xref: /linux/drivers/gpu/drm/i915/gt/uc/intel_guc.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014-2019 Intel Corporation
4  */
5 
6 #include "gem/i915_gem_lmem.h"
7 #include "gt/intel_gt.h"
8 #include "gt/intel_gt_irq.h"
9 #include "gt/intel_gt_pm_irq.h"
10 #include "gt/intel_gt_regs.h"
11 #include "intel_guc.h"
12 #include "intel_guc_ads.h"
13 #include "intel_guc_capture.h"
14 #include "intel_guc_print.h"
15 #include "intel_guc_slpc.h"
16 #include "intel_guc_submission.h"
17 #include "i915_drv.h"
18 #include "i915_irq.h"
19 #include "i915_reg.h"
20 
21 /**
22  * DOC: GuC
23  *
24  * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
25  * designed to offload some of the functionality usually performed by the host
26  * driver; currently the main operations it can take care of are:
27  *
28  * - Authentication of the HuC, which is required to fully enable HuC usage.
29  * - Low latency graphics context scheduling (a.k.a. GuC submission).
30  * - GT Power management.
31  *
32  * The enable_guc module parameter can be used to select which of those
33  * operations to enable within GuC. Note that not all the operations are
34  * supported on all gen9+ platforms.
35  *
36  * Enabling the GuC is not mandatory and therefore the firmware is only loaded
37  * if at least one of the operations is selected. However, not loading the GuC
38  * might result in the loss of some features that do require the GuC (currently
39  * just the HuC, but more are expected to land in the future).
40  */
41 
42 void intel_guc_notify(struct intel_guc *guc)
43 {
44 	struct intel_gt *gt = guc_to_gt(guc);
45 
46 	/*
47 	 * On Gen11+, the value written to the register is passes as a payload
48 	 * to the FW. However, the FW currently treats all values the same way
49 	 * (H2G interrupt), so we can just write the value that the HW expects
50 	 * on older gens.
51 	 */
52 	intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER);
53 }
54 
55 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
56 {
57 	GEM_BUG_ON(!guc->send_regs.base);
58 	GEM_BUG_ON(!guc->send_regs.count);
59 	GEM_BUG_ON(i >= guc->send_regs.count);
60 
61 	return _MMIO(guc->send_regs.base + 4 * i);
62 }
63 
64 void intel_guc_init_send_regs(struct intel_guc *guc)
65 {
66 	struct intel_gt *gt = guc_to_gt(guc);
67 	enum forcewake_domains fw_domains = 0;
68 	unsigned int i;
69 
70 	GEM_BUG_ON(!guc->send_regs.base);
71 	GEM_BUG_ON(!guc->send_regs.count);
72 
73 	for (i = 0; i < guc->send_regs.count; i++) {
74 		fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
75 					guc_send_reg(guc, i),
76 					FW_REG_READ | FW_REG_WRITE);
77 	}
78 	guc->send_regs.fw_domains = fw_domains;
79 }
80 
81 static void gen9_reset_guc_interrupts(struct intel_guc *guc)
82 {
83 	struct intel_gt *gt = guc_to_gt(guc);
84 
85 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
86 
87 	spin_lock_irq(gt->irq_lock);
88 	gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
89 	spin_unlock_irq(gt->irq_lock);
90 }
91 
92 static void gen9_enable_guc_interrupts(struct intel_guc *guc)
93 {
94 	struct intel_gt *gt = guc_to_gt(guc);
95 
96 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
97 
98 	spin_lock_irq(gt->irq_lock);
99 	guc_WARN_ON_ONCE(guc, intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
100 			 gt->pm_guc_events);
101 	gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
102 	spin_unlock_irq(gt->irq_lock);
103 
104 	guc->interrupts.enabled = true;
105 }
106 
107 static void gen9_disable_guc_interrupts(struct intel_guc *guc)
108 {
109 	struct intel_gt *gt = guc_to_gt(guc);
110 
111 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
112 	guc->interrupts.enabled = false;
113 
114 	spin_lock_irq(gt->irq_lock);
115 
116 	gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
117 
118 	spin_unlock_irq(gt->irq_lock);
119 	intel_synchronize_irq(gt->i915);
120 
121 	gen9_reset_guc_interrupts(guc);
122 }
123 
124 static bool __gen11_reset_guc_interrupts(struct intel_gt *gt)
125 {
126 	u32 irq = gt->type == GT_MEDIA ? MTL_MGUC : GEN11_GUC;
127 
128 	lockdep_assert_held(gt->irq_lock);
129 	return gen11_gt_reset_one_iir(gt, 0, irq);
130 }
131 
132 static void gen11_reset_guc_interrupts(struct intel_guc *guc)
133 {
134 	struct intel_gt *gt = guc_to_gt(guc);
135 
136 	spin_lock_irq(gt->irq_lock);
137 	__gen11_reset_guc_interrupts(gt);
138 	spin_unlock_irq(gt->irq_lock);
139 }
140 
141 static void gen11_enable_guc_interrupts(struct intel_guc *guc)
142 {
143 	struct intel_gt *gt = guc_to_gt(guc);
144 
145 	spin_lock_irq(gt->irq_lock);
146 	__gen11_reset_guc_interrupts(gt);
147 	spin_unlock_irq(gt->irq_lock);
148 
149 	guc->interrupts.enabled = true;
150 }
151 
152 static void gen11_disable_guc_interrupts(struct intel_guc *guc)
153 {
154 	struct intel_gt *gt = guc_to_gt(guc);
155 
156 	guc->interrupts.enabled = false;
157 	intel_synchronize_irq(gt->i915);
158 
159 	gen11_reset_guc_interrupts(guc);
160 }
161 
162 static void guc_dead_worker_func(struct work_struct *w)
163 {
164 	struct intel_guc *guc = container_of(w, struct intel_guc, dead_guc_worker);
165 	struct intel_gt *gt = guc_to_gt(guc);
166 	unsigned long last = guc->last_dead_guc_jiffies;
167 	unsigned long delta = jiffies_to_msecs(jiffies - last);
168 
169 	if (delta < 500) {
170 		intel_gt_set_wedged(gt);
171 	} else {
172 		intel_gt_handle_error(gt, ALL_ENGINES, I915_ERROR_CAPTURE, "dead GuC");
173 		guc->last_dead_guc_jiffies = jiffies;
174 	}
175 }
176 
177 void intel_guc_init_early(struct intel_guc *guc)
178 {
179 	struct intel_gt *gt = guc_to_gt(guc);
180 	struct drm_i915_private *i915 = gt->i915;
181 
182 	intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC, true);
183 	intel_guc_ct_init_early(&guc->ct);
184 	intel_guc_log_init_early(&guc->log);
185 	intel_guc_submission_init_early(guc);
186 	intel_guc_slpc_init_early(&guc->slpc);
187 	intel_guc_rc_init_early(guc);
188 
189 	INIT_WORK(&guc->dead_guc_worker, guc_dead_worker_func);
190 
191 	mutex_init(&guc->send_mutex);
192 	spin_lock_init(&guc->irq_lock);
193 	if (GRAPHICS_VER(i915) >= 11) {
194 		guc->interrupts.reset = gen11_reset_guc_interrupts;
195 		guc->interrupts.enable = gen11_enable_guc_interrupts;
196 		guc->interrupts.disable = gen11_disable_guc_interrupts;
197 		if (gt->type == GT_MEDIA) {
198 			guc->notify_reg = MEDIA_GUC_HOST_INTERRUPT;
199 			guc->send_regs.base = i915_mmio_reg_offset(MEDIA_SOFT_SCRATCH(0));
200 		} else {
201 			guc->notify_reg = GEN11_GUC_HOST_INTERRUPT;
202 			guc->send_regs.base = i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
203 		}
204 
205 		guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
206 
207 	} else {
208 		guc->notify_reg = GUC_SEND_INTERRUPT;
209 		guc->interrupts.reset = gen9_reset_guc_interrupts;
210 		guc->interrupts.enable = gen9_enable_guc_interrupts;
211 		guc->interrupts.disable = gen9_disable_guc_interrupts;
212 		guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
213 		guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
214 		BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
215 	}
216 
217 	intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION |
218 				  INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
219 }
220 
221 void intel_guc_init_late(struct intel_guc *guc)
222 {
223 	intel_guc_ads_init_late(guc);
224 }
225 
226 static u32 guc_ctl_debug_flags(struct intel_guc *guc)
227 {
228 	u32 level = intel_guc_log_get_level(&guc->log);
229 	u32 flags = 0;
230 
231 	if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
232 		flags |= GUC_LOG_DISABLED;
233 	else
234 		flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
235 			 GUC_LOG_VERBOSITY_SHIFT;
236 
237 	return flags;
238 }
239 
240 static u32 guc_ctl_feature_flags(struct intel_guc *guc)
241 {
242 	struct intel_gt *gt = guc_to_gt(guc);
243 	u32 flags = 0;
244 
245 	/*
246 	 * Enable PXP GuC autoteardown flow.
247 	 * NB: MTL does things differently.
248 	 */
249 	if (HAS_PXP(gt->i915) && !IS_METEORLAKE(gt->i915))
250 		flags |= GUC_CTL_ENABLE_GUC_PXP_CTL;
251 
252 	if (!intel_guc_submission_is_used(guc))
253 		flags |= GUC_CTL_DISABLE_SCHEDULER;
254 
255 	if (intel_guc_slpc_is_used(guc))
256 		flags |= GUC_CTL_ENABLE_SLPC;
257 
258 	return flags;
259 }
260 
261 static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
262 {
263 	struct intel_guc_log *log = &guc->log;
264 	u32 offset, flags;
265 
266 	GEM_BUG_ON(!log->sizes_initialised);
267 
268 	offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT;
269 
270 	flags = GUC_LOG_VALID |
271 		GUC_LOG_NOTIFY_ON_HALF_FULL |
272 		log->sizes[GUC_LOG_SECTIONS_DEBUG].flag |
273 		log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag |
274 		(log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) |
275 		(log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) |
276 		(log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) |
277 		(offset << GUC_LOG_BUF_ADDR_SHIFT);
278 
279 	return flags;
280 }
281 
282 static u32 guc_ctl_ads_flags(struct intel_guc *guc)
283 {
284 	u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
285 	u32 flags = ads << GUC_ADS_ADDR_SHIFT;
286 
287 	return flags;
288 }
289 
290 static u32 guc_ctl_wa_flags(struct intel_guc *guc)
291 {
292 	struct intel_gt *gt = guc_to_gt(guc);
293 	u32 flags = 0;
294 
295 	/* Wa_22012773006:gen11,gen12 < XeHP */
296 	if (GRAPHICS_VER(gt->i915) >= 11 &&
297 	    GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 55))
298 		flags |= GUC_WA_POLLCS;
299 
300 	/* Wa_14014475959 */
301 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
302 	    IS_DG2(gt->i915))
303 		flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
304 
305 	/* Wa_16019325821 */
306 	/* Wa_14019159160 */
307 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)))
308 		flags |= GUC_WA_RCS_CCS_SWITCHOUT;
309 
310 	/*
311 	 * Wa_14012197797
312 	 * Wa_22011391025
313 	 *
314 	 * The same WA bit is used for both and 22011391025 is applicable to
315 	 * all DG2.
316 	 */
317 	if (IS_DG2(gt->i915))
318 		flags |= GUC_WA_DUAL_QUEUE;
319 
320 	/* Wa_22011802037: graphics version 11/12 */
321 	if (intel_engine_reset_needs_wa_22011802037(gt))
322 		flags |= GUC_WA_PRE_PARSER;
323 
324 	/*
325 	 * Wa_22012727170
326 	 * Wa_22012727685
327 	 */
328 	if (IS_DG2_G11(gt->i915))
329 		flags |= GUC_WA_CONTEXT_ISOLATION;
330 
331 	/*
332 	 * Wa_14018913170: Applicable to all platforms supported by i915 so
333 	 * don't bother testing for all X/Y/Z platforms explicitly.
334 	 */
335 	if (GUC_FIRMWARE_VER(guc) >= MAKE_GUC_VER(70, 7, 0))
336 		flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6;
337 
338 	return flags;
339 }
340 
341 static u32 guc_ctl_devid(struct intel_guc *guc)
342 {
343 	struct drm_i915_private *i915 = guc_to_i915(guc);
344 
345 	return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915);
346 }
347 
348 /*
349  * Initialise the GuC parameter block before starting the firmware
350  * transfer. These parameters are read by the firmware on startup
351  * and cannot be changed thereafter.
352  */
353 static void guc_init_params(struct intel_guc *guc)
354 {
355 	u32 *params = guc->params;
356 	int i;
357 
358 	BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
359 
360 	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
361 	params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
362 	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
363 	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
364 	params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
365 	params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
366 
367 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
368 		guc_dbg(guc, "param[%2d] = %#x\n", i, params[i]);
369 }
370 
371 /*
372  * Initialise the GuC parameter block before starting the firmware
373  * transfer. These parameters are read by the firmware on startup
374  * and cannot be changed thereafter.
375  */
376 void intel_guc_write_params(struct intel_guc *guc)
377 {
378 	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
379 	int i;
380 
381 	/*
382 	 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and
383 	 * they are power context saved so it's ok to release forcewake
384 	 * when we are done here and take it again at xfer time.
385 	 */
386 	intel_uncore_forcewake_get(uncore, FORCEWAKE_GT);
387 
388 	intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
389 
390 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
391 		intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
392 
393 	intel_uncore_forcewake_put(uncore, FORCEWAKE_GT);
394 }
395 
396 void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p)
397 {
398 	struct intel_gt *gt = guc_to_gt(guc);
399 	intel_wakeref_t wakeref;
400 	u32 stamp = 0;
401 	u64 ktime;
402 
403 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
404 		stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP);
405 	ktime = ktime_get_boottime_ns();
406 
407 	drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime);
408 	drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp);
409 	drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n",
410 		   gt->clock_frequency, gt->clock_period_ns);
411 }
412 
413 int intel_guc_init(struct intel_guc *guc)
414 {
415 	int ret;
416 
417 	ret = intel_uc_fw_init(&guc->fw);
418 	if (ret)
419 		goto out;
420 
421 	ret = intel_guc_log_create(&guc->log);
422 	if (ret)
423 		goto err_fw;
424 
425 	ret = intel_guc_capture_init(guc);
426 	if (ret)
427 		goto err_log;
428 
429 	ret = intel_guc_ads_create(guc);
430 	if (ret)
431 		goto err_capture;
432 
433 	GEM_BUG_ON(!guc->ads_vma);
434 
435 	ret = intel_guc_ct_init(&guc->ct);
436 	if (ret)
437 		goto err_ads;
438 
439 	if (intel_guc_submission_is_used(guc)) {
440 		/*
441 		 * This is stuff we need to have available at fw load time
442 		 * if we are planning to enable submission later
443 		 */
444 		ret = intel_guc_submission_init(guc);
445 		if (ret)
446 			goto err_ct;
447 	}
448 
449 	if (intel_guc_slpc_is_used(guc)) {
450 		ret = intel_guc_slpc_init(&guc->slpc);
451 		if (ret)
452 			goto err_submission;
453 	}
454 
455 	/* now that everything is perma-pinned, initialize the parameters */
456 	guc_init_params(guc);
457 
458 	intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE);
459 
460 	return 0;
461 
462 err_submission:
463 	intel_guc_submission_fini(guc);
464 err_ct:
465 	intel_guc_ct_fini(&guc->ct);
466 err_ads:
467 	intel_guc_ads_destroy(guc);
468 err_capture:
469 	intel_guc_capture_destroy(guc);
470 err_log:
471 	intel_guc_log_destroy(&guc->log);
472 err_fw:
473 	intel_uc_fw_fini(&guc->fw);
474 out:
475 	intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_INIT_FAIL);
476 	guc_probe_error(guc, "failed with %pe\n", ERR_PTR(ret));
477 	return ret;
478 }
479 
480 void intel_guc_fini(struct intel_guc *guc)
481 {
482 	if (!intel_uc_fw_is_loadable(&guc->fw))
483 		return;
484 
485 	flush_work(&guc->dead_guc_worker);
486 
487 	if (intel_guc_slpc_is_used(guc))
488 		intel_guc_slpc_fini(&guc->slpc);
489 
490 	if (intel_guc_submission_is_used(guc))
491 		intel_guc_submission_fini(guc);
492 
493 	intel_guc_ct_fini(&guc->ct);
494 
495 	intel_guc_ads_destroy(guc);
496 	intel_guc_capture_destroy(guc);
497 	intel_guc_log_destroy(&guc->log);
498 	intel_uc_fw_fini(&guc->fw);
499 }
500 
501 /*
502  * This function implements the MMIO based host to GuC interface.
503  */
504 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len,
505 			u32 *response_buf, u32 response_buf_size)
506 {
507 	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
508 	u32 header;
509 	int i;
510 	int ret;
511 
512 	GEM_BUG_ON(!len);
513 	GEM_BUG_ON(len > guc->send_regs.count);
514 
515 	GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST);
516 	GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST);
517 
518 	mutex_lock(&guc->send_mutex);
519 	intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
520 
521 retry:
522 	for (i = 0; i < len; i++)
523 		intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]);
524 
525 	intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
526 
527 	intel_guc_notify(guc);
528 
529 	/*
530 	 * No GuC command should ever take longer than 10ms.
531 	 * Fast commands should still complete in 10us.
532 	 */
533 	ret = __intel_wait_for_register_fw(uncore,
534 					   guc_send_reg(guc, 0),
535 					   GUC_HXG_MSG_0_ORIGIN,
536 					   FIELD_PREP(GUC_HXG_MSG_0_ORIGIN,
537 						      GUC_HXG_ORIGIN_GUC),
538 					   10, 10, &header);
539 	if (unlikely(ret)) {
540 timeout:
541 		guc_err(guc, "mmio request %#x: no reply %x\n",
542 			request[0], header);
543 		goto out;
544 	}
545 
546 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
547 #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \
548 		FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \
549 		FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; })
550 
551 		ret = wait_for(done, 1000);
552 		if (unlikely(ret))
553 			goto timeout;
554 		if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
555 				       GUC_HXG_ORIGIN_GUC))
556 			goto proto;
557 #undef done
558 	}
559 
560 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
561 		u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
562 
563 		guc_dbg(guc, "mmio request %#x: retrying, reason %u\n",
564 			request[0], reason);
565 		goto retry;
566 	}
567 
568 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) {
569 		u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
570 		u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
571 
572 		guc_err(guc, "mmio request %#x: failure %x/%u\n",
573 			request[0], error, hint);
574 		ret = -ENXIO;
575 		goto out;
576 	}
577 
578 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) {
579 proto:
580 		guc_err(guc, "mmio request %#x: unexpected reply %#x\n",
581 			request[0], header);
582 		ret = -EPROTO;
583 		goto out;
584 	}
585 
586 	if (response_buf) {
587 		int count = min(response_buf_size, guc->send_regs.count);
588 
589 		GEM_BUG_ON(!count);
590 
591 		response_buf[0] = header;
592 
593 		for (i = 1; i < count; i++)
594 			response_buf[i] = intel_uncore_read(uncore,
595 							    guc_send_reg(guc, i));
596 
597 		/* Use number of copied dwords as our return value */
598 		ret = count;
599 	} else {
600 		/* Use data from the GuC response as our return value */
601 		ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
602 	}
603 
604 out:
605 	intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
606 	mutex_unlock(&guc->send_mutex);
607 
608 	return ret;
609 }
610 
611 int intel_guc_crash_process_msg(struct intel_guc *guc, u32 action)
612 {
613 	if (action == INTEL_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED)
614 		guc_err(guc, "Crash dump notification\n");
615 	else if (action == INTEL_GUC_ACTION_NOTIFY_EXCEPTION)
616 		guc_err(guc, "Exception notification\n");
617 	else
618 		guc_err(guc, "Unknown crash notification: 0x%04X\n", action);
619 
620 	queue_work(system_unbound_wq, &guc->dead_guc_worker);
621 
622 	return 0;
623 }
624 
625 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
626 				       const u32 *payload, u32 len)
627 {
628 	u32 msg;
629 
630 	if (unlikely(!len))
631 		return -EPROTO;
632 
633 	/* Make sure to handle only enabled messages */
634 	msg = payload[0] & guc->msg_enabled_mask;
635 
636 	if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED)
637 		guc_err(guc, "Received early crash dump notification!\n");
638 	if (msg & INTEL_GUC_RECV_MSG_EXCEPTION)
639 		guc_err(guc, "Received early exception notification!\n");
640 
641 	if (msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED | INTEL_GUC_RECV_MSG_EXCEPTION))
642 		queue_work(system_unbound_wq, &guc->dead_guc_worker);
643 
644 	return 0;
645 }
646 
647 /**
648  * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
649  * @guc: intel_guc structure
650  * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
651  *
652  * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
653  * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
654  * intel_huc_auth().
655  *
656  * Return:	non-zero code on error
657  */
658 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
659 {
660 	u32 action[] = {
661 		INTEL_GUC_ACTION_AUTHENTICATE_HUC,
662 		rsa_offset
663 	};
664 
665 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
666 }
667 
668 /**
669  * intel_guc_suspend() - notify GuC entering suspend state
670  * @guc:	the guc
671  */
672 int intel_guc_suspend(struct intel_guc *guc)
673 {
674 	int ret;
675 	u32 action[] = {
676 		INTEL_GUC_ACTION_CLIENT_SOFT_RESET,
677 	};
678 
679 	if (!intel_guc_is_ready(guc))
680 		return 0;
681 
682 	if (intel_guc_submission_is_used(guc)) {
683 		flush_work(&guc->dead_guc_worker);
684 
685 		/*
686 		 * This H2G MMIO command tears down the GuC in two steps. First it will
687 		 * generate a G2H CTB for every active context indicating a reset. In
688 		 * practice the i915 shouldn't ever get a G2H as suspend should only be
689 		 * called when the GPU is idle. Next, it tears down the CTBs and this
690 		 * H2G MMIO command completes.
691 		 *
692 		 * Don't abort on a failure code from the GuC. Keep going and do the
693 		 * clean up in santize() and re-initialisation on resume and hopefully
694 		 * the error here won't be problematic.
695 		 */
696 		ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0);
697 		if (ret)
698 			guc_err(guc, "suspend: RESET_CLIENT action failed with %pe\n",
699 				ERR_PTR(ret));
700 	}
701 
702 	/* Signal that the GuC isn't running. */
703 	intel_guc_sanitize(guc);
704 
705 	return 0;
706 }
707 
708 /**
709  * intel_guc_resume() - notify GuC resuming from suspend state
710  * @guc:	the guc
711  */
712 int intel_guc_resume(struct intel_guc *guc)
713 {
714 	/*
715 	 * NB: This function can still be called even if GuC submission is
716 	 * disabled, e.g. if GuC is enabled for HuC authentication only. Thus,
717 	 * if any code is later added here, it must be support doing nothing
718 	 * if submission is disabled (as per intel_guc_suspend).
719 	 */
720 	return 0;
721 }
722 
723 /**
724  * DOC: GuC Memory Management
725  *
726  * GuC can't allocate any memory for its own usage, so all the allocations must
727  * be handled by the host driver. GuC accesses the memory via the GGTT, with the
728  * exception of the top and bottom parts of the 4GB address space, which are
729  * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
730  * or other parts of the HW. The driver must take care not to place objects that
731  * the GuC is going to access in these reserved ranges. The layout of the GuC
732  * address space is shown below:
733  *
734  * ::
735  *
736  *     +===========> +====================+ <== FFFF_FFFF
737  *     ^             |      Reserved      |
738  *     |             +====================+ <== GUC_GGTT_TOP
739  *     |             |                    |
740  *     |             |        DRAM        |
741  *    GuC            |                    |
742  *  Address    +===> +====================+ <== GuC ggtt_pin_bias
743  *   Space     ^     |                    |
744  *     |       |     |                    |
745  *     |      GuC    |        GuC         |
746  *     |     WOPCM   |       WOPCM        |
747  *     |      Size   |                    |
748  *     |       |     |                    |
749  *     v       v     |                    |
750  *     +=======+===> +====================+ <== 0000_0000
751  *
752  * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
753  * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
754  * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
755  */
756 
757 /**
758  * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
759  * @guc:	the guc
760  * @size:	size of area to allocate (both virtual space and memory)
761  *
762  * This is a wrapper to create an object for use with the GuC. In order to
763  * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
764  * both some backing storage and a range inside the Global GTT. We must pin
765  * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
766  * range is reserved inside GuC.
767  *
768  * Return:	A i915_vma if successful, otherwise an ERR_PTR.
769  */
770 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
771 {
772 	struct intel_gt *gt = guc_to_gt(guc);
773 	struct drm_i915_gem_object *obj;
774 	struct i915_vma *vma;
775 	u64 flags;
776 	int ret;
777 
778 	if (HAS_LMEM(gt->i915))
779 		obj = i915_gem_object_create_lmem(gt->i915, size,
780 						  I915_BO_ALLOC_CPU_CLEAR |
781 						  I915_BO_ALLOC_CONTIGUOUS |
782 						  I915_BO_ALLOC_PM_EARLY);
783 	else
784 		obj = i915_gem_object_create_shmem(gt->i915, size);
785 
786 	if (IS_ERR(obj))
787 		return ERR_CAST(obj);
788 
789 	/*
790 	 * Wa_22016122933: For Media version 13.0, all Media GT shared
791 	 * memory needs to be mapped as WC on CPU side and UC (PAT
792 	 * index 2) on GPU side.
793 	 */
794 	if (intel_gt_needs_wa_22016122933(gt))
795 		i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE);
796 
797 	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
798 	if (IS_ERR(vma))
799 		goto err;
800 
801 	flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
802 	ret = i915_ggtt_pin(vma, NULL, 0, flags);
803 	if (ret) {
804 		vma = ERR_PTR(ret);
805 		goto err;
806 	}
807 
808 	return i915_vma_make_unshrinkable(vma);
809 
810 err:
811 	i915_gem_object_put(obj);
812 	return vma;
813 }
814 
815 /**
816  * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage
817  * @guc:	the guc
818  * @size:	size of area to allocate (both virtual space and memory)
819  * @out_vma:	return variable for the allocated vma pointer
820  * @out_vaddr:	return variable for the obj mapping
821  *
822  * This wrapper calls intel_guc_allocate_vma() and then maps the allocated
823  * object with I915_MAP_WB.
824  *
825  * Return:	0 if successful, a negative errno code otherwise.
826  */
827 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size,
828 				   struct i915_vma **out_vma, void **out_vaddr)
829 {
830 	struct i915_vma *vma;
831 	void *vaddr;
832 
833 	vma = intel_guc_allocate_vma(guc, size);
834 	if (IS_ERR(vma))
835 		return PTR_ERR(vma);
836 
837 	vaddr = i915_gem_object_pin_map_unlocked(vma->obj,
838 						 intel_gt_coherent_map_type(guc_to_gt(guc),
839 									    vma->obj, true));
840 	if (IS_ERR(vaddr)) {
841 		i915_vma_unpin_and_release(&vma, 0);
842 		return PTR_ERR(vaddr);
843 	}
844 
845 	*out_vma = vma;
846 	*out_vaddr = vaddr;
847 
848 	return 0;
849 }
850 
851 static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
852 {
853 	u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
854 		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
855 		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
856 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG),
857 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
858 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
859 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)),
860 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)),
861 	};
862 	int ret;
863 
864 	GEM_BUG_ON(len > 2);
865 	GEM_BUG_ON(len == 1 && upper_32_bits(value));
866 
867 	/* Self config must go over MMIO */
868 	ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0);
869 
870 	if (unlikely(ret < 0))
871 		return ret;
872 	if (unlikely(ret > 1))
873 		return -EPROTO;
874 	if (unlikely(!ret))
875 		return -ENOKEY;
876 
877 	return 0;
878 }
879 
880 static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
881 {
882 	int err = __guc_action_self_cfg(guc, key, len, value);
883 
884 	if (unlikely(err))
885 		guc_probe_error(guc, "Unsuccessful self-config (%pe) key %#hx value %#llx\n",
886 				ERR_PTR(err), key, value);
887 	return err;
888 }
889 
890 int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value)
891 {
892 	return __guc_self_cfg(guc, key, 1, value);
893 }
894 
895 int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value)
896 {
897 	return __guc_self_cfg(guc, key, 2, value);
898 }
899 
900 /**
901  * intel_guc_load_status - dump information about GuC load status
902  * @guc: the GuC
903  * @p: the &drm_printer
904  *
905  * Pretty printer for GuC load status.
906  */
907 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p)
908 {
909 	struct intel_gt *gt = guc_to_gt(guc);
910 	struct intel_uncore *uncore = gt->uncore;
911 	intel_wakeref_t wakeref;
912 
913 	if (!intel_guc_is_supported(guc)) {
914 		drm_printf(p, "GuC not supported\n");
915 		return;
916 	}
917 
918 	if (!intel_guc_is_wanted(guc)) {
919 		drm_printf(p, "GuC disabled\n");
920 		return;
921 	}
922 
923 	intel_uc_fw_dump(&guc->fw, p);
924 
925 	with_intel_runtime_pm(uncore->rpm, wakeref) {
926 		u32 status = intel_uncore_read(uncore, GUC_STATUS);
927 		u32 i;
928 
929 		drm_printf(p, "GuC status 0x%08x:\n", status);
930 		drm_printf(p, "\tBootrom status = 0x%x\n",
931 			   (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
932 		drm_printf(p, "\tuKernel status = 0x%x\n",
933 			   (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
934 		drm_printf(p, "\tMIA Core status = 0x%x\n",
935 			   (status & GS_MIA_MASK) >> GS_MIA_SHIFT);
936 		drm_puts(p, "Scratch registers:\n");
937 		for (i = 0; i < 16; i++) {
938 			drm_printf(p, "\t%2d: \t0x%x\n",
939 				   i, intel_uncore_read(uncore, SOFT_SCRATCH(i)));
940 		}
941 	}
942 }
943 
944 void intel_guc_write_barrier(struct intel_guc *guc)
945 {
946 	struct intel_gt *gt = guc_to_gt(guc);
947 
948 	if (i915_gem_object_is_lmem(guc->ct.vma->obj)) {
949 		/*
950 		 * Ensure intel_uncore_write_fw can be used rather than
951 		 * intel_uncore_write.
952 		 */
953 		GEM_BUG_ON(guc->send_regs.fw_domains);
954 
955 		/*
956 		 * This register is used by the i915 and GuC for MMIO based
957 		 * communication. Once we are in this code CTBs are the only
958 		 * method the i915 uses to communicate with the GuC so it is
959 		 * safe to write to this register (a value of 0 is NOP for MMIO
960 		 * communication). If we ever start mixing CTBs and MMIOs a new
961 		 * register will have to be chosen. This function is also used
962 		 * to enforce ordering of a work queue item write and an update
963 		 * to the process descriptor. When a work queue is being used,
964 		 * CTBs are also the only mechanism of communication.
965 		 */
966 		intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0);
967 	} else {
968 		/* wmb() sufficient for a barrier if in smem */
969 		wmb();
970 	}
971 }
972