trigger_aux_channel_interrupt(vgpu, offset);
1346 	return 0;
1347 }
1348 
1349 static int mbctl_write(struct intel_vgpu *vgpu, unsigned int offset,
1350 		void *p_data, unsigned int bytes)
1351 {
1352 	*(u32 *)p_data &= (~GEN6_MBCTL_ENABLE_BOOT_FETCH);
1353 	write_vreg(vgpu, offset, p_data, bytes);
1354 	return 0;
1355 }
1356 
1357 static int vga_control_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1358 		void *p_data, unsigned int bytes)
1359 {
1360 	bool vga_disable;
1361 
1362 	write_vreg(vgpu, offset, p_data, bytes);
1363 	vga_disable = vgpu_vreg(vgpu, offset) & VGA_DISP_DISABLE;
1364 
1365 	gvt_dbg_core("vgpu%d: %s VGA mode\n", vgpu->id,
1366 			vga_disable ? "Disable" : "Enable");
1367 	return 0;
1368 }
1369 
1370 static u32 read_virtual_sbi_register(struct intel_vgpu *vgpu,
1371 		unsigned int sbi_offset)
1372 {
1373 	struct intel_vgpu_display *display = &vgpu->display;
1374 	int num = display->sbi.number;
1375 	int i;
1376 
1377 	for (i = 0; i < num; ++i)
1378 		if (display->sbi.registers[i].offset == sbi_offset)
1379 			break;
1380 
1381 	if (i == num)
1382 		return 0;
1383 
1384 	return display->sbi.registers[i].value;
1385 }
1386 
1387 static void write_virtual_sbi_register(struct intel_vgpu *vgpu,
1388 		unsigned int offset, u32 value)
1389 {
1390 	struct intel_vgpu_display *display = &vgpu->display;
1391 	int num = display->sbi.number;
1392 	int i;
1393 
1394 	for (i = 0; i < num; ++i) {
1395 		if (display->sbi.registers[i].offset == offset)
1396 			break;
1397 	}
1398 
1399 	if (i == num) {
1400 		if (num == SBI_REG_MAX) {
1401 			gvt_vgpu_err("SBI caching meets maximum limits\n");
1402 			return;
1403 		}
1404 		display->sbi.number++;
1405 	}
1406 
1407 	display->sbi.registers[i].offset = offset;
1408 	display->sbi.registers[i].value = value;
1409 }
1410 
1411 static int sbi_data_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
1412 		void *p_data, unsigned int bytes)
1413 {
1414 	if (((vgpu_vreg_t(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >>
1415 				SBI_OPCODE_SHIFT) == SBI_CMD_CRRD) {
1416 		unsigned int sbi_offset = (vgpu_vreg_t(vgpu, SBI_ADDR) &
1417 				SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT;
1418 		vgpu_vreg(vgpu, offset) = read_virtual_sbi_register(vgpu,
1419 				sbi_offset);
1420 	}
1421 	read_vreg(vgpu, offset, p_data, bytes);
1422 	return 0;
1423 }
1424 
1425 static int sbi_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1426 		void *p_data, unsigned int bytes)
1427 {
1428 	u32 data;
1429 
1430 	write_vreg(vgpu, offset, p_data, bytes);
1431 	data = vgpu_vreg(vgpu, offset);
1432 
1433 	data &= ~(SBI_STAT_MASK << SBI_STAT_SHIFT);
1434 	data |= SBI_READY;
1435 
1436 	data &= ~(SBI_RESPONSE_MASK << SBI_RESPONSE_SHIFT);
1437 	data |= SBI_RESPONSE_SUCCESS;
1438 
1439 	vgpu_vreg(vgpu, offset) = data;
1440 
1441 	if (((vgpu_vreg_t(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >>
1442 				SBI_OPCODE_SHIFT) == SBI_CMD_CRWR) {
1443 		unsigned int sbi_offset = (vgpu_vreg_t(vgpu, SBI_ADDR) &
1444 				SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT;
1445 
1446 		write_virtual_sbi_register(vgpu, sbi_offset,
1447 					   vgpu_vreg_t(vgpu, SBI_DATA));
1448 	}
1449 	return 0;
1450 }
1451 
1452 #define _vgtif_reg(x) \
1453 	(VGT_PVINFO_PAGE + offsetof(struct vgt_if, x))
1454 
1455 static int pvinfo_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
1456 		void *p_data, unsigned int bytes)
1457 {
1458 	bool invalid_read = false;
1459 
1460 	read_vreg(vgpu, offset, p_data, bytes);
1461 
1462 	switch (offset) {
1463 	case _vgtif_reg(magic) ... _vgtif_reg(vgt_id):
1464 		if (offset + bytes > _vgtif_reg(vgt_id) + 4)
1465 			invalid_read = true;
1466 		break;
1467 	case _vgtif_reg(avail_rs.mappable_gmadr.base) ...
1468 		_vgtif_reg(avail_rs.fence_num):
1469 		if (offset + bytes >
1470 			_vgtif_reg(avail_rs.fence_num) + 4)
1471 			invalid_read = true;
1472 		break;
1473 	case 0x78010:	/* vgt_caps */
1474 	case 0x7881c:
1475 		break;
1476 	default:
1477 		invalid_read = true;
1478 		break;
1479 	}
1480 	if (invalid_read)
1481 		gvt_vgpu_err("invalid pvinfo read: [%x:%x] = %x\n",
1482 				offset, bytes, *(u32 *)p_data);
1483 	vgpu->pv_notified = true;
1484 	return 0;
1485 }
1486 
1487 static int handle_g2v_notification(struct intel_vgpu *vgpu, int notification)
1488 {
1489 	enum intel_gvt_gtt_type root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1490 	struct intel_vgpu_mm *mm;
1491 	u64 *pdps;
1492 
1493 	pdps = (u64 *)&vgpu_vreg64_t(vgpu, vgtif_reg(pdp[0]));
1494 
1495 	switch (notification) {
1496 	case VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE:
1497 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1498 		fallthrough;
1499 	case VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE:
1500 		mm = intel_vgpu_get_ppgtt_mm(vgpu, root_entry_type, pdps);
1501 		return PTR_ERR_OR_ZERO(mm);
1502 	case VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY:
1503 	case VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY:
1504 		return intel_vgpu_put_ppgtt_mm(vgpu, pdps);
1505 	case VGT_G2V_EXECLIST_CONTEXT_CREATE:
1506 	case VGT_G2V_EXECLIST_CONTEXT_DESTROY:
1507 	case 1:	/* Remove this in guest driver. */
1508 		break;
1509 	default:
1510 		gvt_vgpu_err("Invalid PV notification %d\n", notification);
1511 	}
1512 	return 0;
1513 }
1514 
1515 static int send_display_ready_uevent(struct intel_vgpu *vgpu, int ready)
1516 {
1517 	struct kobject *kobj = &vgpu->gvt->gt->i915->drm.primary->kdev->kobj;
1518 	char *env[3] = {NULL, NULL, NULL};
1519 	char vmid_str[20];
1520 	char display_ready_str[20];
1521 
1522 	snprintf(display_ready_str, 20, "GVT_DISPLAY_READY=%d", ready);
1523 	env[0] = display_ready_str;
1524 
1525 	snprintf(vmid_str, 20, "VMID=%d", vgpu->id);
1526 	env[1] = vmid_str;
1527 
1528 	return kobject_uevent_env(kobj, KOBJ_ADD, env);
1529 }
1530 
1531 static int pvinfo_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1532 		void *p_data, unsigned int bytes)
1533 {
1534 	u32 data = *(u32 *)p_data;
1535 	bool invalid_write = false;
1536 
1537 	switch (offset) {
1538 	case _vgtif_reg(display_ready):
1539 		send_display_ready_uevent(vgpu, data ? 1 : 0);
1540 		break;
1541 	case _vgtif_reg(g2v_notify):
1542 		handle_g2v_notification(vgpu, data);
1543 		break;
1544 	/* add xhot and yhot to handled list to avoid error log */
1545 	case _vgtif_reg(cursor_x_hot):
1546 	case _vgtif_reg(cursor_y_hot):
1547 	case _vgtif_reg(pdp[0].lo):
1548 	case _vgtif_reg(pdp[0].hi):
1549 	case _vgtif_reg(pdp[1].lo):
1550 	case _vgtif_reg(pdp[1].hi):
1551 	case _vgtif_reg(pdp[2].lo):
1552 	case _vgtif_reg(pdp[2].hi):
1553 	case _vgtif_reg(pdp[3].lo):
1554 	case _vgtif_reg(pdp[3].hi):
1555 	case _vgtif_reg(execlist_context_descriptor_lo):
1556 	case _vgtif_reg(execlist_context_descriptor_hi):
1557 		break;
1558 	case _vgtif_reg(rsv5[0])..._vgtif_reg(rsv5[3]):
1559 		invalid_write = true;
1560 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_INSUFFICIENT_RESOURCE);
1561 		break;
1562 	default:
1563 		invalid_write = true;
1564 		gvt_vgpu_err("invalid pvinfo write offset %x bytes %x data %x\n",
1565 				offset, bytes, data);
1566 		break;
1567 	}
1568 
1569 	if (!invalid_write)
1570 		write_vreg(vgpu, offset, p_data, bytes);
1571 
1572 	return 0;
1573 }
1574 
1575 static int pf_write(struct intel_vgpu *vgpu,
1576 		unsigned int offset, void *p_data, unsigned int bytes)
1577 {
1578 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1579 	u32 val = *(u32 *)p_data;
1580 
1581 	if ((offset == _PS_1A_CTRL || offset == _PS_2A_CTRL ||
1582 	   offset == _PS_1B_CTRL || offset == _PS_2B_CTRL ||
1583 	   offset == _PS_1C_CTRL) && (val & PS_BINDING_MASK) != PS_BINDING_PIPE) {
1584 		drm_WARN_ONCE(&i915->drm, true,
1585 			      "VM(%d): guest is trying to scaling a plane\n",
1586 			      vgpu->id);
1587 		return 0;
1588 	}
1589 
1590 	return intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes);
1591 }
1592 
1593 static int power_well_ctl_mmio_write(struct intel_vgpu *vgpu,
1594 		unsigned int offset, void *p_data, unsigned int bytes)
1595 {
1596 	write_vreg(vgpu, offset, p_data, bytes);
1597 
1598 	if (vgpu_vreg(vgpu, offset) &
1599 	    HSW_PWR_WELL_CTL_REQ(HSW_PW_CTL_IDX_GLOBAL))
1600 		vgpu_vreg(vgpu, offset) |=
1601 			HSW_PWR_WELL_CTL_STATE(HSW_PW_CTL_IDX_GLOBAL);
1602 	else
1603 		vgpu_vreg(vgpu, offset) &=
1604 			~HSW_PWR_WELL_CTL_STATE(HSW_PW_CTL_IDX_GLOBAL);
1605 	return 0;
1606 }
1607 
1608 static int gen9_dbuf_ctl_mmio_write(struct intel_vgpu *vgpu,
1609 		unsigned int offset, void *p_data, unsigned int bytes)
1610 {
1611 	write_vreg(vgpu, offset, p_data, bytes);
1612 
1613 	if (vgpu_vreg(vgpu, offset) & DBUF_POWER_REQUEST)
1614 		vgpu_vreg(vgpu, offset) |= DBUF_POWER_STATE;
1615 	else
1616 		vgpu_vreg(vgpu, offset) &= ~DBUF_POWER_STATE;
1617 
1618 	return 0;
1619 }
1620 
1621 static int fpga_dbg_mmio_write(struct intel_vgpu *vgpu,
1622 	unsigned int offset, void *p_data, unsigned int bytes)
1623 {
1624 	write_vreg(vgpu, offset, p_data, bytes);
1625 
1626 	if (vgpu_vreg(vgpu, offset) & FPGA_DBG_RM_NOCLAIM)
1627 		vgpu_vreg(vgpu, offset) &= ~FPGA_DBG_RM_NOCLAIM;
1628 	return 0;
1629 }
1630 
1631 static int dma_ctrl_write(struct intel_vgpu *vgpu, unsigned int offset,
1632 		void *p_data, unsigned int bytes)
1633 {
1634 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1635 	u32 mode;
1636 
1637 	write_vreg(vgpu, offset, p_data, bytes);
1638 	mode = vgpu_vreg(vgpu, offset);
1639 
1640 	if (GFX_MODE_BIT_SET_IN_MASK(mode, START_DMA)) {
1641 		drm_WARN_ONCE(&i915->drm, 1,
1642 				"VM(%d): iGVT-g doesn't support GuC\n",
1643 				vgpu->id);
1644 		return 0;
1645 	}
1646 
1647 	return 0;
1648 }
1649 
1650 static int gen9_trtte_write(struct intel_vgpu *vgpu, unsigned int offset,
1651 		void *p_data, unsigned int bytes)
1652 {
1653 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1654 	u32 trtte = *(u32 *)p_data;
1655 
1656 	if ((trtte & 1) && (trtte & (1 << 1)) == 0) {
1657 		drm_WARN(&i915->drm, 1,
1658 				"VM(%d): Use physical address for TRTT!\n",
1659 				vgpu->id);
1660 		return -EINVAL;
1661 	}
1662 	write_vreg(vgpu, offset, p_data, bytes);
1663 
1664 	return 0;
1665 }
1666 
1667 static int gen9_trtt_chicken_write(struct intel_vgpu *vgpu, unsigned int offset,
1668 		void *p_data, unsigned int bytes)
1669 {
1670 	write_vreg(vgpu, offset, p_data, bytes);
1671 	return 0;
1672 }
1673 
1674 static int dpll_status_read(struct intel_vgpu *vgpu, unsigned int offset,
1675 		void *p_data, unsigned int bytes)
1676 {
1677 	u32 v = 0;
1678 
1679 	if (vgpu_vreg(vgpu, 0x46010) & (1 << 31))
1680 		v |= (1 << 0);
1681 
1682 	if (vgpu_vreg(vgpu, 0x46014) & (1 << 31))
1683 		v |= (1 << 8);
1684 
1685 	if (vgpu_vreg(vgpu, 0x46040) & (1 << 31))
1686 		v |= (1 << 16);
1687 
1688 	if (vgpu_vreg(vgpu, 0x46060) & (1 << 31))
1689 		v |= (1 << 24);
1690 
1691 	vgpu_vreg(vgpu, offset) = v;
1692 
1693 	return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
1694 }
1695 
1696 static int mailbox_write(struct intel_vgpu *vgpu, unsigned int offset,
1697 		void *p_data, unsigned int bytes)
1698 {
1699 	u32 value = *(u32 *)p_data;
1700 	u32 cmd = value & 0xff;
1701 	u32 *data0 = &vgpu_vreg_t(vgpu, GEN6_PCODE_DATA);
1702 
1703 	switch (cmd) {
1704 	case GEN9_PCODE_READ_MEM_LATENCY:
1705 		if (IS_SKYLAKE(vgpu->gvt->gt->i915) ||
1706 		    IS_KABYLAKE(vgpu->gvt->gt->i915) ||
1707 		    IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
1708 		    IS_COMETLAKE(vgpu->gvt->gt->i915)) {
1709 			/**
1710 			 * "Read memory latency" command on gen9.
1711 			 * Below memory latency values are read
1712 			 * from skylake platform.
1713 			 */
1714 			if (!*data0)
1715 				*data0 = 0x1e1a1100;
1716 			else
1717 				*data0 = 0x61514b3d;
1718 		} else if (IS_BROXTON(vgpu->gvt->gt->i915)) {
1719 			/**
1720 			 * "Read memory latency" command on gen9.
1721 			 * Below memory latency values are read
1722 			 * from Broxton MRB.
1723 			 */
1724 			if (!*data0)
1725 				*data0 = 0x16080707;
1726 			else
1727 				*data0 = 0x16161616;
1728 		}
1729 		break;
1730 	case SKL_PCODE_CDCLK_CONTROL:
1731 		if (IS_SKYLAKE(vgpu->gvt->gt->i915) ||
1732 		    IS_KABYLAKE(vgpu->gvt->gt->i915) ||
1733 		    IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
1734 		    IS_COMETLAKE(vgpu->gvt->gt->i915))
1735 			*data0 = SKL_CDCLK_READY_FOR_CHANGE;
1736 		break;
1737 	case GEN6_PCODE_READ_RC6VIDS:
1738 		*data0 |= 0x1;
1739 		break;
1740 	}
1741 
1742 	gvt_dbg_core("VM(%d) write %x to mailbox, return data0 %x\n",
1743 		     vgpu->id, value, *data0);
1744 	/**
1745 	 * PCODE_READY clear means ready for pcode read/write,
1746 	 * PCODE_ERROR_MASK clear means no error happened. In GVT-g we
1747 	 * always emulate as pcode read/write success and ready for access
1748 	 * anytime, since we don't touch real physical registers here.
1749 	 */
1750 	value &= ~(GEN6_PCODE_READY | GEN6_PCODE_ERROR_MASK);
1751 	return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes);
1752 }
1753 
1754 static int hws_pga_write(struct intel_vgpu *vgpu, unsigned int offset,
1755 		void *p_data, unsigned int bytes)
1756 {
1757 	u32 value = *(u32 *)p_data;
1758 	const struct intel_engine_cs *engine =
1759 		intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
1760 
1761 	if (value != 0 &&
1762 	    !intel_gvt_ggtt_validate_range(vgpu, value, I915_GTT_PAGE_SIZE)) {
1763 		gvt_vgpu_err("write invalid HWSP address, reg:0x%x, value:0x%x\n",
1764 			      offset, value);
1765 		return -EINVAL;
1766 	}
1767 
1768 	/*
1769 	 * Need to emulate all the HWSP register write to ensure host can
1770 	 * update the VM CSB status correctly. Here listed registers can
1771 	 * support BDW, SKL or other platforms with same HWSP registers.
1772 	 */
1773 	if (unlikely(!engine)) {
1774 		gvt_vgpu_err("access unknown hardware status page register:0x%x\n",
1775 			     offset);
1776 		return -EINVAL;
1777 	}
1778 	vgpu->hws_pga[engine->id] = value;
1779 	gvt_dbg_mmio("VM(%d) write: 0x%x to HWSP: 0x%x\n",
1780 		     vgpu->id, value, offset);
1781 
1782 	return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes);
1783 }
1784 
1785 static int skl_power_well_ctl_write(struct intel_vgpu *vgpu,
1786 		unsigned int offset, void *p_data, unsigned int bytes)
1787 {
1788 	u32 v = *(u32 *)p_data;
1789 
1790 	if (IS_BROXTON(vgpu->gvt->gt->i915))
1791 		v &= (1 << 31) | (1 << 29);
1792 	else
1793 		v &= (1 << 31) | (1 << 29) | (1 << 9) |
1794 			(1 << 7) | (1 << 5) | (1 << 3) | (1 << 1);
1795 	v |= (v >> 1);
1796 
1797 	return intel_vgpu_default_mmio_write(vgpu, offset, &v, bytes);
1798 }
1799 
1800 static int skl_lcpll_write(struct intel_vgpu *vgpu, unsigned int offset,
1801 		void *p_data, unsigned int bytes)
1802 {
1803 	u32 v = *(u32 *)p_data;
1804 
1805 	/* other bits are MBZ. */
1806 	v &= (1 << 31) | (1 << 30);
1807 	v & (1 << 31) ? (v |= (1 << 30)) : (v &= ~(1 << 30));
1808 
1809 	vgpu_vreg(vgpu, offset) = v;
1810 
1811 	return 0;
1812 }
1813 
1814 static int bxt_de_pll_enable_write(struct intel_vgpu *vgpu,
1815 		unsigned int offset, void *p_data, unsigned int bytes)
1816 {
1817 	u32 v = *(u32 *)p_data;
1818 
1819 	if (v & BXT_DE_PLL_PLL_ENABLE)
1820 		v |= BXT_DE_PLL_LOCK;
1821 
1822 	vgpu_vreg(vgpu, offset) = v;
1823 
1824 	return 0;
1825 }
1826 
1827 static int bxt_port_pll_enable_write(struct intel_vgpu *vgpu,
1828 		unsigned int offset, void *p_data, unsigned int bytes)
1829 {
1830 	u32 v = *(u32 *)p_data;
1831 
1832 	if (v & PORT_PLL_ENABLE)
1833 		v |= PORT_PLL_LOCK;
1834 
1835 	vgpu_vreg(vgpu, offset) = v;
1836 
1837 	return 0;
1838 }
1839 
1840 static int bxt_phy_ctl_family_write(struct intel_vgpu *vgpu,
1841 		unsigned int offset, void *p_data, unsigned int bytes)
1842 {
1843 	u32 v = *(u32 *)p_data;
1844 	u32 data = v & COMMON_RESET_DIS ? BXT_PHY_LANE_ENABLED : 0;
1845 
1846 	switch (offset) {
1847 	case _PHY_CTL_FAMILY_EDP:
1848 		vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_A) = data;
1849 		break;
1850 	case _PHY_CTL_FAMILY_DDI:
1851 		vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_B) = data;
1852 		vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_C) = data;
1853 		break;
1854 	}
1855 
1856 	vgpu_vreg(vgpu, offset) = v;
1857 
1858 	return 0;
1859 }
1860 
1861 static int bxt_port_tx_dw3_read(struct intel_vgpu *vgpu,
1862 		unsigned int offset, void *p_data, unsigned int bytes)
1863 {
1864 	u32 v = vgpu_vreg(vgpu, offset);
1865 
1866 	v &= ~UNIQUE_TRANGE_EN_METHOD;
1867 
1868 	vgpu_vreg(vgpu, offset) = v;
1869 
1870 	return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
1871 }
1872 
1873 static int bxt_pcs_dw12_grp_write(struct intel_vgpu *vgpu,
1874 		unsigned int offset, void *p_data, unsigned int bytes)
1875 {
1876 	u32 v = *(u32 *)p_data;
1877 
1878 	if (offset == _PORT_PCS_DW12_GRP_A || offset == _PORT_PCS_DW12_GRP_B) {
1879 		vgpu_vreg(vgpu, offset - 0x600) = v;
1880 		vgpu_vreg(vgpu, offset - 0x800) = v;
1881 	} else {
1882 		vgpu_vreg(vgpu, offset - 0x400) = v;
1883 		vgpu_vreg(vgpu, offset - 0x600) = v;
1884 	}
1885 
1886 	vgpu_vreg(vgpu, offset) = v;
1887 
1888 	return 0;
1889 }
1890 
1891 static int bxt_gt_disp_pwron_write(struct intel_vgpu *vgpu,
1892 		unsigned int offset, void *p_data, unsigned int bytes)
1893 {
1894 	u32 v = *(u32 *)p_data;
1895 
1896 	if (v & BIT(0)) {
1897 		vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY0)) &=
1898 			~PHY_RESERVED;
1899 		vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY0)) |=
1900 			PHY_POWER_GOOD;
1901 	}
1902 
1903 	if (v & BIT(1)) {
1904 		vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY1)) &=
1905 			~PHY_RESERVED;
1906 		vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY1)) |=
1907 			PHY_POWER_GOOD;
1908 	}
1909 
1910 
1911 	vgpu_vreg(vgpu, offset) = v;
1912 
1913 	return 0;
1914 }
1915 
1916 static int edp_psr_imr_iir_write(struct intel_vgpu *vgpu,
1917 		unsigned int offset, void *p_data, unsigned int bytes)
1918 {
1919 	vgpu_vreg(vgpu, offset) = 0;
1920 	return 0;
1921 }
1922 
1923 /*
1924  * FixMe:
1925  * If guest fills non-priv batch buffer on ApolloLake/Broxton as Mesa i965 did:
1926  * 717e7539124d (i965: Use a WC map and memcpy for the batch instead of pwrite.)
1927  * Due to the missing flush of bb filled by VM vCPU, host GPU hangs on executing
1928  * these MI_BATCH_BUFFER.
1929  * Temporarily workaround this by setting SNOOP bit for PAT3 used by PPGTT
1930  * PML4 PTE: PAT(0) PCD(1) PWT(1).
1931  * The performance is still expected to be low, will need further improvement.
1932  */
1933 static int bxt_ppat_low_write(struct intel_vgpu *vgpu, unsigned int offset,
1934 			      void *p_data, unsigned int bytes)
1935 {
1936 	u64 pat =
1937 		GEN8_PPAT(0, CHV_PPAT_SNOOP) |
1938 		GEN8_PPAT(1, 0) |
1939 		GEN8_PPAT(2, 0) |
1940 		GEN8_PPAT(3, CHV_PPAT_SNOOP) |
1941 		GEN8_PPAT(4, CHV_PPAT_SNOOP) |
1942 		GEN8_PPAT(5, CHV_PPAT_SNOOP) |
1943 		GEN8_PPAT(6, CHV_PPAT_SNOOP) |
1944 		GEN8_PPAT(7, CHV_PPAT_SNOOP);
1945 
1946 	vgpu_vreg(vgpu, offset) = lower_32_bits(pat);
1947 
1948 	return 0;
1949 }
1950 
1951 static int guc_status_read(struct intel_vgpu *vgpu,
1952 			   unsigned int offset, void *p_data,
1953 			   unsigned int bytes)
1954 {
1955 	/* keep MIA_IN_RESET before clearing */
1956 	read_vreg(vgpu, offset, p_data, bytes);
1957 	vgpu_vreg(vgpu, offset) &= ~GS_MIA_IN_RESET;
1958 	return 0;
1959 }
1960 
1961 static int mmio_read_from_hw(struct intel_vgpu *vgpu,
1962 		unsigned int offset, void *p_data, unsigned int bytes)
1963 {
1964 	struct intel_gvt *gvt = vgpu->gvt;
1965 	const struct intel_engine_cs *engine =
1966 		intel_gvt_render_mmio_to_engine(gvt, offset);
1967 
1968 	/**
1969 	 * Read HW reg in following case
1970 	 * a. the offset isn't a ring mmio
1971 	 * b. the offset's ring is running on hw.
1972 	 * c. the offset is ring time stamp mmio
1973 	 */
1974 
1975 	if (!engine ||
1976 	    vgpu == gvt->scheduler.engine_owner[engine->id] ||
1977 	    offset == i915_mmio_reg_offset(RING_TIMESTAMP(engine->mmio_base)) ||
1978 	    offset == i915_mmio_reg_offset(RING_TIMESTAMP_UDW(engine->mmio_base))) {
1979 		intel_wakeref_t wakeref;
1980 
1981 		wakeref = mmio_hw_access_pre(gvt->gt);
1982 		vgpu_vreg(vgpu, offset) =
1983 			intel_uncore_read(gvt->gt->uncore, _MMIO(offset));
1984 		mmio_hw_access_post(gvt->gt, wakeref);
1985 	}
1986 
1987 	return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
1988 }
1989 
1990 static int elsp_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1991 		void *p_data, unsigned int bytes)
1992 {
1993 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1994 	const struct intel_engine_cs *engine = intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
1995 	struct intel_vgpu_execlist *execlist;
1996 	u32 data = *(u32 *)p_data;
1997 	int ret = 0;
1998 
1999 	if (drm_WARN_ON(&i915->drm, !engine))
2000 		return -EINVAL;
2001 
2002 	/*
2003 	 * Due to d3_entered is used to indicate skipping PPGTT invalidation on
2004 	 * vGPU reset, it's set on D0->D3 on PCI config write, and cleared after
2005 	 * vGPU reset if in resuming.
2006 	 * In S0ix exit, the device power state also transite from D3 to D0 as
2007 	 * S3 resume, but no vGPU reset (triggered by QEMU device model). After
2008 	 * S0ix exit, all engines continue to work. However the d3_entered
2009 	 * remains set which will break next vGPU reset logic (miss the expected
2010 	 * PPGTT invalidation).
2011 	 * Engines can only work in D0. Thus the 1st elsp write gives GVT a
2012 	 * chance to clear d3_entered.
2013 	 */
2014 	if (vgpu->d3_entered)
2015 		vgpu->d3_entered = false;
2016 
2017 	execlist = &vgpu->submission.execlist[engine->id];
2018 
2019 	execlist->elsp_dwords.data[3 - execlist->elsp_dwords.index] = data;
2020 	if (execlist->elsp_dwords.index == 3) {
2021 		ret = intel_vgpu_submit_execlist(vgpu, engine);
2022 		if(ret)
2023 			gvt_vgpu_err("fail submit workload on ring %s\n",
2024 				     engine->name);
2025 	}
2026 
2027 	++execlist->elsp_dwords.index;
2028 	execlist->elsp_dwords.index &= 0x3;
2029 	return ret;
2030 }
2031 
2032 static int ring_mode_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
2033 		void *p_data, unsigned int bytes)
2034 {
2035 	u32 data = *(u32 *)p_data;
2036 	const struct intel_engine_cs *engine =
2037 		intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
2038 	bool enable_execlist;
2039 	int ret;
2040 
2041 	(*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(1);
2042 	if (IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
2043 	    IS_COMETLAKE(vgpu->gvt->gt->i915))
2044 		(*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(2);
2045 	write_vreg(vgpu, offset, p_data, bytes);
2046 
2047 	if (IS_MASKED_BITS_ENABLED(data, 1)) {
2048 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2049 		return 0;
2050 	}
2051 
2052 	if ((IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
2053 	     IS_COMETLAKE(vgpu->gvt->gt->i915)) &&
2054 	    IS_MASKED_BITS_ENABLED(data, 2)) {
2055 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2056 		return 0;
2057 	}
2058 
2059 	/* when PPGTT mode enabled, we will check if guest has called
2060 	 * pvinfo, if not, we will treat this guest as non-gvtg-aware
2061 	 * guest, and stop emulating its cfg space, mmio, gtt, etc.
2062 	 */
2063 	if ((IS_MASKED_BITS_ENABLED(data, GFX_PPGTT_ENABLE) ||
2064 	    IS_MASKED_BITS_ENABLED(data, GFX_RUN_LIST_ENABLE)) &&
2065 	    !vgpu->pv_notified) {
2066 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2067 		return 0;
2068 	}
2069 	if (IS_MASKED_BITS_ENABLED(data, GFX_RUN_LIST_ENABLE) ||
2070 	    IS_MASKED_BITS_DISABLED(data, GFX_RUN_LIST_ENABLE)) {
2071 		enable_execlist = !!(data & GFX_RUN_LIST_ENABLE);
2072 
2073 		gvt_dbg_core("EXECLIST %s on ring %s\n",
2074 			     (enable_execlist ? "enabling" : "disabling"),
2075 			     engine->name);
2076 
2077 		if (!enable_execlist)
2078 			return 0;
2079 
2080 		ret = intel_vgpu_select_submission_ops(vgpu,
2081 						       engine->mask,
2082 						       INTEL_VGPU_EXECLIST_SUBMISSION);
2083 		if (ret)
2084 			return ret;
2085 
2086 		intel_vgpu_start_schedule(vgpu);
2087 	}
2088 	return 0;
2089 }
2090 
2091 static int gvt_reg_tlb_control_handler(struct intel_vgpu *vgpu,
2092 		unsigned int offset, void *p_data, unsigned int bytes)
2093 {
2094 	unsigned int id = 0;
2095 
2096 	write_vreg(vgpu, offset, p_data, bytes);
2097 	vgpu_vreg(vgpu, offset) = 0;
2098 
2099 	switch (offset) {
2100 	case 0x4260:
2101 		id = RCS0;
2102 		break;
2103 	case 0x4264:
2104 		id = VCS0;
2105 		break;
2106 	case 0x4268:
2107 		id = VCS1;
2108 		break;
2109 	case 0x426c:
2110 		id = BCS0;
2111 		break;
2112 	case 0x4270:
2113 		id = VECS0;
2114 		break;
2115 	default:
2116 		return -EINVAL;
2117 	}
2118 	set_bit(id, (void *)vgpu->submission.tlb_handle_pending);
2119 
2120 	return 0;
2121 }
2122 
2123 static int ring_reset_ctl_write(struct intel_vgpu *vgpu,
2124 	unsigned int offset, void *p_data, unsigned int bytes)
2125 {
2126 	u32 data;
2127 
2128 	write_vreg(vgpu, offset, p_data, bytes);
2129 	data = vgpu_vreg(vgpu, offset);
2130 
2131 	if (IS_MASKED_BITS_ENABLED(data, RESET_CTL_REQUEST_RESET))
2132 		data |= RESET_CTL_READY_TO_RESET;
2133 	else if (data & _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET))
2134 		data &= ~RESET_CTL_READY_TO_RESET;
2135 
2136 	vgpu_vreg(vgpu, offset) = data;
2137 	return 0;
2138 }
2139 
2140 static int csfe_chicken1_mmio_write(struct intel_vgpu *vgpu,
2141 				    unsigned int offset, void *p_data,
2142 				    unsigned int bytes)
2143 {
2144 	u32 data = *(u32 *)p_data;
2145 
2146 	(*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(0x18);
2147 	write_vreg(vgpu, offset, p_data, bytes);
2148 
2149 	if (IS_MASKED_BITS_ENABLED(data, 0x10) ||
2150 	    IS_MASKED_BITS_ENABLED(data, 0x8))
2151 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2152 
2153 	return 0;
2154 }
2155 
2156 #define MMIO_F(reg, s, f, am, rm, d, r, w) do { \
2157 	ret = setup_mmio_info(gvt, i915_mmio_reg_offset(reg), \
2158 		s, f, am, rm, d, r, w); \
2159 	if (ret) \
2160 		return ret; \
2161 } while (0)
2162 
2163 #define MMIO_DH(reg, d, r, w) \
2164 	MMIO_F(reg, 4, 0, 0, 0, d, r, w)
2165 
2166 #define MMIO_DFH(reg, d, f, r, w) \
2167 	MMIO_F(reg, 4, f, 0, 0, d, r, w)
2168 
2169 #define MMIO_GM(reg, d, r, w) \
2170 	MMIO_F(reg, 4, F_GMADR, 0xFFFFF000, 0, d, r, w)
2171 
2172 #define MMIO_GM_RDR(reg, d, r, w) \
2173 	MMIO_F(reg, 4, F_GMADR | F_CMD_ACCESS, 0xFFFFF000, 0, d, r, w)
2174 
2175 #define MMIO_RO(reg, d, f, rm, r, w) \
2176 	MMIO_F(reg, 4, F_RO | f, 0, rm, d, r, w)
2177 
2178 #define MMIO_RING_F(prefix, s, f, am, rm, d, r, w) do { \
2179 	MMIO_F(prefix(RENDER_RING_BASE), s, f, am, rm, d, r, w); \
2180 	MMIO_F(prefix(BLT_RING_BASE), s, f, am, rm, d, r, w); \
2181 	MMIO_F(prefix(GEN6_BSD_RING_BASE), s, f, am, rm, d, r, w); \
2182 	MMIO_F(prefix(VEBOX_RING_BASE), s, f, am, rm, d, r, w); \
2183 	if (HAS_ENGINE(gvt->gt, VCS1)) \
2184 		MMIO_F(prefix(GEN8_BSD2_RING_BASE), s, f, am, rm, d, r, w); \
2185 } while (0)
2186 
2187 #define MMIO_RING_DFH(prefix, d, f, r, w) \
2188 	MMIO_RING_F(prefix, 4, f, 0, 0, d, r, w)
2189 
2190 #define MMIO_RING_GM(prefix, d, r, w) \
2191 	MMIO_RING_F(prefix, 4, F_GMADR, 0xFFFF0000, 0, d, r, w)
2192 
2193 #define MMIO_RING_GM_RDR(prefix, d, r, w) \
2194 	MMIO_RING_F(prefix, 4, F_GMADR | F_CMD_ACCESS, 0xFFFF0000, 0, d, r, w)
2195 
2196 #define MMIO_RING_RO(prefix, d, f, rm, r, w) \
2197 	MMIO_RING_F(prefix, 4, F_RO | f, 0, rm, d, r, w)
2198 
2199 static int init_generic_mmio_info(struct intel_gvt *gvt)
2200 {
2201 	struct drm_i915_private *dev_priv = gvt->gt->i915;
2202 	struct intel_display *display = &dev_priv->display;
2203 	int ret;
2204 
2205 	MMIO_RING_DFH(RING_IMR, D_ALL, 0, NULL,
2206 		intel_vgpu_reg_imr_handler);
2207 
2208 	MMIO_DFH(SDEIMR, D_ALL, 0, NULL, intel_vgpu_reg_imr_handler);
2209 	MMIO_DFH(SDEIER, D_ALL, 0, NULL, intel_vgpu_reg_ier_handler);
2210 	MMIO_DFH(SDEIIR, D_ALL, 0, NULL, intel_vgpu_reg_iir_handler);
2211 
2212 	MMIO_RING_DFH(RING_HWSTAM, D_ALL, 0, NULL, NULL);
2213 
2214 
2215 	MMIO_DH(GEN8_GAMW_ECO_DEV_RW_IA, D_BDW_PLUS, NULL,
2216 		gamw_echo_dev_rw_ia_write);
2217 
2218 	MMIO_GM_RDR(BSD_HWS_PGA_GEN7, D_ALL, NULL, NULL);
2219 	MMIO_GM_RDR(BLT_HWS_PGA_GEN7, D_ALL, NULL, NULL);
2220 	MMIO_GM_RDR(VEBOX_HWS_PGA_GEN7, D_ALL, NULL, NULL);
2221 
2222 #define RING_REG(base) _MMIO((base) + 0x28)
2223 	MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL);
2224 #undef RING_REG
2225 
2226 #define RING_REG(base) _MMIO((base) + 0x134)
2227 	MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL);
2228 #undef RING_REG
2229 
2230 #define RING_REG(base) _MMIO((base) + 0x6c)
2231 	MMIO_RING_DFH(RING_REG, D_ALL, 0, mmio_read_from_hw, NULL);
2232 #undef RING_REG
2233 	MMIO_DH(GEN7_SC_INSTDONE, D_BDW_PLUS, mmio_read_from_hw, NULL);
2234 
2235 	MMIO_GM_RDR(_MMIO(0x2148), D_ALL, NULL, NULL);
2236 	MMIO_GM_RDR(CCID(RENDER_RING_BASE), D_ALL, NULL, NULL);
2237 	MMIO_GM_RDR(_MMIO(0x12198), D_ALL, NULL, NULL);
2238 
2239 	MMIO_RING_DFH(RING_TAIL, D_ALL, 0, NULL, NULL);
2240 	MMIO_RING_DFH(RING_HEAD, D_ALL, 0, NULL, NULL);
2241 	MMIO_RING_DFH(RING_CTL, D_ALL, 0, NULL, NULL);
2242 	MMIO_RING_DFH(RING_ACTHD, D_ALL, 0, mmio_read_from_hw, NULL);
2243 	MMIO_RING_GM(RING_START, D_ALL, NULL, NULL);
2244 
2245 	/* RING MODE */
2246 #define RING_REG(base) _MMIO((base) + 0x29c)
2247 	MMIO_RING_DFH(RING_REG, D_ALL,
2248 		F_MODE_MASK | F_CMD_ACCESS | F_CMD_WRITE_PATCH, NULL,
2249 		ring_mode_mmio_write);
2250 #undef RING_REG
2251 
2252 	MMIO_RING_DFH(RING_MI_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2253 		NULL, NULL);
2254 	MMIO_RING_DFH(RING_INSTPM, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2255 			NULL, NULL);
2256 	MMIO_RING_DFH(RING_TIMESTAMP, D_ALL, F_CMD_ACCESS,
2257 			mmio_read_from_hw, NULL);
2258 	MMIO_RING_DFH(RING_TIMESTAMP_UDW, D_ALL, F_CMD_ACCESS,
2259 			mmio_read_from_hw, NULL);
2260 
2261 	MMIO_DFH(GEN7_GT_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2262 	MMIO_DFH(CACHE_MODE_0_GEN7, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2263 		NULL, NULL);
2264 	MMIO_DFH(CACHE_MODE_1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2265 	MMIO_DFH(CACHE_MODE_0, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2266 	MMIO_DFH(_MMIO(0x2124), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2267 
2268 	MMIO_DFH(_MMIO(0x20dc), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2269 	MMIO_DFH(_3D_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2270 	MMIO_DFH(_MMIO(0x2088), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2271 	MMIO_DFH(FF_SLICE_CS_CHICKEN2, D_ALL,
2272 		 F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2273 	MMIO_DFH(_MMIO(0x2470), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2274 	MMIO_DFH(GAM_ECOCHK, D_ALL, F_CMD_ACCESS, NULL, NULL);
2275 	MMIO_DFH(GEN7_COMMON_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2276 		NULL, NULL);
2277 	MMIO_DFH(COMMON_SLICE_CHICKEN2, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2278 		 NULL, NULL);
2279 	MMIO_DFH(_MMIO(0x9030), D_ALL, F_CMD_ACCESS, NULL, NULL);
2280 	MMIO_DFH(_MMIO(0x20a0), D_ALL, F_CMD_ACCESS, NULL, NULL);
2281 	MMIO_DFH(_MMIO(0x2420), D_ALL, F_CMD_ACCESS, NULL, NULL);
2282 	MMIO_DFH(_MMIO(0x2430), D_ALL, F_CMD_ACCESS, NULL, NULL);
2283 	MMIO_DFH(_MMIO(0x2434), D_ALL, F_CMD_ACCESS, NULL, NULL);
2284 	MMIO_DFH(_MMIO(0x2438), D_ALL, F_CMD_ACCESS, NULL, NULL);
2285 	MMIO_DFH(_MMIO(0x243c), D_ALL, F_CMD_ACCESS, NULL, NULL);
2286 	MMIO_DFH(_MMIO(0x7018), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2287 	MMIO_DFH(HSW_HALF_SLICE_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2288 	MMIO_DFH(GEN7_HALF_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2289 
2290 	/* display */
2291 	MMIO_DH(TRANSCONF(display, TRANSCODER_A), D_ALL, NULL,
2292 		pipeconf_mmio_write);
2293 	MMIO_DH(TRANSCONF(display, TRANSCODER_B), D_ALL, NULL,
2294 		pipeconf_mmio_write);
2295 	MMIO_DH(TRANSCONF(display, TRANSCODER_C), D_ALL, NULL,
2296 		pipeconf_mmio_write);
2297 	MMIO_DH(TRANSCONF(display, TRANSCODER_EDP), D_ALL, NULL,
2298 		pipeconf_mmio_write);
2299 	MMIO_DH(DSPSURF(display, PIPE_A), D_ALL, NULL, pri_surf_mmio_write);
2300 	MMIO_DH(REG_50080(PIPE_A, PLANE_PRIMARY), D_ALL, NULL,
2301 		reg50080_mmio_write);
2302 	MMIO_DH(DSPSURF(display, PIPE_B), D_ALL, NULL, pri_surf_mmio_write);
2303 	MMIO_DH(REG_50080(PIPE_B, PLANE_PRIMARY), D_ALL, NULL,
2304 		reg50080_mmio_write);
2305 	MMIO_DH(DSPSURF(display, PIPE_C), D_ALL, NULL, pri_surf_mmio_write);
2306 	MMIO_DH(REG_50080(PIPE_C, PLANE_PRIMARY), D_ALL, NULL,
2307 		reg50080_mmio_write);
2308 	MMIO_DH(SPRSURF(PIPE_A), D_ALL, NULL, spr_surf_mmio_write);
2309 	MMIO_DH(REG_50080(PIPE_A, PLANE_SPRITE0), D_ALL, NULL,
2310 		reg50080_mmio_write);
2311 	MMIO_DH(SPRSURF(PIPE_B), D_ALL, NULL, spr_surf_mmio_write);
2312 	MMIO_DH(REG_50080(PIPE_B, PLANE_SPRITE0), D_ALL, NULL,
2313 		reg50080_mmio_write);
2314 	MMIO_DH(SPRSURF(PIPE_C), D_ALL, NULL, spr_surf_mmio_write);
2315 	MMIO_DH(REG_50080(PIPE_C, PLANE_SPRITE0), D_ALL, NULL,
2316 		reg50080_mmio_write);
2317 
2318 	MMIO_F(PCH_GMBUS0, 4 * 4, 0, 0, 0, D_ALL, gmbus_mmio_read,
2319 		gmbus_mmio_write);
2320 	MMIO_F(PCH_GPIO_BASE, 6 * 4, F_UNALIGN, 0, 0, D_ALL, NULL, NULL);
2321 
2322 	MMIO_F(PCH_DP_AUX_CH_CTL(AUX_CH_B), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
2323 	       dp_aux_ch_ctl_mmio_write);
2324 	MMIO_F(PCH_DP_AUX_CH_CTL(AUX_CH_C), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
2325 	       dp_aux_ch_ctl_mmio_write);
2326 	MMIO_F(PCH_DP_AUX_CH_CTL(AUX_CH_D), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
2327 	       dp_aux_ch_ctl_mmio_write);
2328 
2329 	MMIO_DH(PCH_ADPA, D_PRE_SKL, NULL, pch_adpa_mmio_write);
2330 
2331 	MMIO_DH(_MMIO(_PCH_TRANSACONF), D_ALL, NULL, transconf_mmio_write);
2332 	MMIO_DH(_MMIO(_PCH_TRANSBCONF), D_ALL, NULL, transconf_mmio_write);
2333 
2334 	MMIO_DH(FDI_RX_IIR(PIPE_A), D_ALL, NULL, fdi_rx_iir_mmio_write);
2335 	MMIO_DH(FDI_RX_IIR(PIPE_B), D_ALL, NULL, fdi_rx_iir_mmio_write);
2336 	MMIO_DH(FDI_RX_IIR(PIPE_C), D_ALL, NULL, fdi_rx_iir_mmio_write);
2337 	MMIO_DH(FDI_RX_IMR(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status);
2338 	MMIO_DH(FDI_RX_IMR(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status);
2339 	MMIO_DH(FDI_RX_IMR(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status);
2340 	MMIO_DH(FDI_RX_CTL(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status);
2341 	MMIO_DH(FDI_RX_CTL(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status);
2342 	MMIO_DH(FDI_RX_CTL(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status);
2343 	MMIO_DH(PCH_PP_CONTROL, D_ALL, NULL, pch_pp_control_mmio_write);
2344 	MMIO_DH(_MMIO(0xe651c), D_ALL, dpy_reg_mmio_read, NULL);
2345 	MMIO_DH(_MMIO(0xe661c), D_ALL, dpy_reg_mmio_read, NULL);
2346 	MMIO_DH(_MMIO(0xe671c), D_ALL, dpy_reg_mmio_read, NULL);
2347 	MMIO_DH(_MMIO(0xe681c), D_ALL, dpy_reg_mmio_read, NULL);
2348 	MMIO_DH(_MMIO(0xe6c04), D_ALL, dpy_reg_mmio_read, NULL);
2349 	MMIO_DH(_MMIO(0xe6e1c), D_ALL, dpy_reg_mmio_read, NULL);
2350 
2351 	MMIO_RO(PCH_PORT_HOTPLUG, D_ALL, 0,
2352 		PORTA_HOTPLUG_STATUS_MASK
2353 		| PORTB_HOTPLUG_STATUS_MASK
2354 		| PORTC_HOTPLUG_STATUS_MASK
2355 		| PORTD_HOTPLUG_STATUS_MASK,
2356 		NULL, NULL);
2357 
2358 	MMIO_DH(LCPLL_CTL, D_ALL, NULL, lcpll_ctl_mmio_write);
2359 	MMIO_DH(SOUTH_CHICKEN2, D_ALL, NULL, south_chicken2_mmio_write);
2360 	MMIO_DH(SFUSE_STRAP, D_ALL, NULL, NULL);
2361 	MMIO_DH(SBI_DATA, D_ALL, sbi_data_mmio_read, NULL);
2362 	MMIO_DH(SBI_CTL_STAT, D_ALL, NULL, sbi_ctl_mmio_write);
2363 
2364 	MMIO_F(DP_AUX_CH_CTL(AUX_CH_A), 6 * 4, 0, 0, 0, D_ALL, NULL,
2365 	       dp_aux_ch_ctl_mmio_write);
2366 
2367 	MMIO_DH(DDI_BUF_CTL(PORT_A), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2368 	MMIO_DH(DDI_BUF_CTL(PORT_B), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2369 	MMIO_DH(DDI_BUF_CTL(PORT_C), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2370 	MMIO_DH(DDI_BUF_CTL(PORT_D), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2371 	MMIO_DH(DDI_BUF_CTL(PORT_E), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2372 
2373 	MMIO_DH(DP_TP_CTL(PORT_A), D_ALL, NULL, dp_tp_ctl_mmio_write);
2374 	MMIO_DH(DP_TP_CTL(PORT_B), D_ALL, NULL, dp_tp_ctl_mmio_write);
2375 	MMIO_DH(DP_TP_CTL(PORT_C), D_ALL, NULL, dp_tp_ctl_mmio_write);
2376 	MMIO_DH(DP_TP_CTL(PORT_D), D_ALL, NULL, dp_tp_ctl_mmio_write);
2377 	MMIO_DH(DP_TP_CTL(PORT_E), D_ALL, NULL, dp_tp_ctl_mmio_write);
2378 
2379 	MMIO_DH(DP_TP_STATUS(PORT_A), D_ALL, NULL, dp_tp_status_mmio_write);
2380 	MMIO_DH(DP_TP_STATUS(PORT_B), D_ALL, NULL, dp_tp_status_mmio_write);
2381 	MMIO_DH(DP_TP_STATUS(PORT_C), D_ALL, NULL, dp_tp_status_mmio_write);
2382 	MMIO_DH(DP_TP_STATUS(PORT_D), D_ALL, NULL, dp_tp_status_mmio_write);
2383 	MMIO_DH(DP_TP_STATUS(PORT_E), D_ALL, NULL, NULL);
2384 
2385 	MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_A), D_ALL, NULL, NULL);
2386 	MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_B), D_ALL, NULL, NULL);
2387 	MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_C), D_ALL, NULL, NULL);
2388 	MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_EDP), D_ALL, NULL, NULL);
2389 
2390 	MMIO_DH(FORCEWAKE, D_ALL, NULL, NULL);
2391 	MMIO_DFH(GTFIFODBG, D_ALL, F_CMD_ACCESS, NULL, NULL);
2392 	MMIO_DFH(GTFIFOCTL, D_ALL, F_CMD_ACCESS, NULL, NULL);
2393 	MMIO_DH(FORCEWAKE_MT, D_PRE_SKL, NULL, mul_force_wake_write);
2394 	MMIO_DH(FORCEWAKE_ACK_HSW, D_BDW, NULL, NULL);
2395 	MMIO_DH(GEN6_RC_CONTROL, D_ALL, NULL, NULL);
2396 	MMIO_DH(GEN6_RC_STATE, D_ALL, NULL, NULL);
2397 	MMIO_DH(HSW_PWR_WELL_CTL1, D_BDW, NULL, power_well_ctl_mmio_write);
2398 	MMIO_DH(HSW_PWR_WELL_CTL2, D_BDW, NULL, power_well_ctl_mmio_write);
2399 	MMIO_DH(HSW_PWR_WELL_CTL3, D_BDW, NULL, power_well_ctl_mmio_write);
2400 	MMIO_DH(HSW_PWR_WELL_CTL4, D_BDW, NULL, power_well_ctl_mmio_write);
2401 	MMIO_DH(HSW_PWR_WELL_CTL5, D_BDW, NULL, power_well_ctl_mmio_write);
2402 	MMIO_DH(HSW_PWR_WELL_CTL6, D_BDW, NULL, power_well_ctl_mmio_write);
2403 
2404 	MMIO_DH(GEN6_GDRST, D_ALL, NULL, gdrst_mmio_write);
2405 	MMIO_F(FENCE_REG_GEN6_LO(0), 0x80, 0, 0, 0, D_ALL, fence_mmio_read, fence_mmio_write);
2406 	MMIO_DH(CPU_VGACNTRL, D_ALL, NULL, vga_control_mmio_write);
2407 
2408 	MMIO_DH(GEN7_ERR_INT, D_ALL, NULL, NULL);
2409 	MMIO_DH(GFX_FLSH_CNTL_GEN6, D_ALL, NULL, NULL);
2410 
2411 	MMIO_DH(GEN6_MBCTL, D_ALL, NULL, mbctl_write);
2412 	MMIO_DFH(GEN7_UCGCTL4, D_ALL, F_CMD_ACCESS, NULL, NULL);
2413 
2414 	MMIO_DH(FPGA_DBG, D_ALL, NULL, fpga_dbg_mmio_write);
2415 	MMIO_DFH(_MMIO(0x215c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2416 	MMIO_DFH(_MMIO(0x2178), D_ALL, F_CMD_ACCESS, NULL, NULL);
2417 	MMIO_DFH(_MMIO(0x217c), D_ALL, F_CMD_ACCESS, NULL, NULL);
2418 	MMIO_DFH(_MMIO(0x12178), D_ALL, F_CMD_ACCESS, NULL, NULL);
2419 	MMIO_DFH(_MMIO(0x1217c), D_ALL, F_CMD_ACCESS, NULL, NULL);
2420 
2421 	MMIO_F(_MMIO(0x2290), 8, F_CMD_ACCESS, 0, 0, D_BDW_PLUS, NULL, NULL);
2422 	MMIO_F(_MMIO(0x5200), 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2423 	MMIO_F(_MMIO(0x5240), 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2424 	MMIO_F(_MMIO(0x5280), 16, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2425 
2426 	MMIO_DFH(_MMIO(0x1c17c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2427 	MMIO_DFH(_MMIO(0x1c178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2428 	MMIO_DFH(BCS_SWCTRL, D_ALL, F_CMD_ACCESS, NULL, NULL);
2429 
2430 	MMIO_F(HS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2431 	MMIO_F(DS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2432 	MMIO_F(IA_VERTICES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2433 	MMIO_F(IA_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2434 	MMIO_F(VS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2435 	MMIO_F(GS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2436 	MMIO_F(GS_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2437 	MMIO_F(CL_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2438 	MMIO_F(CL_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2439 	MMIO_F(PS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2440 	MMIO_F(PS_DEPTH_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2441 	MMIO_DH(_MMIO(0x4260), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2442 	MMIO_DH(_MMIO(0x4264), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2443 	MMIO_DH(_MMIO(0x4268), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2444 	MMIO_DH(_MMIO(0x426c), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2445 	MMIO_DH(_MMIO(0x4270), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2446 	MMIO_DFH(_MMIO(0x4094), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2447 
2448 	MMIO_DFH(ARB_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2449 	MMIO_RING_GM(RING_BBADDR, D_ALL, NULL, NULL);
2450 	MMIO_DFH(_MMIO(0x2220), D_ALL, F_CMD_ACCESS, NULL, NULL);
2451 	MMIO_DFH(_MMIO(0x12220), D_ALL, F_CMD_ACCESS, NULL, NULL);
2452 	MMIO_DFH(_MMIO(0x22220), D_ALL, F_CMD_ACCESS, NULL, NULL);
2453 	MMIO_RING_DFH(RING_SYNC_1, D_ALL, F_CMD_ACCESS, NULL, NULL);
2454 	MMIO_RING_DFH(RING_SYNC_0, D_ALL, F_CMD_ACCESS, NULL, NULL);
2455 	MMIO_DFH(_MMIO(0x22178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2456 	MMIO_DFH(_MMIO(0x1a178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2457 	MMIO_DFH(_MMIO(0x1a17c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2458 	MMIO_DFH(_MMIO(0x2217c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2459 
2460 	MMIO_DH(EDP_PSR_IMR, D_BDW_PLUS, NULL, edp_psr_imr_iir_write);
2461 	MMIO_DH(EDP_PSR_IIR, D_BDW_PLUS, NULL, edp_psr_imr_iir_write);
2462 	MMIO_DH(GUC_STATUS, D_ALL, guc_status_read, NULL);
2463 
2464 	return 0;
2465 }
2466 
2467 static int init_bdw_mmio_info(struct intel_gvt *gvt)
2468 {
2469 	int ret;
2470 
2471 	MMIO_DH(GEN8_GT_IMR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2472 	MMIO_DH(GEN8_GT_IER(0), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2473 	MMIO_DH(GEN8_GT_IIR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2474 
2475 	MMIO_DH(GEN8_GT_IMR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2476 	MMIO_DH(GEN8_GT_IER(1), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2477 	MMIO_DH(GEN8_GT_IIR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2478 
2479 	MMIO_DH(GEN8_GT_IMR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2480 	MMIO_DH(GEN8_GT_IER(2), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2481 	MMIO_DH(GEN8_GT_IIR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2482 
2483 	MMIO_DH(GEN8_GT_IMR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2484 	MMIO_DH(GEN8_GT_IER(3), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2485 	MMIO_DH(GEN8_GT_IIR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2486 
2487 	MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_A), D_BDW_PLUS, NULL,
2488 		intel_vgpu_reg_imr_handler);
2489 	MMIO_DH(GEN8_DE_PIPE_IER(PIPE_A), D_BDW_PLUS, NULL,
2490 		intel_vgpu_reg_ier_handler);
2491 	MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_A), D_BDW_PLUS, NULL,
2492 		intel_vgpu_reg_iir_handler);
2493 
2494 	MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_B), D_BDW_PLUS, NULL,
2495 		intel_vgpu_reg_imr_handler);
2496 	MMIO_DH(GEN8_DE_PIPE_IER(PIPE_B), D_BDW_PLUS, NULL,
2497 		intel_vgpu_reg_ier_handler);
2498 	MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_B), D_BDW_PLUS, NULL,
2499 		intel_vgpu_reg_iir_handler);
2500 
2501 	MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_C), D_BDW_PLUS, NULL,
2502 		intel_vgpu_reg_imr_handler);
2503 	MMIO_DH(GEN8_DE_PIPE_IER(PIPE_C), D_BDW_PLUS, NULL,
2504 		intel_vgpu_reg_ier_handler);
2505 	MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_C), D_BDW_PLUS, NULL,
2506 		intel_vgpu_reg_iir_handler);
2507 
2508 	MMIO_DH(GEN8_DE_PORT_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2509 	MMIO_DH(GEN8_DE_PORT_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2510 	MMIO_DH(GEN8_DE_PORT_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2511 
2512 	MMIO_DH(GEN8_DE_MISC_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2513 	MMIO_DH(GEN8_DE_MISC_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2514 	MMIO_DH(GEN8_DE_MISC_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2515 
2516 	MMIO_DH(GEN8_PCU_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2517 	MMIO_DH(GEN8_PCU_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2518 	MMIO_DH(GEN8_PCU_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2519 
2520 	MMIO_DH(GEN8_MASTER_IRQ, D_BDW_PLUS, NULL,
2521 		intel_vgpu_reg_master_irq_handler);
2522 
2523 	MMIO_RING_DFH(RING_ACTHD_UDW, D_BDW_PLUS, 0,
2524 		mmio_read_from_hw, NULL);
2525 
2526 #define RING_REG(base) _MMIO((base) + 0xd0)
2527 	MMIO_RING_F(RING_REG, 4, F_RO, 0,
2528 		~_MASKED_BIT_ENABLE(RESET_CTL_REQUEST_RESET), D_BDW_PLUS, NULL,
2529 		ring_reset_ctl_write);
2530 #undef RING_REG
2531 
2532 #define RING_REG(base) _MMIO((base) + 0x230)
2533 	MMIO_RING_DFH(RING_REG, D_BDW_PLUS, 0, NULL, elsp_mmio_write);
2534 #undef RING_REG
2535 
2536 #define RING_REG(base) _MMIO((base) + 0x234)
2537 	MMIO_RING_F(RING_REG, 8, F_RO, 0, ~0, D_BDW_PLUS,
2538 		NULL, NULL);
2539 #undef RING_REG
2540 
2541 #define RING_REG(base) _MMIO((base) + 0x244)
2542 	MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2543 #undef RING_REG
2544 
2545 #define RING_REG(base) _MMIO((base) + 0x370)
2546 	MMIO_RING_F(RING_REG, 48, F_RO, 0, ~0, D_BDW_PLUS, NULL, NULL);
2547 #undef RING_REG
2548 
2549 #define RING_REG(base) _MMIO((base) + 0x3a0)
2550 	MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_MODE_MASK, NULL, NULL);
2551 #undef RING_REG
2552 
2553 	MMIO_DH(GEN6_PCODE_MAILBOX, D_BDW_PLUS, NULL, mailbox_write);
2554 
2555 #define RING_REG(base) _MMIO((base) + 0x270)
2556 	MMIO_RING_F(RING_REG, 32, F_CMD_ACCESS, 0, 0, D_BDW_PLUS, NULL, NULL);
2557 #undef RING_REG
2558 
2559 	MMIO_RING_GM(RING_HWS_PGA, D_BDW_PLUS, NULL, hws_pga_write);
2560 
2561 	MMIO_DFH(HDC_CHICKEN0, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2562 
2563 	MMIO_DFH(GEN8_ROW_CHICKEN, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2564 		NULL, NULL);
2565 	MMIO_DFH(GEN7_ROW_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2566 		NULL, NULL);
2567 	MMIO_DFH(GEN8_UCGCTL6, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2568 
2569 	MMIO_DFH(_MMIO(0xb1f0), D_BDW, F_CMD_ACCESS, NULL, NULL);
2570 	MMIO_DFH(_MMIO(0xb1c0), D_BDW, F_CMD_ACCESS, NULL, NULL);
2571 	MMIO_DFH(GEN8_L3SQCREG4, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2572 	MMIO_DFH(_MMIO(0xb100), D_BDW, F_CMD_ACCESS, NULL, NULL);
2573 	MMIO_DFH(_MMIO(0xb10c), D_BDW, F_CMD_ACCESS, NULL, NULL);
2574 
2575 	MMIO_F(_MMIO(0x24d0), 48, F_CMD_ACCESS | F_CMD_WRITE_PATCH, 0, 0,
2576 		D_BDW_PLUS, NULL, force_nonpriv_write);
2577 
2578 	MMIO_DFH(_MMIO(0x83a4), D_BDW, F_CMD_ACCESS, NULL, NULL);
2579 
2580 	MMIO_DFH(_MMIO(0x8430), D_BDW, F_CMD_ACCESS, NULL, NULL);
2581 
2582 	MMIO_DFH(_MMIO(0xe194), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2583 	MMIO_DFH(_MMIO(0xe188), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2584 	MMIO_DFH(HALF_SLICE_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2585 	MMIO_DFH(_MMIO(0x2580), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2586 
2587 	MMIO_DFH(_MMIO(0x2248), D_BDW, F_CMD_ACCESS, NULL, NULL);
2588 
2589 	MMIO_DFH(_MMIO(0xe220), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2590 	MMIO_DFH(_MMIO(0xe230), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2591 	MMIO_DFH(_MMIO(0xe240), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2592 	MMIO_DFH(_MMIO(0xe260), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2593 	MMIO_DFH(_MMIO(0xe270), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2594 	MMIO_DFH(_MMIO(0xe280), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2595 	MMIO_DFH(_MMIO(0xe2a0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2596 	MMIO_DFH(_MMIO(0xe2b0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2597 	MMIO_DFH(_MMIO(0xe2c0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2598 	MMIO_DFH(_MMIO(0x21f0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2599 	return 0;
2600 }
2601 
2602 static int init_skl_mmio_info(struct intel_gvt *gvt)
2603 {
2604 	int ret;
2605 
2606 	MMIO_DH(FORCEWAKE_RENDER_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
2607 	MMIO_DH(FORCEWAKE_ACK_RENDER_GEN9, D_SKL_PLUS, NULL, NULL);
2608 	MMIO_DH(FORCEWAKE_GT_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
2609 	MMIO_DH(FORCEWAKE_ACK_GT_GEN9, D_SKL_PLUS, NULL, NULL);
2610 	MMIO_DH(FORCEWAKE_MEDIA_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
2611 	MMIO_DH(FORCEWAKE_ACK_MEDIA_GEN9, D_SKL_PLUS, NULL, NULL);
2612 
2613 	MMIO_F(DP_AUX_CH_CTL(AUX_CH_B), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
2614 						dp_aux_ch_ctl_mmio_write);
2615 	MMIO_F(DP_AUX_CH_CTL(AUX_CH_C), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
2616 						dp_aux_ch_ctl_mmio_write);
2617 	MMIO_F(DP_AUX_CH_CTL(AUX_CH_D), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
2618 						dp_aux_ch_ctl_mmio_write);
2619 
2620 	MMIO_DH(HSW_PWR_WELL_CTL2, D_SKL_PLUS, NULL, skl_power_well_ctl_write);
2621 
2622 	MMIO_DH(DBUF_CTL_S(0), D_SKL_PLUS, NULL, gen9_dbuf_ctl_mmio_write);
2623 
2624 	MMIO_DFH(GEN9_GAMT_ECO_REG_RW_IA, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2625 	MMIO_DFH(MMCD_MISC_CTRL, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2626 	MMIO_DH(CHICKEN_PAR1_1, D_SKL_PLUS, NULL, NULL);
2627 	MMIO_DH(LCPLL1_CTL, D_SKL_PLUS, NULL, skl_lcpll_write);
2628 	MMIO_DH(LCPLL2_CTL, D_SKL_PLUS, NULL, skl_lcpll_write);
2629 	MMIO_DH(DPLL_STATUS, D_SKL_PLUS, dpll_status_read, NULL);
2630 
2631 	MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
2632 	MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
2633 	MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
2634 	MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
2635 	MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
2636 	MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
2637 
2638 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
2639 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
2640 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
2641 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
2642 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
2643 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
2644 
2645 	MMIO_DH(SKL_PS_CTRL(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
2646 	MMIO_DH(SKL_PS_CTRL(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
2647 	MMIO_DH(SKL_PS_CTRL(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
2648 	MMIO_DH(SKL_PS_CTRL(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
2649 	MMIO_DH(SKL_PS_CTRL(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
2650 	MMIO_DH(SKL_PS_CTRL(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
2651 
2652 	MMIO_DH(PLANE_BUF_CFG(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2653 	MMIO_DH(PLANE_BUF_CFG(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2654 	MMIO_DH(PLANE_BUF_CFG(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2655 	MMIO_DH(PLANE_BUF_CFG(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
2656 
2657 	MMIO_DH(PLANE_BUF_CFG(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2658 	MMIO_DH(PLANE_BUF_CFG(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2659 	MMIO_DH(PLANE_BUF_CFG(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2660 	MMIO_DH(PLANE_BUF_CFG(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
2661 
2662 	MMIO_DH(PLANE_BUF_CFG(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2663 	MMIO_DH(PLANE_BUF_CFG(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2664 	MMIO_DH(PLANE_BUF_CFG(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2665 	MMIO_DH(PLANE_BUF_CFG(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
2666 
2667 	MMIO_DH(CUR_BUF_CFG(PIPE_A), D_SKL_PLUS, NULL, NULL);
2668 	MMIO_DH(CUR_BUF_CFG(PIPE_B), D_SKL_PLUS, NULL, NULL);
2669 	MMIO_DH(CUR_BUF_CFG(PIPE_C), D_SKL_PLUS, NULL, NULL);
2670 
2671 	MMIO_DH(PLANE_WM_TRANS(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2672 	MMIO_DH(PLANE_WM_TRANS(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2673 	MMIO_DH(PLANE_WM_TRANS(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2674 
2675 	MMIO_DH(PLANE_WM_TRANS(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2676 	MMIO_DH(PLANE_WM_TRANS(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2677 	MMIO_DH(PLANE_WM_TRANS(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2678 
2679 	MMIO_DH(PLANE_WM_TRANS(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2680 	MMIO_DH(PLANE_WM_TRANS(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2681 	MMIO_DH(PLANE_WM_TRANS(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2682 
2683 	MMIO_DH(CUR_WM_TRANS(PIPE_A), D_SKL_PLUS, NULL, NULL);
2684 	MMIO_DH(CUR_WM_TRANS(PIPE_B), D_SKL_PLUS, NULL, NULL);
2685 	MMIO_DH(CUR_WM_TRANS(PIPE_C), D_SKL_PLUS, NULL, NULL);
2686 
2687 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2688 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2689 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2690 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
2691 
2692 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2693 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2694 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2695 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
2696 
2697 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2698 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2699 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2700 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
2701 
2702 	MMIO_DH(PLANE_AUX_DIST(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2703 	MMIO_DH(PLANE_AUX_DIST(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2704 	MMIO_DH(PLANE_AUX_DIST(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2705 	MMIO_DH(PLANE_AUX_DIST(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
2706 
2707 	MMIO_DH(PLANE_AUX_DIST(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2708 	MMIO_DH(PLANE_AUX_DIST(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2709 	MMIO_DH(PLANE_AUX_DIST(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2710 	MMIO_DH(PLANE_AUX_DIST(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
2711 
2712 	MMIO_DH(PLANE_AUX_DIST(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2713 	MMIO_DH(PLANE_AUX_DIST(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2714 	MMIO_DH(PLANE_AUX_DIST(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2715 	MMIO_DH(PLANE_AUX_DIST(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
2716 
2717 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2718 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2719 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2720 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
2721 
2722 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2723 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2724 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2725 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
2726 
2727 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2728 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2729 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2730 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
2731 
2732 	MMIO_DFH(BDW_SCRATCH1, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2733 
2734 	MMIO_F(GEN9_GFX_MOCS(0), 0x7f8, F_CMD_ACCESS, 0, 0, D_SKL_PLUS,
2735 		NULL, NULL);
2736 	MMIO_F(GEN7_L3CNTLREG2, 0x80, F_CMD_ACCESS, 0, 0, D_SKL_PLUS,
2737 		NULL, NULL);
2738 
2739 	MMIO_DFH(GEN7_FF_SLICE_CS_CHICKEN1, D_SKL_PLUS,
2740 		 F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2741 	MMIO_DFH(GEN9_CS_DEBUG_MODE1, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2742 		NULL, NULL);
2743 
2744 	/* TRTT */
2745 	MMIO_DFH(TRVATTL3PTRDW(0), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2746 	MMIO_DFH(TRVATTL3PTRDW(1), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2747 	MMIO_DFH(TRVATTL3PTRDW(2), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2748 	MMIO_DFH(TRVATTL3PTRDW(3), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2749 	MMIO_DFH(TRVADR, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2750 	MMIO_DFH(TRTTE, D_SKL_PLUS, F_CMD_ACCESS | F_PM_SAVE,
2751 		 NULL, gen9_trtte_write);
2752 	MMIO_DFH(_MMIO(0x4dfc), D_SKL_PLUS, F_PM_SAVE,
2753 		 NULL, gen9_trtt_chicken_write);
2754 
2755 	MMIO_DFH(GEN8_GARBCNTL, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2756 	MMIO_DH(DMA_CTRL, D_SKL_PLUS, NULL, dma_ctrl_write);
2757 
2758 #define CSFE_CHICKEN1_REG(base) _MMIO((base) + 0xD4)
2759 	MMIO_RING_DFH(CSFE_CHICKEN1_REG, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2760 		      NULL, csfe_chicken1_mmio_write);
2761 #undef CSFE_CHICKEN1_REG
2762 	MMIO_DFH(GEN8_HDC_CHICKEN1, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2763 		 NULL, NULL);
2764 	MMIO_DFH(GEN9_WM_CHICKEN3, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2765 		 NULL, NULL);
2766 
2767 	MMIO_DFH(GAMT_CHKN_BIT_REG, D_KBL | D_CFL, F_CMD_ACCESS, NULL, NULL);
2768 	MMIO_DFH(_MMIO(0xe4cc), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2769 
2770 	return 0;
2771 }
2772 
2773 static int init_bxt_mmio_info(struct intel_gvt *gvt)
2774 {
2775 	int ret;
2776 
2777 	MMIO_DH(BXT_P_CR_GT_DISP_PWRON, D_BXT, NULL, bxt_gt_disp_pwron_write);
2778 	MMIO_DH(BXT_PHY_CTL_FAMILY(DPIO_PHY0), D_BXT,
2779 		NULL, bxt_phy_ctl_family_write);
2780 	MMIO_DH(BXT_PHY_CTL_FAMILY(DPIO_PHY1), D_BXT,
2781 		NULL, bxt_phy_ctl_family_write);
2782 	MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_A), D_BXT,
2783 		NULL, bxt_port_pll_enable_write);
2784 	MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_B), D_BXT,
2785 		NULL, bxt_port_pll_enable_write);
2786 	MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_C), D_BXT, NULL,
2787 		bxt_port_pll_enable_write);
2788 
2789 	MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY0, DPIO_CH0), D_BXT,
2790 		NULL, bxt_pcs_dw12_grp_write);
2791 	MMIO_DH(BXT_PORT_TX_DW3_LN(DPIO_PHY0, DPIO_CH0, 0), D_BXT,
2792 		bxt_port_tx_dw3_read, NULL);
2793 	MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY0, DPIO_CH1), D_BXT,
2794 		NULL, bxt_pcs_dw12_grp_write);
2795 	MMIO_DH(BXT_PORT_TX_DW3_LN(DPIO_PHY0, DPIO_CH1, 0), D_BXT,
2796 		bxt_port_tx_dw3_read, NULL);
2797 	MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY1, DPIO_CH0), D_BXT,
2798 		NULL, bxt_pcs_dw12_grp_write);
2799 	MMIO_DH(BXT_PORT_TX_DW3_LN(DPIO_PHY1, DPIO_CH0, 0), D_BXT,
2800 		bxt_port_tx_dw3_read, NULL);
2801 	MMIO_DH(BXT_DE_PLL_ENABLE, D_BXT, NULL, bxt_de_pll_enable_write);
2802 	MMIO_DFH(GEN8_L3SQCREG1, D_BXT, F_CMD_ACCESS, NULL, NULL);
2803 	MMIO_DFH(GEN8_L3CNTLREG, D_BXT, F_CMD_ACCESS, NULL, NULL);
2804 	MMIO_DFH(_MMIO(0x20D8), D_BXT, F_CMD_ACCESS, NULL, NULL);
2805 	MMIO_F(GEN8_RING_CS_GPR(RENDER_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2806 	       0, 0, D_BXT, NULL, NULL);
2807 	MMIO_F(GEN8_RING_CS_GPR(GEN6_BSD_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2808 	       0, 0, D_BXT, NULL, NULL);
2809 	MMIO_F(GEN8_RING_CS_GPR(BLT_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2810 	       0, 0, D_BXT, NULL, NULL);
2811 	MMIO_F(GEN8_RING_CS_GPR(VEBOX_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2812 	       0, 0, D_BXT, NULL, NULL);
2813 
2814 	MMIO_DFH(GEN9_CTX_PREEMPT_REG, D_BXT, F_CMD_ACCESS, NULL, NULL);
2815 
2816 	MMIO_DH(GEN8_PRIVATE_PAT_LO, D_BXT, NULL, bxt_ppat_low_write);
2817 
2818 	return 0;
2819 }
2820 
2821 static struct gvt_mmio_block *find_mmio_block(struct intel_gvt *gvt,
2822 					      unsigned int offset)
2823 {
2824 	struct gvt_mmio_block *block = gvt->mmio.mmio_block;
2825 	int num = gvt->mmio.num_mmio_block;
2826 	int i;
2827 
2828 	for (i = 0; i < num; i++, block++) {
2829 		if (offset >= i915_mmio_reg_offset(block->offset) &&
2830 		    offset < i915_mmio_reg_offset(block->offset) + block->size)
2831 			return block;
2832 	}
2833 	return NULL;
2834 }
2835 
2836 /**
2837  * intel_gvt_clean_mmio_info - clean up MMIO information table for GVT device
2838  * @gvt: GVT device
2839  *
2840  * This function is called at the driver unloading stage, to clean up the MMIO
2841  * information table of GVT device
2842  *
2843  */
2844 void intel_gvt_clean_mmio_info(struct intel_gvt *gvt)
2845 {
2846 	struct hlist_node *tmp;
2847 	struct intel_gvt_mmio_info *e;
2848 	int i;
2849 
2850 	hash_for_each_safe(gvt->mmio.mmio_info_table, i, tmp, e, node)
2851 		kfree(e);
2852 
2853 	kfree(gvt->mmio.mmio_block);
2854 	gvt->mmio.mmio_block = NULL;
2855 	gvt->mmio.num_mmio_block = 0;
2856 
2857 	vfree(gvt->mmio.mmio_attribute);
2858 	gvt->mmio.mmio_attribute = NULL;
2859 }
2860 
2861 static int handle_mmio(struct intel_gvt_mmio_table_iter *iter, u32 offset,
2862 		       u32 size)
2863 {
2864 	struct intel_gvt *gvt = iter->data;
2865 	struct intel_gvt_mmio_info *info, *p;
2866 	u32 start, end, i;
2867 
2868 	if (WARN_ON(!IS_ALIGNED(offset, 4)))
2869 		return -EINVAL;
2870 
2871 	start = offset;
2872 	end = offset + size;
2873 
2874 	for (i = start; i < end; i += 4) {
2875 		p = intel_gvt_find_mmio_info(gvt, i);
2876 		if (p) {
2877 			WARN(1, "dup mmio definition offset %x\n", i);
2878 
2879 			/* We return -EEXIST here to make GVT-g load fail.
2880 			 * So duplicated MMIO can be found as soon as
2881 			 * possible.
2882 			 */
2883 			return -EEXIST;
2884 		}
2885 
2886 		info = kzalloc(sizeof(*info), GFP_KERNEL);
2887 		if (!info)
2888 			return -ENOMEM;
2889 
2890 		info->offset = i;
2891 		info->read = intel_vgpu_default_mmio_read;
2892 		info->write = intel_vgpu_default_mmio_write;
2893 		INIT_HLIST_NODE(&info->node);
2894 		hash_add(gvt->mmio.mmio_info_table, &info->node, info->offset);
2895 		gvt->mmio.num_tracked_mmio++;
2896 	}
2897 	return 0;
2898 }
2899 
2900 static int handle_mmio_block(struct intel_gvt_mmio_table_iter *iter,
2901 			     u32 offset, u32 size)
2902 {
2903 	struct intel_gvt *gvt = iter->data;
2904 	struct gvt_mmio_block *block = gvt->mmio.mmio_block;
2905 	void *ret;
2906 
2907 	ret = krealloc(block,
2908 			 (gvt->mmio.num_mmio_block + 1) * sizeof(*block),
2909 			 GFP_KERNEL);
2910 	if (!ret)
2911 		return -ENOMEM;
2912 
2913 	gvt->mmio.mmio_block = block = ret;
2914 
2915 	block += gvt->mmio.num_mmio_block;
2916 
2917 	memset(block, 0, sizeof(*block));
2918 
2919 	block->offset = _MMIO(offset);
2920 	block->size = size;
2921 
2922 	gvt->mmio.num_mmio_block++;
2923 
2924 	return 0;
2925 }
2926 
2927 static int handle_mmio_cb(struct intel_gvt_mmio_table_iter *iter, u32 offset,
2928 			  u32 size)
2929 {
2930 	if (size < 1024 || offset == i915_mmio_reg_offset(GEN9_GFX_MOCS(0)))
2931 		return handle_mmio(iter, offset, size);
2932 	else
2933 		return handle_mmio_block(iter, offset, size);
2934 }
2935 
2936 static int init_mmio_info(struct intel_gvt *gvt)
2937 {
2938 	struct intel_gvt_mmio_table_iter iter = {
2939 		.i915 = gvt->gt->i915,
2940 		.data = gvt,
2941 		.handle_mmio_cb = handle_mmio_cb,
2942 	};
2943 
2944 	return intel_gvt_iterate_mmio_table(&iter);
2945 }
2946 
2947 static int init_mmio_block_handlers(struct intel_gvt *gvt)
2948 {
2949 	struct gvt_mmio_block *block;
2950 
2951 	block = find_mmio_block(gvt, VGT_PVINFO_PAGE);
2952 	if (!block) {
2953 		WARN(1, "fail to assign handlers to mmio block %x\n",
2954 		     i915_mmio_reg_offset(gvt->mmio.mmio_block->offset));
2955 		return -ENODEV;
2956 	}
2957 
2958 	block->read = pvinfo_mmio_read;
2959 	block->write = pvinfo_mmio_write;
2960 
2961 	return 0;
2962 }
2963 
2964 /**
2965  * intel_gvt_setup_mmio_info - setup MMIO information table for GVT device
2966  * @gvt: GVT device
2967  *
2968  * This function is called at the initialization stage, to setup the MMIO
2969  * information table for GVT device
2970  *
2971  * Returns:
2972  * zero on success, negative if failed.
2973  */
2974 int intel_gvt_setup_mmio_info(struct intel_gvt *gvt)
2975 {
2976 	struct intel_gvt_device_info *info = &gvt->device_info;
2977 	struct drm_i915_private *i915 = gvt->gt->i915;
2978 	int size = info->mmio_size / 4 * sizeof(*gvt->mmio.mmio_attribute);
2979 	int ret;
2980 
2981 	gvt->mmio.mmio_attribute = vzalloc(size);
2982 	if (!gvt->mmio.mmio_attribute)
2983 		return -ENOMEM;
2984 
2985 	ret = init_mmio_info(gvt);
2986 	if (ret)
2987 		goto err;
2988 
2989 	ret = init_mmio_block_handlers(gvt);
2990 	if (ret)
2991 		goto err;
2992 
2993 	ret = init_generic_mmio_info(gvt);
2994 	if (ret)
2995 		goto err;
2996 
2997 	if (IS_BROADWELL(i915)) {
2998 		ret = init_bdw_mmio_info(gvt);
2999 		if (ret)
3000 			goto err;
3001 	} else if (IS_SKYLAKE(i915) ||
3002 		   IS_KABYLAKE(i915) ||
3003 		   IS_COFFEELAKE(i915) ||
3004 		   IS_COMETLAKE(i915)) {
3005 		ret = init_bdw_mmio_info(gvt);
3006 		if (ret)
3007 			goto err;
3008 		ret = init_skl_mmio_info(gvt);
3009 		if (ret)
3010 			goto err;
3011 	} else if (IS_BROXTON(i915)) {
3012 		ret = init_bdw_mmio_info(gvt);
3013 		if (ret)
3014 			goto err;
3015 		ret = init_skl_mmio_info(gvt);
3016 		if (ret)
3017 			goto err;
3018 		ret = init_bxt_mmio_info(gvt);
3019 		if (ret)
3020 			goto err;
3021 	}
3022 
3023 	return 0;
3024 err:
3025 	intel_gvt_clean_mmio_info(gvt);
3026 	return ret;
3027 }
3028 
3029 /**
3030  * intel_gvt_for_each_tracked_mmio - iterate each tracked mmio
3031  * @gvt: a GVT device
3032  * @handler: the handler
3033  * @data: private data given to handler
3034  *
3035  * Returns:
3036  * Zero on success, negative error code if failed.
3037  */
3038 int intel_gvt_for_each_tracked_mmio(struct intel_gvt *gvt,
3039 	int (*handler)(struct intel_gvt *gvt, u32 offset, void *data),
3040 	void *data)
3041 {
3042 	struct gvt_mmio_block *block = gvt->mmio.mmio_block;
3043 	struct intel_gvt_mmio_info *e;
3044 	int i, j, ret;
3045 
3046 	hash_for_each(gvt->mmio.mmio_info_table, i, e, node) {
3047 		ret = handler(gvt, e->offset, data);
3048 		if (ret)
3049 			return ret;
3050 	}
3051 
3052 	for (i = 0; i < gvt->mmio.num_mmio_block; i++, block++) {
3053 		/* pvinfo data doesn't come from hw mmio */
3054 		if (i915_mmio_reg_offset(block->offset) == VGT_PVINFO_PAGE)
3055 			continue;
3056 
3057 		for (j = 0; j < block->size; j += 4) {
3058 			ret = handler(gvt, i915_mmio_reg_offset(block->offset) + j, data);
3059 			if (ret)
3060 				return ret;
3061 		}
3062 	}
3063 	return 0;
3064 }
3065 
3066 /**
3067  * intel_vgpu_default_mmio_read - default MMIO read handler
3068  * @vgpu: a vGPU
3069  * @offset: access offset
3070  * @p_data: data return buffer
3071  * @bytes: access data length
3072  *
3073  * Returns:
3074  * Zero on success, negative error code if failed.
3075  */
3076 int intel_vgpu_default_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
3077 		void *p_data, unsigned int bytes)
3078 {
3079 	read_vreg(vgpu, offset, p_data, bytes);
3080 	return 0;
3081 }
3082 
3083 /**
3084  * intel_vgpu_default_mmio_write() - default MMIO write handler
3085  * @vgpu: a vGPU
3086  * @offset: access offset
3087  * @p_data: write data buffer
3088  * @bytes: access data length
3089  *
3090  * Returns:
3091  * Zero on success, negative error code if failed.
3092  */
3093 int intel_vgpu_default_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
3094 		void *p_data, unsigned int bytes)
3095 {
3096 	write_vreg(vgpu, offset, p_data, bytes);
3097 	return 0;
3098 }
3099 
3100 /**
3101  * intel_vgpu_mask_mmio_write - write mask register
3102  * @vgpu: a vGPU
3103  * @offset: access offset
3104  * @p_data: write data buffer
3105  * @bytes: access data length
3106  *
3107  * Returns:
3108  * Zero on success, negative error code if failed.
3109  */
3110 int intel_vgpu_mask_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
3111 		void *p_data, unsigned int bytes)
3112 {
3113 	u32 mask, old_vreg;
3114 
3115 	old_vreg = vgpu_vreg(vgpu, offset);
3116 	write_vreg(vgpu, offset, p_data, bytes);
3117 	mask = vgpu_vreg(vgpu, offset) >> 16;
3118 	vgpu_vreg(vgpu, offset) = (old_vreg & ~mask) |
3119 				(vgpu_vreg(vgpu, offset) & mask);
3120 
3121 	return 0;
3122 }
3123 
3124 /**
3125  * intel_vgpu_mmio_reg_rw - emulate tracked mmio registers
3126  * @vgpu: a vGPU
3127  * @offset: register offset
3128  * @pdata: data buffer
3129  * @bytes: data length
3130  * @is_read: read or write
3131  *
3132  * Returns:
3133  * Zero on success, negative error code if failed.
3134  */
3135 int intel_vgpu_mmio_reg_rw(struct intel_vgpu *vgpu, unsigned int offset,
3136 			   void *pdata, unsigned int bytes, bool is_read)
3137 {
3138 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
3139 	struct intel_gvt *gvt = vgpu->gvt;
3140 	struct intel_gvt_mmio_info *mmio_info;
3141 	struct gvt_mmio_block *mmio_block;
3142 	gvt_mmio_func func;
3143 	int ret;
3144 
3145 	if (drm_WARN_ON(&i915->drm, bytes > 8))
3146 		return -EINVAL;
3147 
3148 	/*
3149 	 * Handle special MMIO blocks.
3150 	 */
3151 	mmio_block = find_mmio_block(gvt, offset);
3152 	if (mmio_block) {
3153 		func = is_read ? mmio_block->read : mmio_block->write;
3154 		if (func)
3155 			return func(vgpu, offset, pdata, bytes);
3156 		goto default_rw;
3157 	}
3158 
3159 	/*
3160 	 * Normal tracked MMIOs.
3161 	 */
3162 	mmio_info = intel_gvt_find_mmio_info(gvt, offset);
3163 	if (!mmio_info) {
3164 		gvt_dbg_mmio("untracked MMIO %08x len %d\n", offset, bytes);
3165 		goto default_rw;
3166 	}
3167 
3168 	if (is_read)
3169 		return mmio_info->read(vgpu, offset, pdata, bytes);
3170 	else {
3171 		u64 ro_mask = mmio_info->ro_mask;
3172 		u32 old_vreg = 0;
3173 		u64 data = 0;
3174 
3175 		if (intel_gvt_mmio_has_mode_mask(gvt, mmio_info->offset)) {
3176 			old_vreg = vgpu_vreg(vgpu, offset);
3177 		}
3178 
3179 		if (likely(!ro_mask))
3180 			ret = mmio_info->write(vgpu, offset, pdata, bytes);
3181 		else if (!~ro_mask) {
3182 			gvt_vgpu_err("try to write RO reg %x\n", offset);
3183 			return 0;
3184 		} else {
3185 			/* keep the RO bits in the virtual register */
3186 			memcpy(&data, pdata, bytes);
3187 			data &= ~ro_mask;
3188 			data |= vgpu_vreg(vgpu, offset) & ro_mask;
3189 			ret = mmio_info->write(vgpu, offset, &data, bytes);
3190 		}
3191 
3192 		/* higher 16bits of mode ctl regs are mask bits for change */
3193 		if (intel_gvt_mmio_has_mode_mask(gvt, mmio_info->offset)) {
3194 			u32 mask = vgpu_vreg(vgpu, offset) >> 16;
3195 
3196 			vgpu_vreg(vgpu, offset) = (old_vreg & ~mask)
3197 					| (vgpu_vreg(vgpu, offset) & mask);
3198 		}
3199 	}
3200 
3201 	return ret;
3202 
3203 default_rw:
3204 	return is_read ?
3205 		intel_vgpu_default_mmio_read(vgpu, offset, pdata, bytes) :
3206 		intel_vgpu_default_mmio_write(vgpu, offset, pdata, bytes);
3207 }
3208 
3209 void intel_gvt_restore_fence(struct intel_gvt *gvt)
3210 {
3211 	struct intel_vgpu *vgpu;
3212 	int i, id;
3213 
3214 	idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
3215 		intel_wakeref_t wakeref;
3216 
3217 		wakeref = mmio_hw_access_pre(gvt->gt);
3218 		for (i = 0; i < vgpu_fence_sz(vgpu); i++)
3219 			intel_vgpu_write_fence(vgpu, i, vgpu_vreg64(vgpu, fence_num_to_offset(i)));
3220 		mmio_hw_access_post(gvt->gt, wakeref);
3221 	}
3222 }
3223 
3224 static int mmio_pm_restore_handler(struct intel_gvt *gvt, u32 offset, void *data)
3225 {
3226 	struct intel_vgpu *vgpu = data;
3227 	struct drm_i915_private *dev_priv = gvt->gt->i915;
3228 
3229 	if (gvt->mmio.mmio_attribute[offset >> 2] & F_PM_SAVE)
3230 		intel_uncore_write(&dev_priv->uncore, _MMIO(offset), vgpu_vreg(vgpu, offset));
3231 
3232 	return 0;
3233 }
3234 
3235 void intel_gvt_restore_mmio(struct intel_gvt *gvt)
3236 {
3237 	struct intel_vgpu *vgpu;
3238 	int id;
3239 
3240 	idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
3241 		intel_wakeref_t wakeref;
3242 
3243 		wakeref = mmio_hw_access_pre(gvt->gt);
3244 		intel_gvt_for_each_tracked_mmio(gvt, mmio_pm_restore_handler, vgpu);
3245 		mmio_hw_access_post(gvt->gt, wakeref);
3246 	}
3247 }
3248