xref: /linux/drivers/gpu/drm/i915/gvt/handlers.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Kevin Tian <kevin.tian@intel.com>
25  *    Eddie Dong <eddie.dong@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Tina Zhang <tina.zhang@intel.com>
31  *    Pei Zhang <pei.zhang@intel.com>
32  *    Niu Bing <bing.niu@intel.com>
33  *    Ping Gao <ping.a.gao@intel.com>
34  *    Zhi Wang <zhi.a.wang@intel.com>
35  *
36 
37  */
38 
39 #include <drm/display/drm_dp.h>
40 
41 #include "i915_drv.h"
42 #include "i915_reg.h"
43 #include "gvt.h"
44 #include "i915_pvinfo.h"
45 #include "intel_mchbar_regs.h"
46 #include "display/bxt_dpio_phy_regs.h"
47 #include "display/i9xx_plane_regs.h"
48 #include "display/intel_cursor_regs.h"
49 #include "display/intel_display_types.h"
50 #include "display/intel_dmc_regs.h"
51 #include "display/intel_dp_aux_regs.h"
52 #include "display/intel_dpio_phy.h"
53 #include "display/intel_fbc.h"
54 #include "display/intel_fdi_regs.h"
55 #include "display/intel_pps_regs.h"
56 #include "display/intel_psr_regs.h"
57 #include "display/intel_sprite_regs.h"
58 #include "display/skl_universal_plane_regs.h"
59 #include "display/skl_watermark_regs.h"
60 #include "display/vlv_dsi_pll_regs.h"
61 #include "gt/intel_gt_regs.h"
62 #include <linux/vmalloc.h>
63 
64 /* XXX FIXME i915 has changed PP_XXX definition */
65 #define PCH_PP_STATUS  _MMIO(0xc7200)
66 #define PCH_PP_CONTROL _MMIO(0xc7204)
67 #define PCH_PP_ON_DELAYS _MMIO(0xc7208)
68 #define PCH_PP_OFF_DELAYS _MMIO(0xc720c)
69 #define PCH_PP_DIVISOR _MMIO(0xc7210)
70 
71 unsigned long intel_gvt_get_device_type(struct intel_gvt *gvt)
72 {
73 	struct drm_i915_private *i915 = gvt->gt->i915;
74 
75 	if (IS_BROADWELL(i915))
76 		return D_BDW;
77 	else if (IS_SKYLAKE(i915))
78 		return D_SKL;
79 	else if (IS_KABYLAKE(i915))
80 		return D_KBL;
81 	else if (IS_BROXTON(i915))
82 		return D_BXT;
83 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
84 		return D_CFL;
85 
86 	return 0;
87 }
88 
89 static bool intel_gvt_match_device(struct intel_gvt *gvt,
90 		unsigned long device)
91 {
92 	return intel_gvt_get_device_type(gvt) & device;
93 }
94 
95 static void read_vreg(struct intel_vgpu *vgpu, unsigned int offset,
96 	void *p_data, unsigned int bytes)
97 {
98 	memcpy(p_data, &vgpu_vreg(vgpu, offset), bytes);
99 }
100 
101 static void write_vreg(struct intel_vgpu *vgpu, unsigned int offset,
102 	void *p_data, unsigned int bytes)
103 {
104 	memcpy(&vgpu_vreg(vgpu, offset), p_data, bytes);
105 }
106 
107 struct intel_gvt_mmio_info *intel_gvt_find_mmio_info(struct intel_gvt *gvt,
108 						  unsigned int offset)
109 {
110 	struct intel_gvt_mmio_info *e;
111 
112 	hash_for_each_possible(gvt->mmio.mmio_info_table, e, node, offset) {
113 		if (e->offset == offset)
114 			return e;
115 	}
116 	return NULL;
117 }
118 
119 static int setup_mmio_info(struct intel_gvt *gvt, u32 offset, u32 size,
120 			   u16 flags, u32 addr_mask, u32 ro_mask, u32 device,
121 			   gvt_mmio_func read, gvt_mmio_func write)
122 {
123 	struct intel_gvt_mmio_info *p;
124 	u32 start, end, i;
125 
126 	if (!intel_gvt_match_device(gvt, device))
127 		return 0;
128 
129 	if (WARN_ON(!IS_ALIGNED(offset, 4)))
130 		return -EINVAL;
131 
132 	start = offset;
133 	end = offset + size;
134 
135 	for (i = start; i < end; i += 4) {
136 		p = intel_gvt_find_mmio_info(gvt, i);
137 		if (!p) {
138 			WARN(1, "assign a handler to a non-tracked mmio %x\n",
139 				i);
140 			return -ENODEV;
141 		}
142 		p->ro_mask = ro_mask;
143 		gvt->mmio.mmio_attribute[i / 4] = flags;
144 		if (read)
145 			p->read = read;
146 		if (write)
147 			p->write = write;
148 	}
149 	return 0;
150 }
151 
152 /**
153  * intel_gvt_render_mmio_to_engine - convert a mmio offset into the engine
154  * @gvt: a GVT device
155  * @offset: register offset
156  *
157  * Returns:
158  * The engine containing the offset within its mmio page.
159  */
160 const struct intel_engine_cs *
161 intel_gvt_render_mmio_to_engine(struct intel_gvt *gvt, unsigned int offset)
162 {
163 	struct intel_engine_cs *engine;
164 	enum intel_engine_id id;
165 
166 	offset &= ~GENMASK(11, 0);
167 	for_each_engine(engine, gvt->gt, id)
168 		if (engine->mmio_base == offset)
169 			return engine;
170 
171 	return NULL;
172 }
173 
174 #define offset_to_fence_num(offset) \
175 	((offset - i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0))) >> 3)
176 
177 #define fence_num_to_offset(num) \
178 	(num * 8 + i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0)))
179 
180 
181 void enter_failsafe_mode(struct intel_vgpu *vgpu, int reason)
182 {
183 	switch (reason) {
184 	case GVT_FAILSAFE_UNSUPPORTED_GUEST:
185 		pr_err("Detected your guest driver doesn't support GVT-g.\n");
186 		break;
187 	case GVT_FAILSAFE_INSUFFICIENT_RESOURCE:
188 		pr_err("Graphics resource is not enough for the guest\n");
189 		break;
190 	case GVT_FAILSAFE_GUEST_ERR:
191 		pr_err("GVT Internal error  for the guest\n");
192 		break;
193 	default:
194 		break;
195 	}
196 	pr_err("Now vgpu %d will enter failsafe mode.\n", vgpu->id);
197 	vgpu->failsafe = true;
198 }
199 
200 static int sanitize_fence_mmio_access(struct intel_vgpu *vgpu,
201 		unsigned int fence_num, void *p_data, unsigned int bytes)
202 {
203 	unsigned int max_fence = vgpu_fence_sz(vgpu);
204 
205 	if (fence_num >= max_fence) {
206 		gvt_vgpu_err("access oob fence reg %d/%d\n",
207 			     fence_num, max_fence);
208 
209 		/* When guest access oob fence regs without access
210 		 * pv_info first, we treat guest not supporting GVT,
211 		 * and we will let vgpu enter failsafe mode.
212 		 */
213 		if (!vgpu->pv_notified)
214 			enter_failsafe_mode(vgpu,
215 					GVT_FAILSAFE_UNSUPPORTED_GUEST);
216 
217 		memset(p_data, 0, bytes);
218 		return -EINVAL;
219 	}
220 	return 0;
221 }
222 
223 static int gamw_echo_dev_rw_ia_write(struct intel_vgpu *vgpu,
224 		unsigned int offset, void *p_data, unsigned int bytes)
225 {
226 	u32 ips = (*(u32 *)p_data) & GAMW_ECO_ENABLE_64K_IPS_FIELD;
227 
228 	if (GRAPHICS_VER(vgpu->gvt->gt->i915) <= 10) {
229 		if (ips == GAMW_ECO_ENABLE_64K_IPS_FIELD)
230 			gvt_dbg_core("vgpu%d: ips enabled\n", vgpu->id);
231 		else if (!ips)
232 			gvt_dbg_core("vgpu%d: ips disabled\n", vgpu->id);
233 		else {
234 			/* All engines must be enabled together for vGPU,
235 			 * since we don't know which engine the ppgtt will
236 			 * bind to when shadowing.
237 			 */
238 			gvt_vgpu_err("Unsupported IPS setting %x, cannot enable 64K gtt.\n",
239 				     ips);
240 			return -EINVAL;
241 		}
242 	}
243 
244 	write_vreg(vgpu, offset, p_data, bytes);
245 	return 0;
246 }
247 
248 static int fence_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
249 		void *p_data, unsigned int bytes)
250 {
251 	int ret;
252 
253 	ret = sanitize_fence_mmio_access(vgpu, offset_to_fence_num(off),
254 			p_data, bytes);
255 	if (ret)
256 		return ret;
257 	read_vreg(vgpu, off, p_data, bytes);
258 	return 0;
259 }
260 
261 static int fence_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
262 		void *p_data, unsigned int bytes)
263 {
264 	struct intel_gvt *gvt = vgpu->gvt;
265 	unsigned int fence_num = offset_to_fence_num(off);
266 	int ret;
267 
268 	ret = sanitize_fence_mmio_access(vgpu, fence_num, p_data, bytes);
269 	if (ret)
270 		return ret;
271 	write_vreg(vgpu, off, p_data, bytes);
272 
273 	mmio_hw_access_pre(gvt->gt);
274 	intel_vgpu_write_fence(vgpu, fence_num,
275 			vgpu_vreg64(vgpu, fence_num_to_offset(fence_num)));
276 	mmio_hw_access_post(gvt->gt);
277 	return 0;
278 }
279 
280 #define CALC_MODE_MASK_REG(old, new) \
281 	(((new) & GENMASK(31, 16)) \
282 	 | ((((old) & GENMASK(15, 0)) & ~((new) >> 16)) \
283 	 | ((new) & ((new) >> 16))))
284 
285 static int mul_force_wake_write(struct intel_vgpu *vgpu,
286 		unsigned int offset, void *p_data, unsigned int bytes)
287 {
288 	u32 old, new;
289 	u32 ack_reg_offset;
290 
291 	old = vgpu_vreg(vgpu, offset);
292 	new = CALC_MODE_MASK_REG(old, *(u32 *)p_data);
293 
294 	if (GRAPHICS_VER(vgpu->gvt->gt->i915)  >=  9) {
295 		switch (offset) {
296 		case FORCEWAKE_RENDER_GEN9_REG:
297 			ack_reg_offset = FORCEWAKE_ACK_RENDER_GEN9_REG;
298 			break;
299 		case FORCEWAKE_GT_GEN9_REG:
300 			ack_reg_offset = FORCEWAKE_ACK_GT_GEN9_REG;
301 			break;
302 		case FORCEWAKE_MEDIA_GEN9_REG:
303 			ack_reg_offset = FORCEWAKE_ACK_MEDIA_GEN9_REG;
304 			break;
305 		default:
306 			/*should not hit here*/
307 			gvt_vgpu_err("invalid forcewake offset 0x%x\n", offset);
308 			return -EINVAL;
309 		}
310 	} else {
311 		ack_reg_offset = FORCEWAKE_ACK_HSW_REG;
312 	}
313 
314 	vgpu_vreg(vgpu, offset) = new;
315 	vgpu_vreg(vgpu, ack_reg_offset) = (new & GENMASK(15, 0));
316 	return 0;
317 }
318 
319 static int gdrst_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
320 			    void *p_data, unsigned int bytes)
321 {
322 	intel_engine_mask_t engine_mask = 0;
323 	u32 data;
324 
325 	write_vreg(vgpu, offset, p_data, bytes);
326 	data = vgpu_vreg(vgpu, offset);
327 
328 	if (data & GEN6_GRDOM_FULL) {
329 		gvt_dbg_mmio("vgpu%d: request full GPU reset\n", vgpu->id);
330 		engine_mask = ALL_ENGINES;
331 	} else {
332 		if (data & GEN6_GRDOM_RENDER) {
333 			gvt_dbg_mmio("vgpu%d: request RCS reset\n", vgpu->id);
334 			engine_mask |= BIT(RCS0);
335 		}
336 		if (data & GEN6_GRDOM_MEDIA) {
337 			gvt_dbg_mmio("vgpu%d: request VCS reset\n", vgpu->id);
338 			engine_mask |= BIT(VCS0);
339 		}
340 		if (data & GEN6_GRDOM_BLT) {
341 			gvt_dbg_mmio("vgpu%d: request BCS Reset\n", vgpu->id);
342 			engine_mask |= BIT(BCS0);
343 		}
344 		if (data & GEN6_GRDOM_VECS) {
345 			gvt_dbg_mmio("vgpu%d: request VECS Reset\n", vgpu->id);
346 			engine_mask |= BIT(VECS0);
347 		}
348 		if (data & GEN8_GRDOM_MEDIA2) {
349 			gvt_dbg_mmio("vgpu%d: request VCS2 Reset\n", vgpu->id);
350 			engine_mask |= BIT(VCS1);
351 		}
352 		if (data & GEN9_GRDOM_GUC) {
353 			gvt_dbg_mmio("vgpu%d: request GUC Reset\n", vgpu->id);
354 			vgpu_vreg_t(vgpu, GUC_STATUS) |= GS_MIA_IN_RESET;
355 		}
356 		engine_mask &= vgpu->gvt->gt->info.engine_mask;
357 	}
358 
359 	/* vgpu_lock already hold by emulate mmio r/w */
360 	intel_gvt_reset_vgpu_locked(vgpu, false, engine_mask);
361 
362 	/* sw will wait for the device to ack the reset request */
363 	vgpu_vreg(vgpu, offset) = 0;
364 
365 	return 0;
366 }
367 
368 static int gmbus_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
369 		void *p_data, unsigned int bytes)
370 {
371 	return intel_gvt_i2c_handle_gmbus_read(vgpu, offset, p_data, bytes);
372 }
373 
374 static int gmbus_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
375 		void *p_data, unsigned int bytes)
376 {
377 	return intel_gvt_i2c_handle_gmbus_write(vgpu, offset, p_data, bytes);
378 }
379 
380 static int pch_pp_control_mmio_write(struct intel_vgpu *vgpu,
381 		unsigned int offset, void *p_data, unsigned int bytes)
382 {
383 	write_vreg(vgpu, offset, p_data, bytes);
384 
385 	if (vgpu_vreg(vgpu, offset) & PANEL_POWER_ON) {
386 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) |= PP_ON;
387 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) |= PP_SEQUENCE_STATE_ON_IDLE;
388 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= ~PP_SEQUENCE_POWER_DOWN;
389 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= ~PP_CYCLE_DELAY_ACTIVE;
390 
391 	} else
392 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) &=
393 			~(PP_ON | PP_SEQUENCE_POWER_DOWN
394 					| PP_CYCLE_DELAY_ACTIVE);
395 	return 0;
396 }
397 
398 static int transconf_mmio_write(struct intel_vgpu *vgpu,
399 		unsigned int offset, void *p_data, unsigned int bytes)
400 {
401 	write_vreg(vgpu, offset, p_data, bytes);
402 
403 	if (vgpu_vreg(vgpu, offset) & TRANS_ENABLE)
404 		vgpu_vreg(vgpu, offset) |= TRANS_STATE_ENABLE;
405 	else
406 		vgpu_vreg(vgpu, offset) &= ~TRANS_STATE_ENABLE;
407 	return 0;
408 }
409 
410 static int lcpll_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
411 		void *p_data, unsigned int bytes)
412 {
413 	write_vreg(vgpu, offset, p_data, bytes);
414 
415 	if (vgpu_vreg(vgpu, offset) & LCPLL_PLL_DISABLE)
416 		vgpu_vreg(vgpu, offset) &= ~LCPLL_PLL_LOCK;
417 	else
418 		vgpu_vreg(vgpu, offset) |= LCPLL_PLL_LOCK;
419 
420 	if (vgpu_vreg(vgpu, offset) & LCPLL_CD_SOURCE_FCLK)
421 		vgpu_vreg(vgpu, offset) |= LCPLL_CD_SOURCE_FCLK_DONE;
422 	else
423 		vgpu_vreg(vgpu, offset) &= ~LCPLL_CD_SOURCE_FCLK_DONE;
424 
425 	return 0;
426 }
427 
428 static int dpy_reg_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
429 		void *p_data, unsigned int bytes)
430 {
431 	switch (offset) {
432 	case 0xe651c:
433 	case 0xe661c:
434 	case 0xe671c:
435 	case 0xe681c:
436 		vgpu_vreg(vgpu, offset) = 1 << 17;
437 		break;
438 	case 0xe6c04:
439 		vgpu_vreg(vgpu, offset) = 0x3;
440 		break;
441 	case 0xe6e1c:
442 		vgpu_vreg(vgpu, offset) = 0x2f << 16;
443 		break;
444 	default:
445 		return -EINVAL;
446 	}
447 
448 	read_vreg(vgpu, offset, p_data, bytes);
449 	return 0;
450 }
451 
452 /*
453  * Only PIPE_A is enabled in current vGPU display and PIPE_A is tied to
454  *   TRANSCODER_A in HW. DDI/PORT could be PORT_x depends on
455  *   setup_virtual_dp_monitor().
456  * emulate_monitor_status_change() set up PLL for PORT_x as the initial enabled
457  *   DPLL. Later guest driver may setup a different DPLLx when setting mode.
458  * So the correct sequence to find DP stream clock is:
459  *   Check TRANS_DDI_FUNC_CTL on TRANSCODER_A to get PORT_x.
460  *   Check correct PLLx for PORT_x to get PLL frequency and DP bitrate.
461  * Then Refresh rate then can be calculated based on follow equations:
462  *   Pixel clock = h_total * v_total * refresh_rate
463  *   stream clock = Pixel clock
464  *   ls_clk = DP bitrate
465  *   Link M/N = strm_clk / ls_clk
466  */
467 
468 static u32 bdw_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
469 {
470 	u32 dp_br = 0;
471 	u32 ddi_pll_sel = vgpu_vreg_t(vgpu, PORT_CLK_SEL(port));
472 
473 	switch (ddi_pll_sel) {
474 	case PORT_CLK_SEL_LCPLL_2700:
475 		dp_br = 270000 * 2;
476 		break;
477 	case PORT_CLK_SEL_LCPLL_1350:
478 		dp_br = 135000 * 2;
479 		break;
480 	case PORT_CLK_SEL_LCPLL_810:
481 		dp_br = 81000 * 2;
482 		break;
483 	case PORT_CLK_SEL_SPLL:
484 	{
485 		switch (vgpu_vreg_t(vgpu, SPLL_CTL) & SPLL_FREQ_MASK) {
486 		case SPLL_FREQ_810MHz:
487 			dp_br = 81000 * 2;
488 			break;
489 		case SPLL_FREQ_1350MHz:
490 			dp_br = 135000 * 2;
491 			break;
492 		case SPLL_FREQ_2700MHz:
493 			dp_br = 270000 * 2;
494 			break;
495 		default:
496 			gvt_dbg_dpy("vgpu-%d PORT_%c can't get freq from SPLL 0x%08x\n",
497 				    vgpu->id, port_name(port), vgpu_vreg_t(vgpu, SPLL_CTL));
498 			break;
499 		}
500 		break;
501 	}
502 	case PORT_CLK_SEL_WRPLL1:
503 	case PORT_CLK_SEL_WRPLL2:
504 	{
505 		u32 wrpll_ctl;
506 		int refclk, n, p, r;
507 
508 		if (ddi_pll_sel == PORT_CLK_SEL_WRPLL1)
509 			wrpll_ctl = vgpu_vreg_t(vgpu, WRPLL_CTL(DPLL_ID_WRPLL1));
510 		else
511 			wrpll_ctl = vgpu_vreg_t(vgpu, WRPLL_CTL(DPLL_ID_WRPLL2));
512 
513 		switch (wrpll_ctl & WRPLL_REF_MASK) {
514 		case WRPLL_REF_PCH_SSC:
515 			refclk = vgpu->gvt->gt->i915->display.dpll.ref_clks.ssc;
516 			break;
517 		case WRPLL_REF_LCPLL:
518 			refclk = 2700000;
519 			break;
520 		default:
521 			gvt_dbg_dpy("vgpu-%d PORT_%c WRPLL can't get refclk 0x%08x\n",
522 				    vgpu->id, port_name(port), wrpll_ctl);
523 			goto out;
524 		}
525 
526 		r = wrpll_ctl & WRPLL_DIVIDER_REF_MASK;
527 		p = (wrpll_ctl & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
528 		n = (wrpll_ctl & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
529 
530 		dp_br = (refclk * n / 10) / (p * r) * 2;
531 		break;
532 	}
533 	default:
534 		gvt_dbg_dpy("vgpu-%d PORT_%c has invalid clock select 0x%08x\n",
535 			    vgpu->id, port_name(port), vgpu_vreg_t(vgpu, PORT_CLK_SEL(port)));
536 		break;
537 	}
538 
539 out:
540 	return dp_br;
541 }
542 
543 static u32 bxt_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
544 {
545 	u32 dp_br = 0;
546 	int refclk = vgpu->gvt->gt->i915->display.dpll.ref_clks.nssc;
547 	enum dpio_phy phy = DPIO_PHY0;
548 	enum dpio_channel ch = DPIO_CH0;
549 	struct dpll clock = {};
550 	u32 temp;
551 
552 	/* Port to PHY mapping is fixed, see bxt_ddi_phy_info{} */
553 	switch (port) {
554 	case PORT_A:
555 		phy = DPIO_PHY1;
556 		ch = DPIO_CH0;
557 		break;
558 	case PORT_B:
559 		phy = DPIO_PHY0;
560 		ch = DPIO_CH0;
561 		break;
562 	case PORT_C:
563 		phy = DPIO_PHY0;
564 		ch = DPIO_CH1;
565 		break;
566 	default:
567 		gvt_dbg_dpy("vgpu-%d no PHY for PORT_%c\n", vgpu->id, port_name(port));
568 		goto out;
569 	}
570 
571 	temp = vgpu_vreg_t(vgpu, BXT_PORT_PLL_ENABLE(port));
572 	if (!(temp & PORT_PLL_ENABLE) || !(temp & PORT_PLL_LOCK)) {
573 		gvt_dbg_dpy("vgpu-%d PORT_%c PLL_ENABLE 0x%08x isn't enabled or locked\n",
574 			    vgpu->id, port_name(port), temp);
575 		goto out;
576 	}
577 
578 	clock.m1 = 2;
579 	clock.m2 = REG_FIELD_GET(PORT_PLL_M2_INT_MASK,
580 				 vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 0))) << 22;
581 	if (vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 3)) & PORT_PLL_M2_FRAC_ENABLE)
582 		clock.m2 |= REG_FIELD_GET(PORT_PLL_M2_FRAC_MASK,
583 					  vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 2)));
584 	clock.n = REG_FIELD_GET(PORT_PLL_N_MASK,
585 				vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 1)));
586 	clock.p1 = REG_FIELD_GET(PORT_PLL_P1_MASK,
587 				 vgpu_vreg_t(vgpu, BXT_PORT_PLL_EBB_0(phy, ch)));
588 	clock.p2 = REG_FIELD_GET(PORT_PLL_P2_MASK,
589 				 vgpu_vreg_t(vgpu, BXT_PORT_PLL_EBB_0(phy, ch)));
590 	clock.m = clock.m1 * clock.m2;
591 	clock.p = clock.p1 * clock.p2 * 5;
592 
593 	if (clock.n == 0 || clock.p == 0) {
594 		gvt_dbg_dpy("vgpu-%d PORT_%c PLL has invalid divider\n", vgpu->id, port_name(port));
595 		goto out;
596 	}
597 
598 	clock.vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock.m), clock.n << 22);
599 	clock.dot = DIV_ROUND_CLOSEST(clock.vco, clock.p);
600 
601 	dp_br = clock.dot;
602 
603 out:
604 	return dp_br;
605 }
606 
607 static u32 skl_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
608 {
609 	u32 dp_br = 0;
610 	enum intel_dpll_id dpll_id = DPLL_ID_SKL_DPLL0;
611 
612 	/* Find the enabled DPLL for the DDI/PORT */
613 	if (!(vgpu_vreg_t(vgpu, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_OFF(port)) &&
614 	    (vgpu_vreg_t(vgpu, DPLL_CTRL2) & DPLL_CTRL2_DDI_SEL_OVERRIDE(port))) {
615 		dpll_id += (vgpu_vreg_t(vgpu, DPLL_CTRL2) &
616 			DPLL_CTRL2_DDI_CLK_SEL_MASK(port)) >>
617 			DPLL_CTRL2_DDI_CLK_SEL_SHIFT(port);
618 	} else {
619 		gvt_dbg_dpy("vgpu-%d DPLL for PORT_%c isn't turned on\n",
620 			    vgpu->id, port_name(port));
621 		return dp_br;
622 	}
623 
624 	/* Find PLL output frequency from correct DPLL, and get bir rate */
625 	switch ((vgpu_vreg_t(vgpu, DPLL_CTRL1) &
626 		DPLL_CTRL1_LINK_RATE_MASK(dpll_id)) >>
627 		DPLL_CTRL1_LINK_RATE_SHIFT(dpll_id)) {
628 		case DPLL_CTRL1_LINK_RATE_810:
629 			dp_br = 81000 * 2;
630 			break;
631 		case DPLL_CTRL1_LINK_RATE_1080:
632 			dp_br = 108000 * 2;
633 			break;
634 		case DPLL_CTRL1_LINK_RATE_1350:
635 			dp_br = 135000 * 2;
636 			break;
637 		case DPLL_CTRL1_LINK_RATE_1620:
638 			dp_br = 162000 * 2;
639 			break;
640 		case DPLL_CTRL1_LINK_RATE_2160:
641 			dp_br = 216000 * 2;
642 			break;
643 		case DPLL_CTRL1_LINK_RATE_2700:
644 			dp_br = 270000 * 2;
645 			break;
646 		default:
647 			dp_br = 0;
648 			gvt_dbg_dpy("vgpu-%d PORT_%c fail to get DPLL-%d freq\n",
649 				    vgpu->id, port_name(port), dpll_id);
650 	}
651 
652 	return dp_br;
653 }
654 
655 static void vgpu_update_refresh_rate(struct intel_vgpu *vgpu)
656 {
657 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
658 	enum port port;
659 	u32 dp_br, link_m, link_n, htotal, vtotal;
660 
661 	/* Find DDI/PORT assigned to TRANSCODER_A, expect B or D */
662 	port = (vgpu_vreg_t(vgpu, TRANS_DDI_FUNC_CTL(dev_priv, TRANSCODER_A)) &
663 		TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
664 	if (port != PORT_B && port != PORT_D) {
665 		gvt_dbg_dpy("vgpu-%d unsupported PORT_%c\n", vgpu->id, port_name(port));
666 		return;
667 	}
668 
669 	/* Calculate DP bitrate from PLL */
670 	if (IS_BROADWELL(dev_priv))
671 		dp_br = bdw_vgpu_get_dp_bitrate(vgpu, port);
672 	else if (IS_BROXTON(dev_priv))
673 		dp_br = bxt_vgpu_get_dp_bitrate(vgpu, port);
674 	else
675 		dp_br = skl_vgpu_get_dp_bitrate(vgpu, port);
676 
677 	/* Get DP link symbol clock M/N */
678 	link_m = vgpu_vreg_t(vgpu, PIPE_LINK_M1(dev_priv, TRANSCODER_A));
679 	link_n = vgpu_vreg_t(vgpu, PIPE_LINK_N1(dev_priv, TRANSCODER_A));
680 
681 	/* Get H/V total from transcoder timing */
682 	htotal = (vgpu_vreg_t(vgpu, TRANS_HTOTAL(dev_priv, TRANSCODER_A)) >> TRANS_HTOTAL_SHIFT);
683 	vtotal = (vgpu_vreg_t(vgpu, TRANS_VTOTAL(dev_priv, TRANSCODER_A)) >> TRANS_VTOTAL_SHIFT);
684 
685 	if (dp_br && link_n && htotal && vtotal) {
686 		u64 pixel_clk = 0;
687 		u32 new_rate = 0;
688 		u32 *old_rate = &(intel_vgpu_port(vgpu, vgpu->display.port_num)->vrefresh_k);
689 
690 		/* Calcuate pixel clock by (ls_clk * M / N) */
691 		pixel_clk = div_u64(mul_u32_u32(link_m, dp_br), link_n);
692 		pixel_clk *= MSEC_PER_SEC;
693 
694 		/* Calcuate refresh rate by (pixel_clk / (h_total * v_total)) */
695 		new_rate = DIV64_U64_ROUND_CLOSEST(mul_u64_u32_shr(pixel_clk, MSEC_PER_SEC, 0), mul_u32_u32(htotal + 1, vtotal + 1));
696 
697 		if (*old_rate != new_rate)
698 			*old_rate = new_rate;
699 
700 		gvt_dbg_dpy("vgpu-%d PIPE_%c refresh rate updated to %d\n",
701 			    vgpu->id, pipe_name(PIPE_A), new_rate);
702 	}
703 }
704 
705 static int pipeconf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
706 		void *p_data, unsigned int bytes)
707 {
708 	u32 data;
709 
710 	write_vreg(vgpu, offset, p_data, bytes);
711 	data = vgpu_vreg(vgpu, offset);
712 
713 	if (data & TRANSCONF_ENABLE) {
714 		vgpu_vreg(vgpu, offset) |= TRANSCONF_STATE_ENABLE;
715 		vgpu_update_refresh_rate(vgpu);
716 		vgpu_update_vblank_emulation(vgpu, true);
717 	} else {
718 		vgpu_vreg(vgpu, offset) &= ~TRANSCONF_STATE_ENABLE;
719 		vgpu_update_vblank_emulation(vgpu, false);
720 	}
721 	return 0;
722 }
723 
724 /* sorted in ascending order */
725 static i915_reg_t force_nonpriv_white_list[] = {
726 	_MMIO(0xd80),
727 	GEN9_CS_DEBUG_MODE1, //_MMIO(0x20ec)
728 	GEN9_CTX_PREEMPT_REG,//_MMIO(0x2248)
729 	CL_PRIMITIVES_COUNT, //_MMIO(0x2340)
730 	PS_INVOCATION_COUNT, //_MMIO(0x2348)
731 	PS_DEPTH_COUNT, //_MMIO(0x2350)
732 	GEN8_CS_CHICKEN1,//_MMIO(0x2580)
733 	_MMIO(0x2690),
734 	_MMIO(0x2694),
735 	_MMIO(0x2698),
736 	_MMIO(0x2754),
737 	_MMIO(0x28a0),
738 	_MMIO(0x4de0),
739 	_MMIO(0x4de4),
740 	_MMIO(0x4dfc),
741 	GEN7_COMMON_SLICE_CHICKEN1,//_MMIO(0x7010)
742 	_MMIO(0x7014),
743 	HDC_CHICKEN0,//_MMIO(0x7300)
744 	GEN8_HDC_CHICKEN1,//_MMIO(0x7304)
745 	_MMIO(0x7700),
746 	_MMIO(0x7704),
747 	_MMIO(0x7708),
748 	_MMIO(0x770c),
749 	_MMIO(0x83a8),
750 	_MMIO(0xb110),
751 	_MMIO(0xb118),
752 	_MMIO(0xe100),
753 	_MMIO(0xe18c),
754 	_MMIO(0xe48c),
755 	_MMIO(0xe5f4),
756 	_MMIO(0x64844),
757 };
758 
759 /* a simple bsearch */
760 static inline bool in_whitelist(u32 reg)
761 {
762 	int left = 0, right = ARRAY_SIZE(force_nonpriv_white_list);
763 	i915_reg_t *array = force_nonpriv_white_list;
764 
765 	while (left < right) {
766 		int mid = (left + right)/2;
767 
768 		if (reg > array[mid].reg)
769 			left = mid + 1;
770 		else if (reg < array[mid].reg)
771 			right = mid;
772 		else
773 			return true;
774 	}
775 	return false;
776 }
777 
778 static int force_nonpriv_write(struct intel_vgpu *vgpu,
779 	unsigned int offset, void *p_data, unsigned int bytes)
780 {
781 	u32 reg_nonpriv = (*(u32 *)p_data) & REG_GENMASK(25, 2);
782 	const struct intel_engine_cs *engine =
783 		intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
784 
785 	if (bytes != 4 || !IS_ALIGNED(offset, bytes) || !engine) {
786 		gvt_err("vgpu(%d) Invalid FORCE_NONPRIV offset %x(%dB)\n",
787 			vgpu->id, offset, bytes);
788 		return -EINVAL;
789 	}
790 
791 	if (!in_whitelist(reg_nonpriv) &&
792 	    reg_nonpriv != i915_mmio_reg_offset(RING_NOPID(engine->mmio_base))) {
793 		gvt_err("vgpu(%d) Invalid FORCE_NONPRIV write %x at offset %x\n",
794 			vgpu->id, reg_nonpriv, offset);
795 	} else
796 		intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes);
797 
798 	return 0;
799 }
800 
801 static int ddi_buf_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
802 		void *p_data, unsigned int bytes)
803 {
804 	write_vreg(vgpu, offset, p_data, bytes);
805 
806 	if (vgpu_vreg(vgpu, offset) & DDI_BUF_CTL_ENABLE) {
807 		vgpu_vreg(vgpu, offset) &= ~DDI_BUF_IS_IDLE;
808 	} else {
809 		vgpu_vreg(vgpu, offset) |= DDI_BUF_IS_IDLE;
810 		if (offset == i915_mmio_reg_offset(DDI_BUF_CTL(PORT_E)))
811 			vgpu_vreg_t(vgpu, DP_TP_STATUS(PORT_E))
812 				&= ~DP_TP_STATUS_AUTOTRAIN_DONE;
813 	}
814 	return 0;
815 }
816 
817 static int fdi_rx_iir_mmio_write(struct intel_vgpu *vgpu,
818 		unsigned int offset, void *p_data, unsigned int bytes)
819 {
820 	vgpu_vreg(vgpu, offset) &= ~*(u32 *)p_data;
821 	return 0;
822 }
823 
824 #define FDI_LINK_TRAIN_PATTERN1         0
825 #define FDI_LINK_TRAIN_PATTERN2         1
826 
827 static int fdi_auto_training_started(struct intel_vgpu *vgpu)
828 {
829 	u32 ddi_buf_ctl = vgpu_vreg_t(vgpu, DDI_BUF_CTL(PORT_E));
830 	u32 rx_ctl = vgpu_vreg(vgpu, _FDI_RXA_CTL);
831 	u32 tx_ctl = vgpu_vreg_t(vgpu, DP_TP_CTL(PORT_E));
832 
833 	if ((ddi_buf_ctl & DDI_BUF_CTL_ENABLE) &&
834 			(rx_ctl & FDI_RX_ENABLE) &&
835 			(rx_ctl & FDI_AUTO_TRAINING) &&
836 			(tx_ctl & DP_TP_CTL_ENABLE) &&
837 			(tx_ctl & DP_TP_CTL_FDI_AUTOTRAIN))
838 		return 1;
839 	else
840 		return 0;
841 }
842 
843 static int check_fdi_rx_train_status(struct intel_vgpu *vgpu,
844 		enum pipe pipe, unsigned int train_pattern)
845 {
846 	i915_reg_t fdi_rx_imr, fdi_tx_ctl, fdi_rx_ctl;
847 	unsigned int fdi_rx_check_bits, fdi_tx_check_bits;
848 	unsigned int fdi_rx_train_bits, fdi_tx_train_bits;
849 	unsigned int fdi_iir_check_bits;
850 
851 	fdi_rx_imr = FDI_RX_IMR(pipe);
852 	fdi_tx_ctl = FDI_TX_CTL(pipe);
853 	fdi_rx_ctl = FDI_RX_CTL(pipe);
854 
855 	if (train_pattern == FDI_LINK_TRAIN_PATTERN1) {
856 		fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_1_CPT;
857 		fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_1;
858 		fdi_iir_check_bits = FDI_RX_BIT_LOCK;
859 	} else if (train_pattern == FDI_LINK_TRAIN_PATTERN2) {
860 		fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_2_CPT;
861 		fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_2;
862 		fdi_iir_check_bits = FDI_RX_SYMBOL_LOCK;
863 	} else {
864 		gvt_vgpu_err("Invalid train pattern %d\n", train_pattern);
865 		return -EINVAL;
866 	}
867 
868 	fdi_rx_check_bits = FDI_RX_ENABLE | fdi_rx_train_bits;
869 	fdi_tx_check_bits = FDI_TX_ENABLE | fdi_tx_train_bits;
870 
871 	/* If imr bit has been masked */
872 	if (vgpu_vreg_t(vgpu, fdi_rx_imr) & fdi_iir_check_bits)
873 		return 0;
874 
875 	if (((vgpu_vreg_t(vgpu, fdi_tx_ctl) & fdi_tx_check_bits)
876 			== fdi_tx_check_bits)
877 		&& ((vgpu_vreg_t(vgpu, fdi_rx_ctl) & fdi_rx_check_bits)
878 			== fdi_rx_check_bits))
879 		return 1;
880 	else
881 		return 0;
882 }
883 
884 #define INVALID_INDEX (~0U)
885 
886 static unsigned int calc_index(unsigned int offset, i915_reg_t _start,
887 			       i915_reg_t _next, i915_reg_t _end)
888 {
889 	u32 start = i915_mmio_reg_offset(_start);
890 	u32 next = i915_mmio_reg_offset(_next);
891 	u32 end = i915_mmio_reg_offset(_end);
892 	u32 stride = next - start;
893 
894 	if (offset < start || offset > end)
895 		return INVALID_INDEX;
896 	offset -= start;
897 	return offset / stride;
898 }
899 
900 #define FDI_RX_CTL_TO_PIPE(offset) \
901 	calc_index(offset, FDI_RX_CTL(PIPE_A), FDI_RX_CTL(PIPE_B), FDI_RX_CTL(PIPE_C))
902 
903 #define FDI_TX_CTL_TO_PIPE(offset) \
904 	calc_index(offset, FDI_TX_CTL(PIPE_A), FDI_TX_CTL(PIPE_B), FDI_TX_CTL(PIPE_C))
905 
906 #define FDI_RX_IMR_TO_PIPE(offset) \
907 	calc_index(offset, FDI_RX_IMR(PIPE_A), FDI_RX_IMR(PIPE_B), FDI_RX_IMR(PIPE_C))
908 
909 static int update_fdi_rx_iir_status(struct intel_vgpu *vgpu,
910 		unsigned int offset, void *p_data, unsigned int bytes)
911 {
912 	i915_reg_t fdi_rx_iir;
913 	unsigned int index;
914 	int ret;
915 
916 	if (FDI_RX_CTL_TO_PIPE(offset) != INVALID_INDEX)
917 		index = FDI_RX_CTL_TO_PIPE(offset);
918 	else if (FDI_TX_CTL_TO_PIPE(offset) != INVALID_INDEX)
919 		index = FDI_TX_CTL_TO_PIPE(offset);
920 	else if (FDI_RX_IMR_TO_PIPE(offset) != INVALID_INDEX)
921 		index = FDI_RX_IMR_TO_PIPE(offset);
922 	else {
923 		gvt_vgpu_err("Unsupported registers %x\n", offset);
924 		return -EINVAL;
925 	}
926 
927 	write_vreg(vgpu, offset, p_data, bytes);
928 
929 	fdi_rx_iir = FDI_RX_IIR(index);
930 
931 	ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN1);
932 	if (ret < 0)
933 		return ret;
934 	if (ret)
935 		vgpu_vreg_t(vgpu, fdi_rx_iir) |= FDI_RX_BIT_LOCK;
936 
937 	ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN2);
938 	if (ret < 0)
939 		return ret;
940 	if (ret)
941 		vgpu_vreg_t(vgpu, fdi_rx_iir) |= FDI_RX_SYMBOL_LOCK;
942 
943 	if (offset == _FDI_RXA_CTL)
944 		if (fdi_auto_training_started(vgpu))
945 			vgpu_vreg_t(vgpu, DP_TP_STATUS(PORT_E)) |=
946 				DP_TP_STATUS_AUTOTRAIN_DONE;
947 	return 0;
948 }
949 
950 #define DP_TP_CTL_TO_PORT(offset) \
951 	calc_index(offset, DP_TP_CTL(PORT_A), DP_TP_CTL(PORT_B), DP_TP_CTL(PORT_E))
952 
953 static int dp_tp_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
954 		void *p_data, unsigned int bytes)
955 {
956 	i915_reg_t status_reg;
957 	unsigned int index;
958 	u32 data;
959 
960 	write_vreg(vgpu, offset, p_data, bytes);
961 
962 	index = DP_TP_CTL_TO_PORT(offset);
963 	data = (vgpu_vreg(vgpu, offset) & GENMASK(10, 8)) >> 8;
964 	if (data == 0x2) {
965 		status_reg = DP_TP_STATUS(index);
966 		vgpu_vreg_t(vgpu, status_reg) |= (1 << 25);
967 	}
968 	return 0;
969 }
970 
971 static int dp_tp_status_mmio_write(struct intel_vgpu *vgpu,
972 		unsigned int offset, void *p_data, unsigned int bytes)
973 {
974 	u32 reg_val;
975 	u32 sticky_mask;
976 
977 	reg_val = *((u32 *)p_data);
978 	sticky_mask = GENMASK(27, 26) | (1 << 24);
979 
980 	vgpu_vreg(vgpu, offset) = (reg_val & ~sticky_mask) |
981 		(vgpu_vreg(vgpu, offset) & sticky_mask);
982 	vgpu_vreg(vgpu, offset) &= ~(reg_val & sticky_mask);
983 	return 0;
984 }
985 
986 static int pch_adpa_mmio_write(struct intel_vgpu *vgpu,
987 		unsigned int offset, void *p_data, unsigned int bytes)
988 {
989 	u32 data;
990 
991 	write_vreg(vgpu, offset, p_data, bytes);
992 	data = vgpu_vreg(vgpu, offset);
993 
994 	if (data & ADPA_CRT_HOTPLUG_FORCE_TRIGGER)
995 		vgpu_vreg(vgpu, offset) &= ~ADPA_CRT_HOTPLUG_FORCE_TRIGGER;
996 	return 0;
997 }
998 
999 static int south_chicken2_mmio_write(struct intel_vgpu *vgpu,
1000 		unsigned int offset, void *p_data, unsigned int bytes)
1001 {
1002 	u32 data;
1003 
1004 	write_vreg(vgpu, offset, p_data, bytes);
1005 	data = vgpu_vreg(vgpu, offset);
1006 
1007 	if (data & FDI_MPHY_IOSFSB_RESET_CTL)
1008 		vgpu_vreg(vgpu, offset) |= FDI_MPHY_IOSFSB_RESET_STATUS;
1009 	else
1010 		vgpu_vreg(vgpu, offset) &= ~FDI_MPHY_IOSFSB_RESET_STATUS;
1011 	return 0;
1012 }
1013 
1014 #define DSPSURF_TO_PIPE(dev_priv, offset) \
1015 	calc_index(offset, DSPSURF(dev_priv, PIPE_A), DSPSURF(dev_priv, PIPE_B), DSPSURF(dev_priv, PIPE_C))
1016 
1017 static int pri_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1018 		void *p_data, unsigned int bytes)
1019 {
1020 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1021 	u32 pipe = DSPSURF_TO_PIPE(dev_priv, offset);
1022 	int event = SKL_FLIP_EVENT(pipe, PLANE_PRIMARY);
1023 
1024 	write_vreg(vgpu, offset, p_data, bytes);
1025 	vgpu_vreg_t(vgpu, DSPSURFLIVE(dev_priv, pipe)) = vgpu_vreg(vgpu, offset);
1026 
1027 	vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(dev_priv, pipe))++;
1028 
1029 	if (vgpu_vreg_t(vgpu, DSPCNTR(dev_priv, pipe)) & PLANE_CTL_ASYNC_FLIP)
1030 		intel_vgpu_trigger_virtual_event(vgpu, event);
1031 	else
1032 		set_bit(event, vgpu->irq.flip_done_event[pipe]);
1033 
1034 	return 0;
1035 }
1036 
1037 #define SPRSURF_TO_PIPE(offset) \
1038 	calc_index(offset, SPRSURF(PIPE_A), SPRSURF(PIPE_B), SPRSURF(PIPE_C))
1039 
1040 static int spr_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1041 		void *p_data, unsigned int bytes)
1042 {
1043 	u32 pipe = SPRSURF_TO_PIPE(offset);
1044 	int event = SKL_FLIP_EVENT(pipe, PLANE_SPRITE0);
1045 
1046 	write_vreg(vgpu, offset, p_data, bytes);
1047 	vgpu_vreg_t(vgpu, SPRSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
1048 
1049 	if (vgpu_vreg_t(vgpu, SPRCTL(pipe)) & PLANE_CTL_ASYNC_FLIP)
1050 		intel_vgpu_trigger_virtual_event(vgpu, event);
1051 	else
1052 		set_bit(event, vgpu->irq.flip_done_event[pipe]);
1053 
1054 	return 0;
1055 }
1056 
1057 static int reg50080_mmio_write(struct intel_vgpu *vgpu,
1058 			       unsigned int offset, void *p_data,
1059 			       unsigned int bytes)
1060 {
1061 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1062 	enum pipe pipe = REG_50080_TO_PIPE(offset);
1063 	enum plane_id plane = REG_50080_TO_PLANE(offset);
1064 	int event = SKL_FLIP_EVENT(pipe, plane);
1065 
1066 	write_vreg(vgpu, offset, p_data, bytes);
1067 	if (plane == PLANE_PRIMARY) {
1068 		vgpu_vreg_t(vgpu, DSPSURFLIVE(dev_priv, pipe)) = vgpu_vreg(vgpu, offset);
1069 		vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(dev_priv, pipe))++;
1070 	} else {
1071 		vgpu_vreg_t(vgpu, SPRSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
1072 	}
1073 
1074 	if ((vgpu_vreg(vgpu, offset) & REG50080_FLIP_TYPE_MASK) == REG50080_FLIP_TYPE_ASYNC)
1075 		intel_vgpu_trigger_virtual_event(vgpu, event);
1076 	else
1077 		set_bit(event, vgpu->irq.flip_done_event[pipe]);
1078 
1079 	return 0;
1080 }
1081 
1082 static int trigger_aux_channel_interrupt(struct intel_vgpu *vgpu,
1083 		unsigned int reg)
1084 {
1085 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1086 	enum intel_gvt_event_type event;
1087 
1088 	if (reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_A)))
1089 		event = AUX_CHANNEL_A;
1090 	else if (reg == i915_mmio_reg_offset(PCH_DP_AUX_CH_CTL(AUX_CH_B)) ||
1091 		 reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_B)))
1092 		event = AUX_CHANNEL_B;
1093 	else if (reg == i915_mmio_reg_offset(PCH_DP_AUX_CH_CTL(AUX_CH_C)) ||
1094 		 reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_C)))
1095 		event = AUX_CHANNEL_C;
1096 	else if (reg == i915_mmio_reg_offset(PCH_DP_AUX_CH_CTL(AUX_CH_D)) ||
1097 		 reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_D)))
1098 		event = AUX_CHANNEL_D;
1099 	else {
1100 		drm_WARN_ON(&dev_priv->drm, true);
1101 		return -EINVAL;
1102 	}
1103 
1104 	intel_vgpu_trigger_virtual_event(vgpu, event);
1105 	return 0;
1106 }
1107 
1108 static int dp_aux_ch_ctl_trans_done(struct intel_vgpu *vgpu, u32 value,
1109 		unsigned int reg, int len, bool data_valid)
1110 {
1111 	/* mark transaction done */
1112 	value |= DP_AUX_CH_CTL_DONE;
1113 	value &= ~DP_AUX_CH_CTL_SEND_BUSY;
1114 	value &= ~DP_AUX_CH_CTL_RECEIVE_ERROR;
1115 
1116 	if (data_valid)
1117 		value &= ~DP_AUX_CH_CTL_TIME_OUT_ERROR;
1118 	else
1119 		value |= DP_AUX_CH_CTL_TIME_OUT_ERROR;
1120 
1121 	/* message size */
1122 	value &= ~(0xf << 20);
1123 	value |= (len << 20);
1124 	vgpu_vreg(vgpu, reg) = value;
1125 
1126 	if (value & DP_AUX_CH_CTL_INTERRUPT)
1127 		return trigger_aux_channel_interrupt(vgpu, reg);
1128 	return 0;
1129 }
1130 
1131 static void dp_aux_ch_ctl_link_training(struct intel_vgpu_dpcd_data *dpcd,
1132 		u8 t)
1133 {
1134 	if ((t & DP_TRAINING_PATTERN_MASK) == DP_TRAINING_PATTERN_1) {
1135 		/* training pattern 1 for CR */
1136 		/* set LANE0_CR_DONE, LANE1_CR_DONE */
1137 		dpcd->data[DP_LANE0_1_STATUS] |= DP_LANE_CR_DONE |
1138 			DP_LANE_CR_DONE << 4;
1139 		/* set LANE2_CR_DONE, LANE3_CR_DONE */
1140 		dpcd->data[DP_LANE2_3_STATUS] |= DP_LANE_CR_DONE |
1141 			DP_LANE_CR_DONE << 4;
1142 	} else if ((t & DP_TRAINING_PATTERN_MASK) ==
1143 			DP_TRAINING_PATTERN_2) {
1144 		/* training pattern 2 for EQ */
1145 		/* Set CHANNEL_EQ_DONE and  SYMBOL_LOCKED for Lane0_1 */
1146 		dpcd->data[DP_LANE0_1_STATUS] |= DP_LANE_CHANNEL_EQ_DONE |
1147 			DP_LANE_CHANNEL_EQ_DONE << 4;
1148 		dpcd->data[DP_LANE0_1_STATUS] |= DP_LANE_SYMBOL_LOCKED |
1149 			DP_LANE_SYMBOL_LOCKED << 4;
1150 		/* Set CHANNEL_EQ_DONE and  SYMBOL_LOCKED for Lane2_3 */
1151 		dpcd->data[DP_LANE2_3_STATUS] |= DP_LANE_CHANNEL_EQ_DONE |
1152 			DP_LANE_CHANNEL_EQ_DONE << 4;
1153 		dpcd->data[DP_LANE2_3_STATUS] |= DP_LANE_SYMBOL_LOCKED |
1154 			DP_LANE_SYMBOL_LOCKED << 4;
1155 		/* set INTERLANE_ALIGN_DONE */
1156 		dpcd->data[DP_LANE_ALIGN_STATUS_UPDATED] |=
1157 			DP_INTERLANE_ALIGN_DONE;
1158 	} else if ((t & DP_TRAINING_PATTERN_MASK) ==
1159 			DP_TRAINING_PATTERN_DISABLE) {
1160 		/* finish link training */
1161 		/* set sink status as synchronized */
1162 		dpcd->data[DP_SINK_STATUS] = DP_RECEIVE_PORT_0_STATUS |
1163 			DP_RECEIVE_PORT_1_STATUS;
1164 	}
1165 }
1166 
1167 #define OFFSET_TO_DP_AUX_PORT(offset) (((offset) & 0xF00) >> 8)
1168 
1169 #define dpy_is_valid_port(port)	\
1170 		(((port) >= PORT_A) && ((port) < I915_MAX_PORTS))
1171 
1172 static int dp_aux_ch_ctl_mmio_write(struct intel_vgpu *vgpu,
1173 		unsigned int offset, void *p_data, unsigned int bytes)
1174 {
1175 	struct intel_vgpu_display *display = &vgpu->display;
1176 	int msg, addr, ctrl, op, len;
1177 	int port_index = OFFSET_TO_DP_AUX_PORT(offset);
1178 	struct intel_vgpu_dpcd_data *dpcd = NULL;
1179 	struct intel_vgpu_port *port = NULL;
1180 	u32 data;
1181 
1182 	if (!dpy_is_valid_port(port_index)) {
1183 		gvt_vgpu_err("Unsupported DP port access!\n");
1184 		return 0;
1185 	}
1186 
1187 	write_vreg(vgpu, offset, p_data, bytes);
1188 	data = vgpu_vreg(vgpu, offset);
1189 
1190 	if (GRAPHICS_VER(vgpu->gvt->gt->i915) >= 9 &&
1191 	    offset != i915_mmio_reg_offset(DP_AUX_CH_CTL(port_index))) {
1192 		/* SKL DPB/C/D aux ctl register changed */
1193 		return 0;
1194 	} else if (IS_BROADWELL(vgpu->gvt->gt->i915) &&
1195 		   offset != i915_mmio_reg_offset(port_index ?
1196 						  PCH_DP_AUX_CH_CTL(port_index) :
1197 						  DP_AUX_CH_CTL(port_index))) {
1198 		/* write to the data registers */
1199 		return 0;
1200 	}
1201 
1202 	if (!(data & DP_AUX_CH_CTL_SEND_BUSY)) {
1203 		/* just want to clear the sticky bits */
1204 		vgpu_vreg(vgpu, offset) = 0;
1205 		return 0;
1206 	}
1207 
1208 	port = &display->ports[port_index];
1209 	dpcd = port->dpcd;
1210 
1211 	/* read out message from DATA1 register */
1212 	msg = vgpu_vreg(vgpu, offset + 4);
1213 	addr = (msg >> 8) & 0xffff;
1214 	ctrl = (msg >> 24) & 0xff;
1215 	len = msg & 0xff;
1216 	op = ctrl >> 4;
1217 
1218 	if (op == DP_AUX_NATIVE_WRITE) {
1219 		int t;
1220 		u8 buf[16];
1221 
1222 		if ((addr + len + 1) >= DPCD_SIZE) {
1223 			/*
1224 			 * Write request exceeds what we supported,
1225 			 * DCPD spec: When a Source Device is writing a DPCD
1226 			 * address not supported by the Sink Device, the Sink
1227 			 * Device shall reply with AUX NACK and “M” equal to
1228 			 * zero.
1229 			 */
1230 
1231 			/* NAK the write */
1232 			vgpu_vreg(vgpu, offset + 4) = AUX_NATIVE_REPLY_NAK;
1233 			dp_aux_ch_ctl_trans_done(vgpu, data, offset, 2, true);
1234 			return 0;
1235 		}
1236 
1237 		/*
1238 		 * Write request format: Headr (command + address + size) occupies
1239 		 * 4 bytes, followed by (len + 1) bytes of data. See details at
1240 		 * intel_dp_aux_transfer().
1241 		 */
1242 		if ((len + 1 + 4) > AUX_BURST_SIZE) {
1243 			gvt_vgpu_err("dp_aux_header: len %d is too large\n", len);
1244 			return -EINVAL;
1245 		}
1246 
1247 		/* unpack data from vreg to buf */
1248 		for (t = 0; t < 4; t++) {
1249 			u32 r = vgpu_vreg(vgpu, offset + 8 + t * 4);
1250 
1251 			buf[t * 4] = (r >> 24) & 0xff;
1252 			buf[t * 4 + 1] = (r >> 16) & 0xff;
1253 			buf[t * 4 + 2] = (r >> 8) & 0xff;
1254 			buf[t * 4 + 3] = r & 0xff;
1255 		}
1256 
1257 		/* write to virtual DPCD */
1258 		if (dpcd && dpcd->data_valid) {
1259 			for (t = 0; t <= len; t++) {
1260 				int p = addr + t;
1261 
1262 				dpcd->data[p] = buf[t];
1263 				/* check for link training */
1264 				if (p == DP_TRAINING_PATTERN_SET)
1265 					dp_aux_ch_ctl_link_training(dpcd,
1266 							buf[t]);
1267 			}
1268 		}
1269 
1270 		/* ACK the write */
1271 		vgpu_vreg(vgpu, offset + 4) = 0;
1272 		dp_aux_ch_ctl_trans_done(vgpu, data, offset, 1,
1273 				dpcd && dpcd->data_valid);
1274 		return 0;
1275 	}
1276 
1277 	if (op == DP_AUX_NATIVE_READ) {
1278 		int idx, i, ret = 0;
1279 
1280 		if ((addr + len + 1) >= DPCD_SIZE) {
1281 			/*
1282 			 * read request exceeds what we supported
1283 			 * DPCD spec: A Sink Device receiving a Native AUX CH
1284 			 * read request for an unsupported DPCD address must
1285 			 * reply with an AUX ACK and read data set equal to
1286 			 * zero instead of replying with AUX NACK.
1287 			 */
1288 
1289 			/* ACK the READ*/
1290 			vgpu_vreg(vgpu, offset + 4) = 0;
1291 			vgpu_vreg(vgpu, offset + 8) = 0;
1292 			vgpu_vreg(vgpu, offset + 12) = 0;
1293 			vgpu_vreg(vgpu, offset + 16) = 0;
1294 			vgpu_vreg(vgpu, offset + 20) = 0;
1295 
1296 			dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2,
1297 					true);
1298 			return 0;
1299 		}
1300 
1301 		for (idx = 1; idx <= 5; idx++) {
1302 			/* clear the data registers */
1303 			vgpu_vreg(vgpu, offset + 4 * idx) = 0;
1304 		}
1305 
1306 		/*
1307 		 * Read reply format: ACK (1 byte) plus (len + 1) bytes of data.
1308 		 */
1309 		if ((len + 2) > AUX_BURST_SIZE) {
1310 			gvt_vgpu_err("dp_aux_header: len %d is too large\n", len);
1311 			return -EINVAL;
1312 		}
1313 
1314 		/* read from virtual DPCD to vreg */
1315 		/* first 4 bytes: [ACK][addr][addr+1][addr+2] */
1316 		if (dpcd && dpcd->data_valid) {
1317 			for (i = 1; i <= (len + 1); i++) {
1318 				int t;
1319 
1320 				t = dpcd->data[addr + i - 1];
1321 				t <<= (24 - 8 * (i % 4));
1322 				ret |= t;
1323 
1324 				if ((i % 4 == 3) || (i == (len + 1))) {
1325 					vgpu_vreg(vgpu, offset +
1326 							(i / 4 + 1) * 4) = ret;
1327 					ret = 0;
1328 				}
1329 			}
1330 		}
1331 		dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2,
1332 				dpcd && dpcd->data_valid);
1333 		return 0;
1334 	}
1335 
1336 	/* i2c transaction starts */
1337 	intel_gvt_i2c_handle_aux_ch_write(vgpu, port_index, offset, p_data);
1338 
1339 	if (data & DP_AUX_CH_CTL_INTERRUPT)
1340 		trigger_aux_channel_interrupt(vgpu, offset);
1341 	return 0;
1342 }
1343 
1344 static int mbctl_write(struct intel_vgpu *vgpu, unsigned int offset,
1345 		void *p_data, unsigned int bytes)
1346 {
1347 	*(u32 *)p_data &= (~GEN6_MBCTL_ENABLE_BOOT_FETCH);
1348 	write_vreg(vgpu, offset, p_data, bytes);
1349 	return 0;
1350 }
1351 
1352 static int vga_control_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1353 		void *p_data, unsigned int bytes)
1354 {
1355 	bool vga_disable;
1356 
1357 	write_vreg(vgpu, offset, p_data, bytes);
1358 	vga_disable = vgpu_vreg(vgpu, offset) & VGA_DISP_DISABLE;
1359 
1360 	gvt_dbg_core("vgpu%d: %s VGA mode\n", vgpu->id,
1361 			vga_disable ? "Disable" : "Enable");
1362 	return 0;
1363 }
1364 
1365 static u32 read_virtual_sbi_register(struct intel_vgpu *vgpu,
1366 		unsigned int sbi_offset)
1367 {
1368 	struct intel_vgpu_display *display = &vgpu->display;
1369 	int num = display->sbi.number;
1370 	int i;
1371 
1372 	for (i = 0; i < num; ++i)
1373 		if (display->sbi.registers[i].offset == sbi_offset)
1374 			break;
1375 
1376 	if (i == num)
1377 		return 0;
1378 
1379 	return display->sbi.registers[i].value;
1380 }
1381 
1382 static void write_virtual_sbi_register(struct intel_vgpu *vgpu,
1383 		unsigned int offset, u32 value)
1384 {
1385 	struct intel_vgpu_display *display = &vgpu->display;
1386 	int num = display->sbi.number;
1387 	int i;
1388 
1389 	for (i = 0; i < num; ++i) {
1390 		if (display->sbi.registers[i].offset == offset)
1391 			break;
1392 	}
1393 
1394 	if (i == num) {
1395 		if (num == SBI_REG_MAX) {
1396 			gvt_vgpu_err("SBI caching meets maximum limits\n");
1397 			return;
1398 		}
1399 		display->sbi.number++;
1400 	}
1401 
1402 	display->sbi.registers[i].offset = offset;
1403 	display->sbi.registers[i].value = value;
1404 }
1405 
1406 static int sbi_data_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
1407 		void *p_data, unsigned int bytes)
1408 {
1409 	if (((vgpu_vreg_t(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >>
1410 				SBI_OPCODE_SHIFT) == SBI_CMD_CRRD) {
1411 		unsigned int sbi_offset = (vgpu_vreg_t(vgpu, SBI_ADDR) &
1412 				SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT;
1413 		vgpu_vreg(vgpu, offset) = read_virtual_sbi_register(vgpu,
1414 				sbi_offset);
1415 	}
1416 	read_vreg(vgpu, offset, p_data, bytes);
1417 	return 0;
1418 }
1419 
1420 static int sbi_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1421 		void *p_data, unsigned int bytes)
1422 {
1423 	u32 data;
1424 
1425 	write_vreg(vgpu, offset, p_data, bytes);
1426 	data = vgpu_vreg(vgpu, offset);
1427 
1428 	data &= ~(SBI_STAT_MASK << SBI_STAT_SHIFT);
1429 	data |= SBI_READY;
1430 
1431 	data &= ~(SBI_RESPONSE_MASK << SBI_RESPONSE_SHIFT);
1432 	data |= SBI_RESPONSE_SUCCESS;
1433 
1434 	vgpu_vreg(vgpu, offset) = data;
1435 
1436 	if (((vgpu_vreg_t(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >>
1437 				SBI_OPCODE_SHIFT) == SBI_CMD_CRWR) {
1438 		unsigned int sbi_offset = (vgpu_vreg_t(vgpu, SBI_ADDR) &
1439 				SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT;
1440 
1441 		write_virtual_sbi_register(vgpu, sbi_offset,
1442 					   vgpu_vreg_t(vgpu, SBI_DATA));
1443 	}
1444 	return 0;
1445 }
1446 
1447 #define _vgtif_reg(x) \
1448 	(VGT_PVINFO_PAGE + offsetof(struct vgt_if, x))
1449 
1450 static int pvinfo_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
1451 		void *p_data, unsigned int bytes)
1452 {
1453 	bool invalid_read = false;
1454 
1455 	read_vreg(vgpu, offset, p_data, bytes);
1456 
1457 	switch (offset) {
1458 	case _vgtif_reg(magic) ... _vgtif_reg(vgt_id):
1459 		if (offset + bytes > _vgtif_reg(vgt_id) + 4)
1460 			invalid_read = true;
1461 		break;
1462 	case _vgtif_reg(avail_rs.mappable_gmadr.base) ...
1463 		_vgtif_reg(avail_rs.fence_num):
1464 		if (offset + bytes >
1465 			_vgtif_reg(avail_rs.fence_num) + 4)
1466 			invalid_read = true;
1467 		break;
1468 	case 0x78010:	/* vgt_caps */
1469 	case 0x7881c:
1470 		break;
1471 	default:
1472 		invalid_read = true;
1473 		break;
1474 	}
1475 	if (invalid_read)
1476 		gvt_vgpu_err("invalid pvinfo read: [%x:%x] = %x\n",
1477 				offset, bytes, *(u32 *)p_data);
1478 	vgpu->pv_notified = true;
1479 	return 0;
1480 }
1481 
1482 static int handle_g2v_notification(struct intel_vgpu *vgpu, int notification)
1483 {
1484 	enum intel_gvt_gtt_type root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1485 	struct intel_vgpu_mm *mm;
1486 	u64 *pdps;
1487 
1488 	pdps = (u64 *)&vgpu_vreg64_t(vgpu, vgtif_reg(pdp[0]));
1489 
1490 	switch (notification) {
1491 	case VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE:
1492 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1493 		fallthrough;
1494 	case VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE:
1495 		mm = intel_vgpu_get_ppgtt_mm(vgpu, root_entry_type, pdps);
1496 		return PTR_ERR_OR_ZERO(mm);
1497 	case VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY:
1498 	case VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY:
1499 		return intel_vgpu_put_ppgtt_mm(vgpu, pdps);
1500 	case VGT_G2V_EXECLIST_CONTEXT_CREATE:
1501 	case VGT_G2V_EXECLIST_CONTEXT_DESTROY:
1502 	case 1:	/* Remove this in guest driver. */
1503 		break;
1504 	default:
1505 		gvt_vgpu_err("Invalid PV notification %d\n", notification);
1506 	}
1507 	return 0;
1508 }
1509 
1510 static int send_display_ready_uevent(struct intel_vgpu *vgpu, int ready)
1511 {
1512 	struct kobject *kobj = &vgpu->gvt->gt->i915->drm.primary->kdev->kobj;
1513 	char *env[3] = {NULL, NULL, NULL};
1514 	char vmid_str[20];
1515 	char display_ready_str[20];
1516 
1517 	snprintf(display_ready_str, 20, "GVT_DISPLAY_READY=%d", ready);
1518 	env[0] = display_ready_str;
1519 
1520 	snprintf(vmid_str, 20, "VMID=%d", vgpu->id);
1521 	env[1] = vmid_str;
1522 
1523 	return kobject_uevent_env(kobj, KOBJ_ADD, env);
1524 }
1525 
1526 static int pvinfo_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1527 		void *p_data, unsigned int bytes)
1528 {
1529 	u32 data = *(u32 *)p_data;
1530 	bool invalid_write = false;
1531 
1532 	switch (offset) {
1533 	case _vgtif_reg(display_ready):
1534 		send_display_ready_uevent(vgpu, data ? 1 : 0);
1535 		break;
1536 	case _vgtif_reg(g2v_notify):
1537 		handle_g2v_notification(vgpu, data);
1538 		break;
1539 	/* add xhot and yhot to handled list to avoid error log */
1540 	case _vgtif_reg(cursor_x_hot):
1541 	case _vgtif_reg(cursor_y_hot):
1542 	case _vgtif_reg(pdp[0].lo):
1543 	case _vgtif_reg(pdp[0].hi):
1544 	case _vgtif_reg(pdp[1].lo):
1545 	case _vgtif_reg(pdp[1].hi):
1546 	case _vgtif_reg(pdp[2].lo):
1547 	case _vgtif_reg(pdp[2].hi):
1548 	case _vgtif_reg(pdp[3].lo):
1549 	case _vgtif_reg(pdp[3].hi):
1550 	case _vgtif_reg(execlist_context_descriptor_lo):
1551 	case _vgtif_reg(execlist_context_descriptor_hi):
1552 		break;
1553 	case _vgtif_reg(rsv5[0])..._vgtif_reg(rsv5[3]):
1554 		invalid_write = true;
1555 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_INSUFFICIENT_RESOURCE);
1556 		break;
1557 	default:
1558 		invalid_write = true;
1559 		gvt_vgpu_err("invalid pvinfo write offset %x bytes %x data %x\n",
1560 				offset, bytes, data);
1561 		break;
1562 	}
1563 
1564 	if (!invalid_write)
1565 		write_vreg(vgpu, offset, p_data, bytes);
1566 
1567 	return 0;
1568 }
1569 
1570 static int pf_write(struct intel_vgpu *vgpu,
1571 		unsigned int offset, void *p_data, unsigned int bytes)
1572 {
1573 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1574 	u32 val = *(u32 *)p_data;
1575 
1576 	if ((offset == _PS_1A_CTRL || offset == _PS_2A_CTRL ||
1577 	   offset == _PS_1B_CTRL || offset == _PS_2B_CTRL ||
1578 	   offset == _PS_1C_CTRL) && (val & PS_BINDING_MASK) != PS_BINDING_PIPE) {
1579 		drm_WARN_ONCE(&i915->drm, true,
1580 			      "VM(%d): guest is trying to scaling a plane\n",
1581 			      vgpu->id);
1582 		return 0;
1583 	}
1584 
1585 	return intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes);
1586 }
1587 
1588 static int power_well_ctl_mmio_write(struct intel_vgpu *vgpu,
1589 		unsigned int offset, void *p_data, unsigned int bytes)
1590 {
1591 	write_vreg(vgpu, offset, p_data, bytes);
1592 
1593 	if (vgpu_vreg(vgpu, offset) &
1594 	    HSW_PWR_WELL_CTL_REQ(HSW_PW_CTL_IDX_GLOBAL))
1595 		vgpu_vreg(vgpu, offset) |=
1596 			HSW_PWR_WELL_CTL_STATE(HSW_PW_CTL_IDX_GLOBAL);
1597 	else
1598 		vgpu_vreg(vgpu, offset) &=
1599 			~HSW_PWR_WELL_CTL_STATE(HSW_PW_CTL_IDX_GLOBAL);
1600 	return 0;
1601 }
1602 
1603 static int gen9_dbuf_ctl_mmio_write(struct intel_vgpu *vgpu,
1604 		unsigned int offset, void *p_data, unsigned int bytes)
1605 {
1606 	write_vreg(vgpu, offset, p_data, bytes);
1607 
1608 	if (vgpu_vreg(vgpu, offset) & DBUF_POWER_REQUEST)
1609 		vgpu_vreg(vgpu, offset) |= DBUF_POWER_STATE;
1610 	else
1611 		vgpu_vreg(vgpu, offset) &= ~DBUF_POWER_STATE;
1612 
1613 	return 0;
1614 }
1615 
1616 static int fpga_dbg_mmio_write(struct intel_vgpu *vgpu,
1617 	unsigned int offset, void *p_data, unsigned int bytes)
1618 {
1619 	write_vreg(vgpu, offset, p_data, bytes);
1620 
1621 	if (vgpu_vreg(vgpu, offset) & FPGA_DBG_RM_NOCLAIM)
1622 		vgpu_vreg(vgpu, offset) &= ~FPGA_DBG_RM_NOCLAIM;
1623 	return 0;
1624 }
1625 
1626 static int dma_ctrl_write(struct intel_vgpu *vgpu, unsigned int offset,
1627 		void *p_data, unsigned int bytes)
1628 {
1629 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1630 	u32 mode;
1631 
1632 	write_vreg(vgpu, offset, p_data, bytes);
1633 	mode = vgpu_vreg(vgpu, offset);
1634 
1635 	if (GFX_MODE_BIT_SET_IN_MASK(mode, START_DMA)) {
1636 		drm_WARN_ONCE(&i915->drm, 1,
1637 				"VM(%d): iGVT-g doesn't support GuC\n",
1638 				vgpu->id);
1639 		return 0;
1640 	}
1641 
1642 	return 0;
1643 }
1644 
1645 static int gen9_trtte_write(struct intel_vgpu *vgpu, unsigned int offset,
1646 		void *p_data, unsigned int bytes)
1647 {
1648 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1649 	u32 trtte = *(u32 *)p_data;
1650 
1651 	if ((trtte & 1) && (trtte & (1 << 1)) == 0) {
1652 		drm_WARN(&i915->drm, 1,
1653 				"VM(%d): Use physical address for TRTT!\n",
1654 				vgpu->id);
1655 		return -EINVAL;
1656 	}
1657 	write_vreg(vgpu, offset, p_data, bytes);
1658 
1659 	return 0;
1660 }
1661 
1662 static int gen9_trtt_chicken_write(struct intel_vgpu *vgpu, unsigned int offset,
1663 		void *p_data, unsigned int bytes)
1664 {
1665 	write_vreg(vgpu, offset, p_data, bytes);
1666 	return 0;
1667 }
1668 
1669 static int dpll_status_read(struct intel_vgpu *vgpu, unsigned int offset,
1670 		void *p_data, unsigned int bytes)
1671 {
1672 	u32 v = 0;
1673 
1674 	if (vgpu_vreg(vgpu, 0x46010) & (1 << 31))
1675 		v |= (1 << 0);
1676 
1677 	if (vgpu_vreg(vgpu, 0x46014) & (1 << 31))
1678 		v |= (1 << 8);
1679 
1680 	if (vgpu_vreg(vgpu, 0x46040) & (1 << 31))
1681 		v |= (1 << 16);
1682 
1683 	if (vgpu_vreg(vgpu, 0x46060) & (1 << 31))
1684 		v |= (1 << 24);
1685 
1686 	vgpu_vreg(vgpu, offset) = v;
1687 
1688 	return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
1689 }
1690 
1691 static int mailbox_write(struct intel_vgpu *vgpu, unsigned int offset,
1692 		void *p_data, unsigned int bytes)
1693 {
1694 	u32 value = *(u32 *)p_data;
1695 	u32 cmd = value & 0xff;
1696 	u32 *data0 = &vgpu_vreg_t(vgpu, GEN6_PCODE_DATA);
1697 
1698 	switch (cmd) {
1699 	case GEN9_PCODE_READ_MEM_LATENCY:
1700 		if (IS_SKYLAKE(vgpu->gvt->gt->i915) ||
1701 		    IS_KABYLAKE(vgpu->gvt->gt->i915) ||
1702 		    IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
1703 		    IS_COMETLAKE(vgpu->gvt->gt->i915)) {
1704 			/**
1705 			 * "Read memory latency" command on gen9.
1706 			 * Below memory latency values are read
1707 			 * from skylake platform.
1708 			 */
1709 			if (!*data0)
1710 				*data0 = 0x1e1a1100;
1711 			else
1712 				*data0 = 0x61514b3d;
1713 		} else if (IS_BROXTON(vgpu->gvt->gt->i915)) {
1714 			/**
1715 			 * "Read memory latency" command on gen9.
1716 			 * Below memory latency values are read
1717 			 * from Broxton MRB.
1718 			 */
1719 			if (!*data0)
1720 				*data0 = 0x16080707;
1721 			else
1722 				*data0 = 0x16161616;
1723 		}
1724 		break;
1725 	case SKL_PCODE_CDCLK_CONTROL:
1726 		if (IS_SKYLAKE(vgpu->gvt->gt->i915) ||
1727 		    IS_KABYLAKE(vgpu->gvt->gt->i915) ||
1728 		    IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
1729 		    IS_COMETLAKE(vgpu->gvt->gt->i915))
1730 			*data0 = SKL_CDCLK_READY_FOR_CHANGE;
1731 		break;
1732 	case GEN6_PCODE_READ_RC6VIDS:
1733 		*data0 |= 0x1;
1734 		break;
1735 	}
1736 
1737 	gvt_dbg_core("VM(%d) write %x to mailbox, return data0 %x\n",
1738 		     vgpu->id, value, *data0);
1739 	/**
1740 	 * PCODE_READY clear means ready for pcode read/write,
1741 	 * PCODE_ERROR_MASK clear means no error happened. In GVT-g we
1742 	 * always emulate as pcode read/write success and ready for access
1743 	 * anytime, since we don't touch real physical registers here.
1744 	 */
1745 	value &= ~(GEN6_PCODE_READY | GEN6_PCODE_ERROR_MASK);
1746 	return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes);
1747 }
1748 
1749 static int hws_pga_write(struct intel_vgpu *vgpu, unsigned int offset,
1750 		void *p_data, unsigned int bytes)
1751 {
1752 	u32 value = *(u32 *)p_data;
1753 	const struct intel_engine_cs *engine =
1754 		intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
1755 
1756 	if (value != 0 &&
1757 	    !intel_gvt_ggtt_validate_range(vgpu, value, I915_GTT_PAGE_SIZE)) {
1758 		gvt_vgpu_err("write invalid HWSP address, reg:0x%x, value:0x%x\n",
1759 			      offset, value);
1760 		return -EINVAL;
1761 	}
1762 
1763 	/*
1764 	 * Need to emulate all the HWSP register write to ensure host can
1765 	 * update the VM CSB status correctly. Here listed registers can
1766 	 * support BDW, SKL or other platforms with same HWSP registers.
1767 	 */
1768 	if (unlikely(!engine)) {
1769 		gvt_vgpu_err("access unknown hardware status page register:0x%x\n",
1770 			     offset);
1771 		return -EINVAL;
1772 	}
1773 	vgpu->hws_pga[engine->id] = value;
1774 	gvt_dbg_mmio("VM(%d) write: 0x%x to HWSP: 0x%x\n",
1775 		     vgpu->id, value, offset);
1776 
1777 	return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes);
1778 }
1779 
1780 static int skl_power_well_ctl_write(struct intel_vgpu *vgpu,
1781 		unsigned int offset, void *p_data, unsigned int bytes)
1782 {
1783 	u32 v = *(u32 *)p_data;
1784 
1785 	if (IS_BROXTON(vgpu->gvt->gt->i915))
1786 		v &= (1 << 31) | (1 << 29);
1787 	else
1788 		v &= (1 << 31) | (1 << 29) | (1 << 9) |
1789 			(1 << 7) | (1 << 5) | (1 << 3) | (1 << 1);
1790 	v |= (v >> 1);
1791 
1792 	return intel_vgpu_default_mmio_write(vgpu, offset, &v, bytes);
1793 }
1794 
1795 static int skl_lcpll_write(struct intel_vgpu *vgpu, unsigned int offset,
1796 		void *p_data, unsigned int bytes)
1797 {
1798 	u32 v = *(u32 *)p_data;
1799 
1800 	/* other bits are MBZ. */
1801 	v &= (1 << 31) | (1 << 30);
1802 	v & (1 << 31) ? (v |= (1 << 30)) : (v &= ~(1 << 30));
1803 
1804 	vgpu_vreg(vgpu, offset) = v;
1805 
1806 	return 0;
1807 }
1808 
1809 static int bxt_de_pll_enable_write(struct intel_vgpu *vgpu,
1810 		unsigned int offset, void *p_data, unsigned int bytes)
1811 {
1812 	u32 v = *(u32 *)p_data;
1813 
1814 	if (v & BXT_DE_PLL_PLL_ENABLE)
1815 		v |= BXT_DE_PLL_LOCK;
1816 
1817 	vgpu_vreg(vgpu, offset) = v;
1818 
1819 	return 0;
1820 }
1821 
1822 static int bxt_port_pll_enable_write(struct intel_vgpu *vgpu,
1823 		unsigned int offset, void *p_data, unsigned int bytes)
1824 {
1825 	u32 v = *(u32 *)p_data;
1826 
1827 	if (v & PORT_PLL_ENABLE)
1828 		v |= PORT_PLL_LOCK;
1829 
1830 	vgpu_vreg(vgpu, offset) = v;
1831 
1832 	return 0;
1833 }
1834 
1835 static int bxt_phy_ctl_family_write(struct intel_vgpu *vgpu,
1836 		unsigned int offset, void *p_data, unsigned int bytes)
1837 {
1838 	u32 v = *(u32 *)p_data;
1839 	u32 data = v & COMMON_RESET_DIS ? BXT_PHY_LANE_ENABLED : 0;
1840 
1841 	switch (offset) {
1842 	case _PHY_CTL_FAMILY_EDP:
1843 		vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_A) = data;
1844 		break;
1845 	case _PHY_CTL_FAMILY_DDI:
1846 		vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_B) = data;
1847 		vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_C) = data;
1848 		break;
1849 	}
1850 
1851 	vgpu_vreg(vgpu, offset) = v;
1852 
1853 	return 0;
1854 }
1855 
1856 static int bxt_port_tx_dw3_read(struct intel_vgpu *vgpu,
1857 		unsigned int offset, void *p_data, unsigned int bytes)
1858 {
1859 	u32 v = vgpu_vreg(vgpu, offset);
1860 
1861 	v &= ~UNIQUE_TRANGE_EN_METHOD;
1862 
1863 	vgpu_vreg(vgpu, offset) = v;
1864 
1865 	return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
1866 }
1867 
1868 static int bxt_pcs_dw12_grp_write(struct intel_vgpu *vgpu,
1869 		unsigned int offset, void *p_data, unsigned int bytes)
1870 {
1871 	u32 v = *(u32 *)p_data;
1872 
1873 	if (offset == _PORT_PCS_DW12_GRP_A || offset == _PORT_PCS_DW12_GRP_B) {
1874 		vgpu_vreg(vgpu, offset - 0x600) = v;
1875 		vgpu_vreg(vgpu, offset - 0x800) = v;
1876 	} else {
1877 		vgpu_vreg(vgpu, offset - 0x400) = v;
1878 		vgpu_vreg(vgpu, offset - 0x600) = v;
1879 	}
1880 
1881 	vgpu_vreg(vgpu, offset) = v;
1882 
1883 	return 0;
1884 }
1885 
1886 static int bxt_gt_disp_pwron_write(struct intel_vgpu *vgpu,
1887 		unsigned int offset, void *p_data, unsigned int bytes)
1888 {
1889 	u32 v = *(u32 *)p_data;
1890 
1891 	if (v & BIT(0)) {
1892 		vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY0)) &=
1893 			~PHY_RESERVED;
1894 		vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY0)) |=
1895 			PHY_POWER_GOOD;
1896 	}
1897 
1898 	if (v & BIT(1)) {
1899 		vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY1)) &=
1900 			~PHY_RESERVED;
1901 		vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY1)) |=
1902 			PHY_POWER_GOOD;
1903 	}
1904 
1905 
1906 	vgpu_vreg(vgpu, offset) = v;
1907 
1908 	return 0;
1909 }
1910 
1911 static int edp_psr_imr_iir_write(struct intel_vgpu *vgpu,
1912 		unsigned int offset, void *p_data, unsigned int bytes)
1913 {
1914 	vgpu_vreg(vgpu, offset) = 0;
1915 	return 0;
1916 }
1917 
1918 /*
1919  * FixMe:
1920  * If guest fills non-priv batch buffer on ApolloLake/Broxton as Mesa i965 did:
1921  * 717e7539124d (i965: Use a WC map and memcpy for the batch instead of pwrite.)
1922  * Due to the missing flush of bb filled by VM vCPU, host GPU hangs on executing
1923  * these MI_BATCH_BUFFER.
1924  * Temporarily workaround this by setting SNOOP bit for PAT3 used by PPGTT
1925  * PML4 PTE: PAT(0) PCD(1) PWT(1).
1926  * The performance is still expected to be low, will need further improvement.
1927  */
1928 static int bxt_ppat_low_write(struct intel_vgpu *vgpu, unsigned int offset,
1929 			      void *p_data, unsigned int bytes)
1930 {
1931 	u64 pat =
1932 		GEN8_PPAT(0, CHV_PPAT_SNOOP) |
1933 		GEN8_PPAT(1, 0) |
1934 		GEN8_PPAT(2, 0) |
1935 		GEN8_PPAT(3, CHV_PPAT_SNOOP) |
1936 		GEN8_PPAT(4, CHV_PPAT_SNOOP) |
1937 		GEN8_PPAT(5, CHV_PPAT_SNOOP) |
1938 		GEN8_PPAT(6, CHV_PPAT_SNOOP) |
1939 		GEN8_PPAT(7, CHV_PPAT_SNOOP);
1940 
1941 	vgpu_vreg(vgpu, offset) = lower_32_bits(pat);
1942 
1943 	return 0;
1944 }
1945 
1946 static int guc_status_read(struct intel_vgpu *vgpu,
1947 			   unsigned int offset, void *p_data,
1948 			   unsigned int bytes)
1949 {
1950 	/* keep MIA_IN_RESET before clearing */
1951 	read_vreg(vgpu, offset, p_data, bytes);
1952 	vgpu_vreg(vgpu, offset) &= ~GS_MIA_IN_RESET;
1953 	return 0;
1954 }
1955 
1956 static int mmio_read_from_hw(struct intel_vgpu *vgpu,
1957 		unsigned int offset, void *p_data, unsigned int bytes)
1958 {
1959 	struct intel_gvt *gvt = vgpu->gvt;
1960 	const struct intel_engine_cs *engine =
1961 		intel_gvt_render_mmio_to_engine(gvt, offset);
1962 
1963 	/**
1964 	 * Read HW reg in following case
1965 	 * a. the offset isn't a ring mmio
1966 	 * b. the offset's ring is running on hw.
1967 	 * c. the offset is ring time stamp mmio
1968 	 */
1969 
1970 	if (!engine ||
1971 	    vgpu == gvt->scheduler.engine_owner[engine->id] ||
1972 	    offset == i915_mmio_reg_offset(RING_TIMESTAMP(engine->mmio_base)) ||
1973 	    offset == i915_mmio_reg_offset(RING_TIMESTAMP_UDW(engine->mmio_base))) {
1974 		mmio_hw_access_pre(gvt->gt);
1975 		vgpu_vreg(vgpu, offset) =
1976 			intel_uncore_read(gvt->gt->uncore, _MMIO(offset));
1977 		mmio_hw_access_post(gvt->gt);
1978 	}
1979 
1980 	return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
1981 }
1982 
1983 static int elsp_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1984 		void *p_data, unsigned int bytes)
1985 {
1986 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1987 	const struct intel_engine_cs *engine = intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
1988 	struct intel_vgpu_execlist *execlist;
1989 	u32 data = *(u32 *)p_data;
1990 	int ret = 0;
1991 
1992 	if (drm_WARN_ON(&i915->drm, !engine))
1993 		return -EINVAL;
1994 
1995 	/*
1996 	 * Due to d3_entered is used to indicate skipping PPGTT invalidation on
1997 	 * vGPU reset, it's set on D0->D3 on PCI config write, and cleared after
1998 	 * vGPU reset if in resuming.
1999 	 * In S0ix exit, the device power state also transite from D3 to D0 as
2000 	 * S3 resume, but no vGPU reset (triggered by QEMU devic model). After
2001 	 * S0ix exit, all engines continue to work. However the d3_entered
2002 	 * remains set which will break next vGPU reset logic (miss the expected
2003 	 * PPGTT invalidation).
2004 	 * Engines can only work in D0. Thus the 1st elsp write gives GVT a
2005 	 * chance to clear d3_entered.
2006 	 */
2007 	if (vgpu->d3_entered)
2008 		vgpu->d3_entered = false;
2009 
2010 	execlist = &vgpu->submission.execlist[engine->id];
2011 
2012 	execlist->elsp_dwords.data[3 - execlist->elsp_dwords.index] = data;
2013 	if (execlist->elsp_dwords.index == 3) {
2014 		ret = intel_vgpu_submit_execlist(vgpu, engine);
2015 		if(ret)
2016 			gvt_vgpu_err("fail submit workload on ring %s\n",
2017 				     engine->name);
2018 	}
2019 
2020 	++execlist->elsp_dwords.index;
2021 	execlist->elsp_dwords.index &= 0x3;
2022 	return ret;
2023 }
2024 
2025 static int ring_mode_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
2026 		void *p_data, unsigned int bytes)
2027 {
2028 	u32 data = *(u32 *)p_data;
2029 	const struct intel_engine_cs *engine =
2030 		intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
2031 	bool enable_execlist;
2032 	int ret;
2033 
2034 	(*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(1);
2035 	if (IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
2036 	    IS_COMETLAKE(vgpu->gvt->gt->i915))
2037 		(*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(2);
2038 	write_vreg(vgpu, offset, p_data, bytes);
2039 
2040 	if (IS_MASKED_BITS_ENABLED(data, 1)) {
2041 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2042 		return 0;
2043 	}
2044 
2045 	if ((IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
2046 	     IS_COMETLAKE(vgpu->gvt->gt->i915)) &&
2047 	    IS_MASKED_BITS_ENABLED(data, 2)) {
2048 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2049 		return 0;
2050 	}
2051 
2052 	/* when PPGTT mode enabled, we will check if guest has called
2053 	 * pvinfo, if not, we will treat this guest as non-gvtg-aware
2054 	 * guest, and stop emulating its cfg space, mmio, gtt, etc.
2055 	 */
2056 	if ((IS_MASKED_BITS_ENABLED(data, GFX_PPGTT_ENABLE) ||
2057 	    IS_MASKED_BITS_ENABLED(data, GFX_RUN_LIST_ENABLE)) &&
2058 	    !vgpu->pv_notified) {
2059 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2060 		return 0;
2061 	}
2062 	if (IS_MASKED_BITS_ENABLED(data, GFX_RUN_LIST_ENABLE) ||
2063 	    IS_MASKED_BITS_DISABLED(data, GFX_RUN_LIST_ENABLE)) {
2064 		enable_execlist = !!(data & GFX_RUN_LIST_ENABLE);
2065 
2066 		gvt_dbg_core("EXECLIST %s on ring %s\n",
2067 			     (enable_execlist ? "enabling" : "disabling"),
2068 			     engine->name);
2069 
2070 		if (!enable_execlist)
2071 			return 0;
2072 
2073 		ret = intel_vgpu_select_submission_ops(vgpu,
2074 						       engine->mask,
2075 						       INTEL_VGPU_EXECLIST_SUBMISSION);
2076 		if (ret)
2077 			return ret;
2078 
2079 		intel_vgpu_start_schedule(vgpu);
2080 	}
2081 	return 0;
2082 }
2083 
2084 static int gvt_reg_tlb_control_handler(struct intel_vgpu *vgpu,
2085 		unsigned int offset, void *p_data, unsigned int bytes)
2086 {
2087 	unsigned int id = 0;
2088 
2089 	write_vreg(vgpu, offset, p_data, bytes);
2090 	vgpu_vreg(vgpu, offset) = 0;
2091 
2092 	switch (offset) {
2093 	case 0x4260:
2094 		id = RCS0;
2095 		break;
2096 	case 0x4264:
2097 		id = VCS0;
2098 		break;
2099 	case 0x4268:
2100 		id = VCS1;
2101 		break;
2102 	case 0x426c:
2103 		id = BCS0;
2104 		break;
2105 	case 0x4270:
2106 		id = VECS0;
2107 		break;
2108 	default:
2109 		return -EINVAL;
2110 	}
2111 	set_bit(id, (void *)vgpu->submission.tlb_handle_pending);
2112 
2113 	return 0;
2114 }
2115 
2116 static int ring_reset_ctl_write(struct intel_vgpu *vgpu,
2117 	unsigned int offset, void *p_data, unsigned int bytes)
2118 {
2119 	u32 data;
2120 
2121 	write_vreg(vgpu, offset, p_data, bytes);
2122 	data = vgpu_vreg(vgpu, offset);
2123 
2124 	if (IS_MASKED_BITS_ENABLED(data, RESET_CTL_REQUEST_RESET))
2125 		data |= RESET_CTL_READY_TO_RESET;
2126 	else if (data & _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET))
2127 		data &= ~RESET_CTL_READY_TO_RESET;
2128 
2129 	vgpu_vreg(vgpu, offset) = data;
2130 	return 0;
2131 }
2132 
2133 static int csfe_chicken1_mmio_write(struct intel_vgpu *vgpu,
2134 				    unsigned int offset, void *p_data,
2135 				    unsigned int bytes)
2136 {
2137 	u32 data = *(u32 *)p_data;
2138 
2139 	(*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(0x18);
2140 	write_vreg(vgpu, offset, p_data, bytes);
2141 
2142 	if (IS_MASKED_BITS_ENABLED(data, 0x10) ||
2143 	    IS_MASKED_BITS_ENABLED(data, 0x8))
2144 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2145 
2146 	return 0;
2147 }
2148 
2149 #define MMIO_F(reg, s, f, am, rm, d, r, w) do { \
2150 	ret = setup_mmio_info(gvt, i915_mmio_reg_offset(reg), \
2151 		s, f, am, rm, d, r, w); \
2152 	if (ret) \
2153 		return ret; \
2154 } while (0)
2155 
2156 #define MMIO_DH(reg, d, r, w) \
2157 	MMIO_F(reg, 4, 0, 0, 0, d, r, w)
2158 
2159 #define MMIO_DFH(reg, d, f, r, w) \
2160 	MMIO_F(reg, 4, f, 0, 0, d, r, w)
2161 
2162 #define MMIO_GM(reg, d, r, w) \
2163 	MMIO_F(reg, 4, F_GMADR, 0xFFFFF000, 0, d, r, w)
2164 
2165 #define MMIO_GM_RDR(reg, d, r, w) \
2166 	MMIO_F(reg, 4, F_GMADR | F_CMD_ACCESS, 0xFFFFF000, 0, d, r, w)
2167 
2168 #define MMIO_RO(reg, d, f, rm, r, w) \
2169 	MMIO_F(reg, 4, F_RO | f, 0, rm, d, r, w)
2170 
2171 #define MMIO_RING_F(prefix, s, f, am, rm, d, r, w) do { \
2172 	MMIO_F(prefix(RENDER_RING_BASE), s, f, am, rm, d, r, w); \
2173 	MMIO_F(prefix(BLT_RING_BASE), s, f, am, rm, d, r, w); \
2174 	MMIO_F(prefix(GEN6_BSD_RING_BASE), s, f, am, rm, d, r, w); \
2175 	MMIO_F(prefix(VEBOX_RING_BASE), s, f, am, rm, d, r, w); \
2176 	if (HAS_ENGINE(gvt->gt, VCS1)) \
2177 		MMIO_F(prefix(GEN8_BSD2_RING_BASE), s, f, am, rm, d, r, w); \
2178 } while (0)
2179 
2180 #define MMIO_RING_DFH(prefix, d, f, r, w) \
2181 	MMIO_RING_F(prefix, 4, f, 0, 0, d, r, w)
2182 
2183 #define MMIO_RING_GM(prefix, d, r, w) \
2184 	MMIO_RING_F(prefix, 4, F_GMADR, 0xFFFF0000, 0, d, r, w)
2185 
2186 #define MMIO_RING_GM_RDR(prefix, d, r, w) \
2187 	MMIO_RING_F(prefix, 4, F_GMADR | F_CMD_ACCESS, 0xFFFF0000, 0, d, r, w)
2188 
2189 #define MMIO_RING_RO(prefix, d, f, rm, r, w) \
2190 	MMIO_RING_F(prefix, 4, F_RO | f, 0, rm, d, r, w)
2191 
2192 static int init_generic_mmio_info(struct intel_gvt *gvt)
2193 {
2194 	struct drm_i915_private *dev_priv = gvt->gt->i915;
2195 	int ret;
2196 
2197 	MMIO_RING_DFH(RING_IMR, D_ALL, 0, NULL,
2198 		intel_vgpu_reg_imr_handler);
2199 
2200 	MMIO_DFH(SDEIMR, D_ALL, 0, NULL, intel_vgpu_reg_imr_handler);
2201 	MMIO_DFH(SDEIER, D_ALL, 0, NULL, intel_vgpu_reg_ier_handler);
2202 	MMIO_DFH(SDEIIR, D_ALL, 0, NULL, intel_vgpu_reg_iir_handler);
2203 
2204 	MMIO_RING_DFH(RING_HWSTAM, D_ALL, 0, NULL, NULL);
2205 
2206 
2207 	MMIO_DH(GEN8_GAMW_ECO_DEV_RW_IA, D_BDW_PLUS, NULL,
2208 		gamw_echo_dev_rw_ia_write);
2209 
2210 	MMIO_GM_RDR(BSD_HWS_PGA_GEN7, D_ALL, NULL, NULL);
2211 	MMIO_GM_RDR(BLT_HWS_PGA_GEN7, D_ALL, NULL, NULL);
2212 	MMIO_GM_RDR(VEBOX_HWS_PGA_GEN7, D_ALL, NULL, NULL);
2213 
2214 #define RING_REG(base) _MMIO((base) + 0x28)
2215 	MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL);
2216 #undef RING_REG
2217 
2218 #define RING_REG(base) _MMIO((base) + 0x134)
2219 	MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL);
2220 #undef RING_REG
2221 
2222 #define RING_REG(base) _MMIO((base) + 0x6c)
2223 	MMIO_RING_DFH(RING_REG, D_ALL, 0, mmio_read_from_hw, NULL);
2224 #undef RING_REG
2225 	MMIO_DH(GEN7_SC_INSTDONE, D_BDW_PLUS, mmio_read_from_hw, NULL);
2226 
2227 	MMIO_GM_RDR(_MMIO(0x2148), D_ALL, NULL, NULL);
2228 	MMIO_GM_RDR(CCID(RENDER_RING_BASE), D_ALL, NULL, NULL);
2229 	MMIO_GM_RDR(_MMIO(0x12198), D_ALL, NULL, NULL);
2230 
2231 	MMIO_RING_DFH(RING_TAIL, D_ALL, 0, NULL, NULL);
2232 	MMIO_RING_DFH(RING_HEAD, D_ALL, 0, NULL, NULL);
2233 	MMIO_RING_DFH(RING_CTL, D_ALL, 0, NULL, NULL);
2234 	MMIO_RING_DFH(RING_ACTHD, D_ALL, 0, mmio_read_from_hw, NULL);
2235 	MMIO_RING_GM(RING_START, D_ALL, NULL, NULL);
2236 
2237 	/* RING MODE */
2238 #define RING_REG(base) _MMIO((base) + 0x29c)
2239 	MMIO_RING_DFH(RING_REG, D_ALL,
2240 		F_MODE_MASK | F_CMD_ACCESS | F_CMD_WRITE_PATCH, NULL,
2241 		ring_mode_mmio_write);
2242 #undef RING_REG
2243 
2244 	MMIO_RING_DFH(RING_MI_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2245 		NULL, NULL);
2246 	MMIO_RING_DFH(RING_INSTPM, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2247 			NULL, NULL);
2248 	MMIO_RING_DFH(RING_TIMESTAMP, D_ALL, F_CMD_ACCESS,
2249 			mmio_read_from_hw, NULL);
2250 	MMIO_RING_DFH(RING_TIMESTAMP_UDW, D_ALL, F_CMD_ACCESS,
2251 			mmio_read_from_hw, NULL);
2252 
2253 	MMIO_DFH(GEN7_GT_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2254 	MMIO_DFH(CACHE_MODE_0_GEN7, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2255 		NULL, NULL);
2256 	MMIO_DFH(CACHE_MODE_1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2257 	MMIO_DFH(CACHE_MODE_0, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2258 	MMIO_DFH(_MMIO(0x2124), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2259 
2260 	MMIO_DFH(_MMIO(0x20dc), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2261 	MMIO_DFH(_3D_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2262 	MMIO_DFH(_MMIO(0x2088), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2263 	MMIO_DFH(FF_SLICE_CS_CHICKEN2, D_ALL,
2264 		 F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2265 	MMIO_DFH(_MMIO(0x2470), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2266 	MMIO_DFH(GAM_ECOCHK, D_ALL, F_CMD_ACCESS, NULL, NULL);
2267 	MMIO_DFH(GEN7_COMMON_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2268 		NULL, NULL);
2269 	MMIO_DFH(COMMON_SLICE_CHICKEN2, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2270 		 NULL, NULL);
2271 	MMIO_DFH(_MMIO(0x9030), D_ALL, F_CMD_ACCESS, NULL, NULL);
2272 	MMIO_DFH(_MMIO(0x20a0), D_ALL, F_CMD_ACCESS, NULL, NULL);
2273 	MMIO_DFH(_MMIO(0x2420), D_ALL, F_CMD_ACCESS, NULL, NULL);
2274 	MMIO_DFH(_MMIO(0x2430), D_ALL, F_CMD_ACCESS, NULL, NULL);
2275 	MMIO_DFH(_MMIO(0x2434), D_ALL, F_CMD_ACCESS, NULL, NULL);
2276 	MMIO_DFH(_MMIO(0x2438), D_ALL, F_CMD_ACCESS, NULL, NULL);
2277 	MMIO_DFH(_MMIO(0x243c), D_ALL, F_CMD_ACCESS, NULL, NULL);
2278 	MMIO_DFH(_MMIO(0x7018), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2279 	MMIO_DFH(HSW_HALF_SLICE_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2280 	MMIO_DFH(GEN7_HALF_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2281 
2282 	/* display */
2283 	MMIO_DH(TRANSCONF(dev_priv, TRANSCODER_A), D_ALL, NULL,
2284 		pipeconf_mmio_write);
2285 	MMIO_DH(TRANSCONF(dev_priv, TRANSCODER_B), D_ALL, NULL,
2286 		pipeconf_mmio_write);
2287 	MMIO_DH(TRANSCONF(dev_priv, TRANSCODER_C), D_ALL, NULL,
2288 		pipeconf_mmio_write);
2289 	MMIO_DH(TRANSCONF(dev_priv, TRANSCODER_EDP), D_ALL, NULL,
2290 		pipeconf_mmio_write);
2291 	MMIO_DH(DSPSURF(dev_priv, PIPE_A), D_ALL, NULL, pri_surf_mmio_write);
2292 	MMIO_DH(REG_50080(PIPE_A, PLANE_PRIMARY), D_ALL, NULL,
2293 		reg50080_mmio_write);
2294 	MMIO_DH(DSPSURF(dev_priv, PIPE_B), D_ALL, NULL, pri_surf_mmio_write);
2295 	MMIO_DH(REG_50080(PIPE_B, PLANE_PRIMARY), D_ALL, NULL,
2296 		reg50080_mmio_write);
2297 	MMIO_DH(DSPSURF(dev_priv, PIPE_C), D_ALL, NULL, pri_surf_mmio_write);
2298 	MMIO_DH(REG_50080(PIPE_C, PLANE_PRIMARY), D_ALL, NULL,
2299 		reg50080_mmio_write);
2300 	MMIO_DH(SPRSURF(PIPE_A), D_ALL, NULL, spr_surf_mmio_write);
2301 	MMIO_DH(REG_50080(PIPE_A, PLANE_SPRITE0), D_ALL, NULL,
2302 		reg50080_mmio_write);
2303 	MMIO_DH(SPRSURF(PIPE_B), D_ALL, NULL, spr_surf_mmio_write);
2304 	MMIO_DH(REG_50080(PIPE_B, PLANE_SPRITE0), D_ALL, NULL,
2305 		reg50080_mmio_write);
2306 	MMIO_DH(SPRSURF(PIPE_C), D_ALL, NULL, spr_surf_mmio_write);
2307 	MMIO_DH(REG_50080(PIPE_C, PLANE_SPRITE0), D_ALL, NULL,
2308 		reg50080_mmio_write);
2309 
2310 	MMIO_F(PCH_GMBUS0, 4 * 4, 0, 0, 0, D_ALL, gmbus_mmio_read,
2311 		gmbus_mmio_write);
2312 	MMIO_F(PCH_GPIO_BASE, 6 * 4, F_UNALIGN, 0, 0, D_ALL, NULL, NULL);
2313 
2314 	MMIO_F(PCH_DP_AUX_CH_CTL(AUX_CH_B), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
2315 	       dp_aux_ch_ctl_mmio_write);
2316 	MMIO_F(PCH_DP_AUX_CH_CTL(AUX_CH_C), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
2317 	       dp_aux_ch_ctl_mmio_write);
2318 	MMIO_F(PCH_DP_AUX_CH_CTL(AUX_CH_D), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
2319 	       dp_aux_ch_ctl_mmio_write);
2320 
2321 	MMIO_DH(PCH_ADPA, D_PRE_SKL, NULL, pch_adpa_mmio_write);
2322 
2323 	MMIO_DH(_MMIO(_PCH_TRANSACONF), D_ALL, NULL, transconf_mmio_write);
2324 	MMIO_DH(_MMIO(_PCH_TRANSBCONF), D_ALL, NULL, transconf_mmio_write);
2325 
2326 	MMIO_DH(FDI_RX_IIR(PIPE_A), D_ALL, NULL, fdi_rx_iir_mmio_write);
2327 	MMIO_DH(FDI_RX_IIR(PIPE_B), D_ALL, NULL, fdi_rx_iir_mmio_write);
2328 	MMIO_DH(FDI_RX_IIR(PIPE_C), D_ALL, NULL, fdi_rx_iir_mmio_write);
2329 	MMIO_DH(FDI_RX_IMR(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status);
2330 	MMIO_DH(FDI_RX_IMR(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status);
2331 	MMIO_DH(FDI_RX_IMR(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status);
2332 	MMIO_DH(FDI_RX_CTL(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status);
2333 	MMIO_DH(FDI_RX_CTL(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status);
2334 	MMIO_DH(FDI_RX_CTL(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status);
2335 	MMIO_DH(PCH_PP_CONTROL, D_ALL, NULL, pch_pp_control_mmio_write);
2336 	MMIO_DH(_MMIO(0xe651c), D_ALL, dpy_reg_mmio_read, NULL);
2337 	MMIO_DH(_MMIO(0xe661c), D_ALL, dpy_reg_mmio_read, NULL);
2338 	MMIO_DH(_MMIO(0xe671c), D_ALL, dpy_reg_mmio_read, NULL);
2339 	MMIO_DH(_MMIO(0xe681c), D_ALL, dpy_reg_mmio_read, NULL);
2340 	MMIO_DH(_MMIO(0xe6c04), D_ALL, dpy_reg_mmio_read, NULL);
2341 	MMIO_DH(_MMIO(0xe6e1c), D_ALL, dpy_reg_mmio_read, NULL);
2342 
2343 	MMIO_RO(PCH_PORT_HOTPLUG, D_ALL, 0,
2344 		PORTA_HOTPLUG_STATUS_MASK
2345 		| PORTB_HOTPLUG_STATUS_MASK
2346 		| PORTC_HOTPLUG_STATUS_MASK
2347 		| PORTD_HOTPLUG_STATUS_MASK,
2348 		NULL, NULL);
2349 
2350 	MMIO_DH(LCPLL_CTL, D_ALL, NULL, lcpll_ctl_mmio_write);
2351 	MMIO_DH(SOUTH_CHICKEN2, D_ALL, NULL, south_chicken2_mmio_write);
2352 	MMIO_DH(SFUSE_STRAP, D_ALL, NULL, NULL);
2353 	MMIO_DH(SBI_DATA, D_ALL, sbi_data_mmio_read, NULL);
2354 	MMIO_DH(SBI_CTL_STAT, D_ALL, NULL, sbi_ctl_mmio_write);
2355 
2356 	MMIO_F(DP_AUX_CH_CTL(AUX_CH_A), 6 * 4, 0, 0, 0, D_ALL, NULL,
2357 	       dp_aux_ch_ctl_mmio_write);
2358 
2359 	MMIO_DH(DDI_BUF_CTL(PORT_A), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2360 	MMIO_DH(DDI_BUF_CTL(PORT_B), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2361 	MMIO_DH(DDI_BUF_CTL(PORT_C), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2362 	MMIO_DH(DDI_BUF_CTL(PORT_D), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2363 	MMIO_DH(DDI_BUF_CTL(PORT_E), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2364 
2365 	MMIO_DH(DP_TP_CTL(PORT_A), D_ALL, NULL, dp_tp_ctl_mmio_write);
2366 	MMIO_DH(DP_TP_CTL(PORT_B), D_ALL, NULL, dp_tp_ctl_mmio_write);
2367 	MMIO_DH(DP_TP_CTL(PORT_C), D_ALL, NULL, dp_tp_ctl_mmio_write);
2368 	MMIO_DH(DP_TP_CTL(PORT_D), D_ALL, NULL, dp_tp_ctl_mmio_write);
2369 	MMIO_DH(DP_TP_CTL(PORT_E), D_ALL, NULL, dp_tp_ctl_mmio_write);
2370 
2371 	MMIO_DH(DP_TP_STATUS(PORT_A), D_ALL, NULL, dp_tp_status_mmio_write);
2372 	MMIO_DH(DP_TP_STATUS(PORT_B), D_ALL, NULL, dp_tp_status_mmio_write);
2373 	MMIO_DH(DP_TP_STATUS(PORT_C), D_ALL, NULL, dp_tp_status_mmio_write);
2374 	MMIO_DH(DP_TP_STATUS(PORT_D), D_ALL, NULL, dp_tp_status_mmio_write);
2375 	MMIO_DH(DP_TP_STATUS(PORT_E), D_ALL, NULL, NULL);
2376 
2377 	MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_A), D_ALL, NULL, NULL);
2378 	MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_B), D_ALL, NULL, NULL);
2379 	MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_C), D_ALL, NULL, NULL);
2380 	MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_EDP), D_ALL, NULL, NULL);
2381 
2382 	MMIO_DH(FORCEWAKE, D_ALL, NULL, NULL);
2383 	MMIO_DFH(GTFIFODBG, D_ALL, F_CMD_ACCESS, NULL, NULL);
2384 	MMIO_DFH(GTFIFOCTL, D_ALL, F_CMD_ACCESS, NULL, NULL);
2385 	MMIO_DH(FORCEWAKE_MT, D_PRE_SKL, NULL, mul_force_wake_write);
2386 	MMIO_DH(FORCEWAKE_ACK_HSW, D_BDW, NULL, NULL);
2387 	MMIO_DH(GEN6_RC_CONTROL, D_ALL, NULL, NULL);
2388 	MMIO_DH(GEN6_RC_STATE, D_ALL, NULL, NULL);
2389 	MMIO_DH(HSW_PWR_WELL_CTL1, D_BDW, NULL, power_well_ctl_mmio_write);
2390 	MMIO_DH(HSW_PWR_WELL_CTL2, D_BDW, NULL, power_well_ctl_mmio_write);
2391 	MMIO_DH(HSW_PWR_WELL_CTL3, D_BDW, NULL, power_well_ctl_mmio_write);
2392 	MMIO_DH(HSW_PWR_WELL_CTL4, D_BDW, NULL, power_well_ctl_mmio_write);
2393 	MMIO_DH(HSW_PWR_WELL_CTL5, D_BDW, NULL, power_well_ctl_mmio_write);
2394 	MMIO_DH(HSW_PWR_WELL_CTL6, D_BDW, NULL, power_well_ctl_mmio_write);
2395 
2396 	MMIO_DH(GEN6_GDRST, D_ALL, NULL, gdrst_mmio_write);
2397 	MMIO_F(FENCE_REG_GEN6_LO(0), 0x80, 0, 0, 0, D_ALL, fence_mmio_read, fence_mmio_write);
2398 	MMIO_DH(CPU_VGACNTRL, D_ALL, NULL, vga_control_mmio_write);
2399 
2400 	MMIO_DH(GEN7_ERR_INT, D_ALL, NULL, NULL);
2401 	MMIO_DH(GFX_FLSH_CNTL_GEN6, D_ALL, NULL, NULL);
2402 
2403 	MMIO_DH(GEN6_MBCTL, D_ALL, NULL, mbctl_write);
2404 	MMIO_DFH(GEN7_UCGCTL4, D_ALL, F_CMD_ACCESS, NULL, NULL);
2405 
2406 	MMIO_DH(FPGA_DBG, D_ALL, NULL, fpga_dbg_mmio_write);
2407 	MMIO_DFH(_MMIO(0x215c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2408 	MMIO_DFH(_MMIO(0x2178), D_ALL, F_CMD_ACCESS, NULL, NULL);
2409 	MMIO_DFH(_MMIO(0x217c), D_ALL, F_CMD_ACCESS, NULL, NULL);
2410 	MMIO_DFH(_MMIO(0x12178), D_ALL, F_CMD_ACCESS, NULL, NULL);
2411 	MMIO_DFH(_MMIO(0x1217c), D_ALL, F_CMD_ACCESS, NULL, NULL);
2412 
2413 	MMIO_F(_MMIO(0x2290), 8, F_CMD_ACCESS, 0, 0, D_BDW_PLUS, NULL, NULL);
2414 	MMIO_F(_MMIO(0x5200), 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2415 	MMIO_F(_MMIO(0x5240), 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2416 	MMIO_F(_MMIO(0x5280), 16, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2417 
2418 	MMIO_DFH(_MMIO(0x1c17c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2419 	MMIO_DFH(_MMIO(0x1c178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2420 	MMIO_DFH(BCS_SWCTRL, D_ALL, F_CMD_ACCESS, NULL, NULL);
2421 
2422 	MMIO_F(HS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2423 	MMIO_F(DS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2424 	MMIO_F(IA_VERTICES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2425 	MMIO_F(IA_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2426 	MMIO_F(VS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2427 	MMIO_F(GS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2428 	MMIO_F(GS_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2429 	MMIO_F(CL_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2430 	MMIO_F(CL_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2431 	MMIO_F(PS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2432 	MMIO_F(PS_DEPTH_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2433 	MMIO_DH(_MMIO(0x4260), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2434 	MMIO_DH(_MMIO(0x4264), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2435 	MMIO_DH(_MMIO(0x4268), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2436 	MMIO_DH(_MMIO(0x426c), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2437 	MMIO_DH(_MMIO(0x4270), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2438 	MMIO_DFH(_MMIO(0x4094), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2439 
2440 	MMIO_DFH(ARB_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2441 	MMIO_RING_GM(RING_BBADDR, D_ALL, NULL, NULL);
2442 	MMIO_DFH(_MMIO(0x2220), D_ALL, F_CMD_ACCESS, NULL, NULL);
2443 	MMIO_DFH(_MMIO(0x12220), D_ALL, F_CMD_ACCESS, NULL, NULL);
2444 	MMIO_DFH(_MMIO(0x22220), D_ALL, F_CMD_ACCESS, NULL, NULL);
2445 	MMIO_RING_DFH(RING_SYNC_1, D_ALL, F_CMD_ACCESS, NULL, NULL);
2446 	MMIO_RING_DFH(RING_SYNC_0, D_ALL, F_CMD_ACCESS, NULL, NULL);
2447 	MMIO_DFH(_MMIO(0x22178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2448 	MMIO_DFH(_MMIO(0x1a178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2449 	MMIO_DFH(_MMIO(0x1a17c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2450 	MMIO_DFH(_MMIO(0x2217c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2451 
2452 	MMIO_DH(EDP_PSR_IMR, D_BDW_PLUS, NULL, edp_psr_imr_iir_write);
2453 	MMIO_DH(EDP_PSR_IIR, D_BDW_PLUS, NULL, edp_psr_imr_iir_write);
2454 	MMIO_DH(GUC_STATUS, D_ALL, guc_status_read, NULL);
2455 
2456 	return 0;
2457 }
2458 
2459 static int init_bdw_mmio_info(struct intel_gvt *gvt)
2460 {
2461 	int ret;
2462 
2463 	MMIO_DH(GEN8_GT_IMR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2464 	MMIO_DH(GEN8_GT_IER(0), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2465 	MMIO_DH(GEN8_GT_IIR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2466 
2467 	MMIO_DH(GEN8_GT_IMR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2468 	MMIO_DH(GEN8_GT_IER(1), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2469 	MMIO_DH(GEN8_GT_IIR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2470 
2471 	MMIO_DH(GEN8_GT_IMR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2472 	MMIO_DH(GEN8_GT_IER(2), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2473 	MMIO_DH(GEN8_GT_IIR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2474 
2475 	MMIO_DH(GEN8_GT_IMR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2476 	MMIO_DH(GEN8_GT_IER(3), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2477 	MMIO_DH(GEN8_GT_IIR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2478 
2479 	MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_A), D_BDW_PLUS, NULL,
2480 		intel_vgpu_reg_imr_handler);
2481 	MMIO_DH(GEN8_DE_PIPE_IER(PIPE_A), D_BDW_PLUS, NULL,
2482 		intel_vgpu_reg_ier_handler);
2483 	MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_A), D_BDW_PLUS, NULL,
2484 		intel_vgpu_reg_iir_handler);
2485 
2486 	MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_B), D_BDW_PLUS, NULL,
2487 		intel_vgpu_reg_imr_handler);
2488 	MMIO_DH(GEN8_DE_PIPE_IER(PIPE_B), D_BDW_PLUS, NULL,
2489 		intel_vgpu_reg_ier_handler);
2490 	MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_B), D_BDW_PLUS, NULL,
2491 		intel_vgpu_reg_iir_handler);
2492 
2493 	MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_C), D_BDW_PLUS, NULL,
2494 		intel_vgpu_reg_imr_handler);
2495 	MMIO_DH(GEN8_DE_PIPE_IER(PIPE_C), D_BDW_PLUS, NULL,
2496 		intel_vgpu_reg_ier_handler);
2497 	MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_C), D_BDW_PLUS, NULL,
2498 		intel_vgpu_reg_iir_handler);
2499 
2500 	MMIO_DH(GEN8_DE_PORT_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2501 	MMIO_DH(GEN8_DE_PORT_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2502 	MMIO_DH(GEN8_DE_PORT_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2503 
2504 	MMIO_DH(GEN8_DE_MISC_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2505 	MMIO_DH(GEN8_DE_MISC_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2506 	MMIO_DH(GEN8_DE_MISC_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2507 
2508 	MMIO_DH(GEN8_PCU_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2509 	MMIO_DH(GEN8_PCU_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2510 	MMIO_DH(GEN8_PCU_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2511 
2512 	MMIO_DH(GEN8_MASTER_IRQ, D_BDW_PLUS, NULL,
2513 		intel_vgpu_reg_master_irq_handler);
2514 
2515 	MMIO_RING_DFH(RING_ACTHD_UDW, D_BDW_PLUS, 0,
2516 		mmio_read_from_hw, NULL);
2517 
2518 #define RING_REG(base) _MMIO((base) + 0xd0)
2519 	MMIO_RING_F(RING_REG, 4, F_RO, 0,
2520 		~_MASKED_BIT_ENABLE(RESET_CTL_REQUEST_RESET), D_BDW_PLUS, NULL,
2521 		ring_reset_ctl_write);
2522 #undef RING_REG
2523 
2524 #define RING_REG(base) _MMIO((base) + 0x230)
2525 	MMIO_RING_DFH(RING_REG, D_BDW_PLUS, 0, NULL, elsp_mmio_write);
2526 #undef RING_REG
2527 
2528 #define RING_REG(base) _MMIO((base) + 0x234)
2529 	MMIO_RING_F(RING_REG, 8, F_RO, 0, ~0, D_BDW_PLUS,
2530 		NULL, NULL);
2531 #undef RING_REG
2532 
2533 #define RING_REG(base) _MMIO((base) + 0x244)
2534 	MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2535 #undef RING_REG
2536 
2537 #define RING_REG(base) _MMIO((base) + 0x370)
2538 	MMIO_RING_F(RING_REG, 48, F_RO, 0, ~0, D_BDW_PLUS, NULL, NULL);
2539 #undef RING_REG
2540 
2541 #define RING_REG(base) _MMIO((base) + 0x3a0)
2542 	MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_MODE_MASK, NULL, NULL);
2543 #undef RING_REG
2544 
2545 	MMIO_DH(GEN6_PCODE_MAILBOX, D_BDW_PLUS, NULL, mailbox_write);
2546 
2547 #define RING_REG(base) _MMIO((base) + 0x270)
2548 	MMIO_RING_F(RING_REG, 32, F_CMD_ACCESS, 0, 0, D_BDW_PLUS, NULL, NULL);
2549 #undef RING_REG
2550 
2551 	MMIO_RING_GM(RING_HWS_PGA, D_BDW_PLUS, NULL, hws_pga_write);
2552 
2553 	MMIO_DFH(HDC_CHICKEN0, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2554 
2555 	MMIO_DFH(GEN8_ROW_CHICKEN, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2556 		NULL, NULL);
2557 	MMIO_DFH(GEN7_ROW_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2558 		NULL, NULL);
2559 	MMIO_DFH(GEN8_UCGCTL6, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2560 
2561 	MMIO_DFH(_MMIO(0xb1f0), D_BDW, F_CMD_ACCESS, NULL, NULL);
2562 	MMIO_DFH(_MMIO(0xb1c0), D_BDW, F_CMD_ACCESS, NULL, NULL);
2563 	MMIO_DFH(GEN8_L3SQCREG4, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2564 	MMIO_DFH(_MMIO(0xb100), D_BDW, F_CMD_ACCESS, NULL, NULL);
2565 	MMIO_DFH(_MMIO(0xb10c), D_BDW, F_CMD_ACCESS, NULL, NULL);
2566 
2567 	MMIO_F(_MMIO(0x24d0), 48, F_CMD_ACCESS | F_CMD_WRITE_PATCH, 0, 0,
2568 		D_BDW_PLUS, NULL, force_nonpriv_write);
2569 
2570 	MMIO_DFH(_MMIO(0x83a4), D_BDW, F_CMD_ACCESS, NULL, NULL);
2571 
2572 	MMIO_DFH(_MMIO(0x8430), D_BDW, F_CMD_ACCESS, NULL, NULL);
2573 
2574 	MMIO_DFH(_MMIO(0xe194), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2575 	MMIO_DFH(_MMIO(0xe188), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2576 	MMIO_DFH(HALF_SLICE_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2577 	MMIO_DFH(_MMIO(0x2580), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2578 
2579 	MMIO_DFH(_MMIO(0x2248), D_BDW, F_CMD_ACCESS, NULL, NULL);
2580 
2581 	MMIO_DFH(_MMIO(0xe220), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2582 	MMIO_DFH(_MMIO(0xe230), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2583 	MMIO_DFH(_MMIO(0xe240), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2584 	MMIO_DFH(_MMIO(0xe260), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2585 	MMIO_DFH(_MMIO(0xe270), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2586 	MMIO_DFH(_MMIO(0xe280), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2587 	MMIO_DFH(_MMIO(0xe2a0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2588 	MMIO_DFH(_MMIO(0xe2b0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2589 	MMIO_DFH(_MMIO(0xe2c0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2590 	MMIO_DFH(_MMIO(0x21f0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2591 	return 0;
2592 }
2593 
2594 static int init_skl_mmio_info(struct intel_gvt *gvt)
2595 {
2596 	int ret;
2597 
2598 	MMIO_DH(FORCEWAKE_RENDER_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
2599 	MMIO_DH(FORCEWAKE_ACK_RENDER_GEN9, D_SKL_PLUS, NULL, NULL);
2600 	MMIO_DH(FORCEWAKE_GT_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
2601 	MMIO_DH(FORCEWAKE_ACK_GT_GEN9, D_SKL_PLUS, NULL, NULL);
2602 	MMIO_DH(FORCEWAKE_MEDIA_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
2603 	MMIO_DH(FORCEWAKE_ACK_MEDIA_GEN9, D_SKL_PLUS, NULL, NULL);
2604 
2605 	MMIO_F(DP_AUX_CH_CTL(AUX_CH_B), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
2606 						dp_aux_ch_ctl_mmio_write);
2607 	MMIO_F(DP_AUX_CH_CTL(AUX_CH_C), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
2608 						dp_aux_ch_ctl_mmio_write);
2609 	MMIO_F(DP_AUX_CH_CTL(AUX_CH_D), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
2610 						dp_aux_ch_ctl_mmio_write);
2611 
2612 	MMIO_DH(HSW_PWR_WELL_CTL2, D_SKL_PLUS, NULL, skl_power_well_ctl_write);
2613 
2614 	MMIO_DH(DBUF_CTL_S(0), D_SKL_PLUS, NULL, gen9_dbuf_ctl_mmio_write);
2615 
2616 	MMIO_DFH(GEN9_GAMT_ECO_REG_RW_IA, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2617 	MMIO_DFH(MMCD_MISC_CTRL, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2618 	MMIO_DH(CHICKEN_PAR1_1, D_SKL_PLUS, NULL, NULL);
2619 	MMIO_DH(LCPLL1_CTL, D_SKL_PLUS, NULL, skl_lcpll_write);
2620 	MMIO_DH(LCPLL2_CTL, D_SKL_PLUS, NULL, skl_lcpll_write);
2621 	MMIO_DH(DPLL_STATUS, D_SKL_PLUS, dpll_status_read, NULL);
2622 
2623 	MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
2624 	MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
2625 	MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
2626 	MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
2627 	MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
2628 	MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
2629 
2630 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
2631 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
2632 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
2633 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
2634 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
2635 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
2636 
2637 	MMIO_DH(SKL_PS_CTRL(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
2638 	MMIO_DH(SKL_PS_CTRL(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
2639 	MMIO_DH(SKL_PS_CTRL(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
2640 	MMIO_DH(SKL_PS_CTRL(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
2641 	MMIO_DH(SKL_PS_CTRL(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
2642 	MMIO_DH(SKL_PS_CTRL(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
2643 
2644 	MMIO_DH(PLANE_BUF_CFG(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2645 	MMIO_DH(PLANE_BUF_CFG(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2646 	MMIO_DH(PLANE_BUF_CFG(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2647 	MMIO_DH(PLANE_BUF_CFG(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
2648 
2649 	MMIO_DH(PLANE_BUF_CFG(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2650 	MMIO_DH(PLANE_BUF_CFG(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2651 	MMIO_DH(PLANE_BUF_CFG(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2652 	MMIO_DH(PLANE_BUF_CFG(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
2653 
2654 	MMIO_DH(PLANE_BUF_CFG(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2655 	MMIO_DH(PLANE_BUF_CFG(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2656 	MMIO_DH(PLANE_BUF_CFG(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2657 	MMIO_DH(PLANE_BUF_CFG(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
2658 
2659 	MMIO_DH(CUR_BUF_CFG(PIPE_A), D_SKL_PLUS, NULL, NULL);
2660 	MMIO_DH(CUR_BUF_CFG(PIPE_B), D_SKL_PLUS, NULL, NULL);
2661 	MMIO_DH(CUR_BUF_CFG(PIPE_C), D_SKL_PLUS, NULL, NULL);
2662 
2663 	MMIO_DH(PLANE_WM_TRANS(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2664 	MMIO_DH(PLANE_WM_TRANS(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2665 	MMIO_DH(PLANE_WM_TRANS(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2666 
2667 	MMIO_DH(PLANE_WM_TRANS(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2668 	MMIO_DH(PLANE_WM_TRANS(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2669 	MMIO_DH(PLANE_WM_TRANS(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2670 
2671 	MMIO_DH(PLANE_WM_TRANS(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2672 	MMIO_DH(PLANE_WM_TRANS(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2673 	MMIO_DH(PLANE_WM_TRANS(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2674 
2675 	MMIO_DH(CUR_WM_TRANS(PIPE_A), D_SKL_PLUS, NULL, NULL);
2676 	MMIO_DH(CUR_WM_TRANS(PIPE_B), D_SKL_PLUS, NULL, NULL);
2677 	MMIO_DH(CUR_WM_TRANS(PIPE_C), D_SKL_PLUS, NULL, NULL);
2678 
2679 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2680 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2681 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2682 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
2683 
2684 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2685 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2686 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2687 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
2688 
2689 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2690 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2691 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2692 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
2693 
2694 	MMIO_DH(PLANE_AUX_DIST(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2695 	MMIO_DH(PLANE_AUX_DIST(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2696 	MMIO_DH(PLANE_AUX_DIST(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2697 	MMIO_DH(PLANE_AUX_DIST(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
2698 
2699 	MMIO_DH(PLANE_AUX_DIST(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2700 	MMIO_DH(PLANE_AUX_DIST(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2701 	MMIO_DH(PLANE_AUX_DIST(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2702 	MMIO_DH(PLANE_AUX_DIST(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
2703 
2704 	MMIO_DH(PLANE_AUX_DIST(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2705 	MMIO_DH(PLANE_AUX_DIST(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2706 	MMIO_DH(PLANE_AUX_DIST(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2707 	MMIO_DH(PLANE_AUX_DIST(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
2708 
2709 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2710 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2711 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2712 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
2713 
2714 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2715 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2716 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2717 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
2718 
2719 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2720 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2721 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2722 	MMIO_DH(PLANE_AUX_OFFSET(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
2723 
2724 	MMIO_DFH(BDW_SCRATCH1, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2725 
2726 	MMIO_F(GEN9_GFX_MOCS(0), 0x7f8, F_CMD_ACCESS, 0, 0, D_SKL_PLUS,
2727 		NULL, NULL);
2728 	MMIO_F(GEN7_L3CNTLREG2, 0x80, F_CMD_ACCESS, 0, 0, D_SKL_PLUS,
2729 		NULL, NULL);
2730 
2731 	MMIO_DFH(GEN7_FF_SLICE_CS_CHICKEN1, D_SKL_PLUS,
2732 		 F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2733 	MMIO_DFH(GEN9_CS_DEBUG_MODE1, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2734 		NULL, NULL);
2735 
2736 	/* TRTT */
2737 	MMIO_DFH(TRVATTL3PTRDW(0), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2738 	MMIO_DFH(TRVATTL3PTRDW(1), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2739 	MMIO_DFH(TRVATTL3PTRDW(2), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2740 	MMIO_DFH(TRVATTL3PTRDW(3), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2741 	MMIO_DFH(TRVADR, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2742 	MMIO_DFH(TRTTE, D_SKL_PLUS, F_CMD_ACCESS | F_PM_SAVE,
2743 		 NULL, gen9_trtte_write);
2744 	MMIO_DFH(_MMIO(0x4dfc), D_SKL_PLUS, F_PM_SAVE,
2745 		 NULL, gen9_trtt_chicken_write);
2746 
2747 	MMIO_DFH(GEN8_GARBCNTL, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2748 	MMIO_DH(DMA_CTRL, D_SKL_PLUS, NULL, dma_ctrl_write);
2749 
2750 #define CSFE_CHICKEN1_REG(base) _MMIO((base) + 0xD4)
2751 	MMIO_RING_DFH(CSFE_CHICKEN1_REG, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2752 		      NULL, csfe_chicken1_mmio_write);
2753 #undef CSFE_CHICKEN1_REG
2754 	MMIO_DFH(GEN8_HDC_CHICKEN1, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2755 		 NULL, NULL);
2756 	MMIO_DFH(GEN9_WM_CHICKEN3, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2757 		 NULL, NULL);
2758 
2759 	MMIO_DFH(GAMT_CHKN_BIT_REG, D_KBL | D_CFL, F_CMD_ACCESS, NULL, NULL);
2760 	MMIO_DFH(_MMIO(0xe4cc), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2761 
2762 	return 0;
2763 }
2764 
2765 static int init_bxt_mmio_info(struct intel_gvt *gvt)
2766 {
2767 	int ret;
2768 
2769 	MMIO_DH(BXT_P_CR_GT_DISP_PWRON, D_BXT, NULL, bxt_gt_disp_pwron_write);
2770 	MMIO_DH(BXT_PHY_CTL_FAMILY(DPIO_PHY0), D_BXT,
2771 		NULL, bxt_phy_ctl_family_write);
2772 	MMIO_DH(BXT_PHY_CTL_FAMILY(DPIO_PHY1), D_BXT,
2773 		NULL, bxt_phy_ctl_family_write);
2774 	MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_A), D_BXT,
2775 		NULL, bxt_port_pll_enable_write);
2776 	MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_B), D_BXT,
2777 		NULL, bxt_port_pll_enable_write);
2778 	MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_C), D_BXT, NULL,
2779 		bxt_port_pll_enable_write);
2780 
2781 	MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY0, DPIO_CH0), D_BXT,
2782 		NULL, bxt_pcs_dw12_grp_write);
2783 	MMIO_DH(BXT_PORT_TX_DW3_LN(DPIO_PHY0, DPIO_CH0, 0), D_BXT,
2784 		bxt_port_tx_dw3_read, NULL);
2785 	MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY0, DPIO_CH1), D_BXT,
2786 		NULL, bxt_pcs_dw12_grp_write);
2787 	MMIO_DH(BXT_PORT_TX_DW3_LN(DPIO_PHY0, DPIO_CH1, 0), D_BXT,
2788 		bxt_port_tx_dw3_read, NULL);
2789 	MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY1, DPIO_CH0), D_BXT,
2790 		NULL, bxt_pcs_dw12_grp_write);
2791 	MMIO_DH(BXT_PORT_TX_DW3_LN(DPIO_PHY1, DPIO_CH0, 0), D_BXT,
2792 		bxt_port_tx_dw3_read, NULL);
2793 	MMIO_DH(BXT_DE_PLL_ENABLE, D_BXT, NULL, bxt_de_pll_enable_write);
2794 	MMIO_DFH(GEN8_L3SQCREG1, D_BXT, F_CMD_ACCESS, NULL, NULL);
2795 	MMIO_DFH(GEN8_L3CNTLREG, D_BXT, F_CMD_ACCESS, NULL, NULL);
2796 	MMIO_DFH(_MMIO(0x20D8), D_BXT, F_CMD_ACCESS, NULL, NULL);
2797 	MMIO_F(GEN8_RING_CS_GPR(RENDER_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2798 	       0, 0, D_BXT, NULL, NULL);
2799 	MMIO_F(GEN8_RING_CS_GPR(GEN6_BSD_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2800 	       0, 0, D_BXT, NULL, NULL);
2801 	MMIO_F(GEN8_RING_CS_GPR(BLT_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2802 	       0, 0, D_BXT, NULL, NULL);
2803 	MMIO_F(GEN8_RING_CS_GPR(VEBOX_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2804 	       0, 0, D_BXT, NULL, NULL);
2805 
2806 	MMIO_DFH(GEN9_CTX_PREEMPT_REG, D_BXT, F_CMD_ACCESS, NULL, NULL);
2807 
2808 	MMIO_DH(GEN8_PRIVATE_PAT_LO, D_BXT, NULL, bxt_ppat_low_write);
2809 
2810 	return 0;
2811 }
2812 
2813 static struct gvt_mmio_block *find_mmio_block(struct intel_gvt *gvt,
2814 					      unsigned int offset)
2815 {
2816 	struct gvt_mmio_block *block = gvt->mmio.mmio_block;
2817 	int num = gvt->mmio.num_mmio_block;
2818 	int i;
2819 
2820 	for (i = 0; i < num; i++, block++) {
2821 		if (offset >= i915_mmio_reg_offset(block->offset) &&
2822 		    offset < i915_mmio_reg_offset(block->offset) + block->size)
2823 			return block;
2824 	}
2825 	return NULL;
2826 }
2827 
2828 /**
2829  * intel_gvt_clean_mmio_info - clean up MMIO information table for GVT device
2830  * @gvt: GVT device
2831  *
2832  * This function is called at the driver unloading stage, to clean up the MMIO
2833  * information table of GVT device
2834  *
2835  */
2836 void intel_gvt_clean_mmio_info(struct intel_gvt *gvt)
2837 {
2838 	struct hlist_node *tmp;
2839 	struct intel_gvt_mmio_info *e;
2840 	int i;
2841 
2842 	hash_for_each_safe(gvt->mmio.mmio_info_table, i, tmp, e, node)
2843 		kfree(e);
2844 
2845 	kfree(gvt->mmio.mmio_block);
2846 	gvt->mmio.mmio_block = NULL;
2847 	gvt->mmio.num_mmio_block = 0;
2848 
2849 	vfree(gvt->mmio.mmio_attribute);
2850 	gvt->mmio.mmio_attribute = NULL;
2851 }
2852 
2853 static int handle_mmio(struct intel_gvt_mmio_table_iter *iter, u32 offset,
2854 		       u32 size)
2855 {
2856 	struct intel_gvt *gvt = iter->data;
2857 	struct intel_gvt_mmio_info *info, *p;
2858 	u32 start, end, i;
2859 
2860 	if (WARN_ON(!IS_ALIGNED(offset, 4)))
2861 		return -EINVAL;
2862 
2863 	start = offset;
2864 	end = offset + size;
2865 
2866 	for (i = start; i < end; i += 4) {
2867 		p = intel_gvt_find_mmio_info(gvt, i);
2868 		if (p) {
2869 			WARN(1, "dup mmio definition offset %x\n", i);
2870 
2871 			/* We return -EEXIST here to make GVT-g load fail.
2872 			 * So duplicated MMIO can be found as soon as
2873 			 * possible.
2874 			 */
2875 			return -EEXIST;
2876 		}
2877 
2878 		info = kzalloc(sizeof(*info), GFP_KERNEL);
2879 		if (!info)
2880 			return -ENOMEM;
2881 
2882 		info->offset = i;
2883 		info->read = intel_vgpu_default_mmio_read;
2884 		info->write = intel_vgpu_default_mmio_write;
2885 		INIT_HLIST_NODE(&info->node);
2886 		hash_add(gvt->mmio.mmio_info_table, &info->node, info->offset);
2887 		gvt->mmio.num_tracked_mmio++;
2888 	}
2889 	return 0;
2890 }
2891 
2892 static int handle_mmio_block(struct intel_gvt_mmio_table_iter *iter,
2893 			     u32 offset, u32 size)
2894 {
2895 	struct intel_gvt *gvt = iter->data;
2896 	struct gvt_mmio_block *block = gvt->mmio.mmio_block;
2897 	void *ret;
2898 
2899 	ret = krealloc(block,
2900 			 (gvt->mmio.num_mmio_block + 1) * sizeof(*block),
2901 			 GFP_KERNEL);
2902 	if (!ret)
2903 		return -ENOMEM;
2904 
2905 	gvt->mmio.mmio_block = block = ret;
2906 
2907 	block += gvt->mmio.num_mmio_block;
2908 
2909 	memset(block, 0, sizeof(*block));
2910 
2911 	block->offset = _MMIO(offset);
2912 	block->size = size;
2913 
2914 	gvt->mmio.num_mmio_block++;
2915 
2916 	return 0;
2917 }
2918 
2919 static int handle_mmio_cb(struct intel_gvt_mmio_table_iter *iter, u32 offset,
2920 			  u32 size)
2921 {
2922 	if (size < 1024 || offset == i915_mmio_reg_offset(GEN9_GFX_MOCS(0)))
2923 		return handle_mmio(iter, offset, size);
2924 	else
2925 		return handle_mmio_block(iter, offset, size);
2926 }
2927 
2928 static int init_mmio_info(struct intel_gvt *gvt)
2929 {
2930 	struct intel_gvt_mmio_table_iter iter = {
2931 		.i915 = gvt->gt->i915,
2932 		.data = gvt,
2933 		.handle_mmio_cb = handle_mmio_cb,
2934 	};
2935 
2936 	return intel_gvt_iterate_mmio_table(&iter);
2937 }
2938 
2939 static int init_mmio_block_handlers(struct intel_gvt *gvt)
2940 {
2941 	struct gvt_mmio_block *block;
2942 
2943 	block = find_mmio_block(gvt, VGT_PVINFO_PAGE);
2944 	if (!block) {
2945 		WARN(1, "fail to assign handlers to mmio block %x\n",
2946 		     i915_mmio_reg_offset(gvt->mmio.mmio_block->offset));
2947 		return -ENODEV;
2948 	}
2949 
2950 	block->read = pvinfo_mmio_read;
2951 	block->write = pvinfo_mmio_write;
2952 
2953 	return 0;
2954 }
2955 
2956 /**
2957  * intel_gvt_setup_mmio_info - setup MMIO information table for GVT device
2958  * @gvt: GVT device
2959  *
2960  * This function is called at the initialization stage, to setup the MMIO
2961  * information table for GVT device
2962  *
2963  * Returns:
2964  * zero on success, negative if failed.
2965  */
2966 int intel_gvt_setup_mmio_info(struct intel_gvt *gvt)
2967 {
2968 	struct intel_gvt_device_info *info = &gvt->device_info;
2969 	struct drm_i915_private *i915 = gvt->gt->i915;
2970 	int size = info->mmio_size / 4 * sizeof(*gvt->mmio.mmio_attribute);
2971 	int ret;
2972 
2973 	gvt->mmio.mmio_attribute = vzalloc(size);
2974 	if (!gvt->mmio.mmio_attribute)
2975 		return -ENOMEM;
2976 
2977 	ret = init_mmio_info(gvt);
2978 	if (ret)
2979 		goto err;
2980 
2981 	ret = init_mmio_block_handlers(gvt);
2982 	if (ret)
2983 		goto err;
2984 
2985 	ret = init_generic_mmio_info(gvt);
2986 	if (ret)
2987 		goto err;
2988 
2989 	if (IS_BROADWELL(i915)) {
2990 		ret = init_bdw_mmio_info(gvt);
2991 		if (ret)
2992 			goto err;
2993 	} else if (IS_SKYLAKE(i915) ||
2994 		   IS_KABYLAKE(i915) ||
2995 		   IS_COFFEELAKE(i915) ||
2996 		   IS_COMETLAKE(i915)) {
2997 		ret = init_bdw_mmio_info(gvt);
2998 		if (ret)
2999 			goto err;
3000 		ret = init_skl_mmio_info(gvt);
3001 		if (ret)
3002 			goto err;
3003 	} else if (IS_BROXTON(i915)) {
3004 		ret = init_bdw_mmio_info(gvt);
3005 		if (ret)
3006 			goto err;
3007 		ret = init_skl_mmio_info(gvt);
3008 		if (ret)
3009 			goto err;
3010 		ret = init_bxt_mmio_info(gvt);
3011 		if (ret)
3012 			goto err;
3013 	}
3014 
3015 	return 0;
3016 err:
3017 	intel_gvt_clean_mmio_info(gvt);
3018 	return ret;
3019 }
3020 
3021 /**
3022  * intel_gvt_for_each_tracked_mmio - iterate each tracked mmio
3023  * @gvt: a GVT device
3024  * @handler: the handler
3025  * @data: private data given to handler
3026  *
3027  * Returns:
3028  * Zero on success, negative error code if failed.
3029  */
3030 int intel_gvt_for_each_tracked_mmio(struct intel_gvt *gvt,
3031 	int (*handler)(struct intel_gvt *gvt, u32 offset, void *data),
3032 	void *data)
3033 {
3034 	struct gvt_mmio_block *block = gvt->mmio.mmio_block;
3035 	struct intel_gvt_mmio_info *e;
3036 	int i, j, ret;
3037 
3038 	hash_for_each(gvt->mmio.mmio_info_table, i, e, node) {
3039 		ret = handler(gvt, e->offset, data);
3040 		if (ret)
3041 			return ret;
3042 	}
3043 
3044 	for (i = 0; i < gvt->mmio.num_mmio_block; i++, block++) {
3045 		/* pvinfo data doesn't come from hw mmio */
3046 		if (i915_mmio_reg_offset(block->offset) == VGT_PVINFO_PAGE)
3047 			continue;
3048 
3049 		for (j = 0; j < block->size; j += 4) {
3050 			ret = handler(gvt, i915_mmio_reg_offset(block->offset) + j, data);
3051 			if (ret)
3052 				return ret;
3053 		}
3054 	}
3055 	return 0;
3056 }
3057 
3058 /**
3059  * intel_vgpu_default_mmio_read - default MMIO read handler
3060  * @vgpu: a vGPU
3061  * @offset: access offset
3062  * @p_data: data return buffer
3063  * @bytes: access data length
3064  *
3065  * Returns:
3066  * Zero on success, negative error code if failed.
3067  */
3068 int intel_vgpu_default_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
3069 		void *p_data, unsigned int bytes)
3070 {
3071 	read_vreg(vgpu, offset, p_data, bytes);
3072 	return 0;
3073 }
3074 
3075 /**
3076  * intel_vgpu_default_mmio_write() - default MMIO write handler
3077  * @vgpu: a vGPU
3078  * @offset: access offset
3079  * @p_data: write data buffer
3080  * @bytes: access data length
3081  *
3082  * Returns:
3083  * Zero on success, negative error code if failed.
3084  */
3085 int intel_vgpu_default_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
3086 		void *p_data, unsigned int bytes)
3087 {
3088 	write_vreg(vgpu, offset, p_data, bytes);
3089 	return 0;
3090 }
3091 
3092 /**
3093  * intel_vgpu_mask_mmio_write - write mask register
3094  * @vgpu: a vGPU
3095  * @offset: access offset
3096  * @p_data: write data buffer
3097  * @bytes: access data length
3098  *
3099  * Returns:
3100  * Zero on success, negative error code if failed.
3101  */
3102 int intel_vgpu_mask_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
3103 		void *p_data, unsigned int bytes)
3104 {
3105 	u32 mask, old_vreg;
3106 
3107 	old_vreg = vgpu_vreg(vgpu, offset);
3108 	write_vreg(vgpu, offset, p_data, bytes);
3109 	mask = vgpu_vreg(vgpu, offset) >> 16;
3110 	vgpu_vreg(vgpu, offset) = (old_vreg & ~mask) |
3111 				(vgpu_vreg(vgpu, offset) & mask);
3112 
3113 	return 0;
3114 }
3115 
3116 /**
3117  * intel_gvt_in_force_nonpriv_whitelist - if a mmio is in whitelist to be
3118  * force-nopriv register
3119  *
3120  * @gvt: a GVT device
3121  * @offset: register offset
3122  *
3123  * Returns:
3124  * True if the register is in force-nonpriv whitelist;
3125  * False if outside;
3126  */
3127 bool intel_gvt_in_force_nonpriv_whitelist(struct intel_gvt *gvt,
3128 					  unsigned int offset)
3129 {
3130 	return in_whitelist(offset);
3131 }
3132 
3133 /**
3134  * intel_vgpu_mmio_reg_rw - emulate tracked mmio registers
3135  * @vgpu: a vGPU
3136  * @offset: register offset
3137  * @pdata: data buffer
3138  * @bytes: data length
3139  * @is_read: read or write
3140  *
3141  * Returns:
3142  * Zero on success, negative error code if failed.
3143  */
3144 int intel_vgpu_mmio_reg_rw(struct intel_vgpu *vgpu, unsigned int offset,
3145 			   void *pdata, unsigned int bytes, bool is_read)
3146 {
3147 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
3148 	struct intel_gvt *gvt = vgpu->gvt;
3149 	struct intel_gvt_mmio_info *mmio_info;
3150 	struct gvt_mmio_block *mmio_block;
3151 	gvt_mmio_func func;
3152 	int ret;
3153 
3154 	if (drm_WARN_ON(&i915->drm, bytes > 8))
3155 		return -EINVAL;
3156 
3157 	/*
3158 	 * Handle special MMIO blocks.
3159 	 */
3160 	mmio_block = find_mmio_block(gvt, offset);
3161 	if (mmio_block) {
3162 		func = is_read ? mmio_block->read : mmio_block->write;
3163 		if (func)
3164 			return func(vgpu, offset, pdata, bytes);
3165 		goto default_rw;
3166 	}
3167 
3168 	/*
3169 	 * Normal tracked MMIOs.
3170 	 */
3171 	mmio_info = intel_gvt_find_mmio_info(gvt, offset);
3172 	if (!mmio_info) {
3173 		gvt_dbg_mmio("untracked MMIO %08x len %d\n", offset, bytes);
3174 		goto default_rw;
3175 	}
3176 
3177 	if (is_read)
3178 		return mmio_info->read(vgpu, offset, pdata, bytes);
3179 	else {
3180 		u64 ro_mask = mmio_info->ro_mask;
3181 		u32 old_vreg = 0;
3182 		u64 data = 0;
3183 
3184 		if (intel_gvt_mmio_has_mode_mask(gvt, mmio_info->offset)) {
3185 			old_vreg = vgpu_vreg(vgpu, offset);
3186 		}
3187 
3188 		if (likely(!ro_mask))
3189 			ret = mmio_info->write(vgpu, offset, pdata, bytes);
3190 		else if (!~ro_mask) {
3191 			gvt_vgpu_err("try to write RO reg %x\n", offset);
3192 			return 0;
3193 		} else {
3194 			/* keep the RO bits in the virtual register */
3195 			memcpy(&data, pdata, bytes);
3196 			data &= ~ro_mask;
3197 			data |= vgpu_vreg(vgpu, offset) & ro_mask;
3198 			ret = mmio_info->write(vgpu, offset, &data, bytes);
3199 		}
3200 
3201 		/* higher 16bits of mode ctl regs are mask bits for change */
3202 		if (intel_gvt_mmio_has_mode_mask(gvt, mmio_info->offset)) {
3203 			u32 mask = vgpu_vreg(vgpu, offset) >> 16;
3204 
3205 			vgpu_vreg(vgpu, offset) = (old_vreg & ~mask)
3206 					| (vgpu_vreg(vgpu, offset) & mask);
3207 		}
3208 	}
3209 
3210 	return ret;
3211 
3212 default_rw:
3213 	return is_read ?
3214 		intel_vgpu_default_mmio_read(vgpu, offset, pdata, bytes) :
3215 		intel_vgpu_default_mmio_write(vgpu, offset, pdata, bytes);
3216 }
3217 
3218 void intel_gvt_restore_fence(struct intel_gvt *gvt)
3219 {
3220 	struct intel_vgpu *vgpu;
3221 	int i, id;
3222 
3223 	idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
3224 		mmio_hw_access_pre(gvt->gt);
3225 		for (i = 0; i < vgpu_fence_sz(vgpu); i++)
3226 			intel_vgpu_write_fence(vgpu, i, vgpu_vreg64(vgpu, fence_num_to_offset(i)));
3227 		mmio_hw_access_post(gvt->gt);
3228 	}
3229 }
3230 
3231 static int mmio_pm_restore_handler(struct intel_gvt *gvt, u32 offset, void *data)
3232 {
3233 	struct intel_vgpu *vgpu = data;
3234 	struct drm_i915_private *dev_priv = gvt->gt->i915;
3235 
3236 	if (gvt->mmio.mmio_attribute[offset >> 2] & F_PM_SAVE)
3237 		intel_uncore_write(&dev_priv->uncore, _MMIO(offset), vgpu_vreg(vgpu, offset));
3238 
3239 	return 0;
3240 }
3241 
3242 void intel_gvt_restore_mmio(struct intel_gvt *gvt)
3243 {
3244 	struct intel_vgpu *vgpu;
3245 	int id;
3246 
3247 	idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
3248 		mmio_hw_access_pre(gvt->gt);
3249 		intel_gvt_for_each_tracked_mmio(gvt, mmio_pm_restore_handler, vgpu);
3250 		mmio_hw_access_post(gvt->gt);
3251 	}
3252 }
3253