1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2019 Intel Corporation 4 */ 5 6 #include "gem/i915_gem_lmem.h" 7 #include "gt/intel_gt.h" 8 #include "gt/intel_gt_irq.h" 9 #include "gt/intel_gt_pm_irq.h" 10 #include "gt/intel_gt_regs.h" 11 #include "intel_guc.h" 12 #include "intel_guc_ads.h" 13 #include "intel_guc_capture.h" 14 #include "intel_guc_print.h" 15 #include "intel_guc_slpc.h" 16 #include "intel_guc_submission.h" 17 #include "i915_drv.h" 18 #include "i915_irq.h" 19 #include "i915_reg.h" 20 21 /** 22 * DOC: GuC 23 * 24 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is 25 * designed to offload some of the functionality usually performed by the host 26 * driver; currently the main operations it can take care of are: 27 * 28 * - Authentication of the HuC, which is required to fully enable HuC usage. 29 * - Low latency graphics context scheduling (a.k.a. GuC submission). 30 * - GT Power management. 31 * 32 * The enable_guc module parameter can be used to select which of those 33 * operations to enable within GuC. Note that not all the operations are 34 * supported on all gen9+ platforms. 35 * 36 * Enabling the GuC is not mandatory and therefore the firmware is only loaded 37 * if at least one of the operations is selected. However, not loading the GuC 38 * might result in the loss of some features that do require the GuC (currently 39 * just the HuC, but more are expected to land in the future). 40 */ 41 42 void intel_guc_notify(struct intel_guc *guc) 43 { 44 struct intel_gt *gt = guc_to_gt(guc); 45 46 /* 47 * On Gen11+, the value written to the register is passes as a payload 48 * to the FW. However, the FW currently treats all values the same way 49 * (H2G interrupt), so we can just write the value that the HW expects 50 * on older gens. 51 */ 52 intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER); 53 } 54 55 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i) 56 { 57 GEM_BUG_ON(!guc->send_regs.base); 58 GEM_BUG_ON(!guc->send_regs.count); 59 GEM_BUG_ON(i >= guc->send_regs.count); 60 61 return _MMIO(guc->send_regs.base + 4 * i); 62 } 63 64 void intel_guc_init_send_regs(struct intel_guc *guc) 65 { 66 struct intel_gt *gt = guc_to_gt(guc); 67 enum forcewake_domains fw_domains = 0; 68 unsigned int i; 69 70 GEM_BUG_ON(!guc->send_regs.base); 71 GEM_BUG_ON(!guc->send_regs.count); 72 73 for (i = 0; i < guc->send_regs.count; i++) { 74 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore, 75 guc_send_reg(guc, i), 76 FW_REG_READ | FW_REG_WRITE); 77 } 78 guc->send_regs.fw_domains = fw_domains; 79 } 80 81 static void gen9_reset_guc_interrupts(struct intel_guc *guc) 82 { 83 struct intel_gt *gt = guc_to_gt(guc); 84 85 assert_rpm_wakelock_held(>->i915->runtime_pm); 86 87 spin_lock_irq(gt->irq_lock); 88 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events); 89 spin_unlock_irq(gt->irq_lock); 90 } 91 92 static void gen9_enable_guc_interrupts(struct intel_guc *guc) 93 { 94 struct intel_gt *gt = guc_to_gt(guc); 95 96 assert_rpm_wakelock_held(>->i915->runtime_pm); 97 98 spin_lock_irq(gt->irq_lock); 99 guc_WARN_ON_ONCE(guc, intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) & 100 gt->pm_guc_events); 101 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events); 102 spin_unlock_irq(gt->irq_lock); 103 104 guc->interrupts.enabled = true; 105 } 106 107 static void gen9_disable_guc_interrupts(struct intel_guc *guc) 108 { 109 struct intel_gt *gt = guc_to_gt(guc); 110 111 assert_rpm_wakelock_held(>->i915->runtime_pm); 112 guc->interrupts.enabled = false; 113 114 spin_lock_irq(gt->irq_lock); 115 116 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events); 117 118 spin_unlock_irq(gt->irq_lock); 119 intel_synchronize_irq(gt->i915); 120 121 gen9_reset_guc_interrupts(guc); 122 } 123 124 static bool __gen11_reset_guc_interrupts(struct intel_gt *gt) 125 { 126 u32 irq = gt->type == GT_MEDIA ? MTL_MGUC : GEN11_GUC; 127 128 lockdep_assert_held(gt->irq_lock); 129 return gen11_gt_reset_one_iir(gt, 0, irq); 130 } 131 132 static void gen11_reset_guc_interrupts(struct intel_guc *guc) 133 { 134 struct intel_gt *gt = guc_to_gt(guc); 135 136 spin_lock_irq(gt->irq_lock); 137 __gen11_reset_guc_interrupts(gt); 138 spin_unlock_irq(gt->irq_lock); 139 } 140 141 static void gen11_enable_guc_interrupts(struct intel_guc *guc) 142 { 143 struct intel_gt *gt = guc_to_gt(guc); 144 145 spin_lock_irq(gt->irq_lock); 146 __gen11_reset_guc_interrupts(gt); 147 spin_unlock_irq(gt->irq_lock); 148 149 guc->interrupts.enabled = true; 150 } 151 152 static void gen11_disable_guc_interrupts(struct intel_guc *guc) 153 { 154 struct intel_gt *gt = guc_to_gt(guc); 155 156 guc->interrupts.enabled = false; 157 intel_synchronize_irq(gt->i915); 158 159 gen11_reset_guc_interrupts(guc); 160 } 161 162 static void guc_dead_worker_func(struct work_struct *w) 163 { 164 struct intel_guc *guc = container_of(w, struct intel_guc, dead_guc_worker); 165 struct intel_gt *gt = guc_to_gt(guc); 166 unsigned long last = guc->last_dead_guc_jiffies; 167 unsigned long delta = jiffies_to_msecs(jiffies - last); 168 169 if (delta < 500) { 170 intel_gt_set_wedged(gt); 171 } else { 172 intel_gt_handle_error(gt, ALL_ENGINES, I915_ERROR_CAPTURE, "dead GuC"); 173 guc->last_dead_guc_jiffies = jiffies; 174 } 175 } 176 177 void intel_guc_init_early(struct intel_guc *guc) 178 { 179 struct intel_gt *gt = guc_to_gt(guc); 180 struct drm_i915_private *i915 = gt->i915; 181 182 intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC, true); 183 intel_guc_ct_init_early(&guc->ct); 184 intel_guc_log_init_early(&guc->log); 185 intel_guc_submission_init_early(guc); 186 intel_guc_slpc_init_early(&guc->slpc); 187 intel_guc_rc_init_early(guc); 188 189 INIT_WORK(&guc->dead_guc_worker, guc_dead_worker_func); 190 191 mutex_init(&guc->send_mutex); 192 spin_lock_init(&guc->irq_lock); 193 if (GRAPHICS_VER(i915) >= 11) { 194 guc->interrupts.reset = gen11_reset_guc_interrupts; 195 guc->interrupts.enable = gen11_enable_guc_interrupts; 196 guc->interrupts.disable = gen11_disable_guc_interrupts; 197 if (gt->type == GT_MEDIA) { 198 guc->notify_reg = MEDIA_GUC_HOST_INTERRUPT; 199 guc->send_regs.base = i915_mmio_reg_offset(MEDIA_SOFT_SCRATCH(0)); 200 } else { 201 guc->notify_reg = GEN11_GUC_HOST_INTERRUPT; 202 guc->send_regs.base = i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0)); 203 } 204 205 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT; 206 207 } else { 208 guc->notify_reg = GUC_SEND_INTERRUPT; 209 guc->interrupts.reset = gen9_reset_guc_interrupts; 210 guc->interrupts.enable = gen9_enable_guc_interrupts; 211 guc->interrupts.disable = gen9_disable_guc_interrupts; 212 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0)); 213 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN; 214 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT); 215 } 216 217 intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION | 218 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED); 219 } 220 221 void intel_guc_init_late(struct intel_guc *guc) 222 { 223 intel_guc_ads_init_late(guc); 224 } 225 226 static u32 guc_ctl_debug_flags(struct intel_guc *guc) 227 { 228 u32 level = intel_guc_log_get_level(&guc->log); 229 u32 flags = 0; 230 231 if (!GUC_LOG_LEVEL_IS_VERBOSE(level)) 232 flags |= GUC_LOG_DISABLED; 233 else 234 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) << 235 GUC_LOG_VERBOSITY_SHIFT; 236 237 return flags; 238 } 239 240 static u32 guc_ctl_feature_flags(struct intel_guc *guc) 241 { 242 struct intel_gt *gt = guc_to_gt(guc); 243 u32 flags = 0; 244 245 /* 246 * Enable PXP GuC autoteardown flow. 247 * NB: MTL does things differently. 248 */ 249 if (HAS_PXP(gt->i915) && !IS_METEORLAKE(gt->i915)) 250 flags |= GUC_CTL_ENABLE_GUC_PXP_CTL; 251 252 if (!intel_guc_submission_is_used(guc)) 253 flags |= GUC_CTL_DISABLE_SCHEDULER; 254 255 if (intel_guc_slpc_is_used(guc)) 256 flags |= GUC_CTL_ENABLE_SLPC; 257 258 return flags; 259 } 260 261 static u32 guc_ctl_log_params_flags(struct intel_guc *guc) 262 { 263 struct intel_guc_log *log = &guc->log; 264 u32 offset, flags; 265 266 GEM_BUG_ON(!log->sizes_initialised); 267 268 offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT; 269 270 flags = GUC_LOG_VALID | 271 GUC_LOG_NOTIFY_ON_HALF_FULL | 272 log->sizes[GUC_LOG_SECTIONS_DEBUG].flag | 273 log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag | 274 (log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) | 275 (log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) | 276 (log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) | 277 (offset << GUC_LOG_BUF_ADDR_SHIFT); 278 279 return flags; 280 } 281 282 static u32 guc_ctl_ads_flags(struct intel_guc *guc) 283 { 284 u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT; 285 u32 flags = ads << GUC_ADS_ADDR_SHIFT; 286 287 return flags; 288 } 289 290 static u32 guc_ctl_wa_flags(struct intel_guc *guc) 291 { 292 struct intel_gt *gt = guc_to_gt(guc); 293 u32 flags = 0; 294 295 /* Wa_22012773006:gen11,gen12 < XeHP */ 296 if (GRAPHICS_VER(gt->i915) >= 11 && 297 GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 55)) 298 flags |= GUC_WA_POLLCS; 299 300 /* Wa_14014475959 */ 301 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 302 IS_DG2(gt->i915)) 303 flags |= GUC_WA_HOLD_CCS_SWITCHOUT; 304 305 /* Wa_16019325821 */ 306 /* Wa_14019159160 */ 307 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) 308 flags |= GUC_WA_RCS_CCS_SWITCHOUT; 309 310 /* 311 * Wa_14012197797 312 * Wa_22011391025 313 * 314 * The same WA bit is used for both and 22011391025 is applicable to 315 * all DG2. 316 * 317 * Platforms post DG2 prevent this issue in hardware by stalling 318 * submissions. With this flag GuC will schedule as to avoid such 319 * stalls. 320 */ 321 if (IS_DG2(gt->i915) || 322 (CCS_MASK(gt) && GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70))) 323 flags |= GUC_WA_DUAL_QUEUE; 324 325 /* Wa_22011802037: graphics version 11/12 */ 326 if (intel_engine_reset_needs_wa_22011802037(gt)) 327 flags |= GUC_WA_PRE_PARSER; 328 329 /* 330 * Wa_22012727170 331 * Wa_22012727685 332 */ 333 if (IS_DG2_G11(gt->i915)) 334 flags |= GUC_WA_CONTEXT_ISOLATION; 335 336 /* 337 * Wa_14018913170: Applicable to all platforms supported by i915 so 338 * don't bother testing for all X/Y/Z platforms explicitly. 339 */ 340 if (GUC_FIRMWARE_VER(guc) >= MAKE_GUC_VER(70, 7, 0)) 341 flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6; 342 343 return flags; 344 } 345 346 static u32 guc_ctl_devid(struct intel_guc *guc) 347 { 348 struct drm_i915_private *i915 = guc_to_i915(guc); 349 350 return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915); 351 } 352 353 /* 354 * Initialise the GuC parameter block before starting the firmware 355 * transfer. These parameters are read by the firmware on startup 356 * and cannot be changed thereafter. 357 */ 358 static void guc_init_params(struct intel_guc *guc) 359 { 360 u32 *params = guc->params; 361 int i; 362 363 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32)); 364 365 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); 366 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc); 367 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); 368 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); 369 params[GUC_CTL_WA] = guc_ctl_wa_flags(guc); 370 params[GUC_CTL_DEVID] = guc_ctl_devid(guc); 371 372 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 373 guc_dbg(guc, "param[%2d] = %#x\n", i, params[i]); 374 } 375 376 /* 377 * Initialise the GuC parameter block before starting the firmware 378 * transfer. These parameters are read by the firmware on startup 379 * and cannot be changed thereafter. 380 */ 381 void intel_guc_write_params(struct intel_guc *guc) 382 { 383 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 384 int i; 385 386 /* 387 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and 388 * they are power context saved so it's ok to release forcewake 389 * when we are done here and take it again at xfer time. 390 */ 391 intel_uncore_forcewake_get(uncore, FORCEWAKE_GT); 392 393 intel_uncore_write(uncore, SOFT_SCRATCH(0), 0); 394 395 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 396 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]); 397 398 intel_uncore_forcewake_put(uncore, FORCEWAKE_GT); 399 } 400 401 void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p) 402 { 403 struct intel_gt *gt = guc_to_gt(guc); 404 intel_wakeref_t wakeref; 405 u32 stamp = 0; 406 u64 ktime; 407 408 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) 409 stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP); 410 ktime = ktime_get_boottime_ns(); 411 412 drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime); 413 drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp); 414 drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n", 415 gt->clock_frequency, gt->clock_period_ns); 416 } 417 418 int intel_guc_init(struct intel_guc *guc) 419 { 420 int ret; 421 422 ret = intel_uc_fw_init(&guc->fw); 423 if (ret) 424 goto out; 425 426 ret = intel_guc_log_create(&guc->log); 427 if (ret) 428 goto err_fw; 429 430 ret = intel_guc_capture_init(guc); 431 if (ret) 432 goto err_log; 433 434 ret = intel_guc_ads_create(guc); 435 if (ret) 436 goto err_capture; 437 438 GEM_BUG_ON(!guc->ads_vma); 439 440 ret = intel_guc_ct_init(&guc->ct); 441 if (ret) 442 goto err_ads; 443 444 if (intel_guc_submission_is_used(guc)) { 445 /* 446 * This is stuff we need to have available at fw load time 447 * if we are planning to enable submission later 448 */ 449 ret = intel_guc_submission_init(guc); 450 if (ret) 451 goto err_ct; 452 } 453 454 if (intel_guc_slpc_is_used(guc)) { 455 ret = intel_guc_slpc_init(&guc->slpc); 456 if (ret) 457 goto err_submission; 458 } 459 460 /* now that everything is perma-pinned, initialize the parameters */ 461 guc_init_params(guc); 462 463 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE); 464 465 return 0; 466 467 err_submission: 468 intel_guc_submission_fini(guc); 469 err_ct: 470 intel_guc_ct_fini(&guc->ct); 471 err_ads: 472 intel_guc_ads_destroy(guc); 473 err_capture: 474 intel_guc_capture_destroy(guc); 475 err_log: 476 intel_guc_log_destroy(&guc->log); 477 err_fw: 478 intel_uc_fw_fini(&guc->fw); 479 out: 480 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_INIT_FAIL); 481 guc_probe_error(guc, "failed with %pe\n", ERR_PTR(ret)); 482 return ret; 483 } 484 485 void intel_guc_fini(struct intel_guc *guc) 486 { 487 if (!intel_uc_fw_is_loadable(&guc->fw)) 488 return; 489 490 flush_work(&guc->dead_guc_worker); 491 492 if (intel_guc_slpc_is_used(guc)) 493 intel_guc_slpc_fini(&guc->slpc); 494 495 if (intel_guc_submission_is_used(guc)) 496 intel_guc_submission_fini(guc); 497 498 intel_guc_ct_fini(&guc->ct); 499 500 intel_guc_ads_destroy(guc); 501 intel_guc_capture_destroy(guc); 502 intel_guc_log_destroy(&guc->log); 503 intel_uc_fw_fini(&guc->fw); 504 } 505 506 /* 507 * This function implements the MMIO based host to GuC interface. 508 */ 509 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len, 510 u32 *response_buf, u32 response_buf_size) 511 { 512 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 513 u32 header; 514 int i; 515 int ret; 516 517 GEM_BUG_ON(!len); 518 GEM_BUG_ON(len > guc->send_regs.count); 519 520 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST); 521 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST); 522 523 mutex_lock(&guc->send_mutex); 524 intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains); 525 526 retry: 527 for (i = 0; i < len; i++) 528 intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]); 529 530 intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1)); 531 532 intel_guc_notify(guc); 533 534 /* 535 * No GuC command should ever take longer than 10ms. 536 * Fast commands should still complete in 10us. 537 */ 538 ret = __intel_wait_for_register_fw(uncore, 539 guc_send_reg(guc, 0), 540 GUC_HXG_MSG_0_ORIGIN, 541 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, 542 GUC_HXG_ORIGIN_GUC), 543 10, 10, &header); 544 if (unlikely(ret)) { 545 timeout: 546 guc_err(guc, "mmio request %#x: no reply %x\n", 547 request[0], header); 548 goto out; 549 } 550 551 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) { 552 #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \ 553 FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \ 554 FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; }) 555 556 ret = wait_for(done, 1000); 557 if (unlikely(ret)) 558 goto timeout; 559 if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != 560 GUC_HXG_ORIGIN_GUC)) 561 goto proto; 562 #undef done 563 } 564 565 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) { 566 u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header); 567 568 guc_dbg(guc, "mmio request %#x: retrying, reason %u\n", 569 request[0], reason); 570 goto retry; 571 } 572 573 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) { 574 u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header); 575 u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header); 576 577 guc_err(guc, "mmio request %#x: failure %x/%u\n", 578 request[0], error, hint); 579 ret = -ENXIO; 580 goto out; 581 } 582 583 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) { 584 proto: 585 guc_err(guc, "mmio request %#x: unexpected reply %#x\n", 586 request[0], header); 587 ret = -EPROTO; 588 goto out; 589 } 590 591 if (response_buf) { 592 int count = min(response_buf_size, guc->send_regs.count); 593 594 GEM_BUG_ON(!count); 595 596 response_buf[0] = header; 597 598 for (i = 1; i < count; i++) 599 response_buf[i] = intel_uncore_read(uncore, 600 guc_send_reg(guc, i)); 601 602 /* Use number of copied dwords as our return value */ 603 ret = count; 604 } else { 605 /* Use data from the GuC response as our return value */ 606 ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header); 607 } 608 609 out: 610 intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains); 611 mutex_unlock(&guc->send_mutex); 612 613 return ret; 614 } 615 616 int intel_guc_crash_process_msg(struct intel_guc *guc, u32 action) 617 { 618 if (action == INTEL_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED) 619 guc_err(guc, "Crash dump notification\n"); 620 else if (action == INTEL_GUC_ACTION_NOTIFY_EXCEPTION) 621 guc_err(guc, "Exception notification\n"); 622 else 623 guc_err(guc, "Unknown crash notification: 0x%04X\n", action); 624 625 queue_work(system_unbound_wq, &guc->dead_guc_worker); 626 627 return 0; 628 } 629 630 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc, 631 const u32 *payload, u32 len) 632 { 633 u32 msg; 634 635 if (unlikely(!len)) 636 return -EPROTO; 637 638 /* Make sure to handle only enabled messages */ 639 msg = payload[0] & guc->msg_enabled_mask; 640 641 if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED) 642 guc_err(guc, "Received early crash dump notification!\n"); 643 if (msg & INTEL_GUC_RECV_MSG_EXCEPTION) 644 guc_err(guc, "Received early exception notification!\n"); 645 646 if (msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED | INTEL_GUC_RECV_MSG_EXCEPTION)) 647 queue_work(system_unbound_wq, &guc->dead_guc_worker); 648 649 return 0; 650 } 651 652 /** 653 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode 654 * @guc: intel_guc structure 655 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma 656 * 657 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send 658 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by 659 * intel_huc_auth(). 660 * 661 * Return: non-zero code on error 662 */ 663 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset) 664 { 665 u32 action[] = { 666 INTEL_GUC_ACTION_AUTHENTICATE_HUC, 667 rsa_offset 668 }; 669 670 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 671 } 672 673 /** 674 * intel_guc_suspend() - notify GuC entering suspend state 675 * @guc: the guc 676 */ 677 int intel_guc_suspend(struct intel_guc *guc) 678 { 679 int ret; 680 u32 action[] = { 681 INTEL_GUC_ACTION_CLIENT_SOFT_RESET, 682 }; 683 684 if (!intel_guc_is_ready(guc)) 685 return 0; 686 687 if (intel_guc_submission_is_used(guc)) { 688 flush_work(&guc->dead_guc_worker); 689 690 /* 691 * This H2G MMIO command tears down the GuC in two steps. First it will 692 * generate a G2H CTB for every active context indicating a reset. In 693 * practice the i915 shouldn't ever get a G2H as suspend should only be 694 * called when the GPU is idle. Next, it tears down the CTBs and this 695 * H2G MMIO command completes. 696 * 697 * Don't abort on a failure code from the GuC. Keep going and do the 698 * clean up in sanitize() and re-initialisation on resume and hopefully 699 * the error here won't be problematic. 700 */ 701 ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0); 702 if (ret) 703 guc_err(guc, "suspend: RESET_CLIENT action failed with %pe\n", 704 ERR_PTR(ret)); 705 } 706 707 /* Signal that the GuC isn't running. */ 708 intel_guc_sanitize(guc); 709 710 return 0; 711 } 712 713 /** 714 * intel_guc_resume() - notify GuC resuming from suspend state 715 * @guc: the guc 716 */ 717 int intel_guc_resume(struct intel_guc *guc) 718 { 719 /* 720 * NB: This function can still be called even if GuC submission is 721 * disabled, e.g. if GuC is enabled for HuC authentication only. Thus, 722 * if any code is later added here, it must be support doing nothing 723 * if submission is disabled (as per intel_guc_suspend). 724 */ 725 return 0; 726 } 727 728 /** 729 * DOC: GuC Memory Management 730 * 731 * GuC can't allocate any memory for its own usage, so all the allocations must 732 * be handled by the host driver. GuC accesses the memory via the GGTT, with the 733 * exception of the top and bottom parts of the 4GB address space, which are 734 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM) 735 * or other parts of the HW. The driver must take care not to place objects that 736 * the GuC is going to access in these reserved ranges. The layout of the GuC 737 * address space is shown below: 738 * 739 * :: 740 * 741 * +===========> +====================+ <== FFFF_FFFF 742 * ^ | Reserved | 743 * | +====================+ <== GUC_GGTT_TOP 744 * | | | 745 * | | DRAM | 746 * GuC | | 747 * Address +===> +====================+ <== GuC ggtt_pin_bias 748 * Space ^ | | 749 * | | | | 750 * | GuC | GuC | 751 * | WOPCM | WOPCM | 752 * | Size | | 753 * | | | | 754 * v v | | 755 * +=======+===> +====================+ <== 0000_0000 756 * 757 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM 758 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped 759 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size. 760 */ 761 762 /** 763 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage 764 * @guc: the guc 765 * @size: size of area to allocate (both virtual space and memory) 766 * 767 * This is a wrapper to create an object for use with the GuC. In order to 768 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate 769 * both some backing storage and a range inside the Global GTT. We must pin 770 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that 771 * range is reserved inside GuC. 772 * 773 * Return: A i915_vma if successful, otherwise an ERR_PTR. 774 */ 775 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size) 776 { 777 struct intel_gt *gt = guc_to_gt(guc); 778 struct drm_i915_gem_object *obj; 779 struct i915_vma *vma; 780 u64 flags; 781 int ret; 782 783 if (HAS_LMEM(gt->i915)) 784 obj = i915_gem_object_create_lmem(gt->i915, size, 785 I915_BO_ALLOC_CPU_CLEAR | 786 I915_BO_ALLOC_CONTIGUOUS | 787 I915_BO_ALLOC_PM_EARLY); 788 else 789 obj = i915_gem_object_create_shmem(gt->i915, size); 790 791 if (IS_ERR(obj)) 792 return ERR_CAST(obj); 793 794 /* 795 * Wa_22016122933: For Media version 13.0, all Media GT shared 796 * memory needs to be mapped as WC on CPU side and UC (PAT 797 * index 2) on GPU side. 798 */ 799 if (intel_gt_needs_wa_22016122933(gt)) 800 i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE); 801 802 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 803 if (IS_ERR(vma)) 804 goto err; 805 806 flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma); 807 ret = i915_ggtt_pin(vma, NULL, 0, flags); 808 if (ret) { 809 vma = ERR_PTR(ret); 810 goto err; 811 } 812 813 return i915_vma_make_unshrinkable(vma); 814 815 err: 816 i915_gem_object_put(obj); 817 return vma; 818 } 819 820 /** 821 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage 822 * @guc: the guc 823 * @size: size of area to allocate (both virtual space and memory) 824 * @out_vma: return variable for the allocated vma pointer 825 * @out_vaddr: return variable for the obj mapping 826 * 827 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated 828 * object with I915_MAP_WB. 829 * 830 * Return: 0 if successful, a negative errno code otherwise. 831 */ 832 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size, 833 struct i915_vma **out_vma, void **out_vaddr) 834 { 835 struct i915_vma *vma; 836 void *vaddr; 837 838 vma = intel_guc_allocate_vma(guc, size); 839 if (IS_ERR(vma)) 840 return PTR_ERR(vma); 841 842 vaddr = i915_gem_object_pin_map_unlocked(vma->obj, 843 intel_gt_coherent_map_type(guc_to_gt(guc), 844 vma->obj, true)); 845 if (IS_ERR(vaddr)) { 846 i915_vma_unpin_and_release(&vma, 0); 847 return PTR_ERR(vaddr); 848 } 849 850 *out_vma = vma; 851 *out_vaddr = vaddr; 852 853 return 0; 854 } 855 856 static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) 857 { 858 u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = { 859 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) | 860 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | 861 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG), 862 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) | 863 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len), 864 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)), 865 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)), 866 }; 867 int ret; 868 869 GEM_BUG_ON(len > 2); 870 GEM_BUG_ON(len == 1 && upper_32_bits(value)); 871 872 /* Self config must go over MMIO */ 873 ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0); 874 875 if (unlikely(ret < 0)) 876 return ret; 877 if (unlikely(ret > 1)) 878 return -EPROTO; 879 if (unlikely(!ret)) 880 return -ENOKEY; 881 882 return 0; 883 } 884 885 static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) 886 { 887 int err = __guc_action_self_cfg(guc, key, len, value); 888 889 if (unlikely(err)) 890 guc_probe_error(guc, "Unsuccessful self-config (%pe) key %#hx value %#llx\n", 891 ERR_PTR(err), key, value); 892 return err; 893 } 894 895 int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value) 896 { 897 return __guc_self_cfg(guc, key, 1, value); 898 } 899 900 int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value) 901 { 902 return __guc_self_cfg(guc, key, 2, value); 903 } 904 905 /** 906 * intel_guc_load_status - dump information about GuC load status 907 * @guc: the GuC 908 * @p: the &drm_printer 909 * 910 * Pretty printer for GuC load status. 911 */ 912 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p) 913 { 914 struct intel_gt *gt = guc_to_gt(guc); 915 struct intel_uncore *uncore = gt->uncore; 916 intel_wakeref_t wakeref; 917 918 if (!intel_guc_is_supported(guc)) { 919 drm_printf(p, "GuC not supported\n"); 920 return; 921 } 922 923 if (!intel_guc_is_wanted(guc)) { 924 drm_printf(p, "GuC disabled\n"); 925 return; 926 } 927 928 intel_uc_fw_dump(&guc->fw, p); 929 930 with_intel_runtime_pm(uncore->rpm, wakeref) { 931 u32 status = intel_uncore_read(uncore, GUC_STATUS); 932 u32 i; 933 934 drm_printf(p, "GuC status 0x%08x:\n", status); 935 drm_printf(p, "\tBootrom status = 0x%x\n", 936 (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT); 937 drm_printf(p, "\tuKernel status = 0x%x\n", 938 (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT); 939 drm_printf(p, "\tMIA Core status = 0x%x\n", 940 (status & GS_MIA_MASK) >> GS_MIA_SHIFT); 941 drm_puts(p, "Scratch registers:\n"); 942 for (i = 0; i < 16; i++) { 943 drm_printf(p, "\t%2d: \t0x%x\n", 944 i, intel_uncore_read(uncore, SOFT_SCRATCH(i))); 945 } 946 } 947 } 948 949 void intel_guc_write_barrier(struct intel_guc *guc) 950 { 951 struct intel_gt *gt = guc_to_gt(guc); 952 953 if (i915_gem_object_is_lmem(guc->ct.vma->obj)) { 954 /* 955 * Ensure intel_uncore_write_fw can be used rather than 956 * intel_uncore_write. 957 */ 958 GEM_BUG_ON(guc->send_regs.fw_domains); 959 960 /* 961 * This register is used by the i915 and GuC for MMIO based 962 * communication. Once we are in this code CTBs are the only 963 * method the i915 uses to communicate with the GuC so it is 964 * safe to write to this register (a value of 0 is NOP for MMIO 965 * communication). If we ever start mixing CTBs and MMIOs a new 966 * register will have to be chosen. This function is also used 967 * to enforce ordering of a work queue item write and an update 968 * to the process descriptor. When a work queue is being used, 969 * CTBs are also the only mechanism of communication. 970 */ 971 intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0); 972 } else { 973 /* wmb() sufficient for a barrier if in smem */ 974 wmb(); 975 } 976 } 977