1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014-2019 Intel Corporation
4 */
5
6 #include "gem/i915_gem_lmem.h"
7 #include "gt/intel_gt.h"
8 #include "gt/intel_gt_irq.h"
9 #include "gt/intel_gt_pm_irq.h"
10 #include "gt/intel_gt_regs.h"
11 #include "intel_guc.h"
12 #include "intel_guc_ads.h"
13 #include "intel_guc_capture.h"
14 #include "intel_guc_print.h"
15 #include "intel_guc_slpc.h"
16 #include "intel_guc_submission.h"
17 #include "i915_drv.h"
18 #include "i915_irq.h"
19 #include "i915_reg.h"
20
21 /**
22 * DOC: GuC
23 *
24 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
25 * designed to offload some of the functionality usually performed by the host
26 * driver; currently the main operations it can take care of are:
27 *
28 * - Authentication of the HuC, which is required to fully enable HuC usage.
29 * - Low latency graphics context scheduling (a.k.a. GuC submission).
30 * - GT Power management.
31 *
32 * The enable_guc module parameter can be used to select which of those
33 * operations to enable within GuC. Note that not all the operations are
34 * supported on all gen9+ platforms.
35 *
36 * Enabling the GuC is not mandatory and therefore the firmware is only loaded
37 * if at least one of the operations is selected. However, not loading the GuC
38 * might result in the loss of some features that do require the GuC (currently
39 * just the HuC, but more are expected to land in the future).
40 */
41
intel_guc_notify(struct intel_guc * guc)42 void intel_guc_notify(struct intel_guc *guc)
43 {
44 struct intel_gt *gt = guc_to_gt(guc);
45
46 /*
47 * On Gen11+, the value written to the register is passes as a payload
48 * to the FW. However, the FW currently treats all values the same way
49 * (H2G interrupt), so we can just write the value that the HW expects
50 * on older gens.
51 */
52 intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER);
53 }
54
guc_send_reg(struct intel_guc * guc,u32 i)55 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
56 {
57 GEM_BUG_ON(!guc->send_regs.base);
58 GEM_BUG_ON(!guc->send_regs.count);
59 GEM_BUG_ON(i >= guc->send_regs.count);
60
61 return _MMIO(guc->send_regs.base + 4 * i);
62 }
63
intel_guc_init_send_regs(struct intel_guc * guc)64 void intel_guc_init_send_regs(struct intel_guc *guc)
65 {
66 struct intel_gt *gt = guc_to_gt(guc);
67 enum forcewake_domains fw_domains = 0;
68 unsigned int i;
69
70 GEM_BUG_ON(!guc->send_regs.base);
71 GEM_BUG_ON(!guc->send_regs.count);
72
73 for (i = 0; i < guc->send_regs.count; i++) {
74 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
75 guc_send_reg(guc, i),
76 FW_REG_READ | FW_REG_WRITE);
77 }
78 guc->send_regs.fw_domains = fw_domains;
79 }
80
gen9_reset_guc_interrupts(struct intel_guc * guc)81 static void gen9_reset_guc_interrupts(struct intel_guc *guc)
82 {
83 struct intel_gt *gt = guc_to_gt(guc);
84
85 assert_rpm_wakelock_held(>->i915->runtime_pm);
86
87 spin_lock_irq(gt->irq_lock);
88 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
89 spin_unlock_irq(gt->irq_lock);
90 }
91
gen9_enable_guc_interrupts(struct intel_guc * guc)92 static void gen9_enable_guc_interrupts(struct intel_guc *guc)
93 {
94 struct intel_gt *gt = guc_to_gt(guc);
95
96 assert_rpm_wakelock_held(>->i915->runtime_pm);
97
98 spin_lock_irq(gt->irq_lock);
99 guc_WARN_ON_ONCE(guc, intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
100 gt->pm_guc_events);
101 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
102 spin_unlock_irq(gt->irq_lock);
103
104 guc->interrupts.enabled = true;
105 }
106
gen9_disable_guc_interrupts(struct intel_guc * guc)107 static void gen9_disable_guc_interrupts(struct intel_guc *guc)
108 {
109 struct intel_gt *gt = guc_to_gt(guc);
110
111 assert_rpm_wakelock_held(>->i915->runtime_pm);
112 guc->interrupts.enabled = false;
113
114 spin_lock_irq(gt->irq_lock);
115
116 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
117
118 spin_unlock_irq(gt->irq_lock);
119 intel_synchronize_irq(gt->i915);
120
121 gen9_reset_guc_interrupts(guc);
122 }
123
__gen11_reset_guc_interrupts(struct intel_gt * gt)124 static bool __gen11_reset_guc_interrupts(struct intel_gt *gt)
125 {
126 u32 irq = gt->type == GT_MEDIA ? MTL_MGUC : GEN11_GUC;
127
128 lockdep_assert_held(gt->irq_lock);
129 return gen11_gt_reset_one_iir(gt, 0, irq);
130 }
131
gen11_reset_guc_interrupts(struct intel_guc * guc)132 static void gen11_reset_guc_interrupts(struct intel_guc *guc)
133 {
134 struct intel_gt *gt = guc_to_gt(guc);
135
136 spin_lock_irq(gt->irq_lock);
137 __gen11_reset_guc_interrupts(gt);
138 spin_unlock_irq(gt->irq_lock);
139 }
140
gen11_enable_guc_interrupts(struct intel_guc * guc)141 static void gen11_enable_guc_interrupts(struct intel_guc *guc)
142 {
143 struct intel_gt *gt = guc_to_gt(guc);
144
145 spin_lock_irq(gt->irq_lock);
146 __gen11_reset_guc_interrupts(gt);
147 spin_unlock_irq(gt->irq_lock);
148
149 guc->interrupts.enabled = true;
150 }
151
gen11_disable_guc_interrupts(struct intel_guc * guc)152 static void gen11_disable_guc_interrupts(struct intel_guc *guc)
153 {
154 struct intel_gt *gt = guc_to_gt(guc);
155
156 guc->interrupts.enabled = false;
157 intel_synchronize_irq(gt->i915);
158
159 gen11_reset_guc_interrupts(guc);
160 }
161
guc_dead_worker_func(struct work_struct * w)162 static void guc_dead_worker_func(struct work_struct *w)
163 {
164 struct intel_guc *guc = container_of(w, struct intel_guc, dead_guc_worker);
165 struct intel_gt *gt = guc_to_gt(guc);
166 unsigned long last = guc->last_dead_guc_jiffies;
167 unsigned long delta = jiffies_to_msecs(jiffies - last);
168
169 if (delta < 500) {
170 intel_gt_set_wedged(gt);
171 } else {
172 intel_gt_handle_error(gt, ALL_ENGINES, I915_ERROR_CAPTURE, "dead GuC");
173 guc->last_dead_guc_jiffies = jiffies;
174 }
175 }
176
intel_guc_init_early(struct intel_guc * guc)177 void intel_guc_init_early(struct intel_guc *guc)
178 {
179 struct intel_gt *gt = guc_to_gt(guc);
180 struct drm_i915_private *i915 = gt->i915;
181
182 intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC, true);
183 intel_guc_ct_init_early(&guc->ct);
184 intel_guc_log_init_early(&guc->log);
185 intel_guc_submission_init_early(guc);
186 intel_guc_slpc_init_early(&guc->slpc);
187 intel_guc_rc_init_early(guc);
188
189 INIT_WORK(&guc->dead_guc_worker, guc_dead_worker_func);
190
191 mutex_init(&guc->send_mutex);
192 spin_lock_init(&guc->irq_lock);
193 if (GRAPHICS_VER(i915) >= 11) {
194 guc->interrupts.reset = gen11_reset_guc_interrupts;
195 guc->interrupts.enable = gen11_enable_guc_interrupts;
196 guc->interrupts.disable = gen11_disable_guc_interrupts;
197 if (gt->type == GT_MEDIA) {
198 guc->notify_reg = MEDIA_GUC_HOST_INTERRUPT;
199 guc->send_regs.base = i915_mmio_reg_offset(MEDIA_SOFT_SCRATCH(0));
200 } else {
201 guc->notify_reg = GEN11_GUC_HOST_INTERRUPT;
202 guc->send_regs.base = i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
203 }
204
205 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
206
207 } else {
208 guc->notify_reg = GUC_SEND_INTERRUPT;
209 guc->interrupts.reset = gen9_reset_guc_interrupts;
210 guc->interrupts.enable = gen9_enable_guc_interrupts;
211 guc->interrupts.disable = gen9_disable_guc_interrupts;
212 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
213 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
214 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
215 }
216
217 intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION |
218 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
219 }
220
intel_guc_init_late(struct intel_guc * guc)221 void intel_guc_init_late(struct intel_guc *guc)
222 {
223 intel_guc_ads_init_late(guc);
224 }
225
guc_ctl_debug_flags(struct intel_guc * guc)226 static u32 guc_ctl_debug_flags(struct intel_guc *guc)
227 {
228 u32 level = intel_guc_log_get_level(&guc->log);
229 u32 flags = 0;
230
231 if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
232 flags |= GUC_LOG_DISABLED;
233 else
234 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
235 GUC_LOG_VERBOSITY_SHIFT;
236
237 return flags;
238 }
239
guc_ctl_feature_flags(struct intel_guc * guc)240 static u32 guc_ctl_feature_flags(struct intel_guc *guc)
241 {
242 u32 flags = 0;
243
244 if (!intel_guc_submission_is_used(guc))
245 flags |= GUC_CTL_DISABLE_SCHEDULER;
246
247 if (intel_guc_slpc_is_used(guc))
248 flags |= GUC_CTL_ENABLE_SLPC;
249
250 return flags;
251 }
252
guc_ctl_log_params_flags(struct intel_guc * guc)253 static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
254 {
255 struct intel_guc_log *log = &guc->log;
256 u32 offset, flags;
257
258 GEM_BUG_ON(!log->sizes_initialised);
259
260 offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT;
261
262 flags = GUC_LOG_VALID |
263 GUC_LOG_NOTIFY_ON_HALF_FULL |
264 log->sizes[GUC_LOG_SECTIONS_DEBUG].flag |
265 log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag |
266 (log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) |
267 (log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) |
268 (log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) |
269 (offset << GUC_LOG_BUF_ADDR_SHIFT);
270
271 return flags;
272 }
273
guc_ctl_ads_flags(struct intel_guc * guc)274 static u32 guc_ctl_ads_flags(struct intel_guc *guc)
275 {
276 u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
277 u32 flags = ads << GUC_ADS_ADDR_SHIFT;
278
279 return flags;
280 }
281
guc_ctl_wa_flags(struct intel_guc * guc)282 static u32 guc_ctl_wa_flags(struct intel_guc *guc)
283 {
284 struct intel_gt *gt = guc_to_gt(guc);
285 u32 flags = 0;
286
287 /* Wa_22012773006:gen11,gen12 < XeHP */
288 if (GRAPHICS_VER(gt->i915) >= 11 &&
289 GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 55))
290 flags |= GUC_WA_POLLCS;
291
292 /* Wa_14014475959 */
293 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
294 IS_DG2(gt->i915))
295 flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
296
297 /* Wa_16019325821 */
298 /* Wa_14019159160 */
299 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)))
300 flags |= GUC_WA_RCS_CCS_SWITCHOUT;
301
302 /*
303 * Wa_14012197797
304 * Wa_22011391025
305 *
306 * The same WA bit is used for both and 22011391025 is applicable to
307 * all DG2.
308 */
309 if (IS_DG2(gt->i915))
310 flags |= GUC_WA_DUAL_QUEUE;
311
312 /* Wa_22011802037: graphics version 11/12 */
313 if (intel_engine_reset_needs_wa_22011802037(gt))
314 flags |= GUC_WA_PRE_PARSER;
315
316 /*
317 * Wa_22012727170
318 * Wa_22012727685
319 */
320 if (IS_DG2_G11(gt->i915))
321 flags |= GUC_WA_CONTEXT_ISOLATION;
322
323 /*
324 * Wa_14018913170: Applicable to all platforms supported by i915 so
325 * don't bother testing for all X/Y/Z platforms explicitly.
326 */
327 if (GUC_FIRMWARE_VER(guc) >= MAKE_GUC_VER(70, 7, 0))
328 flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6;
329
330 return flags;
331 }
332
guc_ctl_devid(struct intel_guc * guc)333 static u32 guc_ctl_devid(struct intel_guc *guc)
334 {
335 struct drm_i915_private *i915 = guc_to_i915(guc);
336
337 return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915);
338 }
339
340 /*
341 * Initialise the GuC parameter block before starting the firmware
342 * transfer. These parameters are read by the firmware on startup
343 * and cannot be changed thereafter.
344 */
guc_init_params(struct intel_guc * guc)345 static void guc_init_params(struct intel_guc *guc)
346 {
347 u32 *params = guc->params;
348 int i;
349
350 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
351
352 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
353 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
354 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
355 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
356 params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
357 params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
358
359 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
360 guc_dbg(guc, "param[%2d] = %#x\n", i, params[i]);
361 }
362
363 /*
364 * Initialise the GuC parameter block before starting the firmware
365 * transfer. These parameters are read by the firmware on startup
366 * and cannot be changed thereafter.
367 */
intel_guc_write_params(struct intel_guc * guc)368 void intel_guc_write_params(struct intel_guc *guc)
369 {
370 struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
371 int i;
372
373 /*
374 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and
375 * they are power context saved so it's ok to release forcewake
376 * when we are done here and take it again at xfer time.
377 */
378 intel_uncore_forcewake_get(uncore, FORCEWAKE_GT);
379
380 intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
381
382 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
383 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
384
385 intel_uncore_forcewake_put(uncore, FORCEWAKE_GT);
386 }
387
intel_guc_dump_time_info(struct intel_guc * guc,struct drm_printer * p)388 void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p)
389 {
390 struct intel_gt *gt = guc_to_gt(guc);
391 intel_wakeref_t wakeref;
392 u32 stamp = 0;
393 u64 ktime;
394
395 with_intel_runtime_pm(>->i915->runtime_pm, wakeref)
396 stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP);
397 ktime = ktime_get_boottime_ns();
398
399 drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime);
400 drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp);
401 drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n",
402 gt->clock_frequency, gt->clock_period_ns);
403 }
404
intel_guc_init(struct intel_guc * guc)405 int intel_guc_init(struct intel_guc *guc)
406 {
407 int ret;
408
409 ret = intel_uc_fw_init(&guc->fw);
410 if (ret)
411 goto out;
412
413 ret = intel_guc_log_create(&guc->log);
414 if (ret)
415 goto err_fw;
416
417 ret = intel_guc_capture_init(guc);
418 if (ret)
419 goto err_log;
420
421 ret = intel_guc_ads_create(guc);
422 if (ret)
423 goto err_capture;
424
425 GEM_BUG_ON(!guc->ads_vma);
426
427 ret = intel_guc_ct_init(&guc->ct);
428 if (ret)
429 goto err_ads;
430
431 if (intel_guc_submission_is_used(guc)) {
432 /*
433 * This is stuff we need to have available at fw load time
434 * if we are planning to enable submission later
435 */
436 ret = intel_guc_submission_init(guc);
437 if (ret)
438 goto err_ct;
439 }
440
441 if (intel_guc_slpc_is_used(guc)) {
442 ret = intel_guc_slpc_init(&guc->slpc);
443 if (ret)
444 goto err_submission;
445 }
446
447 /* now that everything is perma-pinned, initialize the parameters */
448 guc_init_params(guc);
449
450 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE);
451
452 return 0;
453
454 err_submission:
455 intel_guc_submission_fini(guc);
456 err_ct:
457 intel_guc_ct_fini(&guc->ct);
458 err_ads:
459 intel_guc_ads_destroy(guc);
460 err_capture:
461 intel_guc_capture_destroy(guc);
462 err_log:
463 intel_guc_log_destroy(&guc->log);
464 err_fw:
465 intel_uc_fw_fini(&guc->fw);
466 out:
467 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_INIT_FAIL);
468 guc_probe_error(guc, "failed with %pe\n", ERR_PTR(ret));
469 return ret;
470 }
471
intel_guc_fini(struct intel_guc * guc)472 void intel_guc_fini(struct intel_guc *guc)
473 {
474 if (!intel_uc_fw_is_loadable(&guc->fw))
475 return;
476
477 flush_work(&guc->dead_guc_worker);
478
479 if (intel_guc_slpc_is_used(guc))
480 intel_guc_slpc_fini(&guc->slpc);
481
482 if (intel_guc_submission_is_used(guc))
483 intel_guc_submission_fini(guc);
484
485 intel_guc_ct_fini(&guc->ct);
486
487 intel_guc_ads_destroy(guc);
488 intel_guc_capture_destroy(guc);
489 intel_guc_log_destroy(&guc->log);
490 intel_uc_fw_fini(&guc->fw);
491 }
492
493 /*
494 * This function implements the MMIO based host to GuC interface.
495 */
intel_guc_send_mmio(struct intel_guc * guc,const u32 * request,u32 len,u32 * response_buf,u32 response_buf_size)496 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len,
497 u32 *response_buf, u32 response_buf_size)
498 {
499 struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
500 u32 header;
501 int i;
502 int ret;
503
504 GEM_BUG_ON(!len);
505 GEM_BUG_ON(len > guc->send_regs.count);
506
507 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST);
508 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST);
509
510 mutex_lock(&guc->send_mutex);
511 intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
512
513 retry:
514 for (i = 0; i < len; i++)
515 intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]);
516
517 intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
518
519 intel_guc_notify(guc);
520
521 /*
522 * No GuC command should ever take longer than 10ms.
523 * Fast commands should still complete in 10us.
524 */
525 ret = __intel_wait_for_register_fw(uncore,
526 guc_send_reg(guc, 0),
527 GUC_HXG_MSG_0_ORIGIN,
528 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN,
529 GUC_HXG_ORIGIN_GUC),
530 10, 10, &header);
531 if (unlikely(ret)) {
532 timeout:
533 guc_err(guc, "mmio request %#x: no reply %x\n",
534 request[0], header);
535 goto out;
536 }
537
538 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
539 #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \
540 FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \
541 FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; })
542
543 ret = wait_for(done, 1000);
544 if (unlikely(ret))
545 goto timeout;
546 if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
547 GUC_HXG_ORIGIN_GUC))
548 goto proto;
549 #undef done
550 }
551
552 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
553 u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
554
555 guc_dbg(guc, "mmio request %#x: retrying, reason %u\n",
556 request[0], reason);
557 goto retry;
558 }
559
560 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) {
561 u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
562 u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
563
564 guc_err(guc, "mmio request %#x: failure %x/%u\n",
565 request[0], error, hint);
566 ret = -ENXIO;
567 goto out;
568 }
569
570 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) {
571 proto:
572 guc_err(guc, "mmio request %#x: unexpected reply %#x\n",
573 request[0], header);
574 ret = -EPROTO;
575 goto out;
576 }
577
578 if (response_buf) {
579 int count = min(response_buf_size, guc->send_regs.count);
580
581 GEM_BUG_ON(!count);
582
583 response_buf[0] = header;
584
585 for (i = 1; i < count; i++)
586 response_buf[i] = intel_uncore_read(uncore,
587 guc_send_reg(guc, i));
588
589 /* Use number of copied dwords as our return value */
590 ret = count;
591 } else {
592 /* Use data from the GuC response as our return value */
593 ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
594 }
595
596 out:
597 intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
598 mutex_unlock(&guc->send_mutex);
599
600 return ret;
601 }
602
intel_guc_crash_process_msg(struct intel_guc * guc,u32 action)603 int intel_guc_crash_process_msg(struct intel_guc *guc, u32 action)
604 {
605 if (action == INTEL_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED)
606 guc_err(guc, "Crash dump notification\n");
607 else if (action == INTEL_GUC_ACTION_NOTIFY_EXCEPTION)
608 guc_err(guc, "Exception notification\n");
609 else
610 guc_err(guc, "Unknown crash notification: 0x%04X\n", action);
611
612 queue_work(system_unbound_wq, &guc->dead_guc_worker);
613
614 return 0;
615 }
616
intel_guc_to_host_process_recv_msg(struct intel_guc * guc,const u32 * payload,u32 len)617 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
618 const u32 *payload, u32 len)
619 {
620 u32 msg;
621
622 if (unlikely(!len))
623 return -EPROTO;
624
625 /* Make sure to handle only enabled messages */
626 msg = payload[0] & guc->msg_enabled_mask;
627
628 if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED)
629 guc_err(guc, "Received early crash dump notification!\n");
630 if (msg & INTEL_GUC_RECV_MSG_EXCEPTION)
631 guc_err(guc, "Received early exception notification!\n");
632
633 if (msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED | INTEL_GUC_RECV_MSG_EXCEPTION))
634 queue_work(system_unbound_wq, &guc->dead_guc_worker);
635
636 return 0;
637 }
638
639 /**
640 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
641 * @guc: intel_guc structure
642 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
643 *
644 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
645 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
646 * intel_huc_auth().
647 *
648 * Return: non-zero code on error
649 */
intel_guc_auth_huc(struct intel_guc * guc,u32 rsa_offset)650 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
651 {
652 u32 action[] = {
653 INTEL_GUC_ACTION_AUTHENTICATE_HUC,
654 rsa_offset
655 };
656
657 return intel_guc_send(guc, action, ARRAY_SIZE(action));
658 }
659
660 /**
661 * intel_guc_suspend() - notify GuC entering suspend state
662 * @guc: the guc
663 */
intel_guc_suspend(struct intel_guc * guc)664 int intel_guc_suspend(struct intel_guc *guc)
665 {
666 int ret;
667 u32 action[] = {
668 INTEL_GUC_ACTION_CLIENT_SOFT_RESET,
669 };
670
671 if (!intel_guc_is_ready(guc))
672 return 0;
673
674 if (intel_guc_submission_is_used(guc)) {
675 flush_work(&guc->dead_guc_worker);
676
677 /*
678 * This H2G MMIO command tears down the GuC in two steps. First it will
679 * generate a G2H CTB for every active context indicating a reset. In
680 * practice the i915 shouldn't ever get a G2H as suspend should only be
681 * called when the GPU is idle. Next, it tears down the CTBs and this
682 * H2G MMIO command completes.
683 *
684 * Don't abort on a failure code from the GuC. Keep going and do the
685 * clean up in santize() and re-initialisation on resume and hopefully
686 * the error here won't be problematic.
687 */
688 ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0);
689 if (ret)
690 guc_err(guc, "suspend: RESET_CLIENT action failed with %pe\n",
691 ERR_PTR(ret));
692 }
693
694 /* Signal that the GuC isn't running. */
695 intel_guc_sanitize(guc);
696
697 return 0;
698 }
699
700 /**
701 * intel_guc_resume() - notify GuC resuming from suspend state
702 * @guc: the guc
703 */
intel_guc_resume(struct intel_guc * guc)704 int intel_guc_resume(struct intel_guc *guc)
705 {
706 /*
707 * NB: This function can still be called even if GuC submission is
708 * disabled, e.g. if GuC is enabled for HuC authentication only. Thus,
709 * if any code is later added here, it must be support doing nothing
710 * if submission is disabled (as per intel_guc_suspend).
711 */
712 return 0;
713 }
714
715 /**
716 * DOC: GuC Memory Management
717 *
718 * GuC can't allocate any memory for its own usage, so all the allocations must
719 * be handled by the host driver. GuC accesses the memory via the GGTT, with the
720 * exception of the top and bottom parts of the 4GB address space, which are
721 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
722 * or other parts of the HW. The driver must take care not to place objects that
723 * the GuC is going to access in these reserved ranges. The layout of the GuC
724 * address space is shown below:
725 *
726 * ::
727 *
728 * +===========> +====================+ <== FFFF_FFFF
729 * ^ | Reserved |
730 * | +====================+ <== GUC_GGTT_TOP
731 * | | |
732 * | | DRAM |
733 * GuC | |
734 * Address +===> +====================+ <== GuC ggtt_pin_bias
735 * Space ^ | |
736 * | | | |
737 * | GuC | GuC |
738 * | WOPCM | WOPCM |
739 * | Size | |
740 * | | | |
741 * v v | |
742 * +=======+===> +====================+ <== 0000_0000
743 *
744 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
745 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
746 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
747 */
748
749 /**
750 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
751 * @guc: the guc
752 * @size: size of area to allocate (both virtual space and memory)
753 *
754 * This is a wrapper to create an object for use with the GuC. In order to
755 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
756 * both some backing storage and a range inside the Global GTT. We must pin
757 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
758 * range is reserved inside GuC.
759 *
760 * Return: A i915_vma if successful, otherwise an ERR_PTR.
761 */
intel_guc_allocate_vma(struct intel_guc * guc,u32 size)762 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
763 {
764 struct intel_gt *gt = guc_to_gt(guc);
765 struct drm_i915_gem_object *obj;
766 struct i915_vma *vma;
767 u64 flags;
768 int ret;
769
770 if (HAS_LMEM(gt->i915))
771 obj = i915_gem_object_create_lmem(gt->i915, size,
772 I915_BO_ALLOC_CPU_CLEAR |
773 I915_BO_ALLOC_CONTIGUOUS |
774 I915_BO_ALLOC_PM_EARLY);
775 else
776 obj = i915_gem_object_create_shmem(gt->i915, size);
777
778 if (IS_ERR(obj))
779 return ERR_CAST(obj);
780
781 /*
782 * Wa_22016122933: For Media version 13.0, all Media GT shared
783 * memory needs to be mapped as WC on CPU side and UC (PAT
784 * index 2) on GPU side.
785 */
786 if (intel_gt_needs_wa_22016122933(gt))
787 i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE);
788
789 vma = i915_vma_instance(obj, >->ggtt->vm, NULL);
790 if (IS_ERR(vma))
791 goto err;
792
793 flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
794 ret = i915_ggtt_pin(vma, NULL, 0, flags);
795 if (ret) {
796 vma = ERR_PTR(ret);
797 goto err;
798 }
799
800 return i915_vma_make_unshrinkable(vma);
801
802 err:
803 i915_gem_object_put(obj);
804 return vma;
805 }
806
807 /**
808 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage
809 * @guc: the guc
810 * @size: size of area to allocate (both virtual space and memory)
811 * @out_vma: return variable for the allocated vma pointer
812 * @out_vaddr: return variable for the obj mapping
813 *
814 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated
815 * object with I915_MAP_WB.
816 *
817 * Return: 0 if successful, a negative errno code otherwise.
818 */
intel_guc_allocate_and_map_vma(struct intel_guc * guc,u32 size,struct i915_vma ** out_vma,void ** out_vaddr)819 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size,
820 struct i915_vma **out_vma, void **out_vaddr)
821 {
822 struct i915_vma *vma;
823 void *vaddr;
824
825 vma = intel_guc_allocate_vma(guc, size);
826 if (IS_ERR(vma))
827 return PTR_ERR(vma);
828
829 vaddr = i915_gem_object_pin_map_unlocked(vma->obj,
830 intel_gt_coherent_map_type(guc_to_gt(guc),
831 vma->obj, true));
832 if (IS_ERR(vaddr)) {
833 i915_vma_unpin_and_release(&vma, 0);
834 return PTR_ERR(vaddr);
835 }
836
837 *out_vma = vma;
838 *out_vaddr = vaddr;
839
840 return 0;
841 }
842
__guc_action_self_cfg(struct intel_guc * guc,u16 key,u16 len,u64 value)843 static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
844 {
845 u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
846 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
847 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
848 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG),
849 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
850 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
851 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)),
852 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)),
853 };
854 int ret;
855
856 GEM_BUG_ON(len > 2);
857 GEM_BUG_ON(len == 1 && upper_32_bits(value));
858
859 /* Self config must go over MMIO */
860 ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0);
861
862 if (unlikely(ret < 0))
863 return ret;
864 if (unlikely(ret > 1))
865 return -EPROTO;
866 if (unlikely(!ret))
867 return -ENOKEY;
868
869 return 0;
870 }
871
__guc_self_cfg(struct intel_guc * guc,u16 key,u16 len,u64 value)872 static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
873 {
874 int err = __guc_action_self_cfg(guc, key, len, value);
875
876 if (unlikely(err))
877 guc_probe_error(guc, "Unsuccessful self-config (%pe) key %#hx value %#llx\n",
878 ERR_PTR(err), key, value);
879 return err;
880 }
881
intel_guc_self_cfg32(struct intel_guc * guc,u16 key,u32 value)882 int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value)
883 {
884 return __guc_self_cfg(guc, key, 1, value);
885 }
886
intel_guc_self_cfg64(struct intel_guc * guc,u16 key,u64 value)887 int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value)
888 {
889 return __guc_self_cfg(guc, key, 2, value);
890 }
891
892 /**
893 * intel_guc_load_status - dump information about GuC load status
894 * @guc: the GuC
895 * @p: the &drm_printer
896 *
897 * Pretty printer for GuC load status.
898 */
intel_guc_load_status(struct intel_guc * guc,struct drm_printer * p)899 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p)
900 {
901 struct intel_gt *gt = guc_to_gt(guc);
902 struct intel_uncore *uncore = gt->uncore;
903 intel_wakeref_t wakeref;
904
905 if (!intel_guc_is_supported(guc)) {
906 drm_printf(p, "GuC not supported\n");
907 return;
908 }
909
910 if (!intel_guc_is_wanted(guc)) {
911 drm_printf(p, "GuC disabled\n");
912 return;
913 }
914
915 intel_uc_fw_dump(&guc->fw, p);
916
917 with_intel_runtime_pm(uncore->rpm, wakeref) {
918 u32 status = intel_uncore_read(uncore, GUC_STATUS);
919 u32 i;
920
921 drm_printf(p, "GuC status 0x%08x:\n", status);
922 drm_printf(p, "\tBootrom status = 0x%x\n",
923 (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
924 drm_printf(p, "\tuKernel status = 0x%x\n",
925 (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
926 drm_printf(p, "\tMIA Core status = 0x%x\n",
927 (status & GS_MIA_MASK) >> GS_MIA_SHIFT);
928 drm_puts(p, "Scratch registers:\n");
929 for (i = 0; i < 16; i++) {
930 drm_printf(p, "\t%2d: \t0x%x\n",
931 i, intel_uncore_read(uncore, SOFT_SCRATCH(i)));
932 }
933 }
934 }
935
intel_guc_write_barrier(struct intel_guc * guc)936 void intel_guc_write_barrier(struct intel_guc *guc)
937 {
938 struct intel_gt *gt = guc_to_gt(guc);
939
940 if (i915_gem_object_is_lmem(guc->ct.vma->obj)) {
941 /*
942 * Ensure intel_uncore_write_fw can be used rather than
943 * intel_uncore_write.
944 */
945 GEM_BUG_ON(guc->send_regs.fw_domains);
946
947 /*
948 * This register is used by the i915 and GuC for MMIO based
949 * communication. Once we are in this code CTBs are the only
950 * method the i915 uses to communicate with the GuC so it is
951 * safe to write to this register (a value of 0 is NOP for MMIO
952 * communication). If we ever start mixing CTBs and MMIOs a new
953 * register will have to be chosen. This function is also used
954 * to enforce ordering of a work queue item write and an update
955 * to the process descriptor. When a work queue is being used,
956 * CTBs are also the only mechanism of communication.
957 */
958 intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0);
959 } else {
960 /* wmb() sufficient for a barrier if in smem */
961 wmb();
962 }
963 }
964