1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2019 Intel Corporation 4 */ 5 6 #include "gem/i915_gem_lmem.h" 7 #include "gt/intel_gt.h" 8 #include "gt/intel_gt_irq.h" 9 #include "gt/intel_gt_pm_irq.h" 10 #include "gt/intel_gt_regs.h" 11 #include "intel_guc.h" 12 #include "intel_guc_ads.h" 13 #include "intel_guc_capture.h" 14 #include "intel_guc_print.h" 15 #include "intel_guc_slpc.h" 16 #include "intel_guc_submission.h" 17 #include "i915_drv.h" 18 #include "i915_irq.h" 19 #include "i915_reg.h" 20 21 /** 22 * DOC: GuC 23 * 24 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is 25 * designed to offload some of the functionality usually performed by the host 26 * driver; currently the main operations it can take care of are: 27 * 28 * - Authentication of the HuC, which is required to fully enable HuC usage. 29 * - Low latency graphics context scheduling (a.k.a. GuC submission). 30 * - GT Power management. 31 * 32 * The enable_guc module parameter can be used to select which of those 33 * operations to enable within GuC. Note that not all the operations are 34 * supported on all gen9+ platforms. 35 * 36 * Enabling the GuC is not mandatory and therefore the firmware is only loaded 37 * if at least one of the operations is selected. However, not loading the GuC 38 * might result in the loss of some features that do require the GuC (currently 39 * just the HuC, but more are expected to land in the future). 40 */ 41 42 void intel_guc_notify(struct intel_guc *guc) 43 { 44 struct intel_gt *gt = guc_to_gt(guc); 45 46 /* 47 * On Gen11+, the value written to the register is passes as a payload 48 * to the FW. However, the FW currently treats all values the same way 49 * (H2G interrupt), so we can just write the value that the HW expects 50 * on older gens. 51 */ 52 intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER); 53 } 54 55 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i) 56 { 57 GEM_BUG_ON(!guc->send_regs.base); 58 GEM_BUG_ON(!guc->send_regs.count); 59 GEM_BUG_ON(i >= guc->send_regs.count); 60 61 return _MMIO(guc->send_regs.base + 4 * i); 62 } 63 64 void intel_guc_init_send_regs(struct intel_guc *guc) 65 { 66 struct intel_gt *gt = guc_to_gt(guc); 67 enum forcewake_domains fw_domains = 0; 68 unsigned int i; 69 70 GEM_BUG_ON(!guc->send_regs.base); 71 GEM_BUG_ON(!guc->send_regs.count); 72 73 for (i = 0; i < guc->send_regs.count; i++) { 74 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore, 75 guc_send_reg(guc, i), 76 FW_REG_READ | FW_REG_WRITE); 77 } 78 guc->send_regs.fw_domains = fw_domains; 79 } 80 81 static void gen9_reset_guc_interrupts(struct intel_guc *guc) 82 { 83 struct intel_gt *gt = guc_to_gt(guc); 84 85 assert_rpm_wakelock_held(>->i915->runtime_pm); 86 87 spin_lock_irq(gt->irq_lock); 88 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events); 89 spin_unlock_irq(gt->irq_lock); 90 } 91 92 static void gen9_enable_guc_interrupts(struct intel_guc *guc) 93 { 94 struct intel_gt *gt = guc_to_gt(guc); 95 96 assert_rpm_wakelock_held(>->i915->runtime_pm); 97 98 spin_lock_irq(gt->irq_lock); 99 guc_WARN_ON_ONCE(guc, intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) & 100 gt->pm_guc_events); 101 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events); 102 spin_unlock_irq(gt->irq_lock); 103 104 guc->interrupts.enabled = true; 105 } 106 107 static void gen9_disable_guc_interrupts(struct intel_guc *guc) 108 { 109 struct intel_gt *gt = guc_to_gt(guc); 110 111 assert_rpm_wakelock_held(>->i915->runtime_pm); 112 guc->interrupts.enabled = false; 113 114 spin_lock_irq(gt->irq_lock); 115 116 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events); 117 118 spin_unlock_irq(gt->irq_lock); 119 intel_synchronize_irq(gt->i915); 120 121 gen9_reset_guc_interrupts(guc); 122 } 123 124 static bool __gen11_reset_guc_interrupts(struct intel_gt *gt) 125 { 126 u32 irq = gt->type == GT_MEDIA ? MTL_MGUC : GEN11_GUC; 127 128 lockdep_assert_held(gt->irq_lock); 129 return gen11_gt_reset_one_iir(gt, 0, irq); 130 } 131 132 static void gen11_reset_guc_interrupts(struct intel_guc *guc) 133 { 134 struct intel_gt *gt = guc_to_gt(guc); 135 136 spin_lock_irq(gt->irq_lock); 137 __gen11_reset_guc_interrupts(gt); 138 spin_unlock_irq(gt->irq_lock); 139 } 140 141 static void gen11_enable_guc_interrupts(struct intel_guc *guc) 142 { 143 struct intel_gt *gt = guc_to_gt(guc); 144 145 spin_lock_irq(gt->irq_lock); 146 __gen11_reset_guc_interrupts(gt); 147 spin_unlock_irq(gt->irq_lock); 148 149 guc->interrupts.enabled = true; 150 } 151 152 static void gen11_disable_guc_interrupts(struct intel_guc *guc) 153 { 154 struct intel_gt *gt = guc_to_gt(guc); 155 156 guc->interrupts.enabled = false; 157 intel_synchronize_irq(gt->i915); 158 159 gen11_reset_guc_interrupts(guc); 160 } 161 162 static void guc_dead_worker_func(struct work_struct *w) 163 { 164 struct intel_guc *guc = container_of(w, struct intel_guc, dead_guc_worker); 165 struct intel_gt *gt = guc_to_gt(guc); 166 unsigned long last = guc->last_dead_guc_jiffies; 167 unsigned long delta = jiffies_to_msecs(jiffies - last); 168 169 if (delta < 500) { 170 intel_gt_set_wedged(gt); 171 } else { 172 intel_gt_handle_error(gt, ALL_ENGINES, I915_ERROR_CAPTURE, "dead GuC"); 173 guc->last_dead_guc_jiffies = jiffies; 174 } 175 } 176 177 void intel_guc_init_early(struct intel_guc *guc) 178 { 179 struct intel_gt *gt = guc_to_gt(guc); 180 struct drm_i915_private *i915 = gt->i915; 181 182 intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC, true); 183 intel_guc_ct_init_early(&guc->ct); 184 intel_guc_log_init_early(&guc->log); 185 intel_guc_submission_init_early(guc); 186 intel_guc_slpc_init_early(&guc->slpc); 187 intel_guc_rc_init_early(guc); 188 189 INIT_WORK(&guc->dead_guc_worker, guc_dead_worker_func); 190 191 mutex_init(&guc->send_mutex); 192 spin_lock_init(&guc->irq_lock); 193 if (GRAPHICS_VER(i915) >= 11) { 194 guc->interrupts.reset = gen11_reset_guc_interrupts; 195 guc->interrupts.enable = gen11_enable_guc_interrupts; 196 guc->interrupts.disable = gen11_disable_guc_interrupts; 197 if (gt->type == GT_MEDIA) { 198 guc->notify_reg = MEDIA_GUC_HOST_INTERRUPT; 199 guc->send_regs.base = i915_mmio_reg_offset(MEDIA_SOFT_SCRATCH(0)); 200 } else { 201 guc->notify_reg = GEN11_GUC_HOST_INTERRUPT; 202 guc->send_regs.base = i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0)); 203 } 204 205 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT; 206 207 } else { 208 guc->notify_reg = GUC_SEND_INTERRUPT; 209 guc->interrupts.reset = gen9_reset_guc_interrupts; 210 guc->interrupts.enable = gen9_enable_guc_interrupts; 211 guc->interrupts.disable = gen9_disable_guc_interrupts; 212 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0)); 213 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN; 214 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT); 215 } 216 217 intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION | 218 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED); 219 } 220 221 void intel_guc_init_late(struct intel_guc *guc) 222 { 223 intel_guc_ads_init_late(guc); 224 } 225 226 static u32 guc_ctl_debug_flags(struct intel_guc *guc) 227 { 228 u32 level = intel_guc_log_get_level(&guc->log); 229 u32 flags = 0; 230 231 if (!GUC_LOG_LEVEL_IS_VERBOSE(level)) 232 flags |= GUC_LOG_DISABLED; 233 else 234 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) << 235 GUC_LOG_VERBOSITY_SHIFT; 236 237 return flags; 238 } 239 240 static u32 guc_ctl_feature_flags(struct intel_guc *guc) 241 { 242 u32 flags = 0; 243 244 if (!intel_guc_submission_is_used(guc)) 245 flags |= GUC_CTL_DISABLE_SCHEDULER; 246 247 if (intel_guc_slpc_is_used(guc)) 248 flags |= GUC_CTL_ENABLE_SLPC; 249 250 return flags; 251 } 252 253 static u32 guc_ctl_log_params_flags(struct intel_guc *guc) 254 { 255 struct intel_guc_log *log = &guc->log; 256 u32 offset, flags; 257 258 GEM_BUG_ON(!log->sizes_initialised); 259 260 offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT; 261 262 flags = GUC_LOG_VALID | 263 GUC_LOG_NOTIFY_ON_HALF_FULL | 264 log->sizes[GUC_LOG_SECTIONS_DEBUG].flag | 265 log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag | 266 (log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) | 267 (log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) | 268 (log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) | 269 (offset << GUC_LOG_BUF_ADDR_SHIFT); 270 271 return flags; 272 } 273 274 static u32 guc_ctl_ads_flags(struct intel_guc *guc) 275 { 276 u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT; 277 u32 flags = ads << GUC_ADS_ADDR_SHIFT; 278 279 return flags; 280 } 281 282 static u32 guc_ctl_wa_flags(struct intel_guc *guc) 283 { 284 struct intel_gt *gt = guc_to_gt(guc); 285 u32 flags = 0; 286 287 /* Wa_22012773006:gen11,gen12 < XeHP */ 288 if (GRAPHICS_VER(gt->i915) >= 11 && 289 GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 50)) 290 flags |= GUC_WA_POLLCS; 291 292 /* Wa_14014475959 */ 293 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 294 IS_DG2(gt->i915)) 295 flags |= GUC_WA_HOLD_CCS_SWITCHOUT; 296 297 /* 298 * Wa_14012197797 299 * Wa_22011391025 300 * 301 * The same WA bit is used for both and 22011391025 is applicable to 302 * all DG2. 303 */ 304 if (IS_DG2(gt->i915)) 305 flags |= GUC_WA_DUAL_QUEUE; 306 307 /* Wa_22011802037: graphics version 11/12 */ 308 if (intel_engine_reset_needs_wa_22011802037(gt)) 309 flags |= GUC_WA_PRE_PARSER; 310 311 /* 312 * Wa_22012727170 313 * Wa_22012727685 314 */ 315 if (IS_DG2_G11(gt->i915)) 316 flags |= GUC_WA_CONTEXT_ISOLATION; 317 318 /* Wa_16015675438 */ 319 if (!RCS_MASK(gt)) 320 flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST; 321 322 /* Wa_14018913170 */ 323 if (GUC_FIRMWARE_VER(guc) >= MAKE_GUC_VER(70, 7, 0)) { 324 if (IS_DG2(gt->i915) || IS_METEORLAKE(gt->i915) || IS_PONTEVECCHIO(gt->i915)) 325 flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6; 326 } 327 328 return flags; 329 } 330 331 static u32 guc_ctl_devid(struct intel_guc *guc) 332 { 333 struct drm_i915_private *i915 = guc_to_i915(guc); 334 335 return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915); 336 } 337 338 /* 339 * Initialise the GuC parameter block before starting the firmware 340 * transfer. These parameters are read by the firmware on startup 341 * and cannot be changed thereafter. 342 */ 343 static void guc_init_params(struct intel_guc *guc) 344 { 345 u32 *params = guc->params; 346 int i; 347 348 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32)); 349 350 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); 351 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc); 352 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); 353 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); 354 params[GUC_CTL_WA] = guc_ctl_wa_flags(guc); 355 params[GUC_CTL_DEVID] = guc_ctl_devid(guc); 356 357 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 358 guc_dbg(guc, "param[%2d] = %#x\n", i, params[i]); 359 } 360 361 /* 362 * Initialise the GuC parameter block before starting the firmware 363 * transfer. These parameters are read by the firmware on startup 364 * and cannot be changed thereafter. 365 */ 366 void intel_guc_write_params(struct intel_guc *guc) 367 { 368 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 369 int i; 370 371 /* 372 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and 373 * they are power context saved so it's ok to release forcewake 374 * when we are done here and take it again at xfer time. 375 */ 376 intel_uncore_forcewake_get(uncore, FORCEWAKE_GT); 377 378 intel_uncore_write(uncore, SOFT_SCRATCH(0), 0); 379 380 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 381 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]); 382 383 intel_uncore_forcewake_put(uncore, FORCEWAKE_GT); 384 } 385 386 void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p) 387 { 388 struct intel_gt *gt = guc_to_gt(guc); 389 intel_wakeref_t wakeref; 390 u32 stamp = 0; 391 u64 ktime; 392 393 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) 394 stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP); 395 ktime = ktime_get_boottime_ns(); 396 397 drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime); 398 drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp); 399 drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n", 400 gt->clock_frequency, gt->clock_period_ns); 401 } 402 403 int intel_guc_init(struct intel_guc *guc) 404 { 405 int ret; 406 407 ret = intel_uc_fw_init(&guc->fw); 408 if (ret) 409 goto out; 410 411 ret = intel_guc_log_create(&guc->log); 412 if (ret) 413 goto err_fw; 414 415 ret = intel_guc_capture_init(guc); 416 if (ret) 417 goto err_log; 418 419 ret = intel_guc_ads_create(guc); 420 if (ret) 421 goto err_capture; 422 423 GEM_BUG_ON(!guc->ads_vma); 424 425 ret = intel_guc_ct_init(&guc->ct); 426 if (ret) 427 goto err_ads; 428 429 if (intel_guc_submission_is_used(guc)) { 430 /* 431 * This is stuff we need to have available at fw load time 432 * if we are planning to enable submission later 433 */ 434 ret = intel_guc_submission_init(guc); 435 if (ret) 436 goto err_ct; 437 } 438 439 if (intel_guc_slpc_is_used(guc)) { 440 ret = intel_guc_slpc_init(&guc->slpc); 441 if (ret) 442 goto err_submission; 443 } 444 445 /* now that everything is perma-pinned, initialize the parameters */ 446 guc_init_params(guc); 447 448 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE); 449 450 return 0; 451 452 err_submission: 453 intel_guc_submission_fini(guc); 454 err_ct: 455 intel_guc_ct_fini(&guc->ct); 456 err_ads: 457 intel_guc_ads_destroy(guc); 458 err_capture: 459 intel_guc_capture_destroy(guc); 460 err_log: 461 intel_guc_log_destroy(&guc->log); 462 err_fw: 463 intel_uc_fw_fini(&guc->fw); 464 out: 465 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_INIT_FAIL); 466 guc_probe_error(guc, "failed with %pe\n", ERR_PTR(ret)); 467 return ret; 468 } 469 470 void intel_guc_fini(struct intel_guc *guc) 471 { 472 if (!intel_uc_fw_is_loadable(&guc->fw)) 473 return; 474 475 flush_work(&guc->dead_guc_worker); 476 477 if (intel_guc_slpc_is_used(guc)) 478 intel_guc_slpc_fini(&guc->slpc); 479 480 if (intel_guc_submission_is_used(guc)) 481 intel_guc_submission_fini(guc); 482 483 intel_guc_ct_fini(&guc->ct); 484 485 intel_guc_ads_destroy(guc); 486 intel_guc_capture_destroy(guc); 487 intel_guc_log_destroy(&guc->log); 488 intel_uc_fw_fini(&guc->fw); 489 } 490 491 /* 492 * This function implements the MMIO based host to GuC interface. 493 */ 494 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len, 495 u32 *response_buf, u32 response_buf_size) 496 { 497 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 498 u32 header; 499 int i; 500 int ret; 501 502 GEM_BUG_ON(!len); 503 GEM_BUG_ON(len > guc->send_regs.count); 504 505 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST); 506 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST); 507 508 mutex_lock(&guc->send_mutex); 509 intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains); 510 511 retry: 512 for (i = 0; i < len; i++) 513 intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]); 514 515 intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1)); 516 517 intel_guc_notify(guc); 518 519 /* 520 * No GuC command should ever take longer than 10ms. 521 * Fast commands should still complete in 10us. 522 */ 523 ret = __intel_wait_for_register_fw(uncore, 524 guc_send_reg(guc, 0), 525 GUC_HXG_MSG_0_ORIGIN, 526 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, 527 GUC_HXG_ORIGIN_GUC), 528 10, 10, &header); 529 if (unlikely(ret)) { 530 timeout: 531 guc_err(guc, "mmio request %#x: no reply %x\n", 532 request[0], header); 533 goto out; 534 } 535 536 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) { 537 #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \ 538 FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \ 539 FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; }) 540 541 ret = wait_for(done, 1000); 542 if (unlikely(ret)) 543 goto timeout; 544 if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != 545 GUC_HXG_ORIGIN_GUC)) 546 goto proto; 547 #undef done 548 } 549 550 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) { 551 u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header); 552 553 guc_dbg(guc, "mmio request %#x: retrying, reason %u\n", 554 request[0], reason); 555 goto retry; 556 } 557 558 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) { 559 u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header); 560 u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header); 561 562 guc_err(guc, "mmio request %#x: failure %x/%u\n", 563 request[0], error, hint); 564 ret = -ENXIO; 565 goto out; 566 } 567 568 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) { 569 proto: 570 guc_err(guc, "mmio request %#x: unexpected reply %#x\n", 571 request[0], header); 572 ret = -EPROTO; 573 goto out; 574 } 575 576 if (response_buf) { 577 int count = min(response_buf_size, guc->send_regs.count); 578 579 GEM_BUG_ON(!count); 580 581 response_buf[0] = header; 582 583 for (i = 1; i < count; i++) 584 response_buf[i] = intel_uncore_read(uncore, 585 guc_send_reg(guc, i)); 586 587 /* Use number of copied dwords as our return value */ 588 ret = count; 589 } else { 590 /* Use data from the GuC response as our return value */ 591 ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header); 592 } 593 594 out: 595 intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains); 596 mutex_unlock(&guc->send_mutex); 597 598 return ret; 599 } 600 601 int intel_guc_crash_process_msg(struct intel_guc *guc, u32 action) 602 { 603 if (action == INTEL_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED) 604 guc_err(guc, "Crash dump notification\n"); 605 else if (action == INTEL_GUC_ACTION_NOTIFY_EXCEPTION) 606 guc_err(guc, "Exception notification\n"); 607 else 608 guc_err(guc, "Unknown crash notification: 0x%04X\n", action); 609 610 queue_work(system_unbound_wq, &guc->dead_guc_worker); 611 612 return 0; 613 } 614 615 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc, 616 const u32 *payload, u32 len) 617 { 618 u32 msg; 619 620 if (unlikely(!len)) 621 return -EPROTO; 622 623 /* Make sure to handle only enabled messages */ 624 msg = payload[0] & guc->msg_enabled_mask; 625 626 if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED) 627 guc_err(guc, "Received early crash dump notification!\n"); 628 if (msg & INTEL_GUC_RECV_MSG_EXCEPTION) 629 guc_err(guc, "Received early exception notification!\n"); 630 631 if (msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED | INTEL_GUC_RECV_MSG_EXCEPTION)) 632 queue_work(system_unbound_wq, &guc->dead_guc_worker); 633 634 return 0; 635 } 636 637 /** 638 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode 639 * @guc: intel_guc structure 640 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma 641 * 642 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send 643 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by 644 * intel_huc_auth(). 645 * 646 * Return: non-zero code on error 647 */ 648 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset) 649 { 650 u32 action[] = { 651 INTEL_GUC_ACTION_AUTHENTICATE_HUC, 652 rsa_offset 653 }; 654 655 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 656 } 657 658 /** 659 * intel_guc_suspend() - notify GuC entering suspend state 660 * @guc: the guc 661 */ 662 int intel_guc_suspend(struct intel_guc *guc) 663 { 664 int ret; 665 u32 action[] = { 666 INTEL_GUC_ACTION_CLIENT_SOFT_RESET, 667 }; 668 669 if (!intel_guc_is_ready(guc)) 670 return 0; 671 672 if (intel_guc_submission_is_used(guc)) { 673 flush_work(&guc->dead_guc_worker); 674 675 /* 676 * This H2G MMIO command tears down the GuC in two steps. First it will 677 * generate a G2H CTB for every active context indicating a reset. In 678 * practice the i915 shouldn't ever get a G2H as suspend should only be 679 * called when the GPU is idle. Next, it tears down the CTBs and this 680 * H2G MMIO command completes. 681 * 682 * Don't abort on a failure code from the GuC. Keep going and do the 683 * clean up in santize() and re-initialisation on resume and hopefully 684 * the error here won't be problematic. 685 */ 686 ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0); 687 if (ret) 688 guc_err(guc, "suspend: RESET_CLIENT action failed with %pe\n", 689 ERR_PTR(ret)); 690 } 691 692 /* Signal that the GuC isn't running. */ 693 intel_guc_sanitize(guc); 694 695 return 0; 696 } 697 698 /** 699 * intel_guc_resume() - notify GuC resuming from suspend state 700 * @guc: the guc 701 */ 702 int intel_guc_resume(struct intel_guc *guc) 703 { 704 /* 705 * NB: This function can still be called even if GuC submission is 706 * disabled, e.g. if GuC is enabled for HuC authentication only. Thus, 707 * if any code is later added here, it must be support doing nothing 708 * if submission is disabled (as per intel_guc_suspend). 709 */ 710 return 0; 711 } 712 713 /** 714 * DOC: GuC Memory Management 715 * 716 * GuC can't allocate any memory for its own usage, so all the allocations must 717 * be handled by the host driver. GuC accesses the memory via the GGTT, with the 718 * exception of the top and bottom parts of the 4GB address space, which are 719 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM) 720 * or other parts of the HW. The driver must take care not to place objects that 721 * the GuC is going to access in these reserved ranges. The layout of the GuC 722 * address space is shown below: 723 * 724 * :: 725 * 726 * +===========> +====================+ <== FFFF_FFFF 727 * ^ | Reserved | 728 * | +====================+ <== GUC_GGTT_TOP 729 * | | | 730 * | | DRAM | 731 * GuC | | 732 * Address +===> +====================+ <== GuC ggtt_pin_bias 733 * Space ^ | | 734 * | | | | 735 * | GuC | GuC | 736 * | WOPCM | WOPCM | 737 * | Size | | 738 * | | | | 739 * v v | | 740 * +=======+===> +====================+ <== 0000_0000 741 * 742 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM 743 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped 744 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size. 745 */ 746 747 /** 748 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage 749 * @guc: the guc 750 * @size: size of area to allocate (both virtual space and memory) 751 * 752 * This is a wrapper to create an object for use with the GuC. In order to 753 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate 754 * both some backing storage and a range inside the Global GTT. We must pin 755 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that 756 * range is reserved inside GuC. 757 * 758 * Return: A i915_vma if successful, otherwise an ERR_PTR. 759 */ 760 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size) 761 { 762 struct intel_gt *gt = guc_to_gt(guc); 763 struct drm_i915_gem_object *obj; 764 struct i915_vma *vma; 765 u64 flags; 766 int ret; 767 768 if (HAS_LMEM(gt->i915)) 769 obj = i915_gem_object_create_lmem(gt->i915, size, 770 I915_BO_ALLOC_CPU_CLEAR | 771 I915_BO_ALLOC_CONTIGUOUS | 772 I915_BO_ALLOC_PM_EARLY); 773 else 774 obj = i915_gem_object_create_shmem(gt->i915, size); 775 776 if (IS_ERR(obj)) 777 return ERR_CAST(obj); 778 779 /* 780 * Wa_22016122933: For Media version 13.0, all Media GT shared 781 * memory needs to be mapped as WC on CPU side and UC (PAT 782 * index 2) on GPU side. 783 */ 784 if (intel_gt_needs_wa_22016122933(gt)) 785 i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE); 786 787 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 788 if (IS_ERR(vma)) 789 goto err; 790 791 flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma); 792 ret = i915_ggtt_pin(vma, NULL, 0, flags); 793 if (ret) { 794 vma = ERR_PTR(ret); 795 goto err; 796 } 797 798 return i915_vma_make_unshrinkable(vma); 799 800 err: 801 i915_gem_object_put(obj); 802 return vma; 803 } 804 805 /** 806 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage 807 * @guc: the guc 808 * @size: size of area to allocate (both virtual space and memory) 809 * @out_vma: return variable for the allocated vma pointer 810 * @out_vaddr: return variable for the obj mapping 811 * 812 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated 813 * object with I915_MAP_WB. 814 * 815 * Return: 0 if successful, a negative errno code otherwise. 816 */ 817 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size, 818 struct i915_vma **out_vma, void **out_vaddr) 819 { 820 struct i915_vma *vma; 821 void *vaddr; 822 823 vma = intel_guc_allocate_vma(guc, size); 824 if (IS_ERR(vma)) 825 return PTR_ERR(vma); 826 827 vaddr = i915_gem_object_pin_map_unlocked(vma->obj, 828 intel_gt_coherent_map_type(guc_to_gt(guc), 829 vma->obj, true)); 830 if (IS_ERR(vaddr)) { 831 i915_vma_unpin_and_release(&vma, 0); 832 return PTR_ERR(vaddr); 833 } 834 835 *out_vma = vma; 836 *out_vaddr = vaddr; 837 838 return 0; 839 } 840 841 static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) 842 { 843 u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = { 844 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) | 845 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | 846 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG), 847 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) | 848 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len), 849 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)), 850 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)), 851 }; 852 int ret; 853 854 GEM_BUG_ON(len > 2); 855 GEM_BUG_ON(len == 1 && upper_32_bits(value)); 856 857 /* Self config must go over MMIO */ 858 ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0); 859 860 if (unlikely(ret < 0)) 861 return ret; 862 if (unlikely(ret > 1)) 863 return -EPROTO; 864 if (unlikely(!ret)) 865 return -ENOKEY; 866 867 return 0; 868 } 869 870 static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) 871 { 872 int err = __guc_action_self_cfg(guc, key, len, value); 873 874 if (unlikely(err)) 875 guc_probe_error(guc, "Unsuccessful self-config (%pe) key %#hx value %#llx\n", 876 ERR_PTR(err), key, value); 877 return err; 878 } 879 880 int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value) 881 { 882 return __guc_self_cfg(guc, key, 1, value); 883 } 884 885 int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value) 886 { 887 return __guc_self_cfg(guc, key, 2, value); 888 } 889 890 /** 891 * intel_guc_load_status - dump information about GuC load status 892 * @guc: the GuC 893 * @p: the &drm_printer 894 * 895 * Pretty printer for GuC load status. 896 */ 897 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p) 898 { 899 struct intel_gt *gt = guc_to_gt(guc); 900 struct intel_uncore *uncore = gt->uncore; 901 intel_wakeref_t wakeref; 902 903 if (!intel_guc_is_supported(guc)) { 904 drm_printf(p, "GuC not supported\n"); 905 return; 906 } 907 908 if (!intel_guc_is_wanted(guc)) { 909 drm_printf(p, "GuC disabled\n"); 910 return; 911 } 912 913 intel_uc_fw_dump(&guc->fw, p); 914 915 with_intel_runtime_pm(uncore->rpm, wakeref) { 916 u32 status = intel_uncore_read(uncore, GUC_STATUS); 917 u32 i; 918 919 drm_printf(p, "GuC status 0x%08x:\n", status); 920 drm_printf(p, "\tBootrom status = 0x%x\n", 921 (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT); 922 drm_printf(p, "\tuKernel status = 0x%x\n", 923 (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT); 924 drm_printf(p, "\tMIA Core status = 0x%x\n", 925 (status & GS_MIA_MASK) >> GS_MIA_SHIFT); 926 drm_puts(p, "Scratch registers:\n"); 927 for (i = 0; i < 16; i++) { 928 drm_printf(p, "\t%2d: \t0x%x\n", 929 i, intel_uncore_read(uncore, SOFT_SCRATCH(i))); 930 } 931 } 932 } 933 934 void intel_guc_write_barrier(struct intel_guc *guc) 935 { 936 struct intel_gt *gt = guc_to_gt(guc); 937 938 if (i915_gem_object_is_lmem(guc->ct.vma->obj)) { 939 /* 940 * Ensure intel_uncore_write_fw can be used rather than 941 * intel_uncore_write. 942 */ 943 GEM_BUG_ON(guc->send_regs.fw_domains); 944 945 /* 946 * This register is used by the i915 and GuC for MMIO based 947 * communication. Once we are in this code CTBs are the only 948 * method the i915 uses to communicate with the GuC so it is 949 * safe to write to this register (a value of 0 is NOP for MMIO 950 * communication). If we ever start mixing CTBs and MMIOs a new 951 * register will have to be chosen. This function is also used 952 * to enforce ordering of a work queue item write and an update 953 * to the process descriptor. When a work queue is being used, 954 * CTBs are also the only mechanism of communication. 955 */ 956 intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0); 957 } else { 958 /* wmb() sufficient for a barrier if in smem */ 959 wmb(); 960 } 961 } 962