1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2019 Intel Corporation 4 */ 5 6 #include "gem/i915_gem_lmem.h" 7 #include "gt/intel_gt.h" 8 #include "gt/intel_gt_irq.h" 9 #include "gt/intel_gt_pm_irq.h" 10 #include "gt/intel_gt_regs.h" 11 #include "intel_guc.h" 12 #include "intel_guc_ads.h" 13 #include "intel_guc_capture.h" 14 #include "intel_guc_print.h" 15 #include "intel_guc_slpc.h" 16 #include "intel_guc_submission.h" 17 #include "i915_drv.h" 18 #include "i915_irq.h" 19 #include "i915_reg.h" 20 21 /** 22 * DOC: GuC 23 * 24 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is 25 * designed to offload some of the functionality usually performed by the host 26 * driver; currently the main operations it can take care of are: 27 * 28 * - Authentication of the HuC, which is required to fully enable HuC usage. 29 * - Low latency graphics context scheduling (a.k.a. GuC submission). 30 * - GT Power management. 31 * 32 * The enable_guc module parameter can be used to select which of those 33 * operations to enable within GuC. Note that not all the operations are 34 * supported on all gen9+ platforms. 35 * 36 * Enabling the GuC is not mandatory and therefore the firmware is only loaded 37 * if at least one of the operations is selected. However, not loading the GuC 38 * might result in the loss of some features that do require the GuC (currently 39 * just the HuC, but more are expected to land in the future). 40 */ 41 42 void intel_guc_notify(struct intel_guc *guc) 43 { 44 struct intel_gt *gt = guc_to_gt(guc); 45 46 /* 47 * On Gen11+, the value written to the register is passes as a payload 48 * to the FW. However, the FW currently treats all values the same way 49 * (H2G interrupt), so we can just write the value that the HW expects 50 * on older gens. 51 */ 52 intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER); 53 } 54 55 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i) 56 { 57 GEM_BUG_ON(!guc->send_regs.base); 58 GEM_BUG_ON(!guc->send_regs.count); 59 GEM_BUG_ON(i >= guc->send_regs.count); 60 61 return _MMIO(guc->send_regs.base + 4 * i); 62 } 63 64 void intel_guc_init_send_regs(struct intel_guc *guc) 65 { 66 struct intel_gt *gt = guc_to_gt(guc); 67 enum forcewake_domains fw_domains = 0; 68 unsigned int i; 69 70 GEM_BUG_ON(!guc->send_regs.base); 71 GEM_BUG_ON(!guc->send_regs.count); 72 73 for (i = 0; i < guc->send_regs.count; i++) { 74 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore, 75 guc_send_reg(guc, i), 76 FW_REG_READ | FW_REG_WRITE); 77 } 78 guc->send_regs.fw_domains = fw_domains; 79 } 80 81 static void gen9_reset_guc_interrupts(struct intel_guc *guc) 82 { 83 struct intel_gt *gt = guc_to_gt(guc); 84 85 assert_rpm_wakelock_held(>->i915->runtime_pm); 86 87 spin_lock_irq(gt->irq_lock); 88 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events); 89 spin_unlock_irq(gt->irq_lock); 90 } 91 92 static void gen9_enable_guc_interrupts(struct intel_guc *guc) 93 { 94 struct intel_gt *gt = guc_to_gt(guc); 95 96 assert_rpm_wakelock_held(>->i915->runtime_pm); 97 98 spin_lock_irq(gt->irq_lock); 99 guc_WARN_ON_ONCE(guc, intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) & 100 gt->pm_guc_events); 101 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events); 102 spin_unlock_irq(gt->irq_lock); 103 104 guc->interrupts.enabled = true; 105 } 106 107 static void gen9_disable_guc_interrupts(struct intel_guc *guc) 108 { 109 struct intel_gt *gt = guc_to_gt(guc); 110 111 assert_rpm_wakelock_held(>->i915->runtime_pm); 112 guc->interrupts.enabled = false; 113 114 spin_lock_irq(gt->irq_lock); 115 116 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events); 117 118 spin_unlock_irq(gt->irq_lock); 119 intel_synchronize_irq(gt->i915); 120 121 gen9_reset_guc_interrupts(guc); 122 } 123 124 static bool __gen11_reset_guc_interrupts(struct intel_gt *gt) 125 { 126 u32 irq = gt->type == GT_MEDIA ? MTL_MGUC : GEN11_GUC; 127 128 lockdep_assert_held(gt->irq_lock); 129 return gen11_gt_reset_one_iir(gt, 0, irq); 130 } 131 132 static void gen11_reset_guc_interrupts(struct intel_guc *guc) 133 { 134 struct intel_gt *gt = guc_to_gt(guc); 135 136 spin_lock_irq(gt->irq_lock); 137 __gen11_reset_guc_interrupts(gt); 138 spin_unlock_irq(gt->irq_lock); 139 } 140 141 static void gen11_enable_guc_interrupts(struct intel_guc *guc) 142 { 143 struct intel_gt *gt = guc_to_gt(guc); 144 145 spin_lock_irq(gt->irq_lock); 146 __gen11_reset_guc_interrupts(gt); 147 spin_unlock_irq(gt->irq_lock); 148 149 guc->interrupts.enabled = true; 150 } 151 152 static void gen11_disable_guc_interrupts(struct intel_guc *guc) 153 { 154 struct intel_gt *gt = guc_to_gt(guc); 155 156 guc->interrupts.enabled = false; 157 intel_synchronize_irq(gt->i915); 158 159 gen11_reset_guc_interrupts(guc); 160 } 161 162 static void guc_dead_worker_func(struct work_struct *w) 163 { 164 struct intel_guc *guc = container_of(w, struct intel_guc, dead_guc_worker); 165 struct intel_gt *gt = guc_to_gt(guc); 166 unsigned long last = guc->last_dead_guc_jiffies; 167 unsigned long delta = jiffies_to_msecs(jiffies - last); 168 169 if (delta < 500) { 170 intel_gt_set_wedged(gt); 171 } else { 172 intel_gt_handle_error(gt, ALL_ENGINES, I915_ERROR_CAPTURE, "dead GuC"); 173 guc->last_dead_guc_jiffies = jiffies; 174 } 175 } 176 177 void intel_guc_init_early(struct intel_guc *guc) 178 { 179 struct intel_gt *gt = guc_to_gt(guc); 180 struct drm_i915_private *i915 = gt->i915; 181 182 intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC, true); 183 intel_guc_ct_init_early(&guc->ct); 184 intel_guc_log_init_early(&guc->log); 185 intel_guc_submission_init_early(guc); 186 intel_guc_slpc_init_early(&guc->slpc); 187 intel_guc_rc_init_early(guc); 188 189 INIT_WORK(&guc->dead_guc_worker, guc_dead_worker_func); 190 191 mutex_init(&guc->send_mutex); 192 spin_lock_init(&guc->irq_lock); 193 if (GRAPHICS_VER(i915) >= 11) { 194 guc->interrupts.reset = gen11_reset_guc_interrupts; 195 guc->interrupts.enable = gen11_enable_guc_interrupts; 196 guc->interrupts.disable = gen11_disable_guc_interrupts; 197 if (gt->type == GT_MEDIA) { 198 guc->notify_reg = MEDIA_GUC_HOST_INTERRUPT; 199 guc->send_regs.base = i915_mmio_reg_offset(MEDIA_SOFT_SCRATCH(0)); 200 } else { 201 guc->notify_reg = GEN11_GUC_HOST_INTERRUPT; 202 guc->send_regs.base = i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0)); 203 } 204 205 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT; 206 207 } else { 208 guc->notify_reg = GUC_SEND_INTERRUPT; 209 guc->interrupts.reset = gen9_reset_guc_interrupts; 210 guc->interrupts.enable = gen9_enable_guc_interrupts; 211 guc->interrupts.disable = gen9_disable_guc_interrupts; 212 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0)); 213 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN; 214 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT); 215 } 216 217 intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION | 218 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED); 219 } 220 221 void intel_guc_init_late(struct intel_guc *guc) 222 { 223 intel_guc_ads_init_late(guc); 224 } 225 226 static u32 guc_ctl_debug_flags(struct intel_guc *guc) 227 { 228 u32 level = intel_guc_log_get_level(&guc->log); 229 u32 flags = 0; 230 231 if (!GUC_LOG_LEVEL_IS_VERBOSE(level)) 232 flags |= GUC_LOG_DISABLED; 233 else 234 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) << 235 GUC_LOG_VERBOSITY_SHIFT; 236 237 return flags; 238 } 239 240 static u32 guc_ctl_feature_flags(struct intel_guc *guc) 241 { 242 u32 flags = 0; 243 244 if (!intel_guc_submission_is_used(guc)) 245 flags |= GUC_CTL_DISABLE_SCHEDULER; 246 247 if (intel_guc_slpc_is_used(guc)) 248 flags |= GUC_CTL_ENABLE_SLPC; 249 250 return flags; 251 } 252 253 static u32 guc_ctl_log_params_flags(struct intel_guc *guc) 254 { 255 struct intel_guc_log *log = &guc->log; 256 u32 offset, flags; 257 258 GEM_BUG_ON(!log->sizes_initialised); 259 260 offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT; 261 262 flags = GUC_LOG_VALID | 263 GUC_LOG_NOTIFY_ON_HALF_FULL | 264 log->sizes[GUC_LOG_SECTIONS_DEBUG].flag | 265 log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag | 266 (log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) | 267 (log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) | 268 (log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) | 269 (offset << GUC_LOG_BUF_ADDR_SHIFT); 270 271 return flags; 272 } 273 274 static u32 guc_ctl_ads_flags(struct intel_guc *guc) 275 { 276 u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT; 277 u32 flags = ads << GUC_ADS_ADDR_SHIFT; 278 279 return flags; 280 } 281 282 static u32 guc_ctl_wa_flags(struct intel_guc *guc) 283 { 284 struct intel_gt *gt = guc_to_gt(guc); 285 u32 flags = 0; 286 287 /* Wa_22012773006:gen11,gen12 < XeHP */ 288 if (GRAPHICS_VER(gt->i915) >= 11 && 289 GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 55)) 290 flags |= GUC_WA_POLLCS; 291 292 /* Wa_14014475959 */ 293 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 294 IS_DG2(gt->i915)) 295 flags |= GUC_WA_HOLD_CCS_SWITCHOUT; 296 297 /* Wa_16019325821 */ 298 /* Wa_14019159160 */ 299 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) 300 flags |= GUC_WA_RCS_CCS_SWITCHOUT; 301 302 /* 303 * Wa_14012197797 304 * Wa_22011391025 305 * 306 * The same WA bit is used for both and 22011391025 is applicable to 307 * all DG2. 308 */ 309 if (IS_DG2(gt->i915)) 310 flags |= GUC_WA_DUAL_QUEUE; 311 312 /* Wa_22011802037: graphics version 11/12 */ 313 if (intel_engine_reset_needs_wa_22011802037(gt)) 314 flags |= GUC_WA_PRE_PARSER; 315 316 /* 317 * Wa_22012727170 318 * Wa_22012727685 319 */ 320 if (IS_DG2_G11(gt->i915)) 321 flags |= GUC_WA_CONTEXT_ISOLATION; 322 323 /* 324 * Wa_14018913170: Applicable to all platforms supported by i915 so 325 * don't bother testing for all X/Y/Z platforms explicitly. 326 */ 327 if (GUC_FIRMWARE_VER(guc) >= MAKE_GUC_VER(70, 7, 0)) 328 flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6; 329 330 return flags; 331 } 332 333 static u32 guc_ctl_devid(struct intel_guc *guc) 334 { 335 struct drm_i915_private *i915 = guc_to_i915(guc); 336 337 return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915); 338 } 339 340 /* 341 * Initialise the GuC parameter block before starting the firmware 342 * transfer. These parameters are read by the firmware on startup 343 * and cannot be changed thereafter. 344 */ 345 static void guc_init_params(struct intel_guc *guc) 346 { 347 u32 *params = guc->params; 348 int i; 349 350 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32)); 351 352 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); 353 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc); 354 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); 355 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); 356 params[GUC_CTL_WA] = guc_ctl_wa_flags(guc); 357 params[GUC_CTL_DEVID] = guc_ctl_devid(guc); 358 359 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 360 guc_dbg(guc, "param[%2d] = %#x\n", i, params[i]); 361 } 362 363 /* 364 * Initialise the GuC parameter block before starting the firmware 365 * transfer. These parameters are read by the firmware on startup 366 * and cannot be changed thereafter. 367 */ 368 void intel_guc_write_params(struct intel_guc *guc) 369 { 370 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 371 int i; 372 373 /* 374 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and 375 * they are power context saved so it's ok to release forcewake 376 * when we are done here and take it again at xfer time. 377 */ 378 intel_uncore_forcewake_get(uncore, FORCEWAKE_GT); 379 380 intel_uncore_write(uncore, SOFT_SCRATCH(0), 0); 381 382 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 383 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]); 384 385 intel_uncore_forcewake_put(uncore, FORCEWAKE_GT); 386 } 387 388 void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p) 389 { 390 struct intel_gt *gt = guc_to_gt(guc); 391 intel_wakeref_t wakeref; 392 u32 stamp = 0; 393 u64 ktime; 394 395 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) 396 stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP); 397 ktime = ktime_get_boottime_ns(); 398 399 drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime); 400 drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp); 401 drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n", 402 gt->clock_frequency, gt->clock_period_ns); 403 } 404 405 int intel_guc_init(struct intel_guc *guc) 406 { 407 int ret; 408 409 ret = intel_uc_fw_init(&guc->fw); 410 if (ret) 411 goto out; 412 413 ret = intel_guc_log_create(&guc->log); 414 if (ret) 415 goto err_fw; 416 417 ret = intel_guc_capture_init(guc); 418 if (ret) 419 goto err_log; 420 421 ret = intel_guc_ads_create(guc); 422 if (ret) 423 goto err_capture; 424 425 GEM_BUG_ON(!guc->ads_vma); 426 427 ret = intel_guc_ct_init(&guc->ct); 428 if (ret) 429 goto err_ads; 430 431 if (intel_guc_submission_is_used(guc)) { 432 /* 433 * This is stuff we need to have available at fw load time 434 * if we are planning to enable submission later 435 */ 436 ret = intel_guc_submission_init(guc); 437 if (ret) 438 goto err_ct; 439 } 440 441 if (intel_guc_slpc_is_used(guc)) { 442 ret = intel_guc_slpc_init(&guc->slpc); 443 if (ret) 444 goto err_submission; 445 } 446 447 /* now that everything is perma-pinned, initialize the parameters */ 448 guc_init_params(guc); 449 450 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE); 451 452 return 0; 453 454 err_submission: 455 intel_guc_submission_fini(guc); 456 err_ct: 457 intel_guc_ct_fini(&guc->ct); 458 err_ads: 459 intel_guc_ads_destroy(guc); 460 err_capture: 461 intel_guc_capture_destroy(guc); 462 err_log: 463 intel_guc_log_destroy(&guc->log); 464 err_fw: 465 intel_uc_fw_fini(&guc->fw); 466 out: 467 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_INIT_FAIL); 468 guc_probe_error(guc, "failed with %pe\n", ERR_PTR(ret)); 469 return ret; 470 } 471 472 void intel_guc_fini(struct intel_guc *guc) 473 { 474 if (!intel_uc_fw_is_loadable(&guc->fw)) 475 return; 476 477 flush_work(&guc->dead_guc_worker); 478 479 if (intel_guc_slpc_is_used(guc)) 480 intel_guc_slpc_fini(&guc->slpc); 481 482 if (intel_guc_submission_is_used(guc)) 483 intel_guc_submission_fini(guc); 484 485 intel_guc_ct_fini(&guc->ct); 486 487 intel_guc_ads_destroy(guc); 488 intel_guc_capture_destroy(guc); 489 intel_guc_log_destroy(&guc->log); 490 intel_uc_fw_fini(&guc->fw); 491 } 492 493 /* 494 * This function implements the MMIO based host to GuC interface. 495 */ 496 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len, 497 u32 *response_buf, u32 response_buf_size) 498 { 499 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 500 u32 header; 501 int i; 502 int ret; 503 504 GEM_BUG_ON(!len); 505 GEM_BUG_ON(len > guc->send_regs.count); 506 507 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST); 508 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST); 509 510 mutex_lock(&guc->send_mutex); 511 intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains); 512 513 retry: 514 for (i = 0; i < len; i++) 515 intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]); 516 517 intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1)); 518 519 intel_guc_notify(guc); 520 521 /* 522 * No GuC command should ever take longer than 10ms. 523 * Fast commands should still complete in 10us. 524 */ 525 ret = __intel_wait_for_register_fw(uncore, 526 guc_send_reg(guc, 0), 527 GUC_HXG_MSG_0_ORIGIN, 528 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, 529 GUC_HXG_ORIGIN_GUC), 530 10, 10, &header); 531 if (unlikely(ret)) { 532 timeout: 533 guc_err(guc, "mmio request %#x: no reply %x\n", 534 request[0], header); 535 goto out; 536 } 537 538 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) { 539 #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \ 540 FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \ 541 FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; }) 542 543 ret = wait_for(done, 1000); 544 if (unlikely(ret)) 545 goto timeout; 546 if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != 547 GUC_HXG_ORIGIN_GUC)) 548 goto proto; 549 #undef done 550 } 551 552 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) { 553 u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header); 554 555 guc_dbg(guc, "mmio request %#x: retrying, reason %u\n", 556 request[0], reason); 557 goto retry; 558 } 559 560 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) { 561 u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header); 562 u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header); 563 564 guc_err(guc, "mmio request %#x: failure %x/%u\n", 565 request[0], error, hint); 566 ret = -ENXIO; 567 goto out; 568 } 569 570 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) { 571 proto: 572 guc_err(guc, "mmio request %#x: unexpected reply %#x\n", 573 request[0], header); 574 ret = -EPROTO; 575 goto out; 576 } 577 578 if (response_buf) { 579 int count = min(response_buf_size, guc->send_regs.count); 580 581 GEM_BUG_ON(!count); 582 583 response_buf[0] = header; 584 585 for (i = 1; i < count; i++) 586 response_buf[i] = intel_uncore_read(uncore, 587 guc_send_reg(guc, i)); 588 589 /* Use number of copied dwords as our return value */ 590 ret = count; 591 } else { 592 /* Use data from the GuC response as our return value */ 593 ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header); 594 } 595 596 out: 597 intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains); 598 mutex_unlock(&guc->send_mutex); 599 600 return ret; 601 } 602 603 int intel_guc_crash_process_msg(struct intel_guc *guc, u32 action) 604 { 605 if (action == INTEL_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED) 606 guc_err(guc, "Crash dump notification\n"); 607 else if (action == INTEL_GUC_ACTION_NOTIFY_EXCEPTION) 608 guc_err(guc, "Exception notification\n"); 609 else 610 guc_err(guc, "Unknown crash notification: 0x%04X\n", action); 611 612 queue_work(system_unbound_wq, &guc->dead_guc_worker); 613 614 return 0; 615 } 616 617 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc, 618 const u32 *payload, u32 len) 619 { 620 u32 msg; 621 622 if (unlikely(!len)) 623 return -EPROTO; 624 625 /* Make sure to handle only enabled messages */ 626 msg = payload[0] & guc->msg_enabled_mask; 627 628 if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED) 629 guc_err(guc, "Received early crash dump notification!\n"); 630 if (msg & INTEL_GUC_RECV_MSG_EXCEPTION) 631 guc_err(guc, "Received early exception notification!\n"); 632 633 if (msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED | INTEL_GUC_RECV_MSG_EXCEPTION)) 634 queue_work(system_unbound_wq, &guc->dead_guc_worker); 635 636 return 0; 637 } 638 639 /** 640 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode 641 * @guc: intel_guc structure 642 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma 643 * 644 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send 645 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by 646 * intel_huc_auth(). 647 * 648 * Return: non-zero code on error 649 */ 650 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset) 651 { 652 u32 action[] = { 653 INTEL_GUC_ACTION_AUTHENTICATE_HUC, 654 rsa_offset 655 }; 656 657 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 658 } 659 660 /** 661 * intel_guc_suspend() - notify GuC entering suspend state 662 * @guc: the guc 663 */ 664 int intel_guc_suspend(struct intel_guc *guc) 665 { 666 int ret; 667 u32 action[] = { 668 INTEL_GUC_ACTION_CLIENT_SOFT_RESET, 669 }; 670 671 if (!intel_guc_is_ready(guc)) 672 return 0; 673 674 if (intel_guc_submission_is_used(guc)) { 675 flush_work(&guc->dead_guc_worker); 676 677 /* 678 * This H2G MMIO command tears down the GuC in two steps. First it will 679 * generate a G2H CTB for every active context indicating a reset. In 680 * practice the i915 shouldn't ever get a G2H as suspend should only be 681 * called when the GPU is idle. Next, it tears down the CTBs and this 682 * H2G MMIO command completes. 683 * 684 * Don't abort on a failure code from the GuC. Keep going and do the 685 * clean up in santize() and re-initialisation on resume and hopefully 686 * the error here won't be problematic. 687 */ 688 ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0); 689 if (ret) 690 guc_err(guc, "suspend: RESET_CLIENT action failed with %pe\n", 691 ERR_PTR(ret)); 692 } 693 694 /* Signal that the GuC isn't running. */ 695 intel_guc_sanitize(guc); 696 697 return 0; 698 } 699 700 /** 701 * intel_guc_resume() - notify GuC resuming from suspend state 702 * @guc: the guc 703 */ 704 int intel_guc_resume(struct intel_guc *guc) 705 { 706 /* 707 * NB: This function can still be called even if GuC submission is 708 * disabled, e.g. if GuC is enabled for HuC authentication only. Thus, 709 * if any code is later added here, it must be support doing nothing 710 * if submission is disabled (as per intel_guc_suspend). 711 */ 712 return 0; 713 } 714 715 /** 716 * DOC: GuC Memory Management 717 * 718 * GuC can't allocate any memory for its own usage, so all the allocations must 719 * be handled by the host driver. GuC accesses the memory via the GGTT, with the 720 * exception of the top and bottom parts of the 4GB address space, which are 721 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM) 722 * or other parts of the HW. The driver must take care not to place objects that 723 * the GuC is going to access in these reserved ranges. The layout of the GuC 724 * address space is shown below: 725 * 726 * :: 727 * 728 * +===========> +====================+ <== FFFF_FFFF 729 * ^ | Reserved | 730 * | +====================+ <== GUC_GGTT_TOP 731 * | | | 732 * | | DRAM | 733 * GuC | | 734 * Address +===> +====================+ <== GuC ggtt_pin_bias 735 * Space ^ | | 736 * | | | | 737 * | GuC | GuC | 738 * | WOPCM | WOPCM | 739 * | Size | | 740 * | | | | 741 * v v | | 742 * +=======+===> +====================+ <== 0000_0000 743 * 744 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM 745 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped 746 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size. 747 */ 748 749 /** 750 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage 751 * @guc: the guc 752 * @size: size of area to allocate (both virtual space and memory) 753 * 754 * This is a wrapper to create an object for use with the GuC. In order to 755 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate 756 * both some backing storage and a range inside the Global GTT. We must pin 757 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that 758 * range is reserved inside GuC. 759 * 760 * Return: A i915_vma if successful, otherwise an ERR_PTR. 761 */ 762 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size) 763 { 764 struct intel_gt *gt = guc_to_gt(guc); 765 struct drm_i915_gem_object *obj; 766 struct i915_vma *vma; 767 u64 flags; 768 int ret; 769 770 if (HAS_LMEM(gt->i915)) 771 obj = i915_gem_object_create_lmem(gt->i915, size, 772 I915_BO_ALLOC_CPU_CLEAR | 773 I915_BO_ALLOC_CONTIGUOUS | 774 I915_BO_ALLOC_PM_EARLY); 775 else 776 obj = i915_gem_object_create_shmem(gt->i915, size); 777 778 if (IS_ERR(obj)) 779 return ERR_CAST(obj); 780 781 /* 782 * Wa_22016122933: For Media version 13.0, all Media GT shared 783 * memory needs to be mapped as WC on CPU side and UC (PAT 784 * index 2) on GPU side. 785 */ 786 if (intel_gt_needs_wa_22016122933(gt)) 787 i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE); 788 789 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 790 if (IS_ERR(vma)) 791 goto err; 792 793 flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma); 794 ret = i915_ggtt_pin(vma, NULL, 0, flags); 795 if (ret) { 796 vma = ERR_PTR(ret); 797 goto err; 798 } 799 800 return i915_vma_make_unshrinkable(vma); 801 802 err: 803 i915_gem_object_put(obj); 804 return vma; 805 } 806 807 /** 808 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage 809 * @guc: the guc 810 * @size: size of area to allocate (both virtual space and memory) 811 * @out_vma: return variable for the allocated vma pointer 812 * @out_vaddr: return variable for the obj mapping 813 * 814 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated 815 * object with I915_MAP_WB. 816 * 817 * Return: 0 if successful, a negative errno code otherwise. 818 */ 819 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size, 820 struct i915_vma **out_vma, void **out_vaddr) 821 { 822 struct i915_vma *vma; 823 void *vaddr; 824 825 vma = intel_guc_allocate_vma(guc, size); 826 if (IS_ERR(vma)) 827 return PTR_ERR(vma); 828 829 vaddr = i915_gem_object_pin_map_unlocked(vma->obj, 830 intel_gt_coherent_map_type(guc_to_gt(guc), 831 vma->obj, true)); 832 if (IS_ERR(vaddr)) { 833 i915_vma_unpin_and_release(&vma, 0); 834 return PTR_ERR(vaddr); 835 } 836 837 *out_vma = vma; 838 *out_vaddr = vaddr; 839 840 return 0; 841 } 842 843 static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) 844 { 845 u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = { 846 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) | 847 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | 848 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG), 849 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) | 850 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len), 851 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)), 852 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)), 853 }; 854 int ret; 855 856 GEM_BUG_ON(len > 2); 857 GEM_BUG_ON(len == 1 && upper_32_bits(value)); 858 859 /* Self config must go over MMIO */ 860 ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0); 861 862 if (unlikely(ret < 0)) 863 return ret; 864 if (unlikely(ret > 1)) 865 return -EPROTO; 866 if (unlikely(!ret)) 867 return -ENOKEY; 868 869 return 0; 870 } 871 872 static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) 873 { 874 int err = __guc_action_self_cfg(guc, key, len, value); 875 876 if (unlikely(err)) 877 guc_probe_error(guc, "Unsuccessful self-config (%pe) key %#hx value %#llx\n", 878 ERR_PTR(err), key, value); 879 return err; 880 } 881 882 int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value) 883 { 884 return __guc_self_cfg(guc, key, 1, value); 885 } 886 887 int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value) 888 { 889 return __guc_self_cfg(guc, key, 2, value); 890 } 891 892 /** 893 * intel_guc_load_status - dump information about GuC load status 894 * @guc: the GuC 895 * @p: the &drm_printer 896 * 897 * Pretty printer for GuC load status. 898 */ 899 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p) 900 { 901 struct intel_gt *gt = guc_to_gt(guc); 902 struct intel_uncore *uncore = gt->uncore; 903 intel_wakeref_t wakeref; 904 905 if (!intel_guc_is_supported(guc)) { 906 drm_printf(p, "GuC not supported\n"); 907 return; 908 } 909 910 if (!intel_guc_is_wanted(guc)) { 911 drm_printf(p, "GuC disabled\n"); 912 return; 913 } 914 915 intel_uc_fw_dump(&guc->fw, p); 916 917 with_intel_runtime_pm(uncore->rpm, wakeref) { 918 u32 status = intel_uncore_read(uncore, GUC_STATUS); 919 u32 i; 920 921 drm_printf(p, "GuC status 0x%08x:\n", status); 922 drm_printf(p, "\tBootrom status = 0x%x\n", 923 (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT); 924 drm_printf(p, "\tuKernel status = 0x%x\n", 925 (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT); 926 drm_printf(p, "\tMIA Core status = 0x%x\n", 927 (status & GS_MIA_MASK) >> GS_MIA_SHIFT); 928 drm_puts(p, "Scratch registers:\n"); 929 for (i = 0; i < 16; i++) { 930 drm_printf(p, "\t%2d: \t0x%x\n", 931 i, intel_uncore_read(uncore, SOFT_SCRATCH(i))); 932 } 933 } 934 } 935 936 void intel_guc_write_barrier(struct intel_guc *guc) 937 { 938 struct intel_gt *gt = guc_to_gt(guc); 939 940 if (i915_gem_object_is_lmem(guc->ct.vma->obj)) { 941 /* 942 * Ensure intel_uncore_write_fw can be used rather than 943 * intel_uncore_write. 944 */ 945 GEM_BUG_ON(guc->send_regs.fw_domains); 946 947 /* 948 * This register is used by the i915 and GuC for MMIO based 949 * communication. Once we are in this code CTBs are the only 950 * method the i915 uses to communicate with the GuC so it is 951 * safe to write to this register (a value of 0 is NOP for MMIO 952 * communication). If we ever start mixing CTBs and MMIOs a new 953 * register will have to be chosen. This function is also used 954 * to enforce ordering of a work queue item write and an update 955 * to the process descriptor. When a work queue is being used, 956 * CTBs are also the only mechanism of communication. 957 */ 958 intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0); 959 } else { 960 /* wmb() sufficient for a barrier if in smem */ 961 wmb(); 962 } 963 } 964