1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2019 Intel Corporation 4 */ 5 6 #include "gem/i915_gem_lmem.h" 7 #include "gt/intel_gt.h" 8 #include "gt/intel_gt_irq.h" 9 #include "gt/intel_gt_pm_irq.h" 10 #include "gt/intel_gt_regs.h" 11 #include "intel_guc.h" 12 #include "intel_guc_ads.h" 13 #include "intel_guc_capture.h" 14 #include "intel_guc_print.h" 15 #include "intel_guc_slpc.h" 16 #include "intel_guc_submission.h" 17 #include "i915_drv.h" 18 #include "i915_irq.h" 19 #include "i915_reg.h" 20 21 /** 22 * DOC: GuC 23 * 24 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is 25 * designed to offload some of the functionality usually performed by the host 26 * driver; currently the main operations it can take care of are: 27 * 28 * - Authentication of the HuC, which is required to fully enable HuC usage. 29 * - Low latency graphics context scheduling (a.k.a. GuC submission). 30 * - GT Power management. 31 * 32 * The enable_guc module parameter can be used to select which of those 33 * operations to enable within GuC. Note that not all the operations are 34 * supported on all gen9+ platforms. 35 * 36 * Enabling the GuC is not mandatory and therefore the firmware is only loaded 37 * if at least one of the operations is selected. However, not loading the GuC 38 * might result in the loss of some features that do require the GuC (currently 39 * just the HuC, but more are expected to land in the future). 40 */ 41 42 void intel_guc_notify(struct intel_guc *guc) 43 { 44 struct intel_gt *gt = guc_to_gt(guc); 45 46 /* 47 * On Gen11+, the value written to the register is passes as a payload 48 * to the FW. However, the FW currently treats all values the same way 49 * (H2G interrupt), so we can just write the value that the HW expects 50 * on older gens. 51 */ 52 intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER); 53 } 54 55 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i) 56 { 57 GEM_BUG_ON(!guc->send_regs.base); 58 GEM_BUG_ON(!guc->send_regs.count); 59 GEM_BUG_ON(i >= guc->send_regs.count); 60 61 return _MMIO(guc->send_regs.base + 4 * i); 62 } 63 64 void intel_guc_init_send_regs(struct intel_guc *guc) 65 { 66 struct intel_gt *gt = guc_to_gt(guc); 67 enum forcewake_domains fw_domains = 0; 68 unsigned int i; 69 70 GEM_BUG_ON(!guc->send_regs.base); 71 GEM_BUG_ON(!guc->send_regs.count); 72 73 for (i = 0; i < guc->send_regs.count; i++) { 74 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore, 75 guc_send_reg(guc, i), 76 FW_REG_READ | FW_REG_WRITE); 77 } 78 guc->send_regs.fw_domains = fw_domains; 79 } 80 81 static void gen9_reset_guc_interrupts(struct intel_guc *guc) 82 { 83 struct intel_gt *gt = guc_to_gt(guc); 84 85 assert_rpm_wakelock_held(>->i915->runtime_pm); 86 87 spin_lock_irq(gt->irq_lock); 88 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events); 89 spin_unlock_irq(gt->irq_lock); 90 } 91 92 static void gen9_enable_guc_interrupts(struct intel_guc *guc) 93 { 94 struct intel_gt *gt = guc_to_gt(guc); 95 96 assert_rpm_wakelock_held(>->i915->runtime_pm); 97 98 spin_lock_irq(gt->irq_lock); 99 guc_WARN_ON_ONCE(guc, intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) & 100 gt->pm_guc_events); 101 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events); 102 spin_unlock_irq(gt->irq_lock); 103 104 guc->interrupts.enabled = true; 105 } 106 107 static void gen9_disable_guc_interrupts(struct intel_guc *guc) 108 { 109 struct intel_gt *gt = guc_to_gt(guc); 110 111 assert_rpm_wakelock_held(>->i915->runtime_pm); 112 guc->interrupts.enabled = false; 113 114 spin_lock_irq(gt->irq_lock); 115 116 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events); 117 118 spin_unlock_irq(gt->irq_lock); 119 intel_synchronize_irq(gt->i915); 120 121 gen9_reset_guc_interrupts(guc); 122 } 123 124 static bool __gen11_reset_guc_interrupts(struct intel_gt *gt) 125 { 126 u32 irq = gt->type == GT_MEDIA ? MTL_MGUC : GEN11_GUC; 127 128 lockdep_assert_held(gt->irq_lock); 129 return gen11_gt_reset_one_iir(gt, 0, irq); 130 } 131 132 static void gen11_reset_guc_interrupts(struct intel_guc *guc) 133 { 134 struct intel_gt *gt = guc_to_gt(guc); 135 136 spin_lock_irq(gt->irq_lock); 137 __gen11_reset_guc_interrupts(gt); 138 spin_unlock_irq(gt->irq_lock); 139 } 140 141 static void gen11_enable_guc_interrupts(struct intel_guc *guc) 142 { 143 struct intel_gt *gt = guc_to_gt(guc); 144 145 spin_lock_irq(gt->irq_lock); 146 __gen11_reset_guc_interrupts(gt); 147 spin_unlock_irq(gt->irq_lock); 148 149 guc->interrupts.enabled = true; 150 } 151 152 static void gen11_disable_guc_interrupts(struct intel_guc *guc) 153 { 154 struct intel_gt *gt = guc_to_gt(guc); 155 156 guc->interrupts.enabled = false; 157 intel_synchronize_irq(gt->i915); 158 159 gen11_reset_guc_interrupts(guc); 160 } 161 162 static void guc_dead_worker_func(struct work_struct *w) 163 { 164 struct intel_guc *guc = container_of(w, struct intel_guc, dead_guc_worker); 165 struct intel_gt *gt = guc_to_gt(guc); 166 unsigned long last = guc->last_dead_guc_jiffies; 167 unsigned long delta = jiffies_to_msecs(jiffies - last); 168 169 if (delta < 500) { 170 intel_gt_set_wedged(gt); 171 } else { 172 intel_gt_handle_error(gt, ALL_ENGINES, I915_ERROR_CAPTURE, "dead GuC"); 173 guc->last_dead_guc_jiffies = jiffies; 174 } 175 } 176 177 void intel_guc_init_early(struct intel_guc *guc) 178 { 179 struct intel_gt *gt = guc_to_gt(guc); 180 struct drm_i915_private *i915 = gt->i915; 181 182 intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC, true); 183 intel_guc_ct_init_early(&guc->ct); 184 intel_guc_log_init_early(&guc->log); 185 intel_guc_submission_init_early(guc); 186 intel_guc_slpc_init_early(&guc->slpc); 187 intel_guc_rc_init_early(guc); 188 189 INIT_WORK(&guc->dead_guc_worker, guc_dead_worker_func); 190 191 mutex_init(&guc->send_mutex); 192 spin_lock_init(&guc->irq_lock); 193 if (GRAPHICS_VER(i915) >= 11) { 194 guc->interrupts.reset = gen11_reset_guc_interrupts; 195 guc->interrupts.enable = gen11_enable_guc_interrupts; 196 guc->interrupts.disable = gen11_disable_guc_interrupts; 197 if (gt->type == GT_MEDIA) { 198 guc->notify_reg = MEDIA_GUC_HOST_INTERRUPT; 199 guc->send_regs.base = i915_mmio_reg_offset(MEDIA_SOFT_SCRATCH(0)); 200 } else { 201 guc->notify_reg = GEN11_GUC_HOST_INTERRUPT; 202 guc->send_regs.base = i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0)); 203 } 204 205 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT; 206 207 } else { 208 guc->notify_reg = GUC_SEND_INTERRUPT; 209 guc->interrupts.reset = gen9_reset_guc_interrupts; 210 guc->interrupts.enable = gen9_enable_guc_interrupts; 211 guc->interrupts.disable = gen9_disable_guc_interrupts; 212 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0)); 213 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN; 214 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT); 215 } 216 217 intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION | 218 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED); 219 } 220 221 void intel_guc_init_late(struct intel_guc *guc) 222 { 223 intel_guc_ads_init_late(guc); 224 } 225 226 static u32 guc_ctl_debug_flags(struct intel_guc *guc) 227 { 228 u32 level = intel_guc_log_get_level(&guc->log); 229 u32 flags = 0; 230 231 if (!GUC_LOG_LEVEL_IS_VERBOSE(level)) 232 flags |= GUC_LOG_DISABLED; 233 else 234 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) << 235 GUC_LOG_VERBOSITY_SHIFT; 236 237 return flags; 238 } 239 240 static u32 guc_ctl_feature_flags(struct intel_guc *guc) 241 { 242 struct intel_gt *gt = guc_to_gt(guc); 243 u32 flags = 0; 244 245 /* 246 * Enable PXP GuC autoteardown flow. 247 * NB: MTL does things differently. 248 */ 249 if (HAS_PXP(gt->i915) && !IS_METEORLAKE(gt->i915)) 250 flags |= GUC_CTL_ENABLE_GUC_PXP_CTL; 251 252 if (!intel_guc_submission_is_used(guc)) 253 flags |= GUC_CTL_DISABLE_SCHEDULER; 254 255 if (intel_guc_slpc_is_used(guc)) 256 flags |= GUC_CTL_ENABLE_SLPC; 257 258 return flags; 259 } 260 261 static u32 guc_ctl_log_params_flags(struct intel_guc *guc) 262 { 263 struct intel_guc_log *log = &guc->log; 264 u32 offset, flags; 265 266 GEM_BUG_ON(!log->sizes_initialised); 267 268 offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT; 269 270 flags = GUC_LOG_VALID | 271 GUC_LOG_NOTIFY_ON_HALF_FULL | 272 log->sizes[GUC_LOG_SECTIONS_DEBUG].flag | 273 log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag | 274 (log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) | 275 (log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) | 276 (log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) | 277 (offset << GUC_LOG_BUF_ADDR_SHIFT); 278 279 return flags; 280 } 281 282 static u32 guc_ctl_ads_flags(struct intel_guc *guc) 283 { 284 u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT; 285 u32 flags = ads << GUC_ADS_ADDR_SHIFT; 286 287 return flags; 288 } 289 290 static u32 guc_ctl_wa_flags(struct intel_guc *guc) 291 { 292 struct intel_gt *gt = guc_to_gt(guc); 293 u32 flags = 0; 294 295 /* Wa_22012773006:gen11,gen12 < XeHP */ 296 if (GRAPHICS_VER(gt->i915) >= 11 && 297 GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 55)) 298 flags |= GUC_WA_POLLCS; 299 300 /* Wa_14014475959 */ 301 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 302 IS_DG2(gt->i915)) 303 flags |= GUC_WA_HOLD_CCS_SWITCHOUT; 304 305 /* Wa_16019325821 */ 306 /* Wa_14019159160 */ 307 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) 308 flags |= GUC_WA_RCS_CCS_SWITCHOUT; 309 310 /* 311 * Wa_14012197797 312 * Wa_22011391025 313 * 314 * The same WA bit is used for both and 22011391025 is applicable to 315 * all DG2. 316 */ 317 if (IS_DG2(gt->i915)) 318 flags |= GUC_WA_DUAL_QUEUE; 319 320 /* Wa_22011802037: graphics version 11/12 */ 321 if (intel_engine_reset_needs_wa_22011802037(gt)) 322 flags |= GUC_WA_PRE_PARSER; 323 324 /* 325 * Wa_22012727170 326 * Wa_22012727685 327 */ 328 if (IS_DG2_G11(gt->i915)) 329 flags |= GUC_WA_CONTEXT_ISOLATION; 330 331 /* 332 * Wa_14018913170: Applicable to all platforms supported by i915 so 333 * don't bother testing for all X/Y/Z platforms explicitly. 334 */ 335 if (GUC_FIRMWARE_VER(guc) >= MAKE_GUC_VER(70, 7, 0)) 336 flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6; 337 338 return flags; 339 } 340 341 static u32 guc_ctl_devid(struct intel_guc *guc) 342 { 343 struct drm_i915_private *i915 = guc_to_i915(guc); 344 345 return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915); 346 } 347 348 /* 349 * Initialise the GuC parameter block before starting the firmware 350 * transfer. These parameters are read by the firmware on startup 351 * and cannot be changed thereafter. 352 */ 353 static void guc_init_params(struct intel_guc *guc) 354 { 355 u32 *params = guc->params; 356 int i; 357 358 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32)); 359 360 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); 361 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc); 362 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); 363 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); 364 params[GUC_CTL_WA] = guc_ctl_wa_flags(guc); 365 params[GUC_CTL_DEVID] = guc_ctl_devid(guc); 366 367 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 368 guc_dbg(guc, "param[%2d] = %#x\n", i, params[i]); 369 } 370 371 /* 372 * Initialise the GuC parameter block before starting the firmware 373 * transfer. These parameters are read by the firmware on startup 374 * and cannot be changed thereafter. 375 */ 376 void intel_guc_write_params(struct intel_guc *guc) 377 { 378 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 379 int i; 380 381 /* 382 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and 383 * they are power context saved so it's ok to release forcewake 384 * when we are done here and take it again at xfer time. 385 */ 386 intel_uncore_forcewake_get(uncore, FORCEWAKE_GT); 387 388 intel_uncore_write(uncore, SOFT_SCRATCH(0), 0); 389 390 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 391 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]); 392 393 intel_uncore_forcewake_put(uncore, FORCEWAKE_GT); 394 } 395 396 void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p) 397 { 398 struct intel_gt *gt = guc_to_gt(guc); 399 intel_wakeref_t wakeref; 400 u32 stamp = 0; 401 u64 ktime; 402 403 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) 404 stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP); 405 ktime = ktime_get_boottime_ns(); 406 407 drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime); 408 drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp); 409 drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n", 410 gt->clock_frequency, gt->clock_period_ns); 411 } 412 413 int intel_guc_init(struct intel_guc *guc) 414 { 415 int ret; 416 417 ret = intel_uc_fw_init(&guc->fw); 418 if (ret) 419 goto out; 420 421 ret = intel_guc_log_create(&guc->log); 422 if (ret) 423 goto err_fw; 424 425 ret = intel_guc_capture_init(guc); 426 if (ret) 427 goto err_log; 428 429 ret = intel_guc_ads_create(guc); 430 if (ret) 431 goto err_capture; 432 433 GEM_BUG_ON(!guc->ads_vma); 434 435 ret = intel_guc_ct_init(&guc->ct); 436 if (ret) 437 goto err_ads; 438 439 if (intel_guc_submission_is_used(guc)) { 440 /* 441 * This is stuff we need to have available at fw load time 442 * if we are planning to enable submission later 443 */ 444 ret = intel_guc_submission_init(guc); 445 if (ret) 446 goto err_ct; 447 } 448 449 if (intel_guc_slpc_is_used(guc)) { 450 ret = intel_guc_slpc_init(&guc->slpc); 451 if (ret) 452 goto err_submission; 453 } 454 455 /* now that everything is perma-pinned, initialize the parameters */ 456 guc_init_params(guc); 457 458 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE); 459 460 return 0; 461 462 err_submission: 463 intel_guc_submission_fini(guc); 464 err_ct: 465 intel_guc_ct_fini(&guc->ct); 466 err_ads: 467 intel_guc_ads_destroy(guc); 468 err_capture: 469 intel_guc_capture_destroy(guc); 470 err_log: 471 intel_guc_log_destroy(&guc->log); 472 err_fw: 473 intel_uc_fw_fini(&guc->fw); 474 out: 475 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_INIT_FAIL); 476 guc_probe_error(guc, "failed with %pe\n", ERR_PTR(ret)); 477 return ret; 478 } 479 480 void intel_guc_fini(struct intel_guc *guc) 481 { 482 if (!intel_uc_fw_is_loadable(&guc->fw)) 483 return; 484 485 flush_work(&guc->dead_guc_worker); 486 487 if (intel_guc_slpc_is_used(guc)) 488 intel_guc_slpc_fini(&guc->slpc); 489 490 if (intel_guc_submission_is_used(guc)) 491 intel_guc_submission_fini(guc); 492 493 intel_guc_ct_fini(&guc->ct); 494 495 intel_guc_ads_destroy(guc); 496 intel_guc_capture_destroy(guc); 497 intel_guc_log_destroy(&guc->log); 498 intel_uc_fw_fini(&guc->fw); 499 } 500 501 /* 502 * This function implements the MMIO based host to GuC interface. 503 */ 504 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len, 505 u32 *response_buf, u32 response_buf_size) 506 { 507 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 508 u32 header; 509 int i; 510 int ret; 511 512 GEM_BUG_ON(!len); 513 GEM_BUG_ON(len > guc->send_regs.count); 514 515 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST); 516 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST); 517 518 mutex_lock(&guc->send_mutex); 519 intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains); 520 521 retry: 522 for (i = 0; i < len; i++) 523 intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]); 524 525 intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1)); 526 527 intel_guc_notify(guc); 528 529 /* 530 * No GuC command should ever take longer than 10ms. 531 * Fast commands should still complete in 10us. 532 */ 533 ret = __intel_wait_for_register_fw(uncore, 534 guc_send_reg(guc, 0), 535 GUC_HXG_MSG_0_ORIGIN, 536 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, 537 GUC_HXG_ORIGIN_GUC), 538 10, 10, &header); 539 if (unlikely(ret)) { 540 timeout: 541 guc_err(guc, "mmio request %#x: no reply %x\n", 542 request[0], header); 543 goto out; 544 } 545 546 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) { 547 #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \ 548 FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \ 549 FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; }) 550 551 ret = wait_for(done, 1000); 552 if (unlikely(ret)) 553 goto timeout; 554 if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != 555 GUC_HXG_ORIGIN_GUC)) 556 goto proto; 557 #undef done 558 } 559 560 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) { 561 u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header); 562 563 guc_dbg(guc, "mmio request %#x: retrying, reason %u\n", 564 request[0], reason); 565 goto retry; 566 } 567 568 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) { 569 u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header); 570 u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header); 571 572 guc_err(guc, "mmio request %#x: failure %x/%u\n", 573 request[0], error, hint); 574 ret = -ENXIO; 575 goto out; 576 } 577 578 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) { 579 proto: 580 guc_err(guc, "mmio request %#x: unexpected reply %#x\n", 581 request[0], header); 582 ret = -EPROTO; 583 goto out; 584 } 585 586 if (response_buf) { 587 int count = min(response_buf_size, guc->send_regs.count); 588 589 GEM_BUG_ON(!count); 590 591 response_buf[0] = header; 592 593 for (i = 1; i < count; i++) 594 response_buf[i] = intel_uncore_read(uncore, 595 guc_send_reg(guc, i)); 596 597 /* Use number of copied dwords as our return value */ 598 ret = count; 599 } else { 600 /* Use data from the GuC response as our return value */ 601 ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header); 602 } 603 604 out: 605 intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains); 606 mutex_unlock(&guc->send_mutex); 607 608 return ret; 609 } 610 611 int intel_guc_crash_process_msg(struct intel_guc *guc, u32 action) 612 { 613 if (action == INTEL_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED) 614 guc_err(guc, "Crash dump notification\n"); 615 else if (action == INTEL_GUC_ACTION_NOTIFY_EXCEPTION) 616 guc_err(guc, "Exception notification\n"); 617 else 618 guc_err(guc, "Unknown crash notification: 0x%04X\n", action); 619 620 queue_work(system_unbound_wq, &guc->dead_guc_worker); 621 622 return 0; 623 } 624 625 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc, 626 const u32 *payload, u32 len) 627 { 628 u32 msg; 629 630 if (unlikely(!len)) 631 return -EPROTO; 632 633 /* Make sure to handle only enabled messages */ 634 msg = payload[0] & guc->msg_enabled_mask; 635 636 if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED) 637 guc_err(guc, "Received early crash dump notification!\n"); 638 if (msg & INTEL_GUC_RECV_MSG_EXCEPTION) 639 guc_err(guc, "Received early exception notification!\n"); 640 641 if (msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED | INTEL_GUC_RECV_MSG_EXCEPTION)) 642 queue_work(system_unbound_wq, &guc->dead_guc_worker); 643 644 return 0; 645 } 646 647 /** 648 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode 649 * @guc: intel_guc structure 650 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma 651 * 652 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send 653 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by 654 * intel_huc_auth(). 655 * 656 * Return: non-zero code on error 657 */ 658 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset) 659 { 660 u32 action[] = { 661 INTEL_GUC_ACTION_AUTHENTICATE_HUC, 662 rsa_offset 663 }; 664 665 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 666 } 667 668 /** 669 * intel_guc_suspend() - notify GuC entering suspend state 670 * @guc: the guc 671 */ 672 int intel_guc_suspend(struct intel_guc *guc) 673 { 674 int ret; 675 u32 action[] = { 676 INTEL_GUC_ACTION_CLIENT_SOFT_RESET, 677 }; 678 679 if (!intel_guc_is_ready(guc)) 680 return 0; 681 682 if (intel_guc_submission_is_used(guc)) { 683 flush_work(&guc->dead_guc_worker); 684 685 /* 686 * This H2G MMIO command tears down the GuC in two steps. First it will 687 * generate a G2H CTB for every active context indicating a reset. In 688 * practice the i915 shouldn't ever get a G2H as suspend should only be 689 * called when the GPU is idle. Next, it tears down the CTBs and this 690 * H2G MMIO command completes. 691 * 692 * Don't abort on a failure code from the GuC. Keep going and do the 693 * clean up in santize() and re-initialisation on resume and hopefully 694 * the error here won't be problematic. 695 */ 696 ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0); 697 if (ret) 698 guc_err(guc, "suspend: RESET_CLIENT action failed with %pe\n", 699 ERR_PTR(ret)); 700 } 701 702 /* Signal that the GuC isn't running. */ 703 intel_guc_sanitize(guc); 704 705 return 0; 706 } 707 708 /** 709 * intel_guc_resume() - notify GuC resuming from suspend state 710 * @guc: the guc 711 */ 712 int intel_guc_resume(struct intel_guc *guc) 713 { 714 /* 715 * NB: This function can still be called even if GuC submission is 716 * disabled, e.g. if GuC is enabled for HuC authentication only. Thus, 717 * if any code is later added here, it must be support doing nothing 718 * if submission is disabled (as per intel_guc_suspend). 719 */ 720 return 0; 721 } 722 723 /** 724 * DOC: GuC Memory Management 725 * 726 * GuC can't allocate any memory for its own usage, so all the allocations must 727 * be handled by the host driver. GuC accesses the memory via the GGTT, with the 728 * exception of the top and bottom parts of the 4GB address space, which are 729 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM) 730 * or other parts of the HW. The driver must take care not to place objects that 731 * the GuC is going to access in these reserved ranges. The layout of the GuC 732 * address space is shown below: 733 * 734 * :: 735 * 736 * +===========> +====================+ <== FFFF_FFFF 737 * ^ | Reserved | 738 * | +====================+ <== GUC_GGTT_TOP 739 * | | | 740 * | | DRAM | 741 * GuC | | 742 * Address +===> +====================+ <== GuC ggtt_pin_bias 743 * Space ^ | | 744 * | | | | 745 * | GuC | GuC | 746 * | WOPCM | WOPCM | 747 * | Size | | 748 * | | | | 749 * v v | | 750 * +=======+===> +====================+ <== 0000_0000 751 * 752 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM 753 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped 754 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size. 755 */ 756 757 /** 758 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage 759 * @guc: the guc 760 * @size: size of area to allocate (both virtual space and memory) 761 * 762 * This is a wrapper to create an object for use with the GuC. In order to 763 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate 764 * both some backing storage and a range inside the Global GTT. We must pin 765 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that 766 * range is reserved inside GuC. 767 * 768 * Return: A i915_vma if successful, otherwise an ERR_PTR. 769 */ 770 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size) 771 { 772 struct intel_gt *gt = guc_to_gt(guc); 773 struct drm_i915_gem_object *obj; 774 struct i915_vma *vma; 775 u64 flags; 776 int ret; 777 778 if (HAS_LMEM(gt->i915)) 779 obj = i915_gem_object_create_lmem(gt->i915, size, 780 I915_BO_ALLOC_CPU_CLEAR | 781 I915_BO_ALLOC_CONTIGUOUS | 782 I915_BO_ALLOC_PM_EARLY); 783 else 784 obj = i915_gem_object_create_shmem(gt->i915, size); 785 786 if (IS_ERR(obj)) 787 return ERR_CAST(obj); 788 789 /* 790 * Wa_22016122933: For Media version 13.0, all Media GT shared 791 * memory needs to be mapped as WC on CPU side and UC (PAT 792 * index 2) on GPU side. 793 */ 794 if (intel_gt_needs_wa_22016122933(gt)) 795 i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE); 796 797 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 798 if (IS_ERR(vma)) 799 goto err; 800 801 flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma); 802 ret = i915_ggtt_pin(vma, NULL, 0, flags); 803 if (ret) { 804 vma = ERR_PTR(ret); 805 goto err; 806 } 807 808 return i915_vma_make_unshrinkable(vma); 809 810 err: 811 i915_gem_object_put(obj); 812 return vma; 813 } 814 815 /** 816 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage 817 * @guc: the guc 818 * @size: size of area to allocate (both virtual space and memory) 819 * @out_vma: return variable for the allocated vma pointer 820 * @out_vaddr: return variable for the obj mapping 821 * 822 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated 823 * object with I915_MAP_WB. 824 * 825 * Return: 0 if successful, a negative errno code otherwise. 826 */ 827 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size, 828 struct i915_vma **out_vma, void **out_vaddr) 829 { 830 struct i915_vma *vma; 831 void *vaddr; 832 833 vma = intel_guc_allocate_vma(guc, size); 834 if (IS_ERR(vma)) 835 return PTR_ERR(vma); 836 837 vaddr = i915_gem_object_pin_map_unlocked(vma->obj, 838 intel_gt_coherent_map_type(guc_to_gt(guc), 839 vma->obj, true)); 840 if (IS_ERR(vaddr)) { 841 i915_vma_unpin_and_release(&vma, 0); 842 return PTR_ERR(vaddr); 843 } 844 845 *out_vma = vma; 846 *out_vaddr = vaddr; 847 848 return 0; 849 } 850 851 static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) 852 { 853 u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = { 854 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) | 855 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | 856 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG), 857 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) | 858 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len), 859 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)), 860 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)), 861 }; 862 int ret; 863 864 GEM_BUG_ON(len > 2); 865 GEM_BUG_ON(len == 1 && upper_32_bits(value)); 866 867 /* Self config must go over MMIO */ 868 ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0); 869 870 if (unlikely(ret < 0)) 871 return ret; 872 if (unlikely(ret > 1)) 873 return -EPROTO; 874 if (unlikely(!ret)) 875 return -ENOKEY; 876 877 return 0; 878 } 879 880 static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) 881 { 882 int err = __guc_action_self_cfg(guc, key, len, value); 883 884 if (unlikely(err)) 885 guc_probe_error(guc, "Unsuccessful self-config (%pe) key %#hx value %#llx\n", 886 ERR_PTR(err), key, value); 887 return err; 888 } 889 890 int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value) 891 { 892 return __guc_self_cfg(guc, key, 1, value); 893 } 894 895 int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value) 896 { 897 return __guc_self_cfg(guc, key, 2, value); 898 } 899 900 /** 901 * intel_guc_load_status - dump information about GuC load status 902 * @guc: the GuC 903 * @p: the &drm_printer 904 * 905 * Pretty printer for GuC load status. 906 */ 907 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p) 908 { 909 struct intel_gt *gt = guc_to_gt(guc); 910 struct intel_uncore *uncore = gt->uncore; 911 intel_wakeref_t wakeref; 912 913 if (!intel_guc_is_supported(guc)) { 914 drm_printf(p, "GuC not supported\n"); 915 return; 916 } 917 918 if (!intel_guc_is_wanted(guc)) { 919 drm_printf(p, "GuC disabled\n"); 920 return; 921 } 922 923 intel_uc_fw_dump(&guc->fw, p); 924 925 with_intel_runtime_pm(uncore->rpm, wakeref) { 926 u32 status = intel_uncore_read(uncore, GUC_STATUS); 927 u32 i; 928 929 drm_printf(p, "GuC status 0x%08x:\n", status); 930 drm_printf(p, "\tBootrom status = 0x%x\n", 931 (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT); 932 drm_printf(p, "\tuKernel status = 0x%x\n", 933 (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT); 934 drm_printf(p, "\tMIA Core status = 0x%x\n", 935 (status & GS_MIA_MASK) >> GS_MIA_SHIFT); 936 drm_puts(p, "Scratch registers:\n"); 937 for (i = 0; i < 16; i++) { 938 drm_printf(p, "\t%2d: \t0x%x\n", 939 i, intel_uncore_read(uncore, SOFT_SCRATCH(i))); 940 } 941 } 942 } 943 944 void intel_guc_write_barrier(struct intel_guc *guc) 945 { 946 struct intel_gt *gt = guc_to_gt(guc); 947 948 if (i915_gem_object_is_lmem(guc->ct.vma->obj)) { 949 /* 950 * Ensure intel_uncore_write_fw can be used rather than 951 * intel_uncore_write. 952 */ 953 GEM_BUG_ON(guc->send_regs.fw_domains); 954 955 /* 956 * This register is used by the i915 and GuC for MMIO based 957 * communication. Once we are in this code CTBs are the only 958 * method the i915 uses to communicate with the GuC so it is 959 * safe to write to this register (a value of 0 is NOP for MMIO 960 * communication). If we ever start mixing CTBs and MMIOs a new 961 * register will have to be chosen. This function is also used 962 * to enforce ordering of a work queue item write and an update 963 * to the process descriptor. When a work queue is being used, 964 * CTBs are also the only mechanism of communication. 965 */ 966 intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0); 967 } else { 968 /* wmb() sufficient for a barrier if in smem */ 969 wmb(); 970 } 971 } 972