1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2019 Intel Corporation 4 */ 5 6 #include "gem/i915_gem_lmem.h" 7 #include "gt/intel_gt.h" 8 #include "gt/intel_gt_irq.h" 9 #include "gt/intel_gt_pm_irq.h" 10 #include "gt/intel_gt_regs.h" 11 #include "intel_guc.h" 12 #include "intel_guc_ads.h" 13 #include "intel_guc_capture.h" 14 #include "intel_guc_print.h" 15 #include "intel_guc_slpc.h" 16 #include "intel_guc_submission.h" 17 #include "i915_drv.h" 18 #include "i915_irq.h" 19 #include "i915_reg.h" 20 21 /** 22 * DOC: GuC 23 * 24 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is 25 * designed to offload some of the functionality usually performed by the host 26 * driver; currently the main operations it can take care of are: 27 * 28 * - Authentication of the HuC, which is required to fully enable HuC usage. 29 * - Low latency graphics context scheduling (a.k.a. GuC submission). 30 * - GT Power management. 31 * 32 * The enable_guc module parameter can be used to select which of those 33 * operations to enable within GuC. Note that not all the operations are 34 * supported on all gen9+ platforms. 35 * 36 * Enabling the GuC is not mandatory and therefore the firmware is only loaded 37 * if at least one of the operations is selected. However, not loading the GuC 38 * might result in the loss of some features that do require the GuC (currently 39 * just the HuC, but more are expected to land in the future). 40 */ 41 42 void intel_guc_notify(struct intel_guc *guc) 43 { 44 struct intel_gt *gt = guc_to_gt(guc); 45 46 /* 47 * On Gen11+, the value written to the register is passes as a payload 48 * to the FW. However, the FW currently treats all values the same way 49 * (H2G interrupt), so we can just write the value that the HW expects 50 * on older gens. 51 */ 52 intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER); 53 } 54 55 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i) 56 { 57 GEM_BUG_ON(!guc->send_regs.base); 58 GEM_BUG_ON(!guc->send_regs.count); 59 GEM_BUG_ON(i >= guc->send_regs.count); 60 61 return _MMIO(guc->send_regs.base + 4 * i); 62 } 63 64 void intel_guc_init_send_regs(struct intel_guc *guc) 65 { 66 struct intel_gt *gt = guc_to_gt(guc); 67 enum forcewake_domains fw_domains = 0; 68 unsigned int i; 69 70 GEM_BUG_ON(!guc->send_regs.base); 71 GEM_BUG_ON(!guc->send_regs.count); 72 73 for (i = 0; i < guc->send_regs.count; i++) { 74 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore, 75 guc_send_reg(guc, i), 76 FW_REG_READ | FW_REG_WRITE); 77 } 78 guc->send_regs.fw_domains = fw_domains; 79 } 80 81 static void gen9_reset_guc_interrupts(struct intel_guc *guc) 82 { 83 struct intel_gt *gt = guc_to_gt(guc); 84 85 assert_rpm_wakelock_held(>->i915->runtime_pm); 86 87 spin_lock_irq(gt->irq_lock); 88 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events); 89 spin_unlock_irq(gt->irq_lock); 90 } 91 92 static void gen9_enable_guc_interrupts(struct intel_guc *guc) 93 { 94 struct intel_gt *gt = guc_to_gt(guc); 95 96 assert_rpm_wakelock_held(>->i915->runtime_pm); 97 98 spin_lock_irq(gt->irq_lock); 99 guc_WARN_ON_ONCE(guc, intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) & 100 gt->pm_guc_events); 101 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events); 102 spin_unlock_irq(gt->irq_lock); 103 104 guc->interrupts.enabled = true; 105 } 106 107 static void gen9_disable_guc_interrupts(struct intel_guc *guc) 108 { 109 struct intel_gt *gt = guc_to_gt(guc); 110 111 assert_rpm_wakelock_held(>->i915->runtime_pm); 112 guc->interrupts.enabled = false; 113 114 spin_lock_irq(gt->irq_lock); 115 116 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events); 117 118 spin_unlock_irq(gt->irq_lock); 119 intel_synchronize_irq(gt->i915); 120 121 gen9_reset_guc_interrupts(guc); 122 } 123 124 static bool __gen11_reset_guc_interrupts(struct intel_gt *gt) 125 { 126 u32 irq = gt->type == GT_MEDIA ? MTL_MGUC : GEN11_GUC; 127 128 lockdep_assert_held(gt->irq_lock); 129 return gen11_gt_reset_one_iir(gt, 0, irq); 130 } 131 132 static void gen11_reset_guc_interrupts(struct intel_guc *guc) 133 { 134 struct intel_gt *gt = guc_to_gt(guc); 135 136 spin_lock_irq(gt->irq_lock); 137 __gen11_reset_guc_interrupts(gt); 138 spin_unlock_irq(gt->irq_lock); 139 } 140 141 static void gen11_enable_guc_interrupts(struct intel_guc *guc) 142 { 143 struct intel_gt *gt = guc_to_gt(guc); 144 145 spin_lock_irq(gt->irq_lock); 146 __gen11_reset_guc_interrupts(gt); 147 spin_unlock_irq(gt->irq_lock); 148 149 guc->interrupts.enabled = true; 150 } 151 152 static void gen11_disable_guc_interrupts(struct intel_guc *guc) 153 { 154 struct intel_gt *gt = guc_to_gt(guc); 155 156 guc->interrupts.enabled = false; 157 intel_synchronize_irq(gt->i915); 158 159 gen11_reset_guc_interrupts(guc); 160 } 161 162 static void guc_dead_worker_func(struct work_struct *w) 163 { 164 struct intel_guc *guc = container_of(w, struct intel_guc, dead_guc_worker); 165 struct intel_gt *gt = guc_to_gt(guc); 166 unsigned long last = guc->last_dead_guc_jiffies; 167 unsigned long delta = jiffies_to_msecs(jiffies - last); 168 169 if (delta < 500) { 170 intel_gt_set_wedged(gt); 171 } else { 172 intel_gt_handle_error(gt, ALL_ENGINES, I915_ERROR_CAPTURE, "dead GuC"); 173 guc->last_dead_guc_jiffies = jiffies; 174 } 175 } 176 177 void intel_guc_init_early(struct intel_guc *guc) 178 { 179 struct intel_gt *gt = guc_to_gt(guc); 180 struct drm_i915_private *i915 = gt->i915; 181 182 intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC, true); 183 intel_guc_ct_init_early(&guc->ct); 184 intel_guc_log_init_early(&guc->log); 185 intel_guc_submission_init_early(guc); 186 intel_guc_slpc_init_early(&guc->slpc); 187 intel_guc_rc_init_early(guc); 188 189 INIT_WORK(&guc->dead_guc_worker, guc_dead_worker_func); 190 191 mutex_init(&guc->send_mutex); 192 spin_lock_init(&guc->irq_lock); 193 if (GRAPHICS_VER(i915) >= 11) { 194 guc->interrupts.reset = gen11_reset_guc_interrupts; 195 guc->interrupts.enable = gen11_enable_guc_interrupts; 196 guc->interrupts.disable = gen11_disable_guc_interrupts; 197 if (gt->type == GT_MEDIA) { 198 guc->notify_reg = MEDIA_GUC_HOST_INTERRUPT; 199 guc->send_regs.base = i915_mmio_reg_offset(MEDIA_SOFT_SCRATCH(0)); 200 } else { 201 guc->notify_reg = GEN11_GUC_HOST_INTERRUPT; 202 guc->send_regs.base = i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0)); 203 } 204 205 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT; 206 207 } else { 208 guc->notify_reg = GUC_SEND_INTERRUPT; 209 guc->interrupts.reset = gen9_reset_guc_interrupts; 210 guc->interrupts.enable = gen9_enable_guc_interrupts; 211 guc->interrupts.disable = gen9_disable_guc_interrupts; 212 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0)); 213 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN; 214 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT); 215 } 216 217 intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION | 218 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED); 219 } 220 221 void intel_guc_init_late(struct intel_guc *guc) 222 { 223 intel_guc_ads_init_late(guc); 224 } 225 226 static u32 guc_ctl_debug_flags(struct intel_guc *guc) 227 { 228 u32 level = intel_guc_log_get_level(&guc->log); 229 u32 flags = 0; 230 231 if (!GUC_LOG_LEVEL_IS_VERBOSE(level)) 232 flags |= GUC_LOG_DISABLED; 233 else 234 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) << 235 GUC_LOG_VERBOSITY_SHIFT; 236 237 return flags; 238 } 239 240 static u32 guc_ctl_feature_flags(struct intel_guc *guc) 241 { 242 u32 flags = 0; 243 244 if (!intel_guc_submission_is_used(guc)) 245 flags |= GUC_CTL_DISABLE_SCHEDULER; 246 247 if (intel_guc_slpc_is_used(guc)) 248 flags |= GUC_CTL_ENABLE_SLPC; 249 250 return flags; 251 } 252 253 static u32 guc_ctl_log_params_flags(struct intel_guc *guc) 254 { 255 struct intel_guc_log *log = &guc->log; 256 u32 offset, flags; 257 258 GEM_BUG_ON(!log->sizes_initialised); 259 260 offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT; 261 262 flags = GUC_LOG_VALID | 263 GUC_LOG_NOTIFY_ON_HALF_FULL | 264 log->sizes[GUC_LOG_SECTIONS_DEBUG].flag | 265 log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag | 266 (log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) | 267 (log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) | 268 (log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) | 269 (offset << GUC_LOG_BUF_ADDR_SHIFT); 270 271 return flags; 272 } 273 274 static u32 guc_ctl_ads_flags(struct intel_guc *guc) 275 { 276 u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT; 277 u32 flags = ads << GUC_ADS_ADDR_SHIFT; 278 279 return flags; 280 } 281 282 static u32 guc_ctl_wa_flags(struct intel_guc *guc) 283 { 284 struct intel_gt *gt = guc_to_gt(guc); 285 u32 flags = 0; 286 287 /* Wa_22012773006:gen11,gen12 < XeHP */ 288 if (GRAPHICS_VER(gt->i915) >= 11 && 289 GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 50)) 290 flags |= GUC_WA_POLLCS; 291 292 /* Wa_14014475959 */ 293 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 294 IS_DG2(gt->i915)) 295 flags |= GUC_WA_HOLD_CCS_SWITCHOUT; 296 297 /* 298 * Wa_14012197797 299 * Wa_22011391025 300 * 301 * The same WA bit is used for both and 22011391025 is applicable to 302 * all DG2. 303 */ 304 if (IS_DG2(gt->i915)) 305 flags |= GUC_WA_DUAL_QUEUE; 306 307 /* Wa_22011802037: graphics version 11/12 */ 308 if (intel_engine_reset_needs_wa_22011802037(gt)) 309 flags |= GUC_WA_PRE_PARSER; 310 311 /* 312 * Wa_22012727170 313 * Wa_22012727685 314 */ 315 if (IS_DG2_G11(gt->i915)) 316 flags |= GUC_WA_CONTEXT_ISOLATION; 317 318 /* Wa_16015675438 */ 319 if (!RCS_MASK(gt)) 320 flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST; 321 322 return flags; 323 } 324 325 static u32 guc_ctl_devid(struct intel_guc *guc) 326 { 327 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 328 329 return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915); 330 } 331 332 /* 333 * Initialise the GuC parameter block before starting the firmware 334 * transfer. These parameters are read by the firmware on startup 335 * and cannot be changed thereafter. 336 */ 337 static void guc_init_params(struct intel_guc *guc) 338 { 339 u32 *params = guc->params; 340 int i; 341 342 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32)); 343 344 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); 345 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc); 346 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); 347 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); 348 params[GUC_CTL_WA] = guc_ctl_wa_flags(guc); 349 params[GUC_CTL_DEVID] = guc_ctl_devid(guc); 350 351 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 352 guc_dbg(guc, "param[%2d] = %#x\n", i, params[i]); 353 } 354 355 /* 356 * Initialise the GuC parameter block before starting the firmware 357 * transfer. These parameters are read by the firmware on startup 358 * and cannot be changed thereafter. 359 */ 360 void intel_guc_write_params(struct intel_guc *guc) 361 { 362 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 363 int i; 364 365 /* 366 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and 367 * they are power context saved so it's ok to release forcewake 368 * when we are done here and take it again at xfer time. 369 */ 370 intel_uncore_forcewake_get(uncore, FORCEWAKE_GT); 371 372 intel_uncore_write(uncore, SOFT_SCRATCH(0), 0); 373 374 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 375 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]); 376 377 intel_uncore_forcewake_put(uncore, FORCEWAKE_GT); 378 } 379 380 void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p) 381 { 382 struct intel_gt *gt = guc_to_gt(guc); 383 intel_wakeref_t wakeref; 384 u32 stamp = 0; 385 u64 ktime; 386 387 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) 388 stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP); 389 ktime = ktime_get_boottime_ns(); 390 391 drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime); 392 drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp); 393 drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n", 394 gt->clock_frequency, gt->clock_period_ns); 395 } 396 397 int intel_guc_init(struct intel_guc *guc) 398 { 399 int ret; 400 401 ret = intel_uc_fw_init(&guc->fw); 402 if (ret) 403 goto out; 404 405 ret = intel_guc_log_create(&guc->log); 406 if (ret) 407 goto err_fw; 408 409 ret = intel_guc_capture_init(guc); 410 if (ret) 411 goto err_log; 412 413 ret = intel_guc_ads_create(guc); 414 if (ret) 415 goto err_capture; 416 417 GEM_BUG_ON(!guc->ads_vma); 418 419 ret = intel_guc_ct_init(&guc->ct); 420 if (ret) 421 goto err_ads; 422 423 if (intel_guc_submission_is_used(guc)) { 424 /* 425 * This is stuff we need to have available at fw load time 426 * if we are planning to enable submission later 427 */ 428 ret = intel_guc_submission_init(guc); 429 if (ret) 430 goto err_ct; 431 } 432 433 if (intel_guc_slpc_is_used(guc)) { 434 ret = intel_guc_slpc_init(&guc->slpc); 435 if (ret) 436 goto err_submission; 437 } 438 439 /* now that everything is perma-pinned, initialize the parameters */ 440 guc_init_params(guc); 441 442 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE); 443 444 return 0; 445 446 err_submission: 447 intel_guc_submission_fini(guc); 448 err_ct: 449 intel_guc_ct_fini(&guc->ct); 450 err_ads: 451 intel_guc_ads_destroy(guc); 452 err_capture: 453 intel_guc_capture_destroy(guc); 454 err_log: 455 intel_guc_log_destroy(&guc->log); 456 err_fw: 457 intel_uc_fw_fini(&guc->fw); 458 out: 459 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_INIT_FAIL); 460 guc_probe_error(guc, "failed with %pe\n", ERR_PTR(ret)); 461 return ret; 462 } 463 464 void intel_guc_fini(struct intel_guc *guc) 465 { 466 if (!intel_uc_fw_is_loadable(&guc->fw)) 467 return; 468 469 flush_work(&guc->dead_guc_worker); 470 471 if (intel_guc_slpc_is_used(guc)) 472 intel_guc_slpc_fini(&guc->slpc); 473 474 if (intel_guc_submission_is_used(guc)) 475 intel_guc_submission_fini(guc); 476 477 intel_guc_ct_fini(&guc->ct); 478 479 intel_guc_ads_destroy(guc); 480 intel_guc_capture_destroy(guc); 481 intel_guc_log_destroy(&guc->log); 482 intel_uc_fw_fini(&guc->fw); 483 } 484 485 /* 486 * This function implements the MMIO based host to GuC interface. 487 */ 488 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len, 489 u32 *response_buf, u32 response_buf_size) 490 { 491 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 492 u32 header; 493 int i; 494 int ret; 495 496 GEM_BUG_ON(!len); 497 GEM_BUG_ON(len > guc->send_regs.count); 498 499 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST); 500 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST); 501 502 mutex_lock(&guc->send_mutex); 503 intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains); 504 505 retry: 506 for (i = 0; i < len; i++) 507 intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]); 508 509 intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1)); 510 511 intel_guc_notify(guc); 512 513 /* 514 * No GuC command should ever take longer than 10ms. 515 * Fast commands should still complete in 10us. 516 */ 517 ret = __intel_wait_for_register_fw(uncore, 518 guc_send_reg(guc, 0), 519 GUC_HXG_MSG_0_ORIGIN, 520 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, 521 GUC_HXG_ORIGIN_GUC), 522 10, 10, &header); 523 if (unlikely(ret)) { 524 timeout: 525 guc_err(guc, "mmio request %#x: no reply %x\n", 526 request[0], header); 527 goto out; 528 } 529 530 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) { 531 #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \ 532 FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \ 533 FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; }) 534 535 ret = wait_for(done, 1000); 536 if (unlikely(ret)) 537 goto timeout; 538 if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != 539 GUC_HXG_ORIGIN_GUC)) 540 goto proto; 541 #undef done 542 } 543 544 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) { 545 u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header); 546 547 guc_dbg(guc, "mmio request %#x: retrying, reason %u\n", 548 request[0], reason); 549 goto retry; 550 } 551 552 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) { 553 u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header); 554 u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header); 555 556 guc_err(guc, "mmio request %#x: failure %x/%u\n", 557 request[0], error, hint); 558 ret = -ENXIO; 559 goto out; 560 } 561 562 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) { 563 proto: 564 guc_err(guc, "mmio request %#x: unexpected reply %#x\n", 565 request[0], header); 566 ret = -EPROTO; 567 goto out; 568 } 569 570 if (response_buf) { 571 int count = min(response_buf_size, guc->send_regs.count); 572 573 GEM_BUG_ON(!count); 574 575 response_buf[0] = header; 576 577 for (i = 1; i < count; i++) 578 response_buf[i] = intel_uncore_read(uncore, 579 guc_send_reg(guc, i)); 580 581 /* Use number of copied dwords as our return value */ 582 ret = count; 583 } else { 584 /* Use data from the GuC response as our return value */ 585 ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header); 586 } 587 588 out: 589 intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains); 590 mutex_unlock(&guc->send_mutex); 591 592 return ret; 593 } 594 595 int intel_guc_crash_process_msg(struct intel_guc *guc, u32 action) 596 { 597 if (action == INTEL_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED) 598 guc_err(guc, "Crash dump notification\n"); 599 else if (action == INTEL_GUC_ACTION_NOTIFY_EXCEPTION) 600 guc_err(guc, "Exception notification\n"); 601 else 602 guc_err(guc, "Unknown crash notification: 0x%04X\n", action); 603 604 queue_work(system_unbound_wq, &guc->dead_guc_worker); 605 606 return 0; 607 } 608 609 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc, 610 const u32 *payload, u32 len) 611 { 612 u32 msg; 613 614 if (unlikely(!len)) 615 return -EPROTO; 616 617 /* Make sure to handle only enabled messages */ 618 msg = payload[0] & guc->msg_enabled_mask; 619 620 if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED) 621 guc_err(guc, "Received early crash dump notification!\n"); 622 if (msg & INTEL_GUC_RECV_MSG_EXCEPTION) 623 guc_err(guc, "Received early exception notification!\n"); 624 625 if (msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED | INTEL_GUC_RECV_MSG_EXCEPTION)) 626 queue_work(system_unbound_wq, &guc->dead_guc_worker); 627 628 return 0; 629 } 630 631 /** 632 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode 633 * @guc: intel_guc structure 634 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma 635 * 636 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send 637 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by 638 * intel_huc_auth(). 639 * 640 * Return: non-zero code on error 641 */ 642 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset) 643 { 644 u32 action[] = { 645 INTEL_GUC_ACTION_AUTHENTICATE_HUC, 646 rsa_offset 647 }; 648 649 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 650 } 651 652 /** 653 * intel_guc_suspend() - notify GuC entering suspend state 654 * @guc: the guc 655 */ 656 int intel_guc_suspend(struct intel_guc *guc) 657 { 658 int ret; 659 u32 action[] = { 660 INTEL_GUC_ACTION_CLIENT_SOFT_RESET, 661 }; 662 663 if (!intel_guc_is_ready(guc)) 664 return 0; 665 666 if (intel_guc_submission_is_used(guc)) { 667 flush_work(&guc->dead_guc_worker); 668 669 /* 670 * This H2G MMIO command tears down the GuC in two steps. First it will 671 * generate a G2H CTB for every active context indicating a reset. In 672 * practice the i915 shouldn't ever get a G2H as suspend should only be 673 * called when the GPU is idle. Next, it tears down the CTBs and this 674 * H2G MMIO command completes. 675 * 676 * Don't abort on a failure code from the GuC. Keep going and do the 677 * clean up in santize() and re-initialisation on resume and hopefully 678 * the error here won't be problematic. 679 */ 680 ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0); 681 if (ret) 682 guc_err(guc, "suspend: RESET_CLIENT action failed with %pe\n", 683 ERR_PTR(ret)); 684 } 685 686 /* Signal that the GuC isn't running. */ 687 intel_guc_sanitize(guc); 688 689 return 0; 690 } 691 692 /** 693 * intel_guc_resume() - notify GuC resuming from suspend state 694 * @guc: the guc 695 */ 696 int intel_guc_resume(struct intel_guc *guc) 697 { 698 /* 699 * NB: This function can still be called even if GuC submission is 700 * disabled, e.g. if GuC is enabled for HuC authentication only. Thus, 701 * if any code is later added here, it must be support doing nothing 702 * if submission is disabled (as per intel_guc_suspend). 703 */ 704 return 0; 705 } 706 707 /** 708 * DOC: GuC Memory Management 709 * 710 * GuC can't allocate any memory for its own usage, so all the allocations must 711 * be handled by the host driver. GuC accesses the memory via the GGTT, with the 712 * exception of the top and bottom parts of the 4GB address space, which are 713 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM) 714 * or other parts of the HW. The driver must take care not to place objects that 715 * the GuC is going to access in these reserved ranges. The layout of the GuC 716 * address space is shown below: 717 * 718 * :: 719 * 720 * +===========> +====================+ <== FFFF_FFFF 721 * ^ | Reserved | 722 * | +====================+ <== GUC_GGTT_TOP 723 * | | | 724 * | | DRAM | 725 * GuC | | 726 * Address +===> +====================+ <== GuC ggtt_pin_bias 727 * Space ^ | | 728 * | | | | 729 * | GuC | GuC | 730 * | WOPCM | WOPCM | 731 * | Size | | 732 * | | | | 733 * v v | | 734 * +=======+===> +====================+ <== 0000_0000 735 * 736 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM 737 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped 738 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size. 739 */ 740 741 /** 742 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage 743 * @guc: the guc 744 * @size: size of area to allocate (both virtual space and memory) 745 * 746 * This is a wrapper to create an object for use with the GuC. In order to 747 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate 748 * both some backing storage and a range inside the Global GTT. We must pin 749 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that 750 * range is reserved inside GuC. 751 * 752 * Return: A i915_vma if successful, otherwise an ERR_PTR. 753 */ 754 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size) 755 { 756 struct intel_gt *gt = guc_to_gt(guc); 757 struct drm_i915_gem_object *obj; 758 struct i915_vma *vma; 759 u64 flags; 760 int ret; 761 762 if (HAS_LMEM(gt->i915)) 763 obj = i915_gem_object_create_lmem(gt->i915, size, 764 I915_BO_ALLOC_CPU_CLEAR | 765 I915_BO_ALLOC_CONTIGUOUS | 766 I915_BO_ALLOC_PM_EARLY); 767 else 768 obj = i915_gem_object_create_shmem(gt->i915, size); 769 770 if (IS_ERR(obj)) 771 return ERR_CAST(obj); 772 773 /* 774 * Wa_22016122933: For Media version 13.0, all Media GT shared 775 * memory needs to be mapped as WC on CPU side and UC (PAT 776 * index 2) on GPU side. 777 */ 778 if (intel_gt_needs_wa_22016122933(gt)) 779 i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE); 780 781 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 782 if (IS_ERR(vma)) 783 goto err; 784 785 flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma); 786 ret = i915_ggtt_pin(vma, NULL, 0, flags); 787 if (ret) { 788 vma = ERR_PTR(ret); 789 goto err; 790 } 791 792 return i915_vma_make_unshrinkable(vma); 793 794 err: 795 i915_gem_object_put(obj); 796 return vma; 797 } 798 799 /** 800 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage 801 * @guc: the guc 802 * @size: size of area to allocate (both virtual space and memory) 803 * @out_vma: return variable for the allocated vma pointer 804 * @out_vaddr: return variable for the obj mapping 805 * 806 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated 807 * object with I915_MAP_WB. 808 * 809 * Return: 0 if successful, a negative errno code otherwise. 810 */ 811 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size, 812 struct i915_vma **out_vma, void **out_vaddr) 813 { 814 struct i915_vma *vma; 815 void *vaddr; 816 817 vma = intel_guc_allocate_vma(guc, size); 818 if (IS_ERR(vma)) 819 return PTR_ERR(vma); 820 821 vaddr = i915_gem_object_pin_map_unlocked(vma->obj, 822 intel_gt_coherent_map_type(guc_to_gt(guc), 823 vma->obj, true)); 824 if (IS_ERR(vaddr)) { 825 i915_vma_unpin_and_release(&vma, 0); 826 return PTR_ERR(vaddr); 827 } 828 829 *out_vma = vma; 830 *out_vaddr = vaddr; 831 832 return 0; 833 } 834 835 static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) 836 { 837 u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = { 838 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) | 839 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | 840 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG), 841 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) | 842 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len), 843 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)), 844 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)), 845 }; 846 int ret; 847 848 GEM_BUG_ON(len > 2); 849 GEM_BUG_ON(len == 1 && upper_32_bits(value)); 850 851 /* Self config must go over MMIO */ 852 ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0); 853 854 if (unlikely(ret < 0)) 855 return ret; 856 if (unlikely(ret > 1)) 857 return -EPROTO; 858 if (unlikely(!ret)) 859 return -ENOKEY; 860 861 return 0; 862 } 863 864 static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) 865 { 866 int err = __guc_action_self_cfg(guc, key, len, value); 867 868 if (unlikely(err)) 869 guc_probe_error(guc, "Unsuccessful self-config (%pe) key %#hx value %#llx\n", 870 ERR_PTR(err), key, value); 871 return err; 872 } 873 874 int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value) 875 { 876 return __guc_self_cfg(guc, key, 1, value); 877 } 878 879 int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value) 880 { 881 return __guc_self_cfg(guc, key, 2, value); 882 } 883 884 /** 885 * intel_guc_load_status - dump information about GuC load status 886 * @guc: the GuC 887 * @p: the &drm_printer 888 * 889 * Pretty printer for GuC load status. 890 */ 891 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p) 892 { 893 struct intel_gt *gt = guc_to_gt(guc); 894 struct intel_uncore *uncore = gt->uncore; 895 intel_wakeref_t wakeref; 896 897 if (!intel_guc_is_supported(guc)) { 898 drm_printf(p, "GuC not supported\n"); 899 return; 900 } 901 902 if (!intel_guc_is_wanted(guc)) { 903 drm_printf(p, "GuC disabled\n"); 904 return; 905 } 906 907 intel_uc_fw_dump(&guc->fw, p); 908 909 with_intel_runtime_pm(uncore->rpm, wakeref) { 910 u32 status = intel_uncore_read(uncore, GUC_STATUS); 911 u32 i; 912 913 drm_printf(p, "GuC status 0x%08x:\n", status); 914 drm_printf(p, "\tBootrom status = 0x%x\n", 915 (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT); 916 drm_printf(p, "\tuKernel status = 0x%x\n", 917 (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT); 918 drm_printf(p, "\tMIA Core status = 0x%x\n", 919 (status & GS_MIA_MASK) >> GS_MIA_SHIFT); 920 drm_puts(p, "Scratch registers:\n"); 921 for (i = 0; i < 16; i++) { 922 drm_printf(p, "\t%2d: \t0x%x\n", 923 i, intel_uncore_read(uncore, SOFT_SCRATCH(i))); 924 } 925 } 926 } 927 928 void intel_guc_write_barrier(struct intel_guc *guc) 929 { 930 struct intel_gt *gt = guc_to_gt(guc); 931 932 if (i915_gem_object_is_lmem(guc->ct.vma->obj)) { 933 /* 934 * Ensure intel_uncore_write_fw can be used rather than 935 * intel_uncore_write. 936 */ 937 GEM_BUG_ON(guc->send_regs.fw_domains); 938 939 /* 940 * This register is used by the i915 and GuC for MMIO based 941 * communication. Once we are in this code CTBs are the only 942 * method the i915 uses to communicate with the GuC so it is 943 * safe to write to this register (a value of 0 is NOP for MMIO 944 * communication). If we ever start mixing CTBs and MMIOs a new 945 * register will have to be chosen. This function is also used 946 * to enforce ordering of a work queue item write and an update 947 * to the process descriptor. When a work queue is being used, 948 * CTBs are also the only mechanism of communication. 949 */ 950 intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0); 951 } else { 952 /* wmb() sufficient for a barrier if in smem */ 953 wmb(); 954 } 955 } 956