xref: /linux/drivers/gpu/drm/i915/gvt/handlers.c (revision 0e9ab8e4d44ae9d9aaf213bfd2c90bbe7289337b)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Kevin Tian <kevin.tian@intel.com>
25  *    Eddie Dong <eddie.dong@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Tina Zhang <tina.zhang@intel.com>
31  *    Pei Zhang <pei.zhang@intel.com>
32  *    Niu Bing <bing.niu@intel.com>
33  *    Ping Gao <ping.a.gao@intel.com>
34  *    Zhi Wang <zhi.a.wang@intel.com>
35  *
36 
37  */
38 
39 #include "i915_drv.h"
40 #include "i915_reg.h"
41 #include "gvt.h"
42 #include "i915_pvinfo.h"
43 #include "intel_mchbar_regs.h"
44 #include "display/intel_display_types.h"
45 #include "display/intel_dmc_regs.h"
46 #include "display/intel_dpio_phy.h"
47 #include "display/intel_fbc.h"
48 #include "display/vlv_dsi_pll_regs.h"
49 #include "gt/intel_gt_regs.h"
50 
51 /* XXX FIXME i915 has changed PP_XXX definition */
52 #define PCH_PP_STATUS  _MMIO(0xc7200)
53 #define PCH_PP_CONTROL _MMIO(0xc7204)
54 #define PCH_PP_ON_DELAYS _MMIO(0xc7208)
55 #define PCH_PP_OFF_DELAYS _MMIO(0xc720c)
56 #define PCH_PP_DIVISOR _MMIO(0xc7210)
57 
58 unsigned long intel_gvt_get_device_type(struct intel_gvt *gvt)
59 {
60 	struct drm_i915_private *i915 = gvt->gt->i915;
61 
62 	if (IS_BROADWELL(i915))
63 		return D_BDW;
64 	else if (IS_SKYLAKE(i915))
65 		return D_SKL;
66 	else if (IS_KABYLAKE(i915))
67 		return D_KBL;
68 	else if (IS_BROXTON(i915))
69 		return D_BXT;
70 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
71 		return D_CFL;
72 
73 	return 0;
74 }
75 
76 static bool intel_gvt_match_device(struct intel_gvt *gvt,
77 		unsigned long device)
78 {
79 	return intel_gvt_get_device_type(gvt) & device;
80 }
81 
82 static void read_vreg(struct intel_vgpu *vgpu, unsigned int offset,
83 	void *p_data, unsigned int bytes)
84 {
85 	memcpy(p_data, &vgpu_vreg(vgpu, offset), bytes);
86 }
87 
88 static void write_vreg(struct intel_vgpu *vgpu, unsigned int offset,
89 	void *p_data, unsigned int bytes)
90 {
91 	memcpy(&vgpu_vreg(vgpu, offset), p_data, bytes);
92 }
93 
94 struct intel_gvt_mmio_info *intel_gvt_find_mmio_info(struct intel_gvt *gvt,
95 						  unsigned int offset)
96 {
97 	struct intel_gvt_mmio_info *e;
98 
99 	hash_for_each_possible(gvt->mmio.mmio_info_table, e, node, offset) {
100 		if (e->offset == offset)
101 			return e;
102 	}
103 	return NULL;
104 }
105 
106 static int setup_mmio_info(struct intel_gvt *gvt, u32 offset, u32 size,
107 			   u16 flags, u32 addr_mask, u32 ro_mask, u32 device,
108 			   gvt_mmio_func read, gvt_mmio_func write)
109 {
110 	struct intel_gvt_mmio_info *p;
111 	u32 start, end, i;
112 
113 	if (!intel_gvt_match_device(gvt, device))
114 		return 0;
115 
116 	if (WARN_ON(!IS_ALIGNED(offset, 4)))
117 		return -EINVAL;
118 
119 	start = offset;
120 	end = offset + size;
121 
122 	for (i = start; i < end; i += 4) {
123 		p = intel_gvt_find_mmio_info(gvt, i);
124 		if (!p) {
125 			WARN(1, "assign a handler to a non-tracked mmio %x\n",
126 				i);
127 			return -ENODEV;
128 		}
129 		p->ro_mask = ro_mask;
130 		gvt->mmio.mmio_attribute[i / 4] = flags;
131 		if (read)
132 			p->read = read;
133 		if (write)
134 			p->write = write;
135 	}
136 	return 0;
137 }
138 
139 /**
140  * intel_gvt_render_mmio_to_engine - convert a mmio offset into the engine
141  * @gvt: a GVT device
142  * @offset: register offset
143  *
144  * Returns:
145  * The engine containing the offset within its mmio page.
146  */
147 const struct intel_engine_cs *
148 intel_gvt_render_mmio_to_engine(struct intel_gvt *gvt, unsigned int offset)
149 {
150 	struct intel_engine_cs *engine;
151 	enum intel_engine_id id;
152 
153 	offset &= ~GENMASK(11, 0);
154 	for_each_engine(engine, gvt->gt, id)
155 		if (engine->mmio_base == offset)
156 			return engine;
157 
158 	return NULL;
159 }
160 
161 #define offset_to_fence_num(offset) \
162 	((offset - i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0))) >> 3)
163 
164 #define fence_num_to_offset(num) \
165 	(num * 8 + i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0)))
166 
167 
168 void enter_failsafe_mode(struct intel_vgpu *vgpu, int reason)
169 {
170 	switch (reason) {
171 	case GVT_FAILSAFE_UNSUPPORTED_GUEST:
172 		pr_err("Detected your guest driver doesn't support GVT-g.\n");
173 		break;
174 	case GVT_FAILSAFE_INSUFFICIENT_RESOURCE:
175 		pr_err("Graphics resource is not enough for the guest\n");
176 		break;
177 	case GVT_FAILSAFE_GUEST_ERR:
178 		pr_err("GVT Internal error  for the guest\n");
179 		break;
180 	default:
181 		break;
182 	}
183 	pr_err("Now vgpu %d will enter failsafe mode.\n", vgpu->id);
184 	vgpu->failsafe = true;
185 }
186 
187 static int sanitize_fence_mmio_access(struct intel_vgpu *vgpu,
188 		unsigned int fence_num, void *p_data, unsigned int bytes)
189 {
190 	unsigned int max_fence = vgpu_fence_sz(vgpu);
191 
192 	if (fence_num >= max_fence) {
193 		gvt_vgpu_err("access oob fence reg %d/%d\n",
194 			     fence_num, max_fence);
195 
196 		/* When guest access oob fence regs without access
197 		 * pv_info first, we treat guest not supporting GVT,
198 		 * and we will let vgpu enter failsafe mode.
199 		 */
200 		if (!vgpu->pv_notified)
201 			enter_failsafe_mode(vgpu,
202 					GVT_FAILSAFE_UNSUPPORTED_GUEST);
203 
204 		memset(p_data, 0, bytes);
205 		return -EINVAL;
206 	}
207 	return 0;
208 }
209 
210 static int gamw_echo_dev_rw_ia_write(struct intel_vgpu *vgpu,
211 		unsigned int offset, void *p_data, unsigned int bytes)
212 {
213 	u32 ips = (*(u32 *)p_data) & GAMW_ECO_ENABLE_64K_IPS_FIELD;
214 
215 	if (GRAPHICS_VER(vgpu->gvt->gt->i915) <= 10) {
216 		if (ips == GAMW_ECO_ENABLE_64K_IPS_FIELD)
217 			gvt_dbg_core("vgpu%d: ips enabled\n", vgpu->id);
218 		else if (!ips)
219 			gvt_dbg_core("vgpu%d: ips disabled\n", vgpu->id);
220 		else {
221 			/* All engines must be enabled together for vGPU,
222 			 * since we don't know which engine the ppgtt will
223 			 * bind to when shadowing.
224 			 */
225 			gvt_vgpu_err("Unsupported IPS setting %x, cannot enable 64K gtt.\n",
226 				     ips);
227 			return -EINVAL;
228 		}
229 	}
230 
231 	write_vreg(vgpu, offset, p_data, bytes);
232 	return 0;
233 }
234 
235 static int fence_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
236 		void *p_data, unsigned int bytes)
237 {
238 	int ret;
239 
240 	ret = sanitize_fence_mmio_access(vgpu, offset_to_fence_num(off),
241 			p_data, bytes);
242 	if (ret)
243 		return ret;
244 	read_vreg(vgpu, off, p_data, bytes);
245 	return 0;
246 }
247 
248 static int fence_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
249 		void *p_data, unsigned int bytes)
250 {
251 	struct intel_gvt *gvt = vgpu->gvt;
252 	unsigned int fence_num = offset_to_fence_num(off);
253 	int ret;
254 
255 	ret = sanitize_fence_mmio_access(vgpu, fence_num, p_data, bytes);
256 	if (ret)
257 		return ret;
258 	write_vreg(vgpu, off, p_data, bytes);
259 
260 	mmio_hw_access_pre(gvt->gt);
261 	intel_vgpu_write_fence(vgpu, fence_num,
262 			vgpu_vreg64(vgpu, fence_num_to_offset(fence_num)));
263 	mmio_hw_access_post(gvt->gt);
264 	return 0;
265 }
266 
267 #define CALC_MODE_MASK_REG(old, new) \
268 	(((new) & GENMASK(31, 16)) \
269 	 | ((((old) & GENMASK(15, 0)) & ~((new) >> 16)) \
270 	 | ((new) & ((new) >> 16))))
271 
272 static int mul_force_wake_write(struct intel_vgpu *vgpu,
273 		unsigned int offset, void *p_data, unsigned int bytes)
274 {
275 	u32 old, new;
276 	u32 ack_reg_offset;
277 
278 	old = vgpu_vreg(vgpu, offset);
279 	new = CALC_MODE_MASK_REG(old, *(u32 *)p_data);
280 
281 	if (GRAPHICS_VER(vgpu->gvt->gt->i915)  >=  9) {
282 		switch (offset) {
283 		case FORCEWAKE_RENDER_GEN9_REG:
284 			ack_reg_offset = FORCEWAKE_ACK_RENDER_GEN9_REG;
285 			break;
286 		case FORCEWAKE_GT_GEN9_REG:
287 			ack_reg_offset = FORCEWAKE_ACK_GT_GEN9_REG;
288 			break;
289 		case FORCEWAKE_MEDIA_GEN9_REG:
290 			ack_reg_offset = FORCEWAKE_ACK_MEDIA_GEN9_REG;
291 			break;
292 		default:
293 			/*should not hit here*/
294 			gvt_vgpu_err("invalid forcewake offset 0x%x\n", offset);
295 			return -EINVAL;
296 		}
297 	} else {
298 		ack_reg_offset = FORCEWAKE_ACK_HSW_REG;
299 	}
300 
301 	vgpu_vreg(vgpu, offset) = new;
302 	vgpu_vreg(vgpu, ack_reg_offset) = (new & GENMASK(15, 0));
303 	return 0;
304 }
305 
306 static int gdrst_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
307 			    void *p_data, unsigned int bytes)
308 {
309 	intel_engine_mask_t engine_mask = 0;
310 	u32 data;
311 
312 	write_vreg(vgpu, offset, p_data, bytes);
313 	data = vgpu_vreg(vgpu, offset);
314 
315 	if (data & GEN6_GRDOM_FULL) {
316 		gvt_dbg_mmio("vgpu%d: request full GPU reset\n", vgpu->id);
317 		engine_mask = ALL_ENGINES;
318 	} else {
319 		if (data & GEN6_GRDOM_RENDER) {
320 			gvt_dbg_mmio("vgpu%d: request RCS reset\n", vgpu->id);
321 			engine_mask |= BIT(RCS0);
322 		}
323 		if (data & GEN6_GRDOM_MEDIA) {
324 			gvt_dbg_mmio("vgpu%d: request VCS reset\n", vgpu->id);
325 			engine_mask |= BIT(VCS0);
326 		}
327 		if (data & GEN6_GRDOM_BLT) {
328 			gvt_dbg_mmio("vgpu%d: request BCS Reset\n", vgpu->id);
329 			engine_mask |= BIT(BCS0);
330 		}
331 		if (data & GEN6_GRDOM_VECS) {
332 			gvt_dbg_mmio("vgpu%d: request VECS Reset\n", vgpu->id);
333 			engine_mask |= BIT(VECS0);
334 		}
335 		if (data & GEN8_GRDOM_MEDIA2) {
336 			gvt_dbg_mmio("vgpu%d: request VCS2 Reset\n", vgpu->id);
337 			engine_mask |= BIT(VCS1);
338 		}
339 		if (data & GEN9_GRDOM_GUC) {
340 			gvt_dbg_mmio("vgpu%d: request GUC Reset\n", vgpu->id);
341 			vgpu_vreg_t(vgpu, GUC_STATUS) |= GS_MIA_IN_RESET;
342 		}
343 		engine_mask &= vgpu->gvt->gt->info.engine_mask;
344 	}
345 
346 	/* vgpu_lock already hold by emulate mmio r/w */
347 	intel_gvt_reset_vgpu_locked(vgpu, false, engine_mask);
348 
349 	/* sw will wait for the device to ack the reset request */
350 	vgpu_vreg(vgpu, offset) = 0;
351 
352 	return 0;
353 }
354 
355 static int gmbus_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
356 		void *p_data, unsigned int bytes)
357 {
358 	return intel_gvt_i2c_handle_gmbus_read(vgpu, offset, p_data, bytes);
359 }
360 
361 static int gmbus_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
362 		void *p_data, unsigned int bytes)
363 {
364 	return intel_gvt_i2c_handle_gmbus_write(vgpu, offset, p_data, bytes);
365 }
366 
367 static int pch_pp_control_mmio_write(struct intel_vgpu *vgpu,
368 		unsigned int offset, void *p_data, unsigned int bytes)
369 {
370 	write_vreg(vgpu, offset, p_data, bytes);
371 
372 	if (vgpu_vreg(vgpu, offset) & PANEL_POWER_ON) {
373 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) |= PP_ON;
374 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) |= PP_SEQUENCE_STATE_ON_IDLE;
375 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= ~PP_SEQUENCE_POWER_DOWN;
376 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= ~PP_CYCLE_DELAY_ACTIVE;
377 
378 	} else
379 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) &=
380 			~(PP_ON | PP_SEQUENCE_POWER_DOWN
381 					| PP_CYCLE_DELAY_ACTIVE);
382 	return 0;
383 }
384 
385 static int transconf_mmio_write(struct intel_vgpu *vgpu,
386 		unsigned int offset, void *p_data, unsigned int bytes)
387 {
388 	write_vreg(vgpu, offset, p_data, bytes);
389 
390 	if (vgpu_vreg(vgpu, offset) & TRANS_ENABLE)
391 		vgpu_vreg(vgpu, offset) |= TRANS_STATE_ENABLE;
392 	else
393 		vgpu_vreg(vgpu, offset) &= ~TRANS_STATE_ENABLE;
394 	return 0;
395 }
396 
397 static int lcpll_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
398 		void *p_data, unsigned int bytes)
399 {
400 	write_vreg(vgpu, offset, p_data, bytes);
401 
402 	if (vgpu_vreg(vgpu, offset) & LCPLL_PLL_DISABLE)
403 		vgpu_vreg(vgpu, offset) &= ~LCPLL_PLL_LOCK;
404 	else
405 		vgpu_vreg(vgpu, offset) |= LCPLL_PLL_LOCK;
406 
407 	if (vgpu_vreg(vgpu, offset) & LCPLL_CD_SOURCE_FCLK)
408 		vgpu_vreg(vgpu, offset) |= LCPLL_CD_SOURCE_FCLK_DONE;
409 	else
410 		vgpu_vreg(vgpu, offset) &= ~LCPLL_CD_SOURCE_FCLK_DONE;
411 
412 	return 0;
413 }
414 
415 static int dpy_reg_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
416 		void *p_data, unsigned int bytes)
417 {
418 	switch (offset) {
419 	case 0xe651c:
420 	case 0xe661c:
421 	case 0xe671c:
422 	case 0xe681c:
423 		vgpu_vreg(vgpu, offset) = 1 << 17;
424 		break;
425 	case 0xe6c04:
426 		vgpu_vreg(vgpu, offset) = 0x3;
427 		break;
428 	case 0xe6e1c:
429 		vgpu_vreg(vgpu, offset) = 0x2f << 16;
430 		break;
431 	default:
432 		return -EINVAL;
433 	}
434 
435 	read_vreg(vgpu, offset, p_data, bytes);
436 	return 0;
437 }
438 
439 /*
440  * Only PIPE_A is enabled in current vGPU display and PIPE_A is tied to
441  *   TRANSCODER_A in HW. DDI/PORT could be PORT_x depends on
442  *   setup_virtual_dp_monitor().
443  * emulate_monitor_status_change() set up PLL for PORT_x as the initial enabled
444  *   DPLL. Later guest driver may setup a different DPLLx when setting mode.
445  * So the correct sequence to find DP stream clock is:
446  *   Check TRANS_DDI_FUNC_CTL on TRANSCODER_A to get PORT_x.
447  *   Check correct PLLx for PORT_x to get PLL frequency and DP bitrate.
448  * Then Refresh rate then can be calculated based on follow equations:
449  *   Pixel clock = h_total * v_total * refresh_rate
450  *   stream clock = Pixel clock
451  *   ls_clk = DP bitrate
452  *   Link M/N = strm_clk / ls_clk
453  */
454 
455 static u32 bdw_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
456 {
457 	u32 dp_br = 0;
458 	u32 ddi_pll_sel = vgpu_vreg_t(vgpu, PORT_CLK_SEL(port));
459 
460 	switch (ddi_pll_sel) {
461 	case PORT_CLK_SEL_LCPLL_2700:
462 		dp_br = 270000 * 2;
463 		break;
464 	case PORT_CLK_SEL_LCPLL_1350:
465 		dp_br = 135000 * 2;
466 		break;
467 	case PORT_CLK_SEL_LCPLL_810:
468 		dp_br = 81000 * 2;
469 		break;
470 	case PORT_CLK_SEL_SPLL:
471 	{
472 		switch (vgpu_vreg_t(vgpu, SPLL_CTL) & SPLL_FREQ_MASK) {
473 		case SPLL_FREQ_810MHz:
474 			dp_br = 81000 * 2;
475 			break;
476 		case SPLL_FREQ_1350MHz:
477 			dp_br = 135000 * 2;
478 			break;
479 		case SPLL_FREQ_2700MHz:
480 			dp_br = 270000 * 2;
481 			break;
482 		default:
483 			gvt_dbg_dpy("vgpu-%d PORT_%c can't get freq from SPLL 0x%08x\n",
484 				    vgpu->id, port_name(port), vgpu_vreg_t(vgpu, SPLL_CTL));
485 			break;
486 		}
487 		break;
488 	}
489 	case PORT_CLK_SEL_WRPLL1:
490 	case PORT_CLK_SEL_WRPLL2:
491 	{
492 		u32 wrpll_ctl;
493 		int refclk, n, p, r;
494 
495 		if (ddi_pll_sel == PORT_CLK_SEL_WRPLL1)
496 			wrpll_ctl = vgpu_vreg_t(vgpu, WRPLL_CTL(DPLL_ID_WRPLL1));
497 		else
498 			wrpll_ctl = vgpu_vreg_t(vgpu, WRPLL_CTL(DPLL_ID_WRPLL2));
499 
500 		switch (wrpll_ctl & WRPLL_REF_MASK) {
501 		case WRPLL_REF_PCH_SSC:
502 			refclk = vgpu->gvt->gt->i915->display.dpll.ref_clks.ssc;
503 			break;
504 		case WRPLL_REF_LCPLL:
505 			refclk = 2700000;
506 			break;
507 		default:
508 			gvt_dbg_dpy("vgpu-%d PORT_%c WRPLL can't get refclk 0x%08x\n",
509 				    vgpu->id, port_name(port), wrpll_ctl);
510 			goto out;
511 		}
512 
513 		r = wrpll_ctl & WRPLL_DIVIDER_REF_MASK;
514 		p = (wrpll_ctl & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
515 		n = (wrpll_ctl & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
516 
517 		dp_br = (refclk * n / 10) / (p * r) * 2;
518 		break;
519 	}
520 	default:
521 		gvt_dbg_dpy("vgpu-%d PORT_%c has invalid clock select 0x%08x\n",
522 			    vgpu->id, port_name(port), vgpu_vreg_t(vgpu, PORT_CLK_SEL(port)));
523 		break;
524 	}
525 
526 out:
527 	return dp_br;
528 }
529 
530 static u32 bxt_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
531 {
532 	u32 dp_br = 0;
533 	int refclk = vgpu->gvt->gt->i915->display.dpll.ref_clks.nssc;
534 	enum dpio_phy phy = DPIO_PHY0;
535 	enum dpio_channel ch = DPIO_CH0;
536 	struct dpll clock = {0};
537 	u32 temp;
538 
539 	/* Port to PHY mapping is fixed, see bxt_ddi_phy_info{} */
540 	switch (port) {
541 	case PORT_A:
542 		phy = DPIO_PHY1;
543 		ch = DPIO_CH0;
544 		break;
545 	case PORT_B:
546 		phy = DPIO_PHY0;
547 		ch = DPIO_CH0;
548 		break;
549 	case PORT_C:
550 		phy = DPIO_PHY0;
551 		ch = DPIO_CH1;
552 		break;
553 	default:
554 		gvt_dbg_dpy("vgpu-%d no PHY for PORT_%c\n", vgpu->id, port_name(port));
555 		goto out;
556 	}
557 
558 	temp = vgpu_vreg_t(vgpu, BXT_PORT_PLL_ENABLE(port));
559 	if (!(temp & PORT_PLL_ENABLE) || !(temp & PORT_PLL_LOCK)) {
560 		gvt_dbg_dpy("vgpu-%d PORT_%c PLL_ENABLE 0x%08x isn't enabled or locked\n",
561 			    vgpu->id, port_name(port), temp);
562 		goto out;
563 	}
564 
565 	clock.m1 = 2;
566 	clock.m2 = REG_FIELD_GET(PORT_PLL_M2_INT_MASK,
567 				 vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 0))) << 22;
568 	if (vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 3)) & PORT_PLL_M2_FRAC_ENABLE)
569 		clock.m2 |= REG_FIELD_GET(PORT_PLL_M2_FRAC_MASK,
570 					  vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 2)));
571 	clock.n = REG_FIELD_GET(PORT_PLL_N_MASK,
572 				vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 1)));
573 	clock.p1 = REG_FIELD_GET(PORT_PLL_P1_MASK,
574 				 vgpu_vreg_t(vgpu, BXT_PORT_PLL_EBB_0(phy, ch)));
575 	clock.p2 = REG_FIELD_GET(PORT_PLL_P2_MASK,
576 				 vgpu_vreg_t(vgpu, BXT_PORT_PLL_EBB_0(phy, ch)));
577 	clock.m = clock.m1 * clock.m2;
578 	clock.p = clock.p1 * clock.p2 * 5;
579 
580 	if (clock.n == 0 || clock.p == 0) {
581 		gvt_dbg_dpy("vgpu-%d PORT_%c PLL has invalid divider\n", vgpu->id, port_name(port));
582 		goto out;
583 	}
584 
585 	clock.vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock.m), clock.n << 22);
586 	clock.dot = DIV_ROUND_CLOSEST(clock.vco, clock.p);
587 
588 	dp_br = clock.dot;
589 
590 out:
591 	return dp_br;
592 }
593 
594 static u32 skl_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
595 {
596 	u32 dp_br = 0;
597 	enum intel_dpll_id dpll_id = DPLL_ID_SKL_DPLL0;
598 
599 	/* Find the enabled DPLL for the DDI/PORT */
600 	if (!(vgpu_vreg_t(vgpu, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_OFF(port)) &&
601 	    (vgpu_vreg_t(vgpu, DPLL_CTRL2) & DPLL_CTRL2_DDI_SEL_OVERRIDE(port))) {
602 		dpll_id += (vgpu_vreg_t(vgpu, DPLL_CTRL2) &
603 			DPLL_CTRL2_DDI_CLK_SEL_MASK(port)) >>
604 			DPLL_CTRL2_DDI_CLK_SEL_SHIFT(port);
605 	} else {
606 		gvt_dbg_dpy("vgpu-%d DPLL for PORT_%c isn't turned on\n",
607 			    vgpu->id, port_name(port));
608 		return dp_br;
609 	}
610 
611 	/* Find PLL output frequency from correct DPLL, and get bir rate */
612 	switch ((vgpu_vreg_t(vgpu, DPLL_CTRL1) &
613 		DPLL_CTRL1_LINK_RATE_MASK(dpll_id)) >>
614 		DPLL_CTRL1_LINK_RATE_SHIFT(dpll_id)) {
615 		case DPLL_CTRL1_LINK_RATE_810:
616 			dp_br = 81000 * 2;
617 			break;
618 		case DPLL_CTRL1_LINK_RATE_1080:
619 			dp_br = 108000 * 2;
620 			break;
621 		case DPLL_CTRL1_LINK_RATE_1350:
622 			dp_br = 135000 * 2;
623 			break;
624 		case DPLL_CTRL1_LINK_RATE_1620:
625 			dp_br = 162000 * 2;
626 			break;
627 		case DPLL_CTRL1_LINK_RATE_2160:
628 			dp_br = 216000 * 2;
629 			break;
630 		case DPLL_CTRL1_LINK_RATE_2700:
631 			dp_br = 270000 * 2;
632 			break;
633 		default:
634 			dp_br = 0;
635 			gvt_dbg_dpy("vgpu-%d PORT_%c fail to get DPLL-%d freq\n",
636 				    vgpu->id, port_name(port), dpll_id);
637 	}
638 
639 	return dp_br;
640 }
641 
642 static void vgpu_update_refresh_rate(struct intel_vgpu *vgpu)
643 {
644 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
645 	enum port port;
646 	u32 dp_br, link_m, link_n, htotal, vtotal;
647 
648 	/* Find DDI/PORT assigned to TRANSCODER_A, expect B or D */
649 	port = (vgpu_vreg_t(vgpu, TRANS_DDI_FUNC_CTL(TRANSCODER_A)) &
650 		TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
651 	if (port != PORT_B && port != PORT_D) {
652 		gvt_dbg_dpy("vgpu-%d unsupported PORT_%c\n", vgpu->id, port_name(port));
653 		return;
654 	}
655 
656 	/* Calculate DP bitrate from PLL */
657 	if (IS_BROADWELL(dev_priv))
658 		dp_br = bdw_vgpu_get_dp_bitrate(vgpu, port);
659 	else if (IS_BROXTON(dev_priv))
660 		dp_br = bxt_vgpu_get_dp_bitrate(vgpu, port);
661 	else
662 		dp_br = skl_vgpu_get_dp_bitrate(vgpu, port);
663 
664 	/* Get DP link symbol clock M/N */
665 	link_m = vgpu_vreg_t(vgpu, PIPE_LINK_M1(TRANSCODER_A));
666 	link_n = vgpu_vreg_t(vgpu, PIPE_LINK_N1(TRANSCODER_A));
667 
668 	/* Get H/V total from transcoder timing */
669 	htotal = (vgpu_vreg_t(vgpu, HTOTAL(TRANSCODER_A)) >> TRANS_HTOTAL_SHIFT);
670 	vtotal = (vgpu_vreg_t(vgpu, VTOTAL(TRANSCODER_A)) >> TRANS_VTOTAL_SHIFT);
671 
672 	if (dp_br && link_n && htotal && vtotal) {
673 		u64 pixel_clk = 0;
674 		u32 new_rate = 0;
675 		u32 *old_rate = &(intel_vgpu_port(vgpu, vgpu->display.port_num)->vrefresh_k);
676 
677 		/* Calcuate pixel clock by (ls_clk * M / N) */
678 		pixel_clk = div_u64(mul_u32_u32(link_m, dp_br), link_n);
679 		pixel_clk *= MSEC_PER_SEC;
680 
681 		/* Calcuate refresh rate by (pixel_clk / (h_total * v_total)) */
682 		new_rate = DIV64_U64_ROUND_CLOSEST(mul_u64_u32_shr(pixel_clk, MSEC_PER_SEC, 0), mul_u32_u32(htotal + 1, vtotal + 1));
683 
684 		if (*old_rate != new_rate)
685 			*old_rate = new_rate;
686 
687 		gvt_dbg_dpy("vgpu-%d PIPE_%c refresh rate updated to %d\n",
688 			    vgpu->id, pipe_name(PIPE_A), new_rate);
689 	}
690 }
691 
692 static int pipeconf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
693 		void *p_data, unsigned int bytes)
694 {
695 	u32 data;
696 
697 	write_vreg(vgpu, offset, p_data, bytes);
698 	data = vgpu_vreg(vgpu, offset);
699 
700 	if (data & PIPECONF_ENABLE) {
701 		vgpu_vreg(vgpu, offset) |= PIPECONF_STATE_ENABLE;
702 		vgpu_update_refresh_rate(vgpu);
703 		vgpu_update_vblank_emulation(vgpu, true);
704 	} else {
705 		vgpu_vreg(vgpu, offset) &= ~PIPECONF_STATE_ENABLE;
706 		vgpu_update_vblank_emulation(vgpu, false);
707 	}
708 	return 0;
709 }
710 
711 /* sorted in ascending order */
712 static i915_reg_t force_nonpriv_white_list[] = {
713 	_MMIO(0xd80),
714 	GEN9_CS_DEBUG_MODE1, //_MMIO(0x20ec)
715 	GEN9_CTX_PREEMPT_REG,//_MMIO(0x2248)
716 	CL_PRIMITIVES_COUNT, //_MMIO(0x2340)
717 	PS_INVOCATION_COUNT, //_MMIO(0x2348)
718 	PS_DEPTH_COUNT, //_MMIO(0x2350)
719 	GEN8_CS_CHICKEN1,//_MMIO(0x2580)
720 	_MMIO(0x2690),
721 	_MMIO(0x2694),
722 	_MMIO(0x2698),
723 	_MMIO(0x2754),
724 	_MMIO(0x28a0),
725 	_MMIO(0x4de0),
726 	_MMIO(0x4de4),
727 	_MMIO(0x4dfc),
728 	GEN7_COMMON_SLICE_CHICKEN1,//_MMIO(0x7010)
729 	_MMIO(0x7014),
730 	HDC_CHICKEN0,//_MMIO(0x7300)
731 	GEN8_HDC_CHICKEN1,//_MMIO(0x7304)
732 	_MMIO(0x7700),
733 	_MMIO(0x7704),
734 	_MMIO(0x7708),
735 	_MMIO(0x770c),
736 	_MMIO(0x83a8),
737 	_MMIO(0xb110),
738 	_MMIO(0xb118),
739 	_MMIO(0xe100),
740 	_MMIO(0xe18c),
741 	_MMIO(0xe48c),
742 	_MMIO(0xe5f4),
743 	_MMIO(0x64844),
744 };
745 
746 /* a simple bsearch */
747 static inline bool in_whitelist(u32 reg)
748 {
749 	int left = 0, right = ARRAY_SIZE(force_nonpriv_white_list);
750 	i915_reg_t *array = force_nonpriv_white_list;
751 
752 	while (left < right) {
753 		int mid = (left + right)/2;
754 
755 		if (reg > array[mid].reg)
756 			left = mid + 1;
757 		else if (reg < array[mid].reg)
758 			right = mid;
759 		else
760 			return true;
761 	}
762 	return false;
763 }
764 
765 static int force_nonpriv_write(struct intel_vgpu *vgpu,
766 	unsigned int offset, void *p_data, unsigned int bytes)
767 {
768 	u32 reg_nonpriv = (*(u32 *)p_data) & REG_GENMASK(25, 2);
769 	const struct intel_engine_cs *engine =
770 		intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
771 
772 	if (bytes != 4 || !IS_ALIGNED(offset, bytes) || !engine) {
773 		gvt_err("vgpu(%d) Invalid FORCE_NONPRIV offset %x(%dB)\n",
774 			vgpu->id, offset, bytes);
775 		return -EINVAL;
776 	}
777 
778 	if (!in_whitelist(reg_nonpriv) &&
779 	    reg_nonpriv != i915_mmio_reg_offset(RING_NOPID(engine->mmio_base))) {
780 		gvt_err("vgpu(%d) Invalid FORCE_NONPRIV write %x at offset %x\n",
781 			vgpu->id, reg_nonpriv, offset);
782 	} else
783 		intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes);
784 
785 	return 0;
786 }
787 
788 static int ddi_buf_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
789 		void *p_data, unsigned int bytes)
790 {
791 	write_vreg(vgpu, offset, p_data, bytes);
792 
793 	if (vgpu_vreg(vgpu, offset) & DDI_BUF_CTL_ENABLE) {
794 		vgpu_vreg(vgpu, offset) &= ~DDI_BUF_IS_IDLE;
795 	} else {
796 		vgpu_vreg(vgpu, offset) |= DDI_BUF_IS_IDLE;
797 		if (offset == i915_mmio_reg_offset(DDI_BUF_CTL(PORT_E)))
798 			vgpu_vreg_t(vgpu, DP_TP_STATUS(PORT_E))
799 				&= ~DP_TP_STATUS_AUTOTRAIN_DONE;
800 	}
801 	return 0;
802 }
803 
804 static int fdi_rx_iir_mmio_write(struct intel_vgpu *vgpu,
805 		unsigned int offset, void *p_data, unsigned int bytes)
806 {
807 	vgpu_vreg(vgpu, offset) &= ~*(u32 *)p_data;
808 	return 0;
809 }
810 
811 #define FDI_LINK_TRAIN_PATTERN1         0
812 #define FDI_LINK_TRAIN_PATTERN2         1
813 
814 static int fdi_auto_training_started(struct intel_vgpu *vgpu)
815 {
816 	u32 ddi_buf_ctl = vgpu_vreg_t(vgpu, DDI_BUF_CTL(PORT_E));
817 	u32 rx_ctl = vgpu_vreg(vgpu, _FDI_RXA_CTL);
818 	u32 tx_ctl = vgpu_vreg_t(vgpu, DP_TP_CTL(PORT_E));
819 
820 	if ((ddi_buf_ctl & DDI_BUF_CTL_ENABLE) &&
821 			(rx_ctl & FDI_RX_ENABLE) &&
822 			(rx_ctl & FDI_AUTO_TRAINING) &&
823 			(tx_ctl & DP_TP_CTL_ENABLE) &&
824 			(tx_ctl & DP_TP_CTL_FDI_AUTOTRAIN))
825 		return 1;
826 	else
827 		return 0;
828 }
829 
830 static int check_fdi_rx_train_status(struct intel_vgpu *vgpu,
831 		enum pipe pipe, unsigned int train_pattern)
832 {
833 	i915_reg_t fdi_rx_imr, fdi_tx_ctl, fdi_rx_ctl;
834 	unsigned int fdi_rx_check_bits, fdi_tx_check_bits;
835 	unsigned int fdi_rx_train_bits, fdi_tx_train_bits;
836 	unsigned int fdi_iir_check_bits;
837 
838 	fdi_rx_imr = FDI_RX_IMR(pipe);
839 	fdi_tx_ctl = FDI_TX_CTL(pipe);
840 	fdi_rx_ctl = FDI_RX_CTL(pipe);
841 
842 	if (train_pattern == FDI_LINK_TRAIN_PATTERN1) {
843 		fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_1_CPT;
844 		fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_1;
845 		fdi_iir_check_bits = FDI_RX_BIT_LOCK;
846 	} else if (train_pattern == FDI_LINK_TRAIN_PATTERN2) {
847 		fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_2_CPT;
848 		fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_2;
849 		fdi_iir_check_bits = FDI_RX_SYMBOL_LOCK;
850 	} else {
851 		gvt_vgpu_err("Invalid train pattern %d\n", train_pattern);
852 		return -EINVAL;
853 	}
854 
855 	fdi_rx_check_bits = FDI_RX_ENABLE | fdi_rx_train_bits;
856 	fdi_tx_check_bits = FDI_TX_ENABLE | fdi_tx_train_bits;
857 
858 	/* If imr bit has been masked */
859 	if (vgpu_vreg_t(vgpu, fdi_rx_imr) & fdi_iir_check_bits)
860 		return 0;
861 
862 	if (((vgpu_vreg_t(vgpu, fdi_tx_ctl) & fdi_tx_check_bits)
863 			== fdi_tx_check_bits)
864 		&& ((vgpu_vreg_t(vgpu, fdi_rx_ctl) & fdi_rx_check_bits)
865 			== fdi_rx_check_bits))
866 		return 1;
867 	else
868 		return 0;
869 }
870 
871 #define INVALID_INDEX (~0U)
872 
873 static unsigned int calc_index(unsigned int offset, unsigned int start,
874 	unsigned int next, unsigned int end, i915_reg_t i915_end)
875 {
876 	unsigned int range = next - start;
877 
878 	if (!end)
879 		end = i915_mmio_reg_offset(i915_end);
880 	if (offset < start || offset > end)
881 		return INVALID_INDEX;
882 	offset -= start;
883 	return offset / range;
884 }
885 
886 #define FDI_RX_CTL_TO_PIPE(offset) \
887 	calc_index(offset, _FDI_RXA_CTL, _FDI_RXB_CTL, 0, FDI_RX_CTL(PIPE_C))
888 
889 #define FDI_TX_CTL_TO_PIPE(offset) \
890 	calc_index(offset, _FDI_TXA_CTL, _FDI_TXB_CTL, 0, FDI_TX_CTL(PIPE_C))
891 
892 #define FDI_RX_IMR_TO_PIPE(offset) \
893 	calc_index(offset, _FDI_RXA_IMR, _FDI_RXB_IMR, 0, FDI_RX_IMR(PIPE_C))
894 
895 static int update_fdi_rx_iir_status(struct intel_vgpu *vgpu,
896 		unsigned int offset, void *p_data, unsigned int bytes)
897 {
898 	i915_reg_t fdi_rx_iir;
899 	unsigned int index;
900 	int ret;
901 
902 	if (FDI_RX_CTL_TO_PIPE(offset) != INVALID_INDEX)
903 		index = FDI_RX_CTL_TO_PIPE(offset);
904 	else if (FDI_TX_CTL_TO_PIPE(offset) != INVALID_INDEX)
905 		index = FDI_TX_CTL_TO_PIPE(offset);
906 	else if (FDI_RX_IMR_TO_PIPE(offset) != INVALID_INDEX)
907 		index = FDI_RX_IMR_TO_PIPE(offset);
908 	else {
909 		gvt_vgpu_err("Unsupported registers %x\n", offset);
910 		return -EINVAL;
911 	}
912 
913 	write_vreg(vgpu, offset, p_data, bytes);
914 
915 	fdi_rx_iir = FDI_RX_IIR(index);
916 
917 	ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN1);
918 	if (ret < 0)
919 		return ret;
920 	if (ret)
921 		vgpu_vreg_t(vgpu, fdi_rx_iir) |= FDI_RX_BIT_LOCK;
922 
923 	ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN2);
924 	if (ret < 0)
925 		return ret;
926 	if (ret)
927 		vgpu_vreg_t(vgpu, fdi_rx_iir) |= FDI_RX_SYMBOL_LOCK;
928 
929 	if (offset == _FDI_RXA_CTL)
930 		if (fdi_auto_training_started(vgpu))
931 			vgpu_vreg_t(vgpu, DP_TP_STATUS(PORT_E)) |=
932 				DP_TP_STATUS_AUTOTRAIN_DONE;
933 	return 0;
934 }
935 
936 #define DP_TP_CTL_TO_PORT(offset) \
937 	calc_index(offset, _DP_TP_CTL_A, _DP_TP_CTL_B, 0, DP_TP_CTL(PORT_E))
938 
939 static int dp_tp_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
940 		void *p_data, unsigned int bytes)
941 {
942 	i915_reg_t status_reg;
943 	unsigned int index;
944 	u32 data;
945 
946 	write_vreg(vgpu, offset, p_data, bytes);
947 
948 	index = DP_TP_CTL_TO_PORT(offset);
949 	data = (vgpu_vreg(vgpu, offset) & GENMASK(10, 8)) >> 8;
950 	if (data == 0x2) {
951 		status_reg = DP_TP_STATUS(index);
952 		vgpu_vreg_t(vgpu, status_reg) |= (1 << 25);
953 	}
954 	return 0;
955 }
956 
957 static int dp_tp_status_mmio_write(struct intel_vgpu *vgpu,
958 		unsigned int offset, void *p_data, unsigned int bytes)
959 {
960 	u32 reg_val;
961 	u32 sticky_mask;
962 
963 	reg_val = *((u32 *)p_data);
964 	sticky_mask = GENMASK(27, 26) | (1 << 24);
965 
966 	vgpu_vreg(vgpu, offset) = (reg_val & ~sticky_mask) |
967 		(vgpu_vreg(vgpu, offset) & sticky_mask);
968 	vgpu_vreg(vgpu, offset) &= ~(reg_val & sticky_mask);
969 	return 0;
970 }
971 
972 static int pch_adpa_mmio_write(struct intel_vgpu *vgpu,
973 		unsigned int offset, void *p_data, unsigned int bytes)
974 {
975 	u32 data;
976 
977 	write_vreg(vgpu, offset, p_data, bytes);
978 	data = vgpu_vreg(vgpu, offset);
979 
980 	if (data & ADPA_CRT_HOTPLUG_FORCE_TRIGGER)
981 		vgpu_vreg(vgpu, offset) &= ~ADPA_CRT_HOTPLUG_FORCE_TRIGGER;
982 	return 0;
983 }
984 
985 static int south_chicken2_mmio_write(struct intel_vgpu *vgpu,
986 		unsigned int offset, void *p_data, unsigned int bytes)
987 {
988 	u32 data;
989 
990 	write_vreg(vgpu, offset, p_data, bytes);
991 	data = vgpu_vreg(vgpu, offset);
992 
993 	if (data & FDI_MPHY_IOSFSB_RESET_CTL)
994 		vgpu_vreg(vgpu, offset) |= FDI_MPHY_IOSFSB_RESET_STATUS;
995 	else
996 		vgpu_vreg(vgpu, offset) &= ~FDI_MPHY_IOSFSB_RESET_STATUS;
997 	return 0;
998 }
999 
1000 #define DSPSURF_TO_PIPE(offset) \
1001 	calc_index(offset, _DSPASURF, _DSPBSURF, 0, DSPSURF(PIPE_C))
1002 
1003 static int pri_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1004 		void *p_data, unsigned int bytes)
1005 {
1006 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1007 	u32 pipe = DSPSURF_TO_PIPE(offset);
1008 	int event = SKL_FLIP_EVENT(pipe, PLANE_PRIMARY);
1009 
1010 	write_vreg(vgpu, offset, p_data, bytes);
1011 	vgpu_vreg_t(vgpu, DSPSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
1012 
1013 	vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(pipe))++;
1014 
1015 	if (vgpu_vreg_t(vgpu, DSPCNTR(pipe)) & PLANE_CTL_ASYNC_FLIP)
1016 		intel_vgpu_trigger_virtual_event(vgpu, event);
1017 	else
1018 		set_bit(event, vgpu->irq.flip_done_event[pipe]);
1019 
1020 	return 0;
1021 }
1022 
1023 #define SPRSURF_TO_PIPE(offset) \
1024 	calc_index(offset, _SPRA_SURF, _SPRB_SURF, 0, SPRSURF(PIPE_C))
1025 
1026 static int spr_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1027 		void *p_data, unsigned int bytes)
1028 {
1029 	u32 pipe = SPRSURF_TO_PIPE(offset);
1030 	int event = SKL_FLIP_EVENT(pipe, PLANE_SPRITE0);
1031 
1032 	write_vreg(vgpu, offset, p_data, bytes);
1033 	vgpu_vreg_t(vgpu, SPRSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
1034 
1035 	if (vgpu_vreg_t(vgpu, SPRCTL(pipe)) & PLANE_CTL_ASYNC_FLIP)
1036 		intel_vgpu_trigger_virtual_event(vgpu, event);
1037 	else
1038 		set_bit(event, vgpu->irq.flip_done_event[pipe]);
1039 
1040 	return 0;
1041 }
1042 
1043 static int reg50080_mmio_write(struct intel_vgpu *vgpu,
1044 			       unsigned int offset, void *p_data,
1045 			       unsigned int bytes)
1046 {
1047 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1048 	enum pipe pipe = REG_50080_TO_PIPE(offset);
1049 	enum plane_id plane = REG_50080_TO_PLANE(offset);
1050 	int event = SKL_FLIP_EVENT(pipe, plane);
1051 
1052 	write_vreg(vgpu, offset, p_data, bytes);
1053 	if (plane == PLANE_PRIMARY) {
1054 		vgpu_vreg_t(vgpu, DSPSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
1055 		vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(pipe))++;
1056 	} else {
1057 		vgpu_vreg_t(vgpu, SPRSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
1058 	}
1059 
1060 	if ((vgpu_vreg(vgpu, offset) & REG50080_FLIP_TYPE_MASK) == REG50080_FLIP_TYPE_ASYNC)
1061 		intel_vgpu_trigger_virtual_event(vgpu, event);
1062 	else
1063 		set_bit(event, vgpu->irq.flip_done_event[pipe]);
1064 
1065 	return 0;
1066 }
1067 
1068 static int trigger_aux_channel_interrupt(struct intel_vgpu *vgpu,
1069 		unsigned int reg)
1070 {
1071 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1072 	enum intel_gvt_event_type event;
1073 
1074 	if (reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_A)))
1075 		event = AUX_CHANNEL_A;
1076 	else if (reg == _PCH_DPB_AUX_CH_CTL ||
1077 		 reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_B)))
1078 		event = AUX_CHANNEL_B;
1079 	else if (reg == _PCH_DPC_AUX_CH_CTL ||
1080 		 reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_C)))
1081 		event = AUX_CHANNEL_C;
1082 	else if (reg == _PCH_DPD_AUX_CH_CTL ||
1083 		 reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_D)))
1084 		event = AUX_CHANNEL_D;
1085 	else {
1086 		drm_WARN_ON(&dev_priv->drm, true);
1087 		return -EINVAL;
1088 	}
1089 
1090 	intel_vgpu_trigger_virtual_event(vgpu, event);
1091 	return 0;
1092 }
1093 
1094 static int dp_aux_ch_ctl_trans_done(struct intel_vgpu *vgpu, u32 value,
1095 		unsigned int reg, int len, bool data_valid)
1096 {
1097 	/* mark transaction done */
1098 	value |= DP_AUX_CH_CTL_DONE;
1099 	value &= ~DP_AUX_CH_CTL_SEND_BUSY;
1100 	value &= ~DP_AUX_CH_CTL_RECEIVE_ERROR;
1101 
1102 	if (data_valid)
1103 		value &= ~DP_AUX_CH_CTL_TIME_OUT_ERROR;
1104 	else
1105 		value |= DP_AUX_CH_CTL_TIME_OUT_ERROR;
1106 
1107 	/* message size */
1108 	value &= ~(0xf << 20);
1109 	value |= (len << 20);
1110 	vgpu_vreg(vgpu, reg) = value;
1111 
1112 	if (value & DP_AUX_CH_CTL_INTERRUPT)
1113 		return trigger_aux_channel_interrupt(vgpu, reg);
1114 	return 0;
1115 }
1116 
1117 static void dp_aux_ch_ctl_link_training(struct intel_vgpu_dpcd_data *dpcd,
1118 		u8 t)
1119 {
1120 	if ((t & DPCD_TRAINING_PATTERN_SET_MASK) == DPCD_TRAINING_PATTERN_1) {
1121 		/* training pattern 1 for CR */
1122 		/* set LANE0_CR_DONE, LANE1_CR_DONE */
1123 		dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_LANES_CR_DONE;
1124 		/* set LANE2_CR_DONE, LANE3_CR_DONE */
1125 		dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_LANES_CR_DONE;
1126 	} else if ((t & DPCD_TRAINING_PATTERN_SET_MASK) ==
1127 			DPCD_TRAINING_PATTERN_2) {
1128 		/* training pattern 2 for EQ */
1129 		/* Set CHANNEL_EQ_DONE and  SYMBOL_LOCKED for Lane0_1 */
1130 		dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_LANES_EQ_DONE;
1131 		dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_SYMBOL_LOCKED;
1132 		/* Set CHANNEL_EQ_DONE and  SYMBOL_LOCKED for Lane2_3 */
1133 		dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_LANES_EQ_DONE;
1134 		dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_SYMBOL_LOCKED;
1135 		/* set INTERLANE_ALIGN_DONE */
1136 		dpcd->data[DPCD_LANE_ALIGN_STATUS_UPDATED] |=
1137 			DPCD_INTERLANE_ALIGN_DONE;
1138 	} else if ((t & DPCD_TRAINING_PATTERN_SET_MASK) ==
1139 			DPCD_LINK_TRAINING_DISABLED) {
1140 		/* finish link training */
1141 		/* set sink status as synchronized */
1142 		dpcd->data[DPCD_SINK_STATUS] = DPCD_SINK_IN_SYNC;
1143 	}
1144 }
1145 
1146 #define _REG_HSW_DP_AUX_CH_CTL(dp) \
1147 	((dp) ? (_PCH_DPB_AUX_CH_CTL + ((dp)-1)*0x100) : 0x64010)
1148 
1149 #define _REG_SKL_DP_AUX_CH_CTL(dp) (0x64010 + (dp) * 0x100)
1150 
1151 #define OFFSET_TO_DP_AUX_PORT(offset) (((offset) & 0xF00) >> 8)
1152 
1153 #define dpy_is_valid_port(port)	\
1154 		(((port) >= PORT_A) && ((port) < I915_MAX_PORTS))
1155 
1156 static int dp_aux_ch_ctl_mmio_write(struct intel_vgpu *vgpu,
1157 		unsigned int offset, void *p_data, unsigned int bytes)
1158 {
1159 	struct intel_vgpu_display *display = &vgpu->display;
1160 	int msg, addr, ctrl, op, len;
1161 	int port_index = OFFSET_TO_DP_AUX_PORT(offset);
1162 	struct intel_vgpu_dpcd_data *dpcd = NULL;
1163 	struct intel_vgpu_port *port = NULL;
1164 	u32 data;
1165 
1166 	if (!dpy_is_valid_port(port_index)) {
1167 		gvt_vgpu_err("Unsupported DP port access!\n");
1168 		return 0;
1169 	}
1170 
1171 	write_vreg(vgpu, offset, p_data, bytes);
1172 	data = vgpu_vreg(vgpu, offset);
1173 
1174 	if ((GRAPHICS_VER(vgpu->gvt->gt->i915) >= 9)
1175 		&& offset != _REG_SKL_DP_AUX_CH_CTL(port_index)) {
1176 		/* SKL DPB/C/D aux ctl register changed */
1177 		return 0;
1178 	} else if (IS_BROADWELL(vgpu->gvt->gt->i915) &&
1179 		   offset != _REG_HSW_DP_AUX_CH_CTL(port_index)) {
1180 		/* write to the data registers */
1181 		return 0;
1182 	}
1183 
1184 	if (!(data & DP_AUX_CH_CTL_SEND_BUSY)) {
1185 		/* just want to clear the sticky bits */
1186 		vgpu_vreg(vgpu, offset) = 0;
1187 		return 0;
1188 	}
1189 
1190 	port = &display->ports[port_index];
1191 	dpcd = port->dpcd;
1192 
1193 	/* read out message from DATA1 register */
1194 	msg = vgpu_vreg(vgpu, offset + 4);
1195 	addr = (msg >> 8) & 0xffff;
1196 	ctrl = (msg >> 24) & 0xff;
1197 	len = msg & 0xff;
1198 	op = ctrl >> 4;
1199 
1200 	if (op == GVT_AUX_NATIVE_WRITE) {
1201 		int t;
1202 		u8 buf[16];
1203 
1204 		if ((addr + len + 1) >= DPCD_SIZE) {
1205 			/*
1206 			 * Write request exceeds what we supported,
1207 			 * DCPD spec: When a Source Device is writing a DPCD
1208 			 * address not supported by the Sink Device, the Sink
1209 			 * Device shall reply with AUX NACK and “M” equal to
1210 			 * zero.
1211 			 */
1212 
1213 			/* NAK the write */
1214 			vgpu_vreg(vgpu, offset + 4) = AUX_NATIVE_REPLY_NAK;
1215 			dp_aux_ch_ctl_trans_done(vgpu, data, offset, 2, true);
1216 			return 0;
1217 		}
1218 
1219 		/*
1220 		 * Write request format: Headr (command + address + size) occupies
1221 		 * 4 bytes, followed by (len + 1) bytes of data. See details at
1222 		 * intel_dp_aux_transfer().
1223 		 */
1224 		if ((len + 1 + 4) > AUX_BURST_SIZE) {
1225 			gvt_vgpu_err("dp_aux_header: len %d is too large\n", len);
1226 			return -EINVAL;
1227 		}
1228 
1229 		/* unpack data from vreg to buf */
1230 		for (t = 0; t < 4; t++) {
1231 			u32 r = vgpu_vreg(vgpu, offset + 8 + t * 4);
1232 
1233 			buf[t * 4] = (r >> 24) & 0xff;
1234 			buf[t * 4 + 1] = (r >> 16) & 0xff;
1235 			buf[t * 4 + 2] = (r >> 8) & 0xff;
1236 			buf[t * 4 + 3] = r & 0xff;
1237 		}
1238 
1239 		/* write to virtual DPCD */
1240 		if (dpcd && dpcd->data_valid) {
1241 			for (t = 0; t <= len; t++) {
1242 				int p = addr + t;
1243 
1244 				dpcd->data[p] = buf[t];
1245 				/* check for link training */
1246 				if (p == DPCD_TRAINING_PATTERN_SET)
1247 					dp_aux_ch_ctl_link_training(dpcd,
1248 							buf[t]);
1249 			}
1250 		}
1251 
1252 		/* ACK the write */
1253 		vgpu_vreg(vgpu, offset + 4) = 0;
1254 		dp_aux_ch_ctl_trans_done(vgpu, data, offset, 1,
1255 				dpcd && dpcd->data_valid);
1256 		return 0;
1257 	}
1258 
1259 	if (op == GVT_AUX_NATIVE_READ) {
1260 		int idx, i, ret = 0;
1261 
1262 		if ((addr + len + 1) >= DPCD_SIZE) {
1263 			/*
1264 			 * read request exceeds what we supported
1265 			 * DPCD spec: A Sink Device receiving a Native AUX CH
1266 			 * read request for an unsupported DPCD address must
1267 			 * reply with an AUX ACK and read data set equal to
1268 			 * zero instead of replying with AUX NACK.
1269 			 */
1270 
1271 			/* ACK the READ*/
1272 			vgpu_vreg(vgpu, offset + 4) = 0;
1273 			vgpu_vreg(vgpu, offset + 8) = 0;
1274 			vgpu_vreg(vgpu, offset + 12) = 0;
1275 			vgpu_vreg(vgpu, offset + 16) = 0;
1276 			vgpu_vreg(vgpu, offset + 20) = 0;
1277 
1278 			dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2,
1279 					true);
1280 			return 0;
1281 		}
1282 
1283 		for (idx = 1; idx <= 5; idx++) {
1284 			/* clear the data registers */
1285 			vgpu_vreg(vgpu, offset + 4 * idx) = 0;
1286 		}
1287 
1288 		/*
1289 		 * Read reply format: ACK (1 byte) plus (len + 1) bytes of data.
1290 		 */
1291 		if ((len + 2) > AUX_BURST_SIZE) {
1292 			gvt_vgpu_err("dp_aux_header: len %d is too large\n", len);
1293 			return -EINVAL;
1294 		}
1295 
1296 		/* read from virtual DPCD to vreg */
1297 		/* first 4 bytes: [ACK][addr][addr+1][addr+2] */
1298 		if (dpcd && dpcd->data_valid) {
1299 			for (i = 1; i <= (len + 1); i++) {
1300 				int t;
1301 
1302 				t = dpcd->data[addr + i - 1];
1303 				t <<= (24 - 8 * (i % 4));
1304 				ret |= t;
1305 
1306 				if ((i % 4 == 3) || (i == (len + 1))) {
1307 					vgpu_vreg(vgpu, offset +
1308 							(i / 4 + 1) * 4) = ret;
1309 					ret = 0;
1310 				}
1311 			}
1312 		}
1313 		dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2,
1314 				dpcd && dpcd->data_valid);
1315 		return 0;
1316 	}
1317 
1318 	/* i2c transaction starts */
1319 	intel_gvt_i2c_handle_aux_ch_write(vgpu, port_index, offset, p_data);
1320 
1321 	if (data & DP_AUX_CH_CTL_INTERRUPT)
1322 		trigger_aux_channel_interrupt(vgpu, offset);
1323 	return 0;
1324 }
1325 
1326 static int mbctl_write(struct intel_vgpu *vgpu, unsigned int offset,
1327 		void *p_data, unsigned int bytes)
1328 {
1329 	*(u32 *)p_data &= (~GEN6_MBCTL_ENABLE_BOOT_FETCH);
1330 	write_vreg(vgpu, offset, p_data, bytes);
1331 	return 0;
1332 }
1333 
1334 static int vga_control_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1335 		void *p_data, unsigned int bytes)
1336 {
1337 	bool vga_disable;
1338 
1339 	write_vreg(vgpu, offset, p_data, bytes);
1340 	vga_disable = vgpu_vreg(vgpu, offset) & VGA_DISP_DISABLE;
1341 
1342 	gvt_dbg_core("vgpu%d: %s VGA mode\n", vgpu->id,
1343 			vga_disable ? "Disable" : "Enable");
1344 	return 0;
1345 }
1346 
1347 static u32 read_virtual_sbi_register(struct intel_vgpu *vgpu,
1348 		unsigned int sbi_offset)
1349 {
1350 	struct intel_vgpu_display *display = &vgpu->display;
1351 	int num = display->sbi.number;
1352 	int i;
1353 
1354 	for (i = 0; i < num; ++i)
1355 		if (display->sbi.registers[i].offset == sbi_offset)
1356 			break;
1357 
1358 	if (i == num)
1359 		return 0;
1360 
1361 	return display->sbi.registers[i].value;
1362 }
1363 
1364 static void write_virtual_sbi_register(struct intel_vgpu *vgpu,
1365 		unsigned int offset, u32 value)
1366 {
1367 	struct intel_vgpu_display *display = &vgpu->display;
1368 	int num = display->sbi.number;
1369 	int i;
1370 
1371 	for (i = 0; i < num; ++i) {
1372 		if (display->sbi.registers[i].offset == offset)
1373 			break;
1374 	}
1375 
1376 	if (i == num) {
1377 		if (num == SBI_REG_MAX) {
1378 			gvt_vgpu_err("SBI caching meets maximum limits\n");
1379 			return;
1380 		}
1381 		display->sbi.number++;
1382 	}
1383 
1384 	display->sbi.registers[i].offset = offset;
1385 	display->sbi.registers[i].value = value;
1386 }
1387 
1388 static int sbi_data_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
1389 		void *p_data, unsigned int bytes)
1390 {
1391 	if (((vgpu_vreg_t(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >>
1392 				SBI_OPCODE_SHIFT) == SBI_CMD_CRRD) {
1393 		unsigned int sbi_offset = (vgpu_vreg_t(vgpu, SBI_ADDR) &
1394 				SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT;
1395 		vgpu_vreg(vgpu, offset) = read_virtual_sbi_register(vgpu,
1396 				sbi_offset);
1397 	}
1398 	read_vreg(vgpu, offset, p_data, bytes);
1399 	return 0;
1400 }
1401 
1402 static int sbi_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1403 		void *p_data, unsigned int bytes)
1404 {
1405 	u32 data;
1406 
1407 	write_vreg(vgpu, offset, p_data, bytes);
1408 	data = vgpu_vreg(vgpu, offset);
1409 
1410 	data &= ~(SBI_STAT_MASK << SBI_STAT_SHIFT);
1411 	data |= SBI_READY;
1412 
1413 	data &= ~(SBI_RESPONSE_MASK << SBI_RESPONSE_SHIFT);
1414 	data |= SBI_RESPONSE_SUCCESS;
1415 
1416 	vgpu_vreg(vgpu, offset) = data;
1417 
1418 	if (((vgpu_vreg_t(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >>
1419 				SBI_OPCODE_SHIFT) == SBI_CMD_CRWR) {
1420 		unsigned int sbi_offset = (vgpu_vreg_t(vgpu, SBI_ADDR) &
1421 				SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT;
1422 
1423 		write_virtual_sbi_register(vgpu, sbi_offset,
1424 					   vgpu_vreg_t(vgpu, SBI_DATA));
1425 	}
1426 	return 0;
1427 }
1428 
1429 #define _vgtif_reg(x) \
1430 	(VGT_PVINFO_PAGE + offsetof(struct vgt_if, x))
1431 
1432 static int pvinfo_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
1433 		void *p_data, unsigned int bytes)
1434 {
1435 	bool invalid_read = false;
1436 
1437 	read_vreg(vgpu, offset, p_data, bytes);
1438 
1439 	switch (offset) {
1440 	case _vgtif_reg(magic) ... _vgtif_reg(vgt_id):
1441 		if (offset + bytes > _vgtif_reg(vgt_id) + 4)
1442 			invalid_read = true;
1443 		break;
1444 	case _vgtif_reg(avail_rs.mappable_gmadr.base) ...
1445 		_vgtif_reg(avail_rs.fence_num):
1446 		if (offset + bytes >
1447 			_vgtif_reg(avail_rs.fence_num) + 4)
1448 			invalid_read = true;
1449 		break;
1450 	case 0x78010:	/* vgt_caps */
1451 	case 0x7881c:
1452 		break;
1453 	default:
1454 		invalid_read = true;
1455 		break;
1456 	}
1457 	if (invalid_read)
1458 		gvt_vgpu_err("invalid pvinfo read: [%x:%x] = %x\n",
1459 				offset, bytes, *(u32 *)p_data);
1460 	vgpu->pv_notified = true;
1461 	return 0;
1462 }
1463 
1464 static int handle_g2v_notification(struct intel_vgpu *vgpu, int notification)
1465 {
1466 	enum intel_gvt_gtt_type root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1467 	struct intel_vgpu_mm *mm;
1468 	u64 *pdps;
1469 
1470 	pdps = (u64 *)&vgpu_vreg64_t(vgpu, vgtif_reg(pdp[0]));
1471 
1472 	switch (notification) {
1473 	case VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE:
1474 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1475 		fallthrough;
1476 	case VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE:
1477 		mm = intel_vgpu_get_ppgtt_mm(vgpu, root_entry_type, pdps);
1478 		return PTR_ERR_OR_ZERO(mm);
1479 	case VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY:
1480 	case VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY:
1481 		return intel_vgpu_put_ppgtt_mm(vgpu, pdps);
1482 	case VGT_G2V_EXECLIST_CONTEXT_CREATE:
1483 	case VGT_G2V_EXECLIST_CONTEXT_DESTROY:
1484 	case 1:	/* Remove this in guest driver. */
1485 		break;
1486 	default:
1487 		gvt_vgpu_err("Invalid PV notification %d\n", notification);
1488 	}
1489 	return 0;
1490 }
1491 
1492 static int send_display_ready_uevent(struct intel_vgpu *vgpu, int ready)
1493 {
1494 	struct kobject *kobj = &vgpu->gvt->gt->i915->drm.primary->kdev->kobj;
1495 	char *env[3] = {NULL, NULL, NULL};
1496 	char vmid_str[20];
1497 	char display_ready_str[20];
1498 
1499 	snprintf(display_ready_str, 20, "GVT_DISPLAY_READY=%d", ready);
1500 	env[0] = display_ready_str;
1501 
1502 	snprintf(vmid_str, 20, "VMID=%d", vgpu->id);
1503 	env[1] = vmid_str;
1504 
1505 	return kobject_uevent_env(kobj, KOBJ_ADD, env);
1506 }
1507 
1508 static int pvinfo_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1509 		void *p_data, unsigned int bytes)
1510 {
1511 	u32 data = *(u32 *)p_data;
1512 	bool invalid_write = false;
1513 
1514 	switch (offset) {
1515 	case _vgtif_reg(display_ready):
1516 		send_display_ready_uevent(vgpu, data ? 1 : 0);
1517 		break;
1518 	case _vgtif_reg(g2v_notify):
1519 		handle_g2v_notification(vgpu, data);
1520 		break;
1521 	/* add xhot and yhot to handled list to avoid error log */
1522 	case _vgtif_reg(cursor_x_hot):
1523 	case _vgtif_reg(cursor_y_hot):
1524 	case _vgtif_reg(pdp[0].lo):
1525 	case _vgtif_reg(pdp[0].hi):
1526 	case _vgtif_reg(pdp[1].lo):
1527 	case _vgtif_reg(pdp[1].hi):
1528 	case _vgtif_reg(pdp[2].lo):
1529 	case _vgtif_reg(pdp[2].hi):
1530 	case _vgtif_reg(pdp[3].lo):
1531 	case _vgtif_reg(pdp[3].hi):
1532 	case _vgtif_reg(execlist_context_descriptor_lo):
1533 	case _vgtif_reg(execlist_context_descriptor_hi):
1534 		break;
1535 	case _vgtif_reg(rsv5[0])..._vgtif_reg(rsv5[3]):
1536 		invalid_write = true;
1537 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_INSUFFICIENT_RESOURCE);
1538 		break;
1539 	default:
1540 		invalid_write = true;
1541 		gvt_vgpu_err("invalid pvinfo write offset %x bytes %x data %x\n",
1542 				offset, bytes, data);
1543 		break;
1544 	}
1545 
1546 	if (!invalid_write)
1547 		write_vreg(vgpu, offset, p_data, bytes);
1548 
1549 	return 0;
1550 }
1551 
1552 static int pf_write(struct intel_vgpu *vgpu,
1553 		unsigned int offset, void *p_data, unsigned int bytes)
1554 {
1555 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1556 	u32 val = *(u32 *)p_data;
1557 
1558 	if ((offset == _PS_1A_CTRL || offset == _PS_2A_CTRL ||
1559 	   offset == _PS_1B_CTRL || offset == _PS_2B_CTRL ||
1560 	   offset == _PS_1C_CTRL) && (val & PS_PLANE_SEL_MASK) != 0) {
1561 		drm_WARN_ONCE(&i915->drm, true,
1562 			      "VM(%d): guest is trying to scaling a plane\n",
1563 			      vgpu->id);
1564 		return 0;
1565 	}
1566 
1567 	return intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes);
1568 }
1569 
1570 static int power_well_ctl_mmio_write(struct intel_vgpu *vgpu,
1571 		unsigned int offset, void *p_data, unsigned int bytes)
1572 {
1573 	write_vreg(vgpu, offset, p_data, bytes);
1574 
1575 	if (vgpu_vreg(vgpu, offset) &
1576 	    HSW_PWR_WELL_CTL_REQ(HSW_PW_CTL_IDX_GLOBAL))
1577 		vgpu_vreg(vgpu, offset) |=
1578 			HSW_PWR_WELL_CTL_STATE(HSW_PW_CTL_IDX_GLOBAL);
1579 	else
1580 		vgpu_vreg(vgpu, offset) &=
1581 			~HSW_PWR_WELL_CTL_STATE(HSW_PW_CTL_IDX_GLOBAL);
1582 	return 0;
1583 }
1584 
1585 static int gen9_dbuf_ctl_mmio_write(struct intel_vgpu *vgpu,
1586 		unsigned int offset, void *p_data, unsigned int bytes)
1587 {
1588 	write_vreg(vgpu, offset, p_data, bytes);
1589 
1590 	if (vgpu_vreg(vgpu, offset) & DBUF_POWER_REQUEST)
1591 		vgpu_vreg(vgpu, offset) |= DBUF_POWER_STATE;
1592 	else
1593 		vgpu_vreg(vgpu, offset) &= ~DBUF_POWER_STATE;
1594 
1595 	return 0;
1596 }
1597 
1598 static int fpga_dbg_mmio_write(struct intel_vgpu *vgpu,
1599 	unsigned int offset, void *p_data, unsigned int bytes)
1600 {
1601 	write_vreg(vgpu, offset, p_data, bytes);
1602 
1603 	if (vgpu_vreg(vgpu, offset) & FPGA_DBG_RM_NOCLAIM)
1604 		vgpu_vreg(vgpu, offset) &= ~FPGA_DBG_RM_NOCLAIM;
1605 	return 0;
1606 }
1607 
1608 static int dma_ctrl_write(struct intel_vgpu *vgpu, unsigned int offset,
1609 		void *p_data, unsigned int bytes)
1610 {
1611 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1612 	u32 mode;
1613 
1614 	write_vreg(vgpu, offset, p_data, bytes);
1615 	mode = vgpu_vreg(vgpu, offset);
1616 
1617 	if (GFX_MODE_BIT_SET_IN_MASK(mode, START_DMA)) {
1618 		drm_WARN_ONCE(&i915->drm, 1,
1619 				"VM(%d): iGVT-g doesn't support GuC\n",
1620 				vgpu->id);
1621 		return 0;
1622 	}
1623 
1624 	return 0;
1625 }
1626 
1627 static int gen9_trtte_write(struct intel_vgpu *vgpu, unsigned int offset,
1628 		void *p_data, unsigned int bytes)
1629 {
1630 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1631 	u32 trtte = *(u32 *)p_data;
1632 
1633 	if ((trtte & 1) && (trtte & (1 << 1)) == 0) {
1634 		drm_WARN(&i915->drm, 1,
1635 				"VM(%d): Use physical address for TRTT!\n",
1636 				vgpu->id);
1637 		return -EINVAL;
1638 	}
1639 	write_vreg(vgpu, offset, p_data, bytes);
1640 
1641 	return 0;
1642 }
1643 
1644 static int gen9_trtt_chicken_write(struct intel_vgpu *vgpu, unsigned int offset,
1645 		void *p_data, unsigned int bytes)
1646 {
1647 	write_vreg(vgpu, offset, p_data, bytes);
1648 	return 0;
1649 }
1650 
1651 static int dpll_status_read(struct intel_vgpu *vgpu, unsigned int offset,
1652 		void *p_data, unsigned int bytes)
1653 {
1654 	u32 v = 0;
1655 
1656 	if (vgpu_vreg(vgpu, 0x46010) & (1 << 31))
1657 		v |= (1 << 0);
1658 
1659 	if (vgpu_vreg(vgpu, 0x46014) & (1 << 31))
1660 		v |= (1 << 8);
1661 
1662 	if (vgpu_vreg(vgpu, 0x46040) & (1 << 31))
1663 		v |= (1 << 16);
1664 
1665 	if (vgpu_vreg(vgpu, 0x46060) & (1 << 31))
1666 		v |= (1 << 24);
1667 
1668 	vgpu_vreg(vgpu, offset) = v;
1669 
1670 	return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
1671 }
1672 
1673 static int mailbox_write(struct intel_vgpu *vgpu, unsigned int offset,
1674 		void *p_data, unsigned int bytes)
1675 {
1676 	u32 value = *(u32 *)p_data;
1677 	u32 cmd = value & 0xff;
1678 	u32 *data0 = &vgpu_vreg_t(vgpu, GEN6_PCODE_DATA);
1679 
1680 	switch (cmd) {
1681 	case GEN9_PCODE_READ_MEM_LATENCY:
1682 		if (IS_SKYLAKE(vgpu->gvt->gt->i915) ||
1683 		    IS_KABYLAKE(vgpu->gvt->gt->i915) ||
1684 		    IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
1685 		    IS_COMETLAKE(vgpu->gvt->gt->i915)) {
1686 			/**
1687 			 * "Read memory latency" command on gen9.
1688 			 * Below memory latency values are read
1689 			 * from skylake platform.
1690 			 */
1691 			if (!*data0)
1692 				*data0 = 0x1e1a1100;
1693 			else
1694 				*data0 = 0x61514b3d;
1695 		} else if (IS_BROXTON(vgpu->gvt->gt->i915)) {
1696 			/**
1697 			 * "Read memory latency" command on gen9.
1698 			 * Below memory latency values are read
1699 			 * from Broxton MRB.
1700 			 */
1701 			if (!*data0)
1702 				*data0 = 0x16080707;
1703 			else
1704 				*data0 = 0x16161616;
1705 		}
1706 		break;
1707 	case SKL_PCODE_CDCLK_CONTROL:
1708 		if (IS_SKYLAKE(vgpu->gvt->gt->i915) ||
1709 		    IS_KABYLAKE(vgpu->gvt->gt->i915) ||
1710 		    IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
1711 		    IS_COMETLAKE(vgpu->gvt->gt->i915))
1712 			*data0 = SKL_CDCLK_READY_FOR_CHANGE;
1713 		break;
1714 	case GEN6_PCODE_READ_RC6VIDS:
1715 		*data0 |= 0x1;
1716 		break;
1717 	}
1718 
1719 	gvt_dbg_core("VM(%d) write %x to mailbox, return data0 %x\n",
1720 		     vgpu->id, value, *data0);
1721 	/**
1722 	 * PCODE_READY clear means ready for pcode read/write,
1723 	 * PCODE_ERROR_MASK clear means no error happened. In GVT-g we
1724 	 * always emulate as pcode read/write success and ready for access
1725 	 * anytime, since we don't touch real physical registers here.
1726 	 */
1727 	value &= ~(GEN6_PCODE_READY | GEN6_PCODE_ERROR_MASK);
1728 	return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes);
1729 }
1730 
1731 static int hws_pga_write(struct intel_vgpu *vgpu, unsigned int offset,
1732 		void *p_data, unsigned int bytes)
1733 {
1734 	u32 value = *(u32 *)p_data;
1735 	const struct intel_engine_cs *engine =
1736 		intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
1737 
1738 	if (value != 0 &&
1739 	    !intel_gvt_ggtt_validate_range(vgpu, value, I915_GTT_PAGE_SIZE)) {
1740 		gvt_vgpu_err("write invalid HWSP address, reg:0x%x, value:0x%x\n",
1741 			      offset, value);
1742 		return -EINVAL;
1743 	}
1744 
1745 	/*
1746 	 * Need to emulate all the HWSP register write to ensure host can
1747 	 * update the VM CSB status correctly. Here listed registers can
1748 	 * support BDW, SKL or other platforms with same HWSP registers.
1749 	 */
1750 	if (unlikely(!engine)) {
1751 		gvt_vgpu_err("access unknown hardware status page register:0x%x\n",
1752 			     offset);
1753 		return -EINVAL;
1754 	}
1755 	vgpu->hws_pga[engine->id] = value;
1756 	gvt_dbg_mmio("VM(%d) write: 0x%x to HWSP: 0x%x\n",
1757 		     vgpu->id, value, offset);
1758 
1759 	return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes);
1760 }
1761 
1762 static int skl_power_well_ctl_write(struct intel_vgpu *vgpu,
1763 		unsigned int offset, void *p_data, unsigned int bytes)
1764 {
1765 	u32 v = *(u32 *)p_data;
1766 
1767 	if (IS_BROXTON(vgpu->gvt->gt->i915))
1768 		v &= (1 << 31) | (1 << 29);
1769 	else
1770 		v &= (1 << 31) | (1 << 29) | (1 << 9) |
1771 			(1 << 7) | (1 << 5) | (1 << 3) | (1 << 1);
1772 	v |= (v >> 1);
1773 
1774 	return intel_vgpu_default_mmio_write(vgpu, offset, &v, bytes);
1775 }
1776 
1777 static int skl_lcpll_write(struct intel_vgpu *vgpu, unsigned int offset,
1778 		void *p_data, unsigned int bytes)
1779 {
1780 	u32 v = *(u32 *)p_data;
1781 
1782 	/* other bits are MBZ. */
1783 	v &= (1 << 31) | (1 << 30);
1784 	v & (1 << 31) ? (v |= (1 << 30)) : (v &= ~(1 << 30));
1785 
1786 	vgpu_vreg(vgpu, offset) = v;
1787 
1788 	return 0;
1789 }
1790 
1791 static int bxt_de_pll_enable_write(struct intel_vgpu *vgpu,
1792 		unsigned int offset, void *p_data, unsigned int bytes)
1793 {
1794 	u32 v = *(u32 *)p_data;
1795 
1796 	if (v & BXT_DE_PLL_PLL_ENABLE)
1797 		v |= BXT_DE_PLL_LOCK;
1798 
1799 	vgpu_vreg(vgpu, offset) = v;
1800 
1801 	return 0;
1802 }
1803 
1804 static int bxt_port_pll_enable_write(struct intel_vgpu *vgpu,
1805 		unsigned int offset, void *p_data, unsigned int bytes)
1806 {
1807 	u32 v = *(u32 *)p_data;
1808 
1809 	if (v & PORT_PLL_ENABLE)
1810 		v |= PORT_PLL_LOCK;
1811 
1812 	vgpu_vreg(vgpu, offset) = v;
1813 
1814 	return 0;
1815 }
1816 
1817 static int bxt_phy_ctl_family_write(struct intel_vgpu *vgpu,
1818 		unsigned int offset, void *p_data, unsigned int bytes)
1819 {
1820 	u32 v = *(u32 *)p_data;
1821 	u32 data = v & COMMON_RESET_DIS ? BXT_PHY_LANE_ENABLED : 0;
1822 
1823 	switch (offset) {
1824 	case _PHY_CTL_FAMILY_EDP:
1825 		vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_A) = data;
1826 		break;
1827 	case _PHY_CTL_FAMILY_DDI:
1828 		vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_B) = data;
1829 		vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_C) = data;
1830 		break;
1831 	}
1832 
1833 	vgpu_vreg(vgpu, offset) = v;
1834 
1835 	return 0;
1836 }
1837 
1838 static int bxt_port_tx_dw3_read(struct intel_vgpu *vgpu,
1839 		unsigned int offset, void *p_data, unsigned int bytes)
1840 {
1841 	u32 v = vgpu_vreg(vgpu, offset);
1842 
1843 	v &= ~UNIQUE_TRANGE_EN_METHOD;
1844 
1845 	vgpu_vreg(vgpu, offset) = v;
1846 
1847 	return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
1848 }
1849 
1850 static int bxt_pcs_dw12_grp_write(struct intel_vgpu *vgpu,
1851 		unsigned int offset, void *p_data, unsigned int bytes)
1852 {
1853 	u32 v = *(u32 *)p_data;
1854 
1855 	if (offset == _PORT_PCS_DW12_GRP_A || offset == _PORT_PCS_DW12_GRP_B) {
1856 		vgpu_vreg(vgpu, offset - 0x600) = v;
1857 		vgpu_vreg(vgpu, offset - 0x800) = v;
1858 	} else {
1859 		vgpu_vreg(vgpu, offset - 0x400) = v;
1860 		vgpu_vreg(vgpu, offset - 0x600) = v;
1861 	}
1862 
1863 	vgpu_vreg(vgpu, offset) = v;
1864 
1865 	return 0;
1866 }
1867 
1868 static int bxt_gt_disp_pwron_write(struct intel_vgpu *vgpu,
1869 		unsigned int offset, void *p_data, unsigned int bytes)
1870 {
1871 	u32 v = *(u32 *)p_data;
1872 
1873 	if (v & BIT(0)) {
1874 		vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY0)) &=
1875 			~PHY_RESERVED;
1876 		vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY0)) |=
1877 			PHY_POWER_GOOD;
1878 	}
1879 
1880 	if (v & BIT(1)) {
1881 		vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY1)) &=
1882 			~PHY_RESERVED;
1883 		vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY1)) |=
1884 			PHY_POWER_GOOD;
1885 	}
1886 
1887 
1888 	vgpu_vreg(vgpu, offset) = v;
1889 
1890 	return 0;
1891 }
1892 
1893 static int edp_psr_imr_iir_write(struct intel_vgpu *vgpu,
1894 		unsigned int offset, void *p_data, unsigned int bytes)
1895 {
1896 	vgpu_vreg(vgpu, offset) = 0;
1897 	return 0;
1898 }
1899 
1900 /*
1901  * FixMe:
1902  * If guest fills non-priv batch buffer on ApolloLake/Broxton as Mesa i965 did:
1903  * 717e7539124d (i965: Use a WC map and memcpy for the batch instead of pwrite.)
1904  * Due to the missing flush of bb filled by VM vCPU, host GPU hangs on executing
1905  * these MI_BATCH_BUFFER.
1906  * Temporarily workaround this by setting SNOOP bit for PAT3 used by PPGTT
1907  * PML4 PTE: PAT(0) PCD(1) PWT(1).
1908  * The performance is still expected to be low, will need further improvement.
1909  */
1910 static int bxt_ppat_low_write(struct intel_vgpu *vgpu, unsigned int offset,
1911 			      void *p_data, unsigned int bytes)
1912 {
1913 	u64 pat =
1914 		GEN8_PPAT(0, CHV_PPAT_SNOOP) |
1915 		GEN8_PPAT(1, 0) |
1916 		GEN8_PPAT(2, 0) |
1917 		GEN8_PPAT(3, CHV_PPAT_SNOOP) |
1918 		GEN8_PPAT(4, CHV_PPAT_SNOOP) |
1919 		GEN8_PPAT(5, CHV_PPAT_SNOOP) |
1920 		GEN8_PPAT(6, CHV_PPAT_SNOOP) |
1921 		GEN8_PPAT(7, CHV_PPAT_SNOOP);
1922 
1923 	vgpu_vreg(vgpu, offset) = lower_32_bits(pat);
1924 
1925 	return 0;
1926 }
1927 
1928 static int guc_status_read(struct intel_vgpu *vgpu,
1929 			   unsigned int offset, void *p_data,
1930 			   unsigned int bytes)
1931 {
1932 	/* keep MIA_IN_RESET before clearing */
1933 	read_vreg(vgpu, offset, p_data, bytes);
1934 	vgpu_vreg(vgpu, offset) &= ~GS_MIA_IN_RESET;
1935 	return 0;
1936 }
1937 
1938 static int mmio_read_from_hw(struct intel_vgpu *vgpu,
1939 		unsigned int offset, void *p_data, unsigned int bytes)
1940 {
1941 	struct intel_gvt *gvt = vgpu->gvt;
1942 	const struct intel_engine_cs *engine =
1943 		intel_gvt_render_mmio_to_engine(gvt, offset);
1944 
1945 	/**
1946 	 * Read HW reg in following case
1947 	 * a. the offset isn't a ring mmio
1948 	 * b. the offset's ring is running on hw.
1949 	 * c. the offset is ring time stamp mmio
1950 	 */
1951 
1952 	if (!engine ||
1953 	    vgpu == gvt->scheduler.engine_owner[engine->id] ||
1954 	    offset == i915_mmio_reg_offset(RING_TIMESTAMP(engine->mmio_base)) ||
1955 	    offset == i915_mmio_reg_offset(RING_TIMESTAMP_UDW(engine->mmio_base))) {
1956 		mmio_hw_access_pre(gvt->gt);
1957 		vgpu_vreg(vgpu, offset) =
1958 			intel_uncore_read(gvt->gt->uncore, _MMIO(offset));
1959 		mmio_hw_access_post(gvt->gt);
1960 	}
1961 
1962 	return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
1963 }
1964 
1965 static int elsp_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1966 		void *p_data, unsigned int bytes)
1967 {
1968 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1969 	const struct intel_engine_cs *engine = intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
1970 	struct intel_vgpu_execlist *execlist;
1971 	u32 data = *(u32 *)p_data;
1972 	int ret = 0;
1973 
1974 	if (drm_WARN_ON(&i915->drm, !engine))
1975 		return -EINVAL;
1976 
1977 	/*
1978 	 * Due to d3_entered is used to indicate skipping PPGTT invalidation on
1979 	 * vGPU reset, it's set on D0->D3 on PCI config write, and cleared after
1980 	 * vGPU reset if in resuming.
1981 	 * In S0ix exit, the device power state also transite from D3 to D0 as
1982 	 * S3 resume, but no vGPU reset (triggered by QEMU devic model). After
1983 	 * S0ix exit, all engines continue to work. However the d3_entered
1984 	 * remains set which will break next vGPU reset logic (miss the expected
1985 	 * PPGTT invalidation).
1986 	 * Engines can only work in D0. Thus the 1st elsp write gives GVT a
1987 	 * chance to clear d3_entered.
1988 	 */
1989 	if (vgpu->d3_entered)
1990 		vgpu->d3_entered = false;
1991 
1992 	execlist = &vgpu->submission.execlist[engine->id];
1993 
1994 	execlist->elsp_dwords.data[3 - execlist->elsp_dwords.index] = data;
1995 	if (execlist->elsp_dwords.index == 3) {
1996 		ret = intel_vgpu_submit_execlist(vgpu, engine);
1997 		if(ret)
1998 			gvt_vgpu_err("fail submit workload on ring %s\n",
1999 				     engine->name);
2000 	}
2001 
2002 	++execlist->elsp_dwords.index;
2003 	execlist->elsp_dwords.index &= 0x3;
2004 	return ret;
2005 }
2006 
2007 static int ring_mode_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
2008 		void *p_data, unsigned int bytes)
2009 {
2010 	u32 data = *(u32 *)p_data;
2011 	const struct intel_engine_cs *engine =
2012 		intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
2013 	bool enable_execlist;
2014 	int ret;
2015 
2016 	(*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(1);
2017 	if (IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
2018 	    IS_COMETLAKE(vgpu->gvt->gt->i915))
2019 		(*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(2);
2020 	write_vreg(vgpu, offset, p_data, bytes);
2021 
2022 	if (IS_MASKED_BITS_ENABLED(data, 1)) {
2023 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2024 		return 0;
2025 	}
2026 
2027 	if ((IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
2028 	     IS_COMETLAKE(vgpu->gvt->gt->i915)) &&
2029 	    IS_MASKED_BITS_ENABLED(data, 2)) {
2030 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2031 		return 0;
2032 	}
2033 
2034 	/* when PPGTT mode enabled, we will check if guest has called
2035 	 * pvinfo, if not, we will treat this guest as non-gvtg-aware
2036 	 * guest, and stop emulating its cfg space, mmio, gtt, etc.
2037 	 */
2038 	if ((IS_MASKED_BITS_ENABLED(data, GFX_PPGTT_ENABLE) ||
2039 	    IS_MASKED_BITS_ENABLED(data, GFX_RUN_LIST_ENABLE)) &&
2040 	    !vgpu->pv_notified) {
2041 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2042 		return 0;
2043 	}
2044 	if (IS_MASKED_BITS_ENABLED(data, GFX_RUN_LIST_ENABLE) ||
2045 	    IS_MASKED_BITS_DISABLED(data, GFX_RUN_LIST_ENABLE)) {
2046 		enable_execlist = !!(data & GFX_RUN_LIST_ENABLE);
2047 
2048 		gvt_dbg_core("EXECLIST %s on ring %s\n",
2049 			     (enable_execlist ? "enabling" : "disabling"),
2050 			     engine->name);
2051 
2052 		if (!enable_execlist)
2053 			return 0;
2054 
2055 		ret = intel_vgpu_select_submission_ops(vgpu,
2056 						       engine->mask,
2057 						       INTEL_VGPU_EXECLIST_SUBMISSION);
2058 		if (ret)
2059 			return ret;
2060 
2061 		intel_vgpu_start_schedule(vgpu);
2062 	}
2063 	return 0;
2064 }
2065 
2066 static int gvt_reg_tlb_control_handler(struct intel_vgpu *vgpu,
2067 		unsigned int offset, void *p_data, unsigned int bytes)
2068 {
2069 	unsigned int id = 0;
2070 
2071 	write_vreg(vgpu, offset, p_data, bytes);
2072 	vgpu_vreg(vgpu, offset) = 0;
2073 
2074 	switch (offset) {
2075 	case 0x4260:
2076 		id = RCS0;
2077 		break;
2078 	case 0x4264:
2079 		id = VCS0;
2080 		break;
2081 	case 0x4268:
2082 		id = VCS1;
2083 		break;
2084 	case 0x426c:
2085 		id = BCS0;
2086 		break;
2087 	case 0x4270:
2088 		id = VECS0;
2089 		break;
2090 	default:
2091 		return -EINVAL;
2092 	}
2093 	set_bit(id, (void *)vgpu->submission.tlb_handle_pending);
2094 
2095 	return 0;
2096 }
2097 
2098 static int ring_reset_ctl_write(struct intel_vgpu *vgpu,
2099 	unsigned int offset, void *p_data, unsigned int bytes)
2100 {
2101 	u32 data;
2102 
2103 	write_vreg(vgpu, offset, p_data, bytes);
2104 	data = vgpu_vreg(vgpu, offset);
2105 
2106 	if (IS_MASKED_BITS_ENABLED(data, RESET_CTL_REQUEST_RESET))
2107 		data |= RESET_CTL_READY_TO_RESET;
2108 	else if (data & _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET))
2109 		data &= ~RESET_CTL_READY_TO_RESET;
2110 
2111 	vgpu_vreg(vgpu, offset) = data;
2112 	return 0;
2113 }
2114 
2115 static int csfe_chicken1_mmio_write(struct intel_vgpu *vgpu,
2116 				    unsigned int offset, void *p_data,
2117 				    unsigned int bytes)
2118 {
2119 	u32 data = *(u32 *)p_data;
2120 
2121 	(*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(0x18);
2122 	write_vreg(vgpu, offset, p_data, bytes);
2123 
2124 	if (IS_MASKED_BITS_ENABLED(data, 0x10) ||
2125 	    IS_MASKED_BITS_ENABLED(data, 0x8))
2126 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2127 
2128 	return 0;
2129 }
2130 
2131 #define MMIO_F(reg, s, f, am, rm, d, r, w) do { \
2132 	ret = setup_mmio_info(gvt, i915_mmio_reg_offset(reg), \
2133 		s, f, am, rm, d, r, w); \
2134 	if (ret) \
2135 		return ret; \
2136 } while (0)
2137 
2138 #define MMIO_DH(reg, d, r, w) \
2139 	MMIO_F(reg, 4, 0, 0, 0, d, r, w)
2140 
2141 #define MMIO_DFH(reg, d, f, r, w) \
2142 	MMIO_F(reg, 4, f, 0, 0, d, r, w)
2143 
2144 #define MMIO_GM(reg, d, r, w) \
2145 	MMIO_F(reg, 4, F_GMADR, 0xFFFFF000, 0, d, r, w)
2146 
2147 #define MMIO_GM_RDR(reg, d, r, w) \
2148 	MMIO_F(reg, 4, F_GMADR | F_CMD_ACCESS, 0xFFFFF000, 0, d, r, w)
2149 
2150 #define MMIO_RO(reg, d, f, rm, r, w) \
2151 	MMIO_F(reg, 4, F_RO | f, 0, rm, d, r, w)
2152 
2153 #define MMIO_RING_F(prefix, s, f, am, rm, d, r, w) do { \
2154 	MMIO_F(prefix(RENDER_RING_BASE), s, f, am, rm, d, r, w); \
2155 	MMIO_F(prefix(BLT_RING_BASE), s, f, am, rm, d, r, w); \
2156 	MMIO_F(prefix(GEN6_BSD_RING_BASE), s, f, am, rm, d, r, w); \
2157 	MMIO_F(prefix(VEBOX_RING_BASE), s, f, am, rm, d, r, w); \
2158 	if (HAS_ENGINE(gvt->gt, VCS1)) \
2159 		MMIO_F(prefix(GEN8_BSD2_RING_BASE), s, f, am, rm, d, r, w); \
2160 } while (0)
2161 
2162 #define MMIO_RING_DFH(prefix, d, f, r, w) \
2163 	MMIO_RING_F(prefix, 4, f, 0, 0, d, r, w)
2164 
2165 #define MMIO_RING_GM(prefix, d, r, w) \
2166 	MMIO_RING_F(prefix, 4, F_GMADR, 0xFFFF0000, 0, d, r, w)
2167 
2168 #define MMIO_RING_GM_RDR(prefix, d, r, w) \
2169 	MMIO_RING_F(prefix, 4, F_GMADR | F_CMD_ACCESS, 0xFFFF0000, 0, d, r, w)
2170 
2171 #define MMIO_RING_RO(prefix, d, f, rm, r, w) \
2172 	MMIO_RING_F(prefix, 4, F_RO | f, 0, rm, d, r, w)
2173 
2174 static int init_generic_mmio_info(struct intel_gvt *gvt)
2175 {
2176 	struct drm_i915_private *dev_priv = gvt->gt->i915;
2177 	int ret;
2178 
2179 	MMIO_RING_DFH(RING_IMR, D_ALL, 0, NULL,
2180 		intel_vgpu_reg_imr_handler);
2181 
2182 	MMIO_DFH(SDEIMR, D_ALL, 0, NULL, intel_vgpu_reg_imr_handler);
2183 	MMIO_DFH(SDEIER, D_ALL, 0, NULL, intel_vgpu_reg_ier_handler);
2184 	MMIO_DFH(SDEIIR, D_ALL, 0, NULL, intel_vgpu_reg_iir_handler);
2185 
2186 	MMIO_RING_DFH(RING_HWSTAM, D_ALL, 0, NULL, NULL);
2187 
2188 
2189 	MMIO_DH(GEN8_GAMW_ECO_DEV_RW_IA, D_BDW_PLUS, NULL,
2190 		gamw_echo_dev_rw_ia_write);
2191 
2192 	MMIO_GM_RDR(BSD_HWS_PGA_GEN7, D_ALL, NULL, NULL);
2193 	MMIO_GM_RDR(BLT_HWS_PGA_GEN7, D_ALL, NULL, NULL);
2194 	MMIO_GM_RDR(VEBOX_HWS_PGA_GEN7, D_ALL, NULL, NULL);
2195 
2196 #define RING_REG(base) _MMIO((base) + 0x28)
2197 	MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL);
2198 #undef RING_REG
2199 
2200 #define RING_REG(base) _MMIO((base) + 0x134)
2201 	MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL);
2202 #undef RING_REG
2203 
2204 #define RING_REG(base) _MMIO((base) + 0x6c)
2205 	MMIO_RING_DFH(RING_REG, D_ALL, 0, mmio_read_from_hw, NULL);
2206 #undef RING_REG
2207 	MMIO_DH(GEN7_SC_INSTDONE, D_BDW_PLUS, mmio_read_from_hw, NULL);
2208 
2209 	MMIO_GM_RDR(_MMIO(0x2148), D_ALL, NULL, NULL);
2210 	MMIO_GM_RDR(CCID(RENDER_RING_BASE), D_ALL, NULL, NULL);
2211 	MMIO_GM_RDR(_MMIO(0x12198), D_ALL, NULL, NULL);
2212 
2213 	MMIO_RING_DFH(RING_TAIL, D_ALL, 0, NULL, NULL);
2214 	MMIO_RING_DFH(RING_HEAD, D_ALL, 0, NULL, NULL);
2215 	MMIO_RING_DFH(RING_CTL, D_ALL, 0, NULL, NULL);
2216 	MMIO_RING_DFH(RING_ACTHD, D_ALL, 0, mmio_read_from_hw, NULL);
2217 	MMIO_RING_GM(RING_START, D_ALL, NULL, NULL);
2218 
2219 	/* RING MODE */
2220 #define RING_REG(base) _MMIO((base) + 0x29c)
2221 	MMIO_RING_DFH(RING_REG, D_ALL,
2222 		F_MODE_MASK | F_CMD_ACCESS | F_CMD_WRITE_PATCH, NULL,
2223 		ring_mode_mmio_write);
2224 #undef RING_REG
2225 
2226 	MMIO_RING_DFH(RING_MI_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2227 		NULL, NULL);
2228 	MMIO_RING_DFH(RING_INSTPM, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2229 			NULL, NULL);
2230 	MMIO_RING_DFH(RING_TIMESTAMP, D_ALL, F_CMD_ACCESS,
2231 			mmio_read_from_hw, NULL);
2232 	MMIO_RING_DFH(RING_TIMESTAMP_UDW, D_ALL, F_CMD_ACCESS,
2233 			mmio_read_from_hw, NULL);
2234 
2235 	MMIO_DFH(GEN7_GT_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2236 	MMIO_DFH(CACHE_MODE_0_GEN7, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2237 		NULL, NULL);
2238 	MMIO_DFH(CACHE_MODE_1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2239 	MMIO_DFH(CACHE_MODE_0, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2240 	MMIO_DFH(_MMIO(0x2124), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2241 
2242 	MMIO_DFH(_MMIO(0x20dc), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2243 	MMIO_DFH(_3D_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2244 	MMIO_DFH(_MMIO(0x2088), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2245 	MMIO_DFH(FF_SLICE_CS_CHICKEN2, D_ALL,
2246 		 F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2247 	MMIO_DFH(_MMIO(0x2470), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2248 	MMIO_DFH(GAM_ECOCHK, D_ALL, F_CMD_ACCESS, NULL, NULL);
2249 	MMIO_DFH(GEN7_COMMON_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2250 		NULL, NULL);
2251 	MMIO_DFH(COMMON_SLICE_CHICKEN2, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2252 		 NULL, NULL);
2253 	MMIO_DFH(_MMIO(0x9030), D_ALL, F_CMD_ACCESS, NULL, NULL);
2254 	MMIO_DFH(_MMIO(0x20a0), D_ALL, F_CMD_ACCESS, NULL, NULL);
2255 	MMIO_DFH(_MMIO(0x2420), D_ALL, F_CMD_ACCESS, NULL, NULL);
2256 	MMIO_DFH(_MMIO(0x2430), D_ALL, F_CMD_ACCESS, NULL, NULL);
2257 	MMIO_DFH(_MMIO(0x2434), D_ALL, F_CMD_ACCESS, NULL, NULL);
2258 	MMIO_DFH(_MMIO(0x2438), D_ALL, F_CMD_ACCESS, NULL, NULL);
2259 	MMIO_DFH(_MMIO(0x243c), D_ALL, F_CMD_ACCESS, NULL, NULL);
2260 	MMIO_DFH(_MMIO(0x7018), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2261 	MMIO_DFH(HSW_HALF_SLICE_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2262 	MMIO_DFH(GEN7_HALF_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2263 
2264 	/* display */
2265 	MMIO_DH(PIPECONF(PIPE_A), D_ALL, NULL, pipeconf_mmio_write);
2266 	MMIO_DH(PIPECONF(PIPE_B), D_ALL, NULL, pipeconf_mmio_write);
2267 	MMIO_DH(PIPECONF(PIPE_C), D_ALL, NULL, pipeconf_mmio_write);
2268 	MMIO_DH(PIPECONF(_PIPE_EDP), D_ALL, NULL, pipeconf_mmio_write);
2269 	MMIO_DH(DSPSURF(PIPE_A), D_ALL, NULL, pri_surf_mmio_write);
2270 	MMIO_DH(REG_50080(PIPE_A, PLANE_PRIMARY), D_ALL, NULL,
2271 		reg50080_mmio_write);
2272 	MMIO_DH(DSPSURF(PIPE_B), D_ALL, NULL, pri_surf_mmio_write);
2273 	MMIO_DH(REG_50080(PIPE_B, PLANE_PRIMARY), D_ALL, NULL,
2274 		reg50080_mmio_write);
2275 	MMIO_DH(DSPSURF(PIPE_C), D_ALL, NULL, pri_surf_mmio_write);
2276 	MMIO_DH(REG_50080(PIPE_C, PLANE_PRIMARY), D_ALL, NULL,
2277 		reg50080_mmio_write);
2278 	MMIO_DH(SPRSURF(PIPE_A), D_ALL, NULL, spr_surf_mmio_write);
2279 	MMIO_DH(REG_50080(PIPE_A, PLANE_SPRITE0), D_ALL, NULL,
2280 		reg50080_mmio_write);
2281 	MMIO_DH(SPRSURF(PIPE_B), D_ALL, NULL, spr_surf_mmio_write);
2282 	MMIO_DH(REG_50080(PIPE_B, PLANE_SPRITE0), D_ALL, NULL,
2283 		reg50080_mmio_write);
2284 	MMIO_DH(SPRSURF(PIPE_C), D_ALL, NULL, spr_surf_mmio_write);
2285 	MMIO_DH(REG_50080(PIPE_C, PLANE_SPRITE0), D_ALL, NULL,
2286 		reg50080_mmio_write);
2287 
2288 	MMIO_F(PCH_GMBUS0, 4 * 4, 0, 0, 0, D_ALL, gmbus_mmio_read,
2289 		gmbus_mmio_write);
2290 	MMIO_F(PCH_GPIO_BASE, 6 * 4, F_UNALIGN, 0, 0, D_ALL, NULL, NULL);
2291 
2292 	MMIO_F(_MMIO(_PCH_DPB_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
2293 		dp_aux_ch_ctl_mmio_write);
2294 	MMIO_F(_MMIO(_PCH_DPC_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
2295 		dp_aux_ch_ctl_mmio_write);
2296 	MMIO_F(_MMIO(_PCH_DPD_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
2297 		dp_aux_ch_ctl_mmio_write);
2298 
2299 	MMIO_DH(PCH_ADPA, D_PRE_SKL, NULL, pch_adpa_mmio_write);
2300 
2301 	MMIO_DH(_MMIO(_PCH_TRANSACONF), D_ALL, NULL, transconf_mmio_write);
2302 	MMIO_DH(_MMIO(_PCH_TRANSBCONF), D_ALL, NULL, transconf_mmio_write);
2303 
2304 	MMIO_DH(FDI_RX_IIR(PIPE_A), D_ALL, NULL, fdi_rx_iir_mmio_write);
2305 	MMIO_DH(FDI_RX_IIR(PIPE_B), D_ALL, NULL, fdi_rx_iir_mmio_write);
2306 	MMIO_DH(FDI_RX_IIR(PIPE_C), D_ALL, NULL, fdi_rx_iir_mmio_write);
2307 	MMIO_DH(FDI_RX_IMR(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status);
2308 	MMIO_DH(FDI_RX_IMR(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status);
2309 	MMIO_DH(FDI_RX_IMR(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status);
2310 	MMIO_DH(FDI_RX_CTL(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status);
2311 	MMIO_DH(FDI_RX_CTL(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status);
2312 	MMIO_DH(FDI_RX_CTL(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status);
2313 	MMIO_DH(PCH_PP_CONTROL, D_ALL, NULL, pch_pp_control_mmio_write);
2314 	MMIO_DH(_MMIO(0xe651c), D_ALL, dpy_reg_mmio_read, NULL);
2315 	MMIO_DH(_MMIO(0xe661c), D_ALL, dpy_reg_mmio_read, NULL);
2316 	MMIO_DH(_MMIO(0xe671c), D_ALL, dpy_reg_mmio_read, NULL);
2317 	MMIO_DH(_MMIO(0xe681c), D_ALL, dpy_reg_mmio_read, NULL);
2318 	MMIO_DH(_MMIO(0xe6c04), D_ALL, dpy_reg_mmio_read, NULL);
2319 	MMIO_DH(_MMIO(0xe6e1c), D_ALL, dpy_reg_mmio_read, NULL);
2320 
2321 	MMIO_RO(PCH_PORT_HOTPLUG, D_ALL, 0,
2322 		PORTA_HOTPLUG_STATUS_MASK
2323 		| PORTB_HOTPLUG_STATUS_MASK
2324 		| PORTC_HOTPLUG_STATUS_MASK
2325 		| PORTD_HOTPLUG_STATUS_MASK,
2326 		NULL, NULL);
2327 
2328 	MMIO_DH(LCPLL_CTL, D_ALL, NULL, lcpll_ctl_mmio_write);
2329 	MMIO_DH(SOUTH_CHICKEN2, D_ALL, NULL, south_chicken2_mmio_write);
2330 	MMIO_DH(SFUSE_STRAP, D_ALL, NULL, NULL);
2331 	MMIO_DH(SBI_DATA, D_ALL, sbi_data_mmio_read, NULL);
2332 	MMIO_DH(SBI_CTL_STAT, D_ALL, NULL, sbi_ctl_mmio_write);
2333 
2334 	MMIO_F(_MMIO(_DPA_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_ALL, NULL,
2335 		dp_aux_ch_ctl_mmio_write);
2336 
2337 	MMIO_DH(DDI_BUF_CTL(PORT_A), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2338 	MMIO_DH(DDI_BUF_CTL(PORT_B), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2339 	MMIO_DH(DDI_BUF_CTL(PORT_C), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2340 	MMIO_DH(DDI_BUF_CTL(PORT_D), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2341 	MMIO_DH(DDI_BUF_CTL(PORT_E), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2342 
2343 	MMIO_DH(DP_TP_CTL(PORT_A), D_ALL, NULL, dp_tp_ctl_mmio_write);
2344 	MMIO_DH(DP_TP_CTL(PORT_B), D_ALL, NULL, dp_tp_ctl_mmio_write);
2345 	MMIO_DH(DP_TP_CTL(PORT_C), D_ALL, NULL, dp_tp_ctl_mmio_write);
2346 	MMIO_DH(DP_TP_CTL(PORT_D), D_ALL, NULL, dp_tp_ctl_mmio_write);
2347 	MMIO_DH(DP_TP_CTL(PORT_E), D_ALL, NULL, dp_tp_ctl_mmio_write);
2348 
2349 	MMIO_DH(DP_TP_STATUS(PORT_A), D_ALL, NULL, dp_tp_status_mmio_write);
2350 	MMIO_DH(DP_TP_STATUS(PORT_B), D_ALL, NULL, dp_tp_status_mmio_write);
2351 	MMIO_DH(DP_TP_STATUS(PORT_C), D_ALL, NULL, dp_tp_status_mmio_write);
2352 	MMIO_DH(DP_TP_STATUS(PORT_D), D_ALL, NULL, dp_tp_status_mmio_write);
2353 	MMIO_DH(DP_TP_STATUS(PORT_E), D_ALL, NULL, NULL);
2354 
2355 	MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_A), D_ALL, NULL, NULL);
2356 	MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_B), D_ALL, NULL, NULL);
2357 	MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_C), D_ALL, NULL, NULL);
2358 	MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_EDP), D_ALL, NULL, NULL);
2359 
2360 	MMIO_DH(FORCEWAKE, D_ALL, NULL, NULL);
2361 	MMIO_DFH(GTFIFODBG, D_ALL, F_CMD_ACCESS, NULL, NULL);
2362 	MMIO_DFH(GTFIFOCTL, D_ALL, F_CMD_ACCESS, NULL, NULL);
2363 	MMIO_DH(FORCEWAKE_MT, D_PRE_SKL, NULL, mul_force_wake_write);
2364 	MMIO_DH(FORCEWAKE_ACK_HSW, D_BDW, NULL, NULL);
2365 	MMIO_DH(GEN6_RC_CONTROL, D_ALL, NULL, NULL);
2366 	MMIO_DH(GEN6_RC_STATE, D_ALL, NULL, NULL);
2367 	MMIO_DH(HSW_PWR_WELL_CTL1, D_BDW, NULL, power_well_ctl_mmio_write);
2368 	MMIO_DH(HSW_PWR_WELL_CTL2, D_BDW, NULL, power_well_ctl_mmio_write);
2369 	MMIO_DH(HSW_PWR_WELL_CTL3, D_BDW, NULL, power_well_ctl_mmio_write);
2370 	MMIO_DH(HSW_PWR_WELL_CTL4, D_BDW, NULL, power_well_ctl_mmio_write);
2371 	MMIO_DH(HSW_PWR_WELL_CTL5, D_BDW, NULL, power_well_ctl_mmio_write);
2372 	MMIO_DH(HSW_PWR_WELL_CTL6, D_BDW, NULL, power_well_ctl_mmio_write);
2373 
2374 	MMIO_DH(GEN6_GDRST, D_ALL, NULL, gdrst_mmio_write);
2375 	MMIO_F(FENCE_REG_GEN6_LO(0), 0x80, 0, 0, 0, D_ALL, fence_mmio_read, fence_mmio_write);
2376 	MMIO_DH(CPU_VGACNTRL, D_ALL, NULL, vga_control_mmio_write);
2377 
2378 	MMIO_DH(GEN7_ERR_INT, D_ALL, NULL, NULL);
2379 	MMIO_DH(GFX_FLSH_CNTL_GEN6, D_ALL, NULL, NULL);
2380 
2381 	MMIO_DH(GEN6_MBCTL, D_ALL, NULL, mbctl_write);
2382 	MMIO_DFH(GEN7_UCGCTL4, D_ALL, F_CMD_ACCESS, NULL, NULL);
2383 
2384 	MMIO_DH(FPGA_DBG, D_ALL, NULL, fpga_dbg_mmio_write);
2385 	MMIO_DFH(_MMIO(0x215c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2386 	MMIO_DFH(_MMIO(0x2178), D_ALL, F_CMD_ACCESS, NULL, NULL);
2387 	MMIO_DFH(_MMIO(0x217c), D_ALL, F_CMD_ACCESS, NULL, NULL);
2388 	MMIO_DFH(_MMIO(0x12178), D_ALL, F_CMD_ACCESS, NULL, NULL);
2389 	MMIO_DFH(_MMIO(0x1217c), D_ALL, F_CMD_ACCESS, NULL, NULL);
2390 
2391 	MMIO_F(_MMIO(0x2290), 8, F_CMD_ACCESS, 0, 0, D_BDW_PLUS, NULL, NULL);
2392 	MMIO_F(_MMIO(0x5200), 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2393 	MMIO_F(_MMIO(0x5240), 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2394 	MMIO_F(_MMIO(0x5280), 16, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2395 
2396 	MMIO_DFH(_MMIO(0x1c17c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2397 	MMIO_DFH(_MMIO(0x1c178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2398 	MMIO_DFH(BCS_SWCTRL, D_ALL, F_CMD_ACCESS, NULL, NULL);
2399 
2400 	MMIO_F(HS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2401 	MMIO_F(DS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2402 	MMIO_F(IA_VERTICES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2403 	MMIO_F(IA_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2404 	MMIO_F(VS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2405 	MMIO_F(GS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2406 	MMIO_F(GS_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2407 	MMIO_F(CL_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2408 	MMIO_F(CL_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2409 	MMIO_F(PS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2410 	MMIO_F(PS_DEPTH_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2411 	MMIO_DH(_MMIO(0x4260), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2412 	MMIO_DH(_MMIO(0x4264), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2413 	MMIO_DH(_MMIO(0x4268), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2414 	MMIO_DH(_MMIO(0x426c), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2415 	MMIO_DH(_MMIO(0x4270), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2416 	MMIO_DFH(_MMIO(0x4094), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2417 
2418 	MMIO_DFH(ARB_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2419 	MMIO_RING_GM(RING_BBADDR, D_ALL, NULL, NULL);
2420 	MMIO_DFH(_MMIO(0x2220), D_ALL, F_CMD_ACCESS, NULL, NULL);
2421 	MMIO_DFH(_MMIO(0x12220), D_ALL, F_CMD_ACCESS, NULL, NULL);
2422 	MMIO_DFH(_MMIO(0x22220), D_ALL, F_CMD_ACCESS, NULL, NULL);
2423 	MMIO_RING_DFH(RING_SYNC_1, D_ALL, F_CMD_ACCESS, NULL, NULL);
2424 	MMIO_RING_DFH(RING_SYNC_0, D_ALL, F_CMD_ACCESS, NULL, NULL);
2425 	MMIO_DFH(_MMIO(0x22178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2426 	MMIO_DFH(_MMIO(0x1a178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2427 	MMIO_DFH(_MMIO(0x1a17c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2428 	MMIO_DFH(_MMIO(0x2217c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2429 
2430 	MMIO_DH(EDP_PSR_IMR, D_BDW_PLUS, NULL, edp_psr_imr_iir_write);
2431 	MMIO_DH(EDP_PSR_IIR, D_BDW_PLUS, NULL, edp_psr_imr_iir_write);
2432 	MMIO_DH(GUC_STATUS, D_ALL, guc_status_read, NULL);
2433 
2434 	return 0;
2435 }
2436 
2437 static int init_bdw_mmio_info(struct intel_gvt *gvt)
2438 {
2439 	int ret;
2440 
2441 	MMIO_DH(GEN8_GT_IMR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2442 	MMIO_DH(GEN8_GT_IER(0), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2443 	MMIO_DH(GEN8_GT_IIR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2444 
2445 	MMIO_DH(GEN8_GT_IMR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2446 	MMIO_DH(GEN8_GT_IER(1), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2447 	MMIO_DH(GEN8_GT_IIR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2448 
2449 	MMIO_DH(GEN8_GT_IMR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2450 	MMIO_DH(GEN8_GT_IER(2), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2451 	MMIO_DH(GEN8_GT_IIR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2452 
2453 	MMIO_DH(GEN8_GT_IMR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2454 	MMIO_DH(GEN8_GT_IER(3), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2455 	MMIO_DH(GEN8_GT_IIR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2456 
2457 	MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_A), D_BDW_PLUS, NULL,
2458 		intel_vgpu_reg_imr_handler);
2459 	MMIO_DH(GEN8_DE_PIPE_IER(PIPE_A), D_BDW_PLUS, NULL,
2460 		intel_vgpu_reg_ier_handler);
2461 	MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_A), D_BDW_PLUS, NULL,
2462 		intel_vgpu_reg_iir_handler);
2463 
2464 	MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_B), D_BDW_PLUS, NULL,
2465 		intel_vgpu_reg_imr_handler);
2466 	MMIO_DH(GEN8_DE_PIPE_IER(PIPE_B), D_BDW_PLUS, NULL,
2467 		intel_vgpu_reg_ier_handler);
2468 	MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_B), D_BDW_PLUS, NULL,
2469 		intel_vgpu_reg_iir_handler);
2470 
2471 	MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_C), D_BDW_PLUS, NULL,
2472 		intel_vgpu_reg_imr_handler);
2473 	MMIO_DH(GEN8_DE_PIPE_IER(PIPE_C), D_BDW_PLUS, NULL,
2474 		intel_vgpu_reg_ier_handler);
2475 	MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_C), D_BDW_PLUS, NULL,
2476 		intel_vgpu_reg_iir_handler);
2477 
2478 	MMIO_DH(GEN8_DE_PORT_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2479 	MMIO_DH(GEN8_DE_PORT_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2480 	MMIO_DH(GEN8_DE_PORT_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2481 
2482 	MMIO_DH(GEN8_DE_MISC_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2483 	MMIO_DH(GEN8_DE_MISC_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2484 	MMIO_DH(GEN8_DE_MISC_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2485 
2486 	MMIO_DH(GEN8_PCU_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2487 	MMIO_DH(GEN8_PCU_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2488 	MMIO_DH(GEN8_PCU_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2489 
2490 	MMIO_DH(GEN8_MASTER_IRQ, D_BDW_PLUS, NULL,
2491 		intel_vgpu_reg_master_irq_handler);
2492 
2493 	MMIO_RING_DFH(RING_ACTHD_UDW, D_BDW_PLUS, 0,
2494 		mmio_read_from_hw, NULL);
2495 
2496 #define RING_REG(base) _MMIO((base) + 0xd0)
2497 	MMIO_RING_F(RING_REG, 4, F_RO, 0,
2498 		~_MASKED_BIT_ENABLE(RESET_CTL_REQUEST_RESET), D_BDW_PLUS, NULL,
2499 		ring_reset_ctl_write);
2500 #undef RING_REG
2501 
2502 #define RING_REG(base) _MMIO((base) + 0x230)
2503 	MMIO_RING_DFH(RING_REG, D_BDW_PLUS, 0, NULL, elsp_mmio_write);
2504 #undef RING_REG
2505 
2506 #define RING_REG(base) _MMIO((base) + 0x234)
2507 	MMIO_RING_F(RING_REG, 8, F_RO, 0, ~0, D_BDW_PLUS,
2508 		NULL, NULL);
2509 #undef RING_REG
2510 
2511 #define RING_REG(base) _MMIO((base) + 0x244)
2512 	MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2513 #undef RING_REG
2514 
2515 #define RING_REG(base) _MMIO((base) + 0x370)
2516 	MMIO_RING_F(RING_REG, 48, F_RO, 0, ~0, D_BDW_PLUS, NULL, NULL);
2517 #undef RING_REG
2518 
2519 #define RING_REG(base) _MMIO((base) + 0x3a0)
2520 	MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_MODE_MASK, NULL, NULL);
2521 #undef RING_REG
2522 
2523 	MMIO_DH(GEN6_PCODE_MAILBOX, D_BDW_PLUS, NULL, mailbox_write);
2524 
2525 #define RING_REG(base) _MMIO((base) + 0x270)
2526 	MMIO_RING_F(RING_REG, 32, F_CMD_ACCESS, 0, 0, D_BDW_PLUS, NULL, NULL);
2527 #undef RING_REG
2528 
2529 	MMIO_RING_GM(RING_HWS_PGA, D_BDW_PLUS, NULL, hws_pga_write);
2530 
2531 	MMIO_DFH(HDC_CHICKEN0, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2532 
2533 	MMIO_DFH(GEN8_ROW_CHICKEN, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2534 		NULL, NULL);
2535 	MMIO_DFH(GEN7_ROW_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2536 		NULL, NULL);
2537 	MMIO_DFH(GEN8_UCGCTL6, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2538 
2539 	MMIO_DFH(_MMIO(0xb1f0), D_BDW, F_CMD_ACCESS, NULL, NULL);
2540 	MMIO_DFH(_MMIO(0xb1c0), D_BDW, F_CMD_ACCESS, NULL, NULL);
2541 	MMIO_DFH(GEN8_L3SQCREG4, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2542 	MMIO_DFH(_MMIO(0xb100), D_BDW, F_CMD_ACCESS, NULL, NULL);
2543 	MMIO_DFH(_MMIO(0xb10c), D_BDW, F_CMD_ACCESS, NULL, NULL);
2544 
2545 	MMIO_F(_MMIO(0x24d0), 48, F_CMD_ACCESS | F_CMD_WRITE_PATCH, 0, 0,
2546 		D_BDW_PLUS, NULL, force_nonpriv_write);
2547 
2548 	MMIO_DFH(_MMIO(0x83a4), D_BDW, F_CMD_ACCESS, NULL, NULL);
2549 
2550 	MMIO_DFH(_MMIO(0x8430), D_BDW, F_CMD_ACCESS, NULL, NULL);
2551 
2552 	MMIO_DFH(_MMIO(0xe194), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2553 	MMIO_DFH(_MMIO(0xe188), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2554 	MMIO_DFH(HALF_SLICE_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2555 	MMIO_DFH(_MMIO(0x2580), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2556 
2557 	MMIO_DFH(_MMIO(0x2248), D_BDW, F_CMD_ACCESS, NULL, NULL);
2558 
2559 	MMIO_DFH(_MMIO(0xe220), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2560 	MMIO_DFH(_MMIO(0xe230), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2561 	MMIO_DFH(_MMIO(0xe240), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2562 	MMIO_DFH(_MMIO(0xe260), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2563 	MMIO_DFH(_MMIO(0xe270), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2564 	MMIO_DFH(_MMIO(0xe280), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2565 	MMIO_DFH(_MMIO(0xe2a0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2566 	MMIO_DFH(_MMIO(0xe2b0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2567 	MMIO_DFH(_MMIO(0xe2c0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2568 	MMIO_DFH(_MMIO(0x21f0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2569 	return 0;
2570 }
2571 
2572 static int init_skl_mmio_info(struct intel_gvt *gvt)
2573 {
2574 	struct drm_i915_private *dev_priv = gvt->gt->i915;
2575 	int ret;
2576 
2577 	MMIO_DH(FORCEWAKE_RENDER_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
2578 	MMIO_DH(FORCEWAKE_ACK_RENDER_GEN9, D_SKL_PLUS, NULL, NULL);
2579 	MMIO_DH(FORCEWAKE_GT_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
2580 	MMIO_DH(FORCEWAKE_ACK_GT_GEN9, D_SKL_PLUS, NULL, NULL);
2581 	MMIO_DH(FORCEWAKE_MEDIA_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
2582 	MMIO_DH(FORCEWAKE_ACK_MEDIA_GEN9, D_SKL_PLUS, NULL, NULL);
2583 
2584 	MMIO_F(DP_AUX_CH_CTL(AUX_CH_B), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
2585 						dp_aux_ch_ctl_mmio_write);
2586 	MMIO_F(DP_AUX_CH_CTL(AUX_CH_C), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
2587 						dp_aux_ch_ctl_mmio_write);
2588 	MMIO_F(DP_AUX_CH_CTL(AUX_CH_D), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
2589 						dp_aux_ch_ctl_mmio_write);
2590 
2591 	MMIO_DH(HSW_PWR_WELL_CTL2, D_SKL_PLUS, NULL, skl_power_well_ctl_write);
2592 
2593 	MMIO_DH(DBUF_CTL_S(0), D_SKL_PLUS, NULL, gen9_dbuf_ctl_mmio_write);
2594 
2595 	MMIO_DFH(GEN9_GAMT_ECO_REG_RW_IA, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2596 	MMIO_DFH(MMCD_MISC_CTRL, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2597 	MMIO_DH(CHICKEN_PAR1_1, D_SKL_PLUS, NULL, NULL);
2598 	MMIO_DH(LCPLL1_CTL, D_SKL_PLUS, NULL, skl_lcpll_write);
2599 	MMIO_DH(LCPLL2_CTL, D_SKL_PLUS, NULL, skl_lcpll_write);
2600 	MMIO_DH(DPLL_STATUS, D_SKL_PLUS, dpll_status_read, NULL);
2601 
2602 	MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
2603 	MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
2604 	MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
2605 	MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
2606 	MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
2607 	MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
2608 
2609 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
2610 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
2611 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
2612 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
2613 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
2614 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
2615 
2616 	MMIO_DH(SKL_PS_CTRL(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
2617 	MMIO_DH(SKL_PS_CTRL(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
2618 	MMIO_DH(SKL_PS_CTRL(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
2619 	MMIO_DH(SKL_PS_CTRL(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
2620 	MMIO_DH(SKL_PS_CTRL(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
2621 	MMIO_DH(SKL_PS_CTRL(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
2622 
2623 	MMIO_DH(PLANE_BUF_CFG(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2624 	MMIO_DH(PLANE_BUF_CFG(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2625 	MMIO_DH(PLANE_BUF_CFG(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2626 	MMIO_DH(PLANE_BUF_CFG(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
2627 
2628 	MMIO_DH(PLANE_BUF_CFG(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2629 	MMIO_DH(PLANE_BUF_CFG(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2630 	MMIO_DH(PLANE_BUF_CFG(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2631 	MMIO_DH(PLANE_BUF_CFG(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
2632 
2633 	MMIO_DH(PLANE_BUF_CFG(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2634 	MMIO_DH(PLANE_BUF_CFG(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2635 	MMIO_DH(PLANE_BUF_CFG(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2636 	MMIO_DH(PLANE_BUF_CFG(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
2637 
2638 	MMIO_DH(CUR_BUF_CFG(PIPE_A), D_SKL_PLUS, NULL, NULL);
2639 	MMIO_DH(CUR_BUF_CFG(PIPE_B), D_SKL_PLUS, NULL, NULL);
2640 	MMIO_DH(CUR_BUF_CFG(PIPE_C), D_SKL_PLUS, NULL, NULL);
2641 
2642 	MMIO_DH(PLANE_WM_TRANS(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2643 	MMIO_DH(PLANE_WM_TRANS(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2644 	MMIO_DH(PLANE_WM_TRANS(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2645 
2646 	MMIO_DH(PLANE_WM_TRANS(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2647 	MMIO_DH(PLANE_WM_TRANS(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2648 	MMIO_DH(PLANE_WM_TRANS(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2649 
2650 	MMIO_DH(PLANE_WM_TRANS(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2651 	MMIO_DH(PLANE_WM_TRANS(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2652 	MMIO_DH(PLANE_WM_TRANS(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2653 
2654 	MMIO_DH(CUR_WM_TRANS(PIPE_A), D_SKL_PLUS, NULL, NULL);
2655 	MMIO_DH(CUR_WM_TRANS(PIPE_B), D_SKL_PLUS, NULL, NULL);
2656 	MMIO_DH(CUR_WM_TRANS(PIPE_C), D_SKL_PLUS, NULL, NULL);
2657 
2658 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2659 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2660 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2661 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
2662 
2663 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2664 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2665 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2666 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
2667 
2668 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2669 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2670 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2671 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
2672 
2673 	MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 1)), D_SKL_PLUS, NULL, NULL);
2674 	MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 2)), D_SKL_PLUS, NULL, NULL);
2675 	MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 3)), D_SKL_PLUS, NULL, NULL);
2676 	MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 4)), D_SKL_PLUS, NULL, NULL);
2677 
2678 	MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 1)), D_SKL_PLUS, NULL, NULL);
2679 	MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 2)), D_SKL_PLUS, NULL, NULL);
2680 	MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 3)), D_SKL_PLUS, NULL, NULL);
2681 	MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 4)), D_SKL_PLUS, NULL, NULL);
2682 
2683 	MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 1)), D_SKL_PLUS, NULL, NULL);
2684 	MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 2)), D_SKL_PLUS, NULL, NULL);
2685 	MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 3)), D_SKL_PLUS, NULL, NULL);
2686 	MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 4)), D_SKL_PLUS, NULL, NULL);
2687 
2688 	MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 1)), D_SKL_PLUS, NULL, NULL);
2689 	MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 2)), D_SKL_PLUS, NULL, NULL);
2690 	MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 3)), D_SKL_PLUS, NULL, NULL);
2691 	MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 4)), D_SKL_PLUS, NULL, NULL);
2692 
2693 	MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 1)), D_SKL_PLUS, NULL, NULL);
2694 	MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 2)), D_SKL_PLUS, NULL, NULL);
2695 	MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 3)), D_SKL_PLUS, NULL, NULL);
2696 	MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 4)), D_SKL_PLUS, NULL, NULL);
2697 
2698 	MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 1)), D_SKL_PLUS, NULL, NULL);
2699 	MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 2)), D_SKL_PLUS, NULL, NULL);
2700 	MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 3)), D_SKL_PLUS, NULL, NULL);
2701 	MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 4)), D_SKL_PLUS, NULL, NULL);
2702 
2703 	MMIO_DFH(BDW_SCRATCH1, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2704 
2705 	MMIO_F(GEN9_GFX_MOCS(0), 0x7f8, F_CMD_ACCESS, 0, 0, D_SKL_PLUS,
2706 		NULL, NULL);
2707 	MMIO_F(GEN7_L3CNTLREG2, 0x80, F_CMD_ACCESS, 0, 0, D_SKL_PLUS,
2708 		NULL, NULL);
2709 
2710 	MMIO_DFH(GEN7_FF_SLICE_CS_CHICKEN1, D_SKL_PLUS,
2711 		 F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2712 	MMIO_DFH(GEN9_CS_DEBUG_MODE1, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2713 		NULL, NULL);
2714 
2715 	/* TRTT */
2716 	MMIO_DFH(TRVATTL3PTRDW(0), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2717 	MMIO_DFH(TRVATTL3PTRDW(1), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2718 	MMIO_DFH(TRVATTL3PTRDW(2), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2719 	MMIO_DFH(TRVATTL3PTRDW(3), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2720 	MMIO_DFH(TRVADR, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2721 	MMIO_DFH(TRTTE, D_SKL_PLUS, F_CMD_ACCESS | F_PM_SAVE,
2722 		 NULL, gen9_trtte_write);
2723 	MMIO_DFH(_MMIO(0x4dfc), D_SKL_PLUS, F_PM_SAVE,
2724 		 NULL, gen9_trtt_chicken_write);
2725 
2726 	MMIO_DFH(GEN8_GARBCNTL, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2727 	MMIO_DH(DMA_CTRL, D_SKL_PLUS, NULL, dma_ctrl_write);
2728 
2729 #define CSFE_CHICKEN1_REG(base) _MMIO((base) + 0xD4)
2730 	MMIO_RING_DFH(CSFE_CHICKEN1_REG, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2731 		      NULL, csfe_chicken1_mmio_write);
2732 #undef CSFE_CHICKEN1_REG
2733 	MMIO_DFH(GEN8_HDC_CHICKEN1, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2734 		 NULL, NULL);
2735 	MMIO_DFH(GEN9_WM_CHICKEN3, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2736 		 NULL, NULL);
2737 
2738 	MMIO_DFH(GAMT_CHKN_BIT_REG, D_KBL | D_CFL, F_CMD_ACCESS, NULL, NULL);
2739 	MMIO_DFH(_MMIO(0xe4cc), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2740 
2741 	return 0;
2742 }
2743 
2744 static int init_bxt_mmio_info(struct intel_gvt *gvt)
2745 {
2746 	int ret;
2747 
2748 	MMIO_DH(BXT_P_CR_GT_DISP_PWRON, D_BXT, NULL, bxt_gt_disp_pwron_write);
2749 	MMIO_DH(BXT_PHY_CTL_FAMILY(DPIO_PHY0), D_BXT,
2750 		NULL, bxt_phy_ctl_family_write);
2751 	MMIO_DH(BXT_PHY_CTL_FAMILY(DPIO_PHY1), D_BXT,
2752 		NULL, bxt_phy_ctl_family_write);
2753 	MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_A), D_BXT,
2754 		NULL, bxt_port_pll_enable_write);
2755 	MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_B), D_BXT,
2756 		NULL, bxt_port_pll_enable_write);
2757 	MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_C), D_BXT, NULL,
2758 		bxt_port_pll_enable_write);
2759 
2760 	MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY0, DPIO_CH0), D_BXT,
2761 		NULL, bxt_pcs_dw12_grp_write);
2762 	MMIO_DH(BXT_PORT_TX_DW3_LN0(DPIO_PHY0, DPIO_CH0), D_BXT,
2763 		bxt_port_tx_dw3_read, NULL);
2764 	MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY0, DPIO_CH1), D_BXT,
2765 		NULL, bxt_pcs_dw12_grp_write);
2766 	MMIO_DH(BXT_PORT_TX_DW3_LN0(DPIO_PHY0, DPIO_CH1), D_BXT,
2767 		bxt_port_tx_dw3_read, NULL);
2768 	MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY1, DPIO_CH0), D_BXT,
2769 		NULL, bxt_pcs_dw12_grp_write);
2770 	MMIO_DH(BXT_PORT_TX_DW3_LN0(DPIO_PHY1, DPIO_CH0), D_BXT,
2771 		bxt_port_tx_dw3_read, NULL);
2772 	MMIO_DH(BXT_DE_PLL_ENABLE, D_BXT, NULL, bxt_de_pll_enable_write);
2773 	MMIO_DFH(GEN8_L3SQCREG1, D_BXT, F_CMD_ACCESS, NULL, NULL);
2774 	MMIO_DFH(GEN8_L3CNTLREG, D_BXT, F_CMD_ACCESS, NULL, NULL);
2775 	MMIO_DFH(_MMIO(0x20D8), D_BXT, F_CMD_ACCESS, NULL, NULL);
2776 	MMIO_F(GEN8_RING_CS_GPR(RENDER_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2777 	       0, 0, D_BXT, NULL, NULL);
2778 	MMIO_F(GEN8_RING_CS_GPR(GEN6_BSD_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2779 	       0, 0, D_BXT, NULL, NULL);
2780 	MMIO_F(GEN8_RING_CS_GPR(BLT_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2781 	       0, 0, D_BXT, NULL, NULL);
2782 	MMIO_F(GEN8_RING_CS_GPR(VEBOX_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2783 	       0, 0, D_BXT, NULL, NULL);
2784 
2785 	MMIO_DFH(GEN9_CTX_PREEMPT_REG, D_BXT, F_CMD_ACCESS, NULL, NULL);
2786 
2787 	MMIO_DH(GEN8_PRIVATE_PAT_LO, D_BXT, NULL, bxt_ppat_low_write);
2788 
2789 	return 0;
2790 }
2791 
2792 static struct gvt_mmio_block *find_mmio_block(struct intel_gvt *gvt,
2793 					      unsigned int offset)
2794 {
2795 	struct gvt_mmio_block *block = gvt->mmio.mmio_block;
2796 	int num = gvt->mmio.num_mmio_block;
2797 	int i;
2798 
2799 	for (i = 0; i < num; i++, block++) {
2800 		if (offset >= i915_mmio_reg_offset(block->offset) &&
2801 		    offset < i915_mmio_reg_offset(block->offset) + block->size)
2802 			return block;
2803 	}
2804 	return NULL;
2805 }
2806 
2807 /**
2808  * intel_gvt_clean_mmio_info - clean up MMIO information table for GVT device
2809  * @gvt: GVT device
2810  *
2811  * This function is called at the driver unloading stage, to clean up the MMIO
2812  * information table of GVT device
2813  *
2814  */
2815 void intel_gvt_clean_mmio_info(struct intel_gvt *gvt)
2816 {
2817 	struct hlist_node *tmp;
2818 	struct intel_gvt_mmio_info *e;
2819 	int i;
2820 
2821 	hash_for_each_safe(gvt->mmio.mmio_info_table, i, tmp, e, node)
2822 		kfree(e);
2823 
2824 	kfree(gvt->mmio.mmio_block);
2825 	gvt->mmio.mmio_block = NULL;
2826 	gvt->mmio.num_mmio_block = 0;
2827 
2828 	vfree(gvt->mmio.mmio_attribute);
2829 	gvt->mmio.mmio_attribute = NULL;
2830 }
2831 
2832 static int handle_mmio(struct intel_gvt_mmio_table_iter *iter, u32 offset,
2833 		       u32 size)
2834 {
2835 	struct intel_gvt *gvt = iter->data;
2836 	struct intel_gvt_mmio_info *info, *p;
2837 	u32 start, end, i;
2838 
2839 	if (WARN_ON(!IS_ALIGNED(offset, 4)))
2840 		return -EINVAL;
2841 
2842 	start = offset;
2843 	end = offset + size;
2844 
2845 	for (i = start; i < end; i += 4) {
2846 		p = intel_gvt_find_mmio_info(gvt, i);
2847 		if (p) {
2848 			WARN(1, "dup mmio definition offset %x\n",
2849 				info->offset);
2850 
2851 			/* We return -EEXIST here to make GVT-g load fail.
2852 			 * So duplicated MMIO can be found as soon as
2853 			 * possible.
2854 			 */
2855 			return -EEXIST;
2856 		}
2857 
2858 		info = kzalloc(sizeof(*info), GFP_KERNEL);
2859 		if (!info)
2860 			return -ENOMEM;
2861 
2862 		info->offset = i;
2863 		info->read = intel_vgpu_default_mmio_read;
2864 		info->write = intel_vgpu_default_mmio_write;
2865 		INIT_HLIST_NODE(&info->node);
2866 		hash_add(gvt->mmio.mmio_info_table, &info->node, info->offset);
2867 		gvt->mmio.num_tracked_mmio++;
2868 	}
2869 	return 0;
2870 }
2871 
2872 static int handle_mmio_block(struct intel_gvt_mmio_table_iter *iter,
2873 			     u32 offset, u32 size)
2874 {
2875 	struct intel_gvt *gvt = iter->data;
2876 	struct gvt_mmio_block *block = gvt->mmio.mmio_block;
2877 	void *ret;
2878 
2879 	ret = krealloc(block,
2880 			 (gvt->mmio.num_mmio_block + 1) * sizeof(*block),
2881 			 GFP_KERNEL);
2882 	if (!ret)
2883 		return -ENOMEM;
2884 
2885 	gvt->mmio.mmio_block = block = ret;
2886 
2887 	block += gvt->mmio.num_mmio_block;
2888 
2889 	memset(block, 0, sizeof(*block));
2890 
2891 	block->offset = _MMIO(offset);
2892 	block->size = size;
2893 
2894 	gvt->mmio.num_mmio_block++;
2895 
2896 	return 0;
2897 }
2898 
2899 static int handle_mmio_cb(struct intel_gvt_mmio_table_iter *iter, u32 offset,
2900 			  u32 size)
2901 {
2902 	if (size < 1024 || offset == i915_mmio_reg_offset(GEN9_GFX_MOCS(0)))
2903 		return handle_mmio(iter, offset, size);
2904 	else
2905 		return handle_mmio_block(iter, offset, size);
2906 }
2907 
2908 static int init_mmio_info(struct intel_gvt *gvt)
2909 {
2910 	struct intel_gvt_mmio_table_iter iter = {
2911 		.i915 = gvt->gt->i915,
2912 		.data = gvt,
2913 		.handle_mmio_cb = handle_mmio_cb,
2914 	};
2915 
2916 	return intel_gvt_iterate_mmio_table(&iter);
2917 }
2918 
2919 static int init_mmio_block_handlers(struct intel_gvt *gvt)
2920 {
2921 	struct gvt_mmio_block *block;
2922 
2923 	block = find_mmio_block(gvt, VGT_PVINFO_PAGE);
2924 	if (!block) {
2925 		WARN(1, "fail to assign handlers to mmio block %x\n",
2926 		     i915_mmio_reg_offset(gvt->mmio.mmio_block->offset));
2927 		return -ENODEV;
2928 	}
2929 
2930 	block->read = pvinfo_mmio_read;
2931 	block->write = pvinfo_mmio_write;
2932 
2933 	return 0;
2934 }
2935 
2936 /**
2937  * intel_gvt_setup_mmio_info - setup MMIO information table for GVT device
2938  * @gvt: GVT device
2939  *
2940  * This function is called at the initialization stage, to setup the MMIO
2941  * information table for GVT device
2942  *
2943  * Returns:
2944  * zero on success, negative if failed.
2945  */
2946 int intel_gvt_setup_mmio_info(struct intel_gvt *gvt)
2947 {
2948 	struct intel_gvt_device_info *info = &gvt->device_info;
2949 	struct drm_i915_private *i915 = gvt->gt->i915;
2950 	int size = info->mmio_size / 4 * sizeof(*gvt->mmio.mmio_attribute);
2951 	int ret;
2952 
2953 	gvt->mmio.mmio_attribute = vzalloc(size);
2954 	if (!gvt->mmio.mmio_attribute)
2955 		return -ENOMEM;
2956 
2957 	ret = init_mmio_info(gvt);
2958 	if (ret)
2959 		goto err;
2960 
2961 	ret = init_mmio_block_handlers(gvt);
2962 	if (ret)
2963 		goto err;
2964 
2965 	ret = init_generic_mmio_info(gvt);
2966 	if (ret)
2967 		goto err;
2968 
2969 	if (IS_BROADWELL(i915)) {
2970 		ret = init_bdw_mmio_info(gvt);
2971 		if (ret)
2972 			goto err;
2973 	} else if (IS_SKYLAKE(i915) ||
2974 		   IS_KABYLAKE(i915) ||
2975 		   IS_COFFEELAKE(i915) ||
2976 		   IS_COMETLAKE(i915)) {
2977 		ret = init_bdw_mmio_info(gvt);
2978 		if (ret)
2979 			goto err;
2980 		ret = init_skl_mmio_info(gvt);
2981 		if (ret)
2982 			goto err;
2983 	} else if (IS_BROXTON(i915)) {
2984 		ret = init_bdw_mmio_info(gvt);
2985 		if (ret)
2986 			goto err;
2987 		ret = init_skl_mmio_info(gvt);
2988 		if (ret)
2989 			goto err;
2990 		ret = init_bxt_mmio_info(gvt);
2991 		if (ret)
2992 			goto err;
2993 	}
2994 
2995 	return 0;
2996 err:
2997 	intel_gvt_clean_mmio_info(gvt);
2998 	return ret;
2999 }
3000 
3001 /**
3002  * intel_gvt_for_each_tracked_mmio - iterate each tracked mmio
3003  * @gvt: a GVT device
3004  * @handler: the handler
3005  * @data: private data given to handler
3006  *
3007  * Returns:
3008  * Zero on success, negative error code if failed.
3009  */
3010 int intel_gvt_for_each_tracked_mmio(struct intel_gvt *gvt,
3011 	int (*handler)(struct intel_gvt *gvt, u32 offset, void *data),
3012 	void *data)
3013 {
3014 	struct gvt_mmio_block *block = gvt->mmio.mmio_block;
3015 	struct intel_gvt_mmio_info *e;
3016 	int i, j, ret;
3017 
3018 	hash_for_each(gvt->mmio.mmio_info_table, i, e, node) {
3019 		ret = handler(gvt, e->offset, data);
3020 		if (ret)
3021 			return ret;
3022 	}
3023 
3024 	for (i = 0; i < gvt->mmio.num_mmio_block; i++, block++) {
3025 		/* pvinfo data doesn't come from hw mmio */
3026 		if (i915_mmio_reg_offset(block->offset) == VGT_PVINFO_PAGE)
3027 			continue;
3028 
3029 		for (j = 0; j < block->size; j += 4) {
3030 			ret = handler(gvt, i915_mmio_reg_offset(block->offset) + j, data);
3031 			if (ret)
3032 				return ret;
3033 		}
3034 	}
3035 	return 0;
3036 }
3037 
3038 /**
3039  * intel_vgpu_default_mmio_read - default MMIO read handler
3040  * @vgpu: a vGPU
3041  * @offset: access offset
3042  * @p_data: data return buffer
3043  * @bytes: access data length
3044  *
3045  * Returns:
3046  * Zero on success, negative error code if failed.
3047  */
3048 int intel_vgpu_default_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
3049 		void *p_data, unsigned int bytes)
3050 {
3051 	read_vreg(vgpu, offset, p_data, bytes);
3052 	return 0;
3053 }
3054 
3055 /**
3056  * intel_vgpu_default_mmio_write() - default MMIO write handler
3057  * @vgpu: a vGPU
3058  * @offset: access offset
3059  * @p_data: write data buffer
3060  * @bytes: access data length
3061  *
3062  * Returns:
3063  * Zero on success, negative error code if failed.
3064  */
3065 int intel_vgpu_default_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
3066 		void *p_data, unsigned int bytes)
3067 {
3068 	write_vreg(vgpu, offset, p_data, bytes);
3069 	return 0;
3070 }
3071 
3072 /**
3073  * intel_vgpu_mask_mmio_write - write mask register
3074  * @vgpu: a vGPU
3075  * @offset: access offset
3076  * @p_data: write data buffer
3077  * @bytes: access data length
3078  *
3079  * Returns:
3080  * Zero on success, negative error code if failed.
3081  */
3082 int intel_vgpu_mask_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
3083 		void *p_data, unsigned int bytes)
3084 {
3085 	u32 mask, old_vreg;
3086 
3087 	old_vreg = vgpu_vreg(vgpu, offset);
3088 	write_vreg(vgpu, offset, p_data, bytes);
3089 	mask = vgpu_vreg(vgpu, offset) >> 16;
3090 	vgpu_vreg(vgpu, offset) = (old_vreg & ~mask) |
3091 				(vgpu_vreg(vgpu, offset) & mask);
3092 
3093 	return 0;
3094 }
3095 
3096 /**
3097  * intel_gvt_in_force_nonpriv_whitelist - if a mmio is in whitelist to be
3098  * force-nopriv register
3099  *
3100  * @gvt: a GVT device
3101  * @offset: register offset
3102  *
3103  * Returns:
3104  * True if the register is in force-nonpriv whitelist;
3105  * False if outside;
3106  */
3107 bool intel_gvt_in_force_nonpriv_whitelist(struct intel_gvt *gvt,
3108 					  unsigned int offset)
3109 {
3110 	return in_whitelist(offset);
3111 }
3112 
3113 /**
3114  * intel_vgpu_mmio_reg_rw - emulate tracked mmio registers
3115  * @vgpu: a vGPU
3116  * @offset: register offset
3117  * @pdata: data buffer
3118  * @bytes: data length
3119  * @is_read: read or write
3120  *
3121  * Returns:
3122  * Zero on success, negative error code if failed.
3123  */
3124 int intel_vgpu_mmio_reg_rw(struct intel_vgpu *vgpu, unsigned int offset,
3125 			   void *pdata, unsigned int bytes, bool is_read)
3126 {
3127 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
3128 	struct intel_gvt *gvt = vgpu->gvt;
3129 	struct intel_gvt_mmio_info *mmio_info;
3130 	struct gvt_mmio_block *mmio_block;
3131 	gvt_mmio_func func;
3132 	int ret;
3133 
3134 	if (drm_WARN_ON(&i915->drm, bytes > 8))
3135 		return -EINVAL;
3136 
3137 	/*
3138 	 * Handle special MMIO blocks.
3139 	 */
3140 	mmio_block = find_mmio_block(gvt, offset);
3141 	if (mmio_block) {
3142 		func = is_read ? mmio_block->read : mmio_block->write;
3143 		if (func)
3144 			return func(vgpu, offset, pdata, bytes);
3145 		goto default_rw;
3146 	}
3147 
3148 	/*
3149 	 * Normal tracked MMIOs.
3150 	 */
3151 	mmio_info = intel_gvt_find_mmio_info(gvt, offset);
3152 	if (!mmio_info) {
3153 		gvt_dbg_mmio("untracked MMIO %08x len %d\n", offset, bytes);
3154 		goto default_rw;
3155 	}
3156 
3157 	if (is_read)
3158 		return mmio_info->read(vgpu, offset, pdata, bytes);
3159 	else {
3160 		u64 ro_mask = mmio_info->ro_mask;
3161 		u32 old_vreg = 0;
3162 		u64 data = 0;
3163 
3164 		if (intel_gvt_mmio_has_mode_mask(gvt, mmio_info->offset)) {
3165 			old_vreg = vgpu_vreg(vgpu, offset);
3166 		}
3167 
3168 		if (likely(!ro_mask))
3169 			ret = mmio_info->write(vgpu, offset, pdata, bytes);
3170 		else if (!~ro_mask) {
3171 			gvt_vgpu_err("try to write RO reg %x\n", offset);
3172 			return 0;
3173 		} else {
3174 			/* keep the RO bits in the virtual register */
3175 			memcpy(&data, pdata, bytes);
3176 			data &= ~ro_mask;
3177 			data |= vgpu_vreg(vgpu, offset) & ro_mask;
3178 			ret = mmio_info->write(vgpu, offset, &data, bytes);
3179 		}
3180 
3181 		/* higher 16bits of mode ctl regs are mask bits for change */
3182 		if (intel_gvt_mmio_has_mode_mask(gvt, mmio_info->offset)) {
3183 			u32 mask = vgpu_vreg(vgpu, offset) >> 16;
3184 
3185 			vgpu_vreg(vgpu, offset) = (old_vreg & ~mask)
3186 					| (vgpu_vreg(vgpu, offset) & mask);
3187 		}
3188 	}
3189 
3190 	return ret;
3191 
3192 default_rw:
3193 	return is_read ?
3194 		intel_vgpu_default_mmio_read(vgpu, offset, pdata, bytes) :
3195 		intel_vgpu_default_mmio_write(vgpu, offset, pdata, bytes);
3196 }
3197 
3198 void intel_gvt_restore_fence(struct intel_gvt *gvt)
3199 {
3200 	struct intel_vgpu *vgpu;
3201 	int i, id;
3202 
3203 	idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
3204 		mmio_hw_access_pre(gvt->gt);
3205 		for (i = 0; i < vgpu_fence_sz(vgpu); i++)
3206 			intel_vgpu_write_fence(vgpu, i, vgpu_vreg64(vgpu, fence_num_to_offset(i)));
3207 		mmio_hw_access_post(gvt->gt);
3208 	}
3209 }
3210 
3211 static int mmio_pm_restore_handler(struct intel_gvt *gvt, u32 offset, void *data)
3212 {
3213 	struct intel_vgpu *vgpu = data;
3214 	struct drm_i915_private *dev_priv = gvt->gt->i915;
3215 
3216 	if (gvt->mmio.mmio_attribute[offset >> 2] & F_PM_SAVE)
3217 		intel_uncore_write(&dev_priv->uncore, _MMIO(offset), vgpu_vreg(vgpu, offset));
3218 
3219 	return 0;
3220 }
3221 
3222 void intel_gvt_restore_mmio(struct intel_gvt *gvt)
3223 {
3224 	struct intel_vgpu *vgpu;
3225 	int id;
3226 
3227 	idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
3228 		mmio_hw_access_pre(gvt->gt);
3229 		intel_gvt_for_each_tracked_mmio(gvt, mmio_pm_restore_handler, vgpu);
3230 		mmio_hw_access_post(gvt->gt);
3231 	}
3232 }
3233