1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2019 Intel Corporation 4 */ 5 6 #include "gem/i915_gem_lmem.h" 7 #include "gt/intel_gt.h" 8 #include "gt/intel_gt_irq.h" 9 #include "gt/intel_gt_pm_irq.h" 10 #include "gt/intel_gt_regs.h" 11 #include "intel_guc.h" 12 #include "intel_guc_slpc.h" 13 #include "intel_guc_ads.h" 14 #include "intel_guc_submission.h" 15 #include "i915_drv.h" 16 #include "i915_irq.h" 17 18 /** 19 * DOC: GuC 20 * 21 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is 22 * designed to offload some of the functionality usually performed by the host 23 * driver; currently the main operations it can take care of are: 24 * 25 * - Authentication of the HuC, which is required to fully enable HuC usage. 26 * - Low latency graphics context scheduling (a.k.a. GuC submission). 27 * - GT Power management. 28 * 29 * The enable_guc module parameter can be used to select which of those 30 * operations to enable within GuC. Note that not all the operations are 31 * supported on all gen9+ platforms. 32 * 33 * Enabling the GuC is not mandatory and therefore the firmware is only loaded 34 * if at least one of the operations is selected. However, not loading the GuC 35 * might result in the loss of some features that do require the GuC (currently 36 * just the HuC, but more are expected to land in the future). 37 */ 38 39 void intel_guc_notify(struct intel_guc *guc) 40 { 41 struct intel_gt *gt = guc_to_gt(guc); 42 43 /* 44 * On Gen11+, the value written to the register is passes as a payload 45 * to the FW. However, the FW currently treats all values the same way 46 * (H2G interrupt), so we can just write the value that the HW expects 47 * on older gens. 48 */ 49 intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER); 50 } 51 52 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i) 53 { 54 GEM_BUG_ON(!guc->send_regs.base); 55 GEM_BUG_ON(!guc->send_regs.count); 56 GEM_BUG_ON(i >= guc->send_regs.count); 57 58 return _MMIO(guc->send_regs.base + 4 * i); 59 } 60 61 void intel_guc_init_send_regs(struct intel_guc *guc) 62 { 63 struct intel_gt *gt = guc_to_gt(guc); 64 enum forcewake_domains fw_domains = 0; 65 unsigned int i; 66 67 GEM_BUG_ON(!guc->send_regs.base); 68 GEM_BUG_ON(!guc->send_regs.count); 69 70 for (i = 0; i < guc->send_regs.count; i++) { 71 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore, 72 guc_send_reg(guc, i), 73 FW_REG_READ | FW_REG_WRITE); 74 } 75 guc->send_regs.fw_domains = fw_domains; 76 } 77 78 static void gen9_reset_guc_interrupts(struct intel_guc *guc) 79 { 80 struct intel_gt *gt = guc_to_gt(guc); 81 82 assert_rpm_wakelock_held(>->i915->runtime_pm); 83 84 spin_lock_irq(>->irq_lock); 85 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events); 86 spin_unlock_irq(>->irq_lock); 87 } 88 89 static void gen9_enable_guc_interrupts(struct intel_guc *guc) 90 { 91 struct intel_gt *gt = guc_to_gt(guc); 92 93 assert_rpm_wakelock_held(>->i915->runtime_pm); 94 95 spin_lock_irq(>->irq_lock); 96 WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) & 97 gt->pm_guc_events); 98 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events); 99 spin_unlock_irq(>->irq_lock); 100 } 101 102 static void gen9_disable_guc_interrupts(struct intel_guc *guc) 103 { 104 struct intel_gt *gt = guc_to_gt(guc); 105 106 assert_rpm_wakelock_held(>->i915->runtime_pm); 107 108 spin_lock_irq(>->irq_lock); 109 110 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events); 111 112 spin_unlock_irq(>->irq_lock); 113 intel_synchronize_irq(gt->i915); 114 115 gen9_reset_guc_interrupts(guc); 116 } 117 118 static void gen11_reset_guc_interrupts(struct intel_guc *guc) 119 { 120 struct intel_gt *gt = guc_to_gt(guc); 121 122 spin_lock_irq(>->irq_lock); 123 gen11_gt_reset_one_iir(gt, 0, GEN11_GUC); 124 spin_unlock_irq(>->irq_lock); 125 } 126 127 static void gen11_enable_guc_interrupts(struct intel_guc *guc) 128 { 129 struct intel_gt *gt = guc_to_gt(guc); 130 u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST); 131 132 spin_lock_irq(>->irq_lock); 133 WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC)); 134 intel_uncore_write(gt->uncore, 135 GEN11_GUC_SG_INTR_ENABLE, events); 136 intel_uncore_write(gt->uncore, 137 GEN11_GUC_SG_INTR_MASK, ~events); 138 spin_unlock_irq(>->irq_lock); 139 } 140 141 static void gen11_disable_guc_interrupts(struct intel_guc *guc) 142 { 143 struct intel_gt *gt = guc_to_gt(guc); 144 145 spin_lock_irq(>->irq_lock); 146 147 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0); 148 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0); 149 150 spin_unlock_irq(>->irq_lock); 151 intel_synchronize_irq(gt->i915); 152 153 gen11_reset_guc_interrupts(guc); 154 } 155 156 void intel_guc_init_early(struct intel_guc *guc) 157 { 158 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 159 160 intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC); 161 intel_guc_ct_init_early(&guc->ct); 162 intel_guc_log_init_early(&guc->log); 163 intel_guc_submission_init_early(guc); 164 intel_guc_slpc_init_early(&guc->slpc); 165 intel_guc_rc_init_early(guc); 166 167 mutex_init(&guc->send_mutex); 168 spin_lock_init(&guc->irq_lock); 169 if (GRAPHICS_VER(i915) >= 11) { 170 guc->notify_reg = GEN11_GUC_HOST_INTERRUPT; 171 guc->interrupts.reset = gen11_reset_guc_interrupts; 172 guc->interrupts.enable = gen11_enable_guc_interrupts; 173 guc->interrupts.disable = gen11_disable_guc_interrupts; 174 guc->send_regs.base = 175 i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0)); 176 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT; 177 178 } else { 179 guc->notify_reg = GUC_SEND_INTERRUPT; 180 guc->interrupts.reset = gen9_reset_guc_interrupts; 181 guc->interrupts.enable = gen9_enable_guc_interrupts; 182 guc->interrupts.disable = gen9_disable_guc_interrupts; 183 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0)); 184 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN; 185 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT); 186 } 187 } 188 189 void intel_guc_init_late(struct intel_guc *guc) 190 { 191 intel_guc_ads_init_late(guc); 192 } 193 194 static u32 guc_ctl_debug_flags(struct intel_guc *guc) 195 { 196 u32 level = intel_guc_log_get_level(&guc->log); 197 u32 flags = 0; 198 199 if (!GUC_LOG_LEVEL_IS_VERBOSE(level)) 200 flags |= GUC_LOG_DISABLED; 201 else 202 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) << 203 GUC_LOG_VERBOSITY_SHIFT; 204 205 return flags; 206 } 207 208 static u32 guc_ctl_feature_flags(struct intel_guc *guc) 209 { 210 u32 flags = 0; 211 212 if (!intel_guc_submission_is_used(guc)) 213 flags |= GUC_CTL_DISABLE_SCHEDULER; 214 215 if (intel_guc_slpc_is_used(guc)) 216 flags |= GUC_CTL_ENABLE_SLPC; 217 218 return flags; 219 } 220 221 static u32 guc_ctl_log_params_flags(struct intel_guc *guc) 222 { 223 u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT; 224 u32 flags; 225 226 #if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0) 227 #define UNIT SZ_1M 228 #define FLAG GUC_LOG_ALLOC_IN_MEGABYTE 229 #else 230 #define UNIT SZ_4K 231 #define FLAG 0 232 #endif 233 234 BUILD_BUG_ON(!CRASH_BUFFER_SIZE); 235 BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT)); 236 BUILD_BUG_ON(!DEBUG_BUFFER_SIZE); 237 BUILD_BUG_ON(!IS_ALIGNED(DEBUG_BUFFER_SIZE, UNIT)); 238 239 BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) > 240 (GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT)); 241 BUILD_BUG_ON((DEBUG_BUFFER_SIZE / UNIT - 1) > 242 (GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT)); 243 244 flags = GUC_LOG_VALID | 245 GUC_LOG_NOTIFY_ON_HALF_FULL | 246 FLAG | 247 ((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) | 248 ((DEBUG_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DEBUG_SHIFT) | 249 (offset << GUC_LOG_BUF_ADDR_SHIFT); 250 251 #undef UNIT 252 #undef FLAG 253 254 return flags; 255 } 256 257 static u32 guc_ctl_ads_flags(struct intel_guc *guc) 258 { 259 u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT; 260 u32 flags = ads << GUC_ADS_ADDR_SHIFT; 261 262 return flags; 263 } 264 265 /* 266 * Initialise the GuC parameter block before starting the firmware 267 * transfer. These parameters are read by the firmware on startup 268 * and cannot be changed thereafter. 269 */ 270 static void guc_init_params(struct intel_guc *guc) 271 { 272 u32 *params = guc->params; 273 int i; 274 275 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32)); 276 277 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); 278 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc); 279 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); 280 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); 281 282 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 283 DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]); 284 } 285 286 /* 287 * Initialise the GuC parameter block before starting the firmware 288 * transfer. These parameters are read by the firmware on startup 289 * and cannot be changed thereafter. 290 */ 291 void intel_guc_write_params(struct intel_guc *guc) 292 { 293 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 294 int i; 295 296 /* 297 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and 298 * they are power context saved so it's ok to release forcewake 299 * when we are done here and take it again at xfer time. 300 */ 301 intel_uncore_forcewake_get(uncore, FORCEWAKE_GT); 302 303 intel_uncore_write(uncore, SOFT_SCRATCH(0), 0); 304 305 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 306 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]); 307 308 intel_uncore_forcewake_put(uncore, FORCEWAKE_GT); 309 } 310 311 int intel_guc_init(struct intel_guc *guc) 312 { 313 struct intel_gt *gt = guc_to_gt(guc); 314 int ret; 315 316 ret = intel_uc_fw_init(&guc->fw); 317 if (ret) 318 goto out; 319 320 ret = intel_guc_log_create(&guc->log); 321 if (ret) 322 goto err_fw; 323 324 ret = intel_guc_ads_create(guc); 325 if (ret) 326 goto err_log; 327 GEM_BUG_ON(!guc->ads_vma); 328 329 ret = intel_guc_ct_init(&guc->ct); 330 if (ret) 331 goto err_ads; 332 333 if (intel_guc_submission_is_used(guc)) { 334 /* 335 * This is stuff we need to have available at fw load time 336 * if we are planning to enable submission later 337 */ 338 ret = intel_guc_submission_init(guc); 339 if (ret) 340 goto err_ct; 341 } 342 343 if (intel_guc_slpc_is_used(guc)) { 344 ret = intel_guc_slpc_init(&guc->slpc); 345 if (ret) 346 goto err_submission; 347 } 348 349 /* now that everything is perma-pinned, initialize the parameters */ 350 guc_init_params(guc); 351 352 /* We need to notify the guc whenever we change the GGTT */ 353 i915_ggtt_enable_guc(gt->ggtt); 354 355 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE); 356 357 return 0; 358 359 err_submission: 360 intel_guc_submission_fini(guc); 361 err_ct: 362 intel_guc_ct_fini(&guc->ct); 363 err_ads: 364 intel_guc_ads_destroy(guc); 365 err_log: 366 intel_guc_log_destroy(&guc->log); 367 err_fw: 368 intel_uc_fw_fini(&guc->fw); 369 out: 370 i915_probe_error(gt->i915, "failed with %d\n", ret); 371 return ret; 372 } 373 374 void intel_guc_fini(struct intel_guc *guc) 375 { 376 struct intel_gt *gt = guc_to_gt(guc); 377 378 if (!intel_uc_fw_is_loadable(&guc->fw)) 379 return; 380 381 i915_ggtt_disable_guc(gt->ggtt); 382 383 if (intel_guc_slpc_is_used(guc)) 384 intel_guc_slpc_fini(&guc->slpc); 385 386 if (intel_guc_submission_is_used(guc)) 387 intel_guc_submission_fini(guc); 388 389 intel_guc_ct_fini(&guc->ct); 390 391 intel_guc_ads_destroy(guc); 392 intel_guc_log_destroy(&guc->log); 393 intel_uc_fw_fini(&guc->fw); 394 } 395 396 /* 397 * This function implements the MMIO based host to GuC interface. 398 */ 399 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len, 400 u32 *response_buf, u32 response_buf_size) 401 { 402 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 403 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 404 u32 header; 405 int i; 406 int ret; 407 408 GEM_BUG_ON(!len); 409 GEM_BUG_ON(len > guc->send_regs.count); 410 411 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST); 412 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST); 413 414 mutex_lock(&guc->send_mutex); 415 intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains); 416 417 retry: 418 for (i = 0; i < len; i++) 419 intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]); 420 421 intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1)); 422 423 intel_guc_notify(guc); 424 425 /* 426 * No GuC command should ever take longer than 10ms. 427 * Fast commands should still complete in 10us. 428 */ 429 ret = __intel_wait_for_register_fw(uncore, 430 guc_send_reg(guc, 0), 431 GUC_HXG_MSG_0_ORIGIN, 432 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, 433 GUC_HXG_ORIGIN_GUC), 434 10, 10, &header); 435 if (unlikely(ret)) { 436 timeout: 437 drm_err(&i915->drm, "mmio request %#x: no reply %x\n", 438 request[0], header); 439 goto out; 440 } 441 442 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) { 443 #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \ 444 FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \ 445 FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; }) 446 447 ret = wait_for(done, 1000); 448 if (unlikely(ret)) 449 goto timeout; 450 if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != 451 GUC_HXG_ORIGIN_GUC)) 452 goto proto; 453 #undef done 454 } 455 456 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) { 457 u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header); 458 459 drm_dbg(&i915->drm, "mmio request %#x: retrying, reason %u\n", 460 request[0], reason); 461 goto retry; 462 } 463 464 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) { 465 u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header); 466 u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header); 467 468 drm_err(&i915->drm, "mmio request %#x: failure %x/%u\n", 469 request[0], error, hint); 470 ret = -ENXIO; 471 goto out; 472 } 473 474 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) { 475 proto: 476 drm_err(&i915->drm, "mmio request %#x: unexpected reply %#x\n", 477 request[0], header); 478 ret = -EPROTO; 479 goto out; 480 } 481 482 if (response_buf) { 483 int count = min(response_buf_size, guc->send_regs.count); 484 485 GEM_BUG_ON(!count); 486 487 response_buf[0] = header; 488 489 for (i = 1; i < count; i++) 490 response_buf[i] = intel_uncore_read(uncore, 491 guc_send_reg(guc, i)); 492 493 /* Use number of copied dwords as our return value */ 494 ret = count; 495 } else { 496 /* Use data from the GuC response as our return value */ 497 ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header); 498 } 499 500 out: 501 intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains); 502 mutex_unlock(&guc->send_mutex); 503 504 return ret; 505 } 506 507 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc, 508 const u32 *payload, u32 len) 509 { 510 u32 msg; 511 512 if (unlikely(!len)) 513 return -EPROTO; 514 515 /* Make sure to handle only enabled messages */ 516 msg = payload[0] & guc->msg_enabled_mask; 517 518 if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER | 519 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED)) 520 intel_guc_log_handle_flush_event(&guc->log); 521 522 return 0; 523 } 524 525 /** 526 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode 527 * @guc: intel_guc structure 528 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma 529 * 530 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send 531 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by 532 * intel_huc_auth(). 533 * 534 * Return: non-zero code on error 535 */ 536 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset) 537 { 538 u32 action[] = { 539 INTEL_GUC_ACTION_AUTHENTICATE_HUC, 540 rsa_offset 541 }; 542 543 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 544 } 545 546 /** 547 * intel_guc_suspend() - notify GuC entering suspend state 548 * @guc: the guc 549 */ 550 int intel_guc_suspend(struct intel_guc *guc) 551 { 552 int ret; 553 u32 action[] = { 554 INTEL_GUC_ACTION_RESET_CLIENT, 555 }; 556 557 if (!intel_guc_is_ready(guc)) 558 return 0; 559 560 if (intel_guc_submission_is_used(guc)) { 561 /* 562 * This H2G MMIO command tears down the GuC in two steps. First it will 563 * generate a G2H CTB for every active context indicating a reset. In 564 * practice the i915 shouldn't ever get a G2H as suspend should only be 565 * called when the GPU is idle. Next, it tears down the CTBs and this 566 * H2G MMIO command completes. 567 * 568 * Don't abort on a failure code from the GuC. Keep going and do the 569 * clean up in santize() and re-initialisation on resume and hopefully 570 * the error here won't be problematic. 571 */ 572 ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0); 573 if (ret) 574 DRM_ERROR("GuC suspend: RESET_CLIENT action failed with error %d!\n", ret); 575 } 576 577 /* Signal that the GuC isn't running. */ 578 intel_guc_sanitize(guc); 579 580 return 0; 581 } 582 583 /** 584 * intel_guc_resume() - notify GuC resuming from suspend state 585 * @guc: the guc 586 */ 587 int intel_guc_resume(struct intel_guc *guc) 588 { 589 /* 590 * NB: This function can still be called even if GuC submission is 591 * disabled, e.g. if GuC is enabled for HuC authentication only. Thus, 592 * if any code is later added here, it must be support doing nothing 593 * if submission is disabled (as per intel_guc_suspend). 594 */ 595 return 0; 596 } 597 598 /** 599 * DOC: GuC Memory Management 600 * 601 * GuC can't allocate any memory for its own usage, so all the allocations must 602 * be handled by the host driver. GuC accesses the memory via the GGTT, with the 603 * exception of the top and bottom parts of the 4GB address space, which are 604 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM) 605 * or other parts of the HW. The driver must take care not to place objects that 606 * the GuC is going to access in these reserved ranges. The layout of the GuC 607 * address space is shown below: 608 * 609 * :: 610 * 611 * +===========> +====================+ <== FFFF_FFFF 612 * ^ | Reserved | 613 * | +====================+ <== GUC_GGTT_TOP 614 * | | | 615 * | | DRAM | 616 * GuC | | 617 * Address +===> +====================+ <== GuC ggtt_pin_bias 618 * Space ^ | | 619 * | | | | 620 * | GuC | GuC | 621 * | WOPCM | WOPCM | 622 * | Size | | 623 * | | | | 624 * v v | | 625 * +=======+===> +====================+ <== 0000_0000 626 * 627 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM 628 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped 629 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size. 630 */ 631 632 /** 633 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage 634 * @guc: the guc 635 * @size: size of area to allocate (both virtual space and memory) 636 * 637 * This is a wrapper to create an object for use with the GuC. In order to 638 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate 639 * both some backing storage and a range inside the Global GTT. We must pin 640 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that 641 * range is reserved inside GuC. 642 * 643 * Return: A i915_vma if successful, otherwise an ERR_PTR. 644 */ 645 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size) 646 { 647 struct intel_gt *gt = guc_to_gt(guc); 648 struct drm_i915_gem_object *obj; 649 struct i915_vma *vma; 650 u64 flags; 651 int ret; 652 653 if (HAS_LMEM(gt->i915)) 654 obj = i915_gem_object_create_lmem(gt->i915, size, 655 I915_BO_ALLOC_CPU_CLEAR | 656 I915_BO_ALLOC_CONTIGUOUS | 657 I915_BO_ALLOC_PM_EARLY); 658 else 659 obj = i915_gem_object_create_shmem(gt->i915, size); 660 661 if (IS_ERR(obj)) 662 return ERR_CAST(obj); 663 664 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 665 if (IS_ERR(vma)) 666 goto err; 667 668 flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma); 669 ret = i915_ggtt_pin(vma, NULL, 0, flags); 670 if (ret) { 671 vma = ERR_PTR(ret); 672 goto err; 673 } 674 675 return i915_vma_make_unshrinkable(vma); 676 677 err: 678 i915_gem_object_put(obj); 679 return vma; 680 } 681 682 /** 683 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage 684 * @guc: the guc 685 * @size: size of area to allocate (both virtual space and memory) 686 * @out_vma: return variable for the allocated vma pointer 687 * @out_vaddr: return variable for the obj mapping 688 * 689 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated 690 * object with I915_MAP_WB. 691 * 692 * Return: 0 if successful, a negative errno code otherwise. 693 */ 694 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size, 695 struct i915_vma **out_vma, void **out_vaddr) 696 { 697 struct i915_vma *vma; 698 void *vaddr; 699 700 vma = intel_guc_allocate_vma(guc, size); 701 if (IS_ERR(vma)) 702 return PTR_ERR(vma); 703 704 vaddr = i915_gem_object_pin_map_unlocked(vma->obj, 705 i915_coherent_map_type(guc_to_gt(guc)->i915, 706 vma->obj, true)); 707 if (IS_ERR(vaddr)) { 708 i915_vma_unpin_and_release(&vma, 0); 709 return PTR_ERR(vaddr); 710 } 711 712 *out_vma = vma; 713 *out_vaddr = vaddr; 714 715 return 0; 716 } 717 718 /** 719 * intel_guc_load_status - dump information about GuC load status 720 * @guc: the GuC 721 * @p: the &drm_printer 722 * 723 * Pretty printer for GuC load status. 724 */ 725 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p) 726 { 727 struct intel_gt *gt = guc_to_gt(guc); 728 struct intel_uncore *uncore = gt->uncore; 729 intel_wakeref_t wakeref; 730 731 if (!intel_guc_is_supported(guc)) { 732 drm_printf(p, "GuC not supported\n"); 733 return; 734 } 735 736 if (!intel_guc_is_wanted(guc)) { 737 drm_printf(p, "GuC disabled\n"); 738 return; 739 } 740 741 intel_uc_fw_dump(&guc->fw, p); 742 743 with_intel_runtime_pm(uncore->rpm, wakeref) { 744 u32 status = intel_uncore_read(uncore, GUC_STATUS); 745 u32 i; 746 747 drm_printf(p, "\nGuC status 0x%08x:\n", status); 748 drm_printf(p, "\tBootrom status = 0x%x\n", 749 (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT); 750 drm_printf(p, "\tuKernel status = 0x%x\n", 751 (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT); 752 drm_printf(p, "\tMIA Core status = 0x%x\n", 753 (status & GS_MIA_MASK) >> GS_MIA_SHIFT); 754 drm_puts(p, "\nScratch registers:\n"); 755 for (i = 0; i < 16; i++) { 756 drm_printf(p, "\t%2d: \t0x%x\n", 757 i, intel_uncore_read(uncore, SOFT_SCRATCH(i))); 758 } 759 } 760 } 761 762 void intel_guc_write_barrier(struct intel_guc *guc) 763 { 764 struct intel_gt *gt = guc_to_gt(guc); 765 766 if (i915_gem_object_is_lmem(guc->ct.vma->obj)) { 767 /* 768 * Ensure intel_uncore_write_fw can be used rather than 769 * intel_uncore_write. 770 */ 771 GEM_BUG_ON(guc->send_regs.fw_domains); 772 773 /* 774 * This register is used by the i915 and GuC for MMIO based 775 * communication. Once we are in this code CTBs are the only 776 * method the i915 uses to communicate with the GuC so it is 777 * safe to write to this register (a value of 0 is NOP for MMIO 778 * communication). If we ever start mixing CTBs and MMIOs a new 779 * register will have to be chosen. This function is also used 780 * to enforce ordering of a work queue item write and an update 781 * to the process descriptor. When a work queue is being used, 782 * CTBs are also the only mechanism of communication. 783 */ 784 intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0); 785 } else { 786 /* wmb() sufficient for a barrier if in smem */ 787 wmb(); 788 } 789 } 790