1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2019 Intel Corporation 4 */ 5 6 #include "gem/i915_gem_lmem.h" 7 #include "gt/intel_gt.h" 8 #include "gt/intel_gt_irq.h" 9 #include "gt/intel_gt_pm_irq.h" 10 #include "gt/intel_gt_regs.h" 11 #include "intel_guc.h" 12 #include "intel_guc_ads.h" 13 #include "intel_guc_capture.h" 14 #include "intel_guc_print.h" 15 #include "intel_guc_slpc.h" 16 #include "intel_guc_submission.h" 17 #include "i915_drv.h" 18 #include "i915_irq.h" 19 #include "i915_reg.h" 20 21 /** 22 * DOC: GuC 23 * 24 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is 25 * designed to offload some of the functionality usually performed by the host 26 * driver; currently the main operations it can take care of are: 27 * 28 * - Authentication of the HuC, which is required to fully enable HuC usage. 29 * - Low latency graphics context scheduling (a.k.a. GuC submission). 30 * - GT Power management. 31 * 32 * The enable_guc module parameter can be used to select which of those 33 * operations to enable within GuC. Note that not all the operations are 34 * supported on all gen9+ platforms. 35 * 36 * Enabling the GuC is not mandatory and therefore the firmware is only loaded 37 * if at least one of the operations is selected. However, not loading the GuC 38 * might result in the loss of some features that do require the GuC (currently 39 * just the HuC, but more are expected to land in the future). 40 */ 41 42 void intel_guc_notify(struct intel_guc *guc) 43 { 44 struct intel_gt *gt = guc_to_gt(guc); 45 46 /* 47 * On Gen11+, the value written to the register is passes as a payload 48 * to the FW. However, the FW currently treats all values the same way 49 * (H2G interrupt), so we can just write the value that the HW expects 50 * on older gens. 51 */ 52 intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER); 53 } 54 55 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i) 56 { 57 GEM_BUG_ON(!guc->send_regs.base); 58 GEM_BUG_ON(!guc->send_regs.count); 59 GEM_BUG_ON(i >= guc->send_regs.count); 60 61 return _MMIO(guc->send_regs.base + 4 * i); 62 } 63 64 void intel_guc_init_send_regs(struct intel_guc *guc) 65 { 66 struct intel_gt *gt = guc_to_gt(guc); 67 enum forcewake_domains fw_domains = 0; 68 unsigned int i; 69 70 GEM_BUG_ON(!guc->send_regs.base); 71 GEM_BUG_ON(!guc->send_regs.count); 72 73 for (i = 0; i < guc->send_regs.count; i++) { 74 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore, 75 guc_send_reg(guc, i), 76 FW_REG_READ | FW_REG_WRITE); 77 } 78 guc->send_regs.fw_domains = fw_domains; 79 } 80 81 static void gen9_reset_guc_interrupts(struct intel_guc *guc) 82 { 83 struct intel_gt *gt = guc_to_gt(guc); 84 85 assert_rpm_wakelock_held(>->i915->runtime_pm); 86 87 spin_lock_irq(gt->irq_lock); 88 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events); 89 spin_unlock_irq(gt->irq_lock); 90 } 91 92 static void gen9_enable_guc_interrupts(struct intel_guc *guc) 93 { 94 struct intel_gt *gt = guc_to_gt(guc); 95 96 assert_rpm_wakelock_held(>->i915->runtime_pm); 97 98 spin_lock_irq(gt->irq_lock); 99 guc_WARN_ON_ONCE(guc, intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) & 100 gt->pm_guc_events); 101 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events); 102 spin_unlock_irq(gt->irq_lock); 103 104 guc->interrupts.enabled = true; 105 } 106 107 static void gen9_disable_guc_interrupts(struct intel_guc *guc) 108 { 109 struct intel_gt *gt = guc_to_gt(guc); 110 111 assert_rpm_wakelock_held(>->i915->runtime_pm); 112 guc->interrupts.enabled = false; 113 114 spin_lock_irq(gt->irq_lock); 115 116 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events); 117 118 spin_unlock_irq(gt->irq_lock); 119 intel_synchronize_irq(gt->i915); 120 121 gen9_reset_guc_interrupts(guc); 122 } 123 124 static bool __gen11_reset_guc_interrupts(struct intel_gt *gt) 125 { 126 u32 irq = gt->type == GT_MEDIA ? MTL_MGUC : GEN11_GUC; 127 128 lockdep_assert_held(gt->irq_lock); 129 return gen11_gt_reset_one_iir(gt, 0, irq); 130 } 131 132 static void gen11_reset_guc_interrupts(struct intel_guc *guc) 133 { 134 struct intel_gt *gt = guc_to_gt(guc); 135 136 spin_lock_irq(gt->irq_lock); 137 __gen11_reset_guc_interrupts(gt); 138 spin_unlock_irq(gt->irq_lock); 139 } 140 141 static void gen11_enable_guc_interrupts(struct intel_guc *guc) 142 { 143 struct intel_gt *gt = guc_to_gt(guc); 144 145 spin_lock_irq(gt->irq_lock); 146 __gen11_reset_guc_interrupts(gt); 147 spin_unlock_irq(gt->irq_lock); 148 149 guc->interrupts.enabled = true; 150 } 151 152 static void gen11_disable_guc_interrupts(struct intel_guc *guc) 153 { 154 struct intel_gt *gt = guc_to_gt(guc); 155 156 guc->interrupts.enabled = false; 157 intel_synchronize_irq(gt->i915); 158 159 gen11_reset_guc_interrupts(guc); 160 } 161 162 static void guc_dead_worker_func(struct work_struct *w) 163 { 164 struct intel_guc *guc = container_of(w, struct intel_guc, dead_guc_worker); 165 struct intel_gt *gt = guc_to_gt(guc); 166 unsigned long last = guc->last_dead_guc_jiffies; 167 unsigned long delta = jiffies_to_msecs(jiffies - last); 168 169 if (delta < 500) { 170 intel_gt_set_wedged(gt); 171 } else { 172 intel_gt_handle_error(gt, ALL_ENGINES, I915_ERROR_CAPTURE, "dead GuC"); 173 guc->last_dead_guc_jiffies = jiffies; 174 } 175 } 176 177 void intel_guc_init_early(struct intel_guc *guc) 178 { 179 struct intel_gt *gt = guc_to_gt(guc); 180 struct drm_i915_private *i915 = gt->i915; 181 182 intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC, true); 183 intel_guc_ct_init_early(&guc->ct); 184 intel_guc_log_init_early(&guc->log); 185 intel_guc_submission_init_early(guc); 186 intel_guc_slpc_init_early(&guc->slpc); 187 intel_guc_rc_init_early(guc); 188 189 INIT_WORK(&guc->dead_guc_worker, guc_dead_worker_func); 190 191 mutex_init(&guc->send_mutex); 192 spin_lock_init(&guc->irq_lock); 193 if (GRAPHICS_VER(i915) >= 11) { 194 guc->interrupts.reset = gen11_reset_guc_interrupts; 195 guc->interrupts.enable = gen11_enable_guc_interrupts; 196 guc->interrupts.disable = gen11_disable_guc_interrupts; 197 if (gt->type == GT_MEDIA) { 198 guc->notify_reg = MEDIA_GUC_HOST_INTERRUPT; 199 guc->send_regs.base = i915_mmio_reg_offset(MEDIA_SOFT_SCRATCH(0)); 200 } else { 201 guc->notify_reg = GEN11_GUC_HOST_INTERRUPT; 202 guc->send_regs.base = i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0)); 203 } 204 205 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT; 206 207 } else { 208 guc->notify_reg = GUC_SEND_INTERRUPT; 209 guc->interrupts.reset = gen9_reset_guc_interrupts; 210 guc->interrupts.enable = gen9_enable_guc_interrupts; 211 guc->interrupts.disable = gen9_disable_guc_interrupts; 212 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0)); 213 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN; 214 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT); 215 } 216 217 intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION | 218 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED); 219 } 220 221 void intel_guc_init_late(struct intel_guc *guc) 222 { 223 intel_guc_ads_init_late(guc); 224 } 225 226 static u32 guc_ctl_debug_flags(struct intel_guc *guc) 227 { 228 u32 level = intel_guc_log_get_level(&guc->log); 229 u32 flags = 0; 230 231 if (!GUC_LOG_LEVEL_IS_VERBOSE(level)) 232 flags |= GUC_LOG_DISABLED; 233 else 234 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) << 235 GUC_LOG_VERBOSITY_SHIFT; 236 237 return flags; 238 } 239 240 static u32 guc_ctl_feature_flags(struct intel_guc *guc) 241 { 242 u32 flags = 0; 243 244 if (!intel_guc_submission_is_used(guc)) 245 flags |= GUC_CTL_DISABLE_SCHEDULER; 246 247 if (intel_guc_slpc_is_used(guc)) 248 flags |= GUC_CTL_ENABLE_SLPC; 249 250 return flags; 251 } 252 253 static u32 guc_ctl_log_params_flags(struct intel_guc *guc) 254 { 255 struct intel_guc_log *log = &guc->log; 256 u32 offset, flags; 257 258 GEM_BUG_ON(!log->sizes_initialised); 259 260 offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT; 261 262 flags = GUC_LOG_VALID | 263 GUC_LOG_NOTIFY_ON_HALF_FULL | 264 log->sizes[GUC_LOG_SECTIONS_DEBUG].flag | 265 log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag | 266 (log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) | 267 (log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) | 268 (log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) | 269 (offset << GUC_LOG_BUF_ADDR_SHIFT); 270 271 return flags; 272 } 273 274 static u32 guc_ctl_ads_flags(struct intel_guc *guc) 275 { 276 u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT; 277 u32 flags = ads << GUC_ADS_ADDR_SHIFT; 278 279 return flags; 280 } 281 282 static u32 guc_ctl_wa_flags(struct intel_guc *guc) 283 { 284 struct intel_gt *gt = guc_to_gt(guc); 285 u32 flags = 0; 286 287 /* Wa_22012773006:gen11,gen12 < XeHP */ 288 if (GRAPHICS_VER(gt->i915) >= 11 && 289 GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 55)) 290 flags |= GUC_WA_POLLCS; 291 292 /* Wa_14014475959 */ 293 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 294 IS_DG2(gt->i915)) 295 flags |= GUC_WA_HOLD_CCS_SWITCHOUT; 296 297 /* 298 * Wa_14012197797 299 * Wa_22011391025 300 * 301 * The same WA bit is used for both and 22011391025 is applicable to 302 * all DG2. 303 */ 304 if (IS_DG2(gt->i915)) 305 flags |= GUC_WA_DUAL_QUEUE; 306 307 /* Wa_22011802037: graphics version 11/12 */ 308 if (intel_engine_reset_needs_wa_22011802037(gt)) 309 flags |= GUC_WA_PRE_PARSER; 310 311 /* 312 * Wa_22012727170 313 * Wa_22012727685 314 */ 315 if (IS_DG2_G11(gt->i915)) 316 flags |= GUC_WA_CONTEXT_ISOLATION; 317 318 /* Wa_14018913170 */ 319 if (GUC_FIRMWARE_VER(guc) >= MAKE_GUC_VER(70, 7, 0)) { 320 if (IS_DG2(gt->i915) || IS_METEORLAKE(gt->i915)) 321 flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6; 322 } 323 324 return flags; 325 } 326 327 static u32 guc_ctl_devid(struct intel_guc *guc) 328 { 329 struct drm_i915_private *i915 = guc_to_i915(guc); 330 331 return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915); 332 } 333 334 /* 335 * Initialise the GuC parameter block before starting the firmware 336 * transfer. These parameters are read by the firmware on startup 337 * and cannot be changed thereafter. 338 */ 339 static void guc_init_params(struct intel_guc *guc) 340 { 341 u32 *params = guc->params; 342 int i; 343 344 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32)); 345 346 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); 347 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc); 348 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); 349 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); 350 params[GUC_CTL_WA] = guc_ctl_wa_flags(guc); 351 params[GUC_CTL_DEVID] = guc_ctl_devid(guc); 352 353 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 354 guc_dbg(guc, "param[%2d] = %#x\n", i, params[i]); 355 } 356 357 /* 358 * Initialise the GuC parameter block before starting the firmware 359 * transfer. These parameters are read by the firmware on startup 360 * and cannot be changed thereafter. 361 */ 362 void intel_guc_write_params(struct intel_guc *guc) 363 { 364 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 365 int i; 366 367 /* 368 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and 369 * they are power context saved so it's ok to release forcewake 370 * when we are done here and take it again at xfer time. 371 */ 372 intel_uncore_forcewake_get(uncore, FORCEWAKE_GT); 373 374 intel_uncore_write(uncore, SOFT_SCRATCH(0), 0); 375 376 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 377 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]); 378 379 intel_uncore_forcewake_put(uncore, FORCEWAKE_GT); 380 } 381 382 void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p) 383 { 384 struct intel_gt *gt = guc_to_gt(guc); 385 intel_wakeref_t wakeref; 386 u32 stamp = 0; 387 u64 ktime; 388 389 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) 390 stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP); 391 ktime = ktime_get_boottime_ns(); 392 393 drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime); 394 drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp); 395 drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n", 396 gt->clock_frequency, gt->clock_period_ns); 397 } 398 399 int intel_guc_init(struct intel_guc *guc) 400 { 401 int ret; 402 403 ret = intel_uc_fw_init(&guc->fw); 404 if (ret) 405 goto out; 406 407 ret = intel_guc_log_create(&guc->log); 408 if (ret) 409 goto err_fw; 410 411 ret = intel_guc_capture_init(guc); 412 if (ret) 413 goto err_log; 414 415 ret = intel_guc_ads_create(guc); 416 if (ret) 417 goto err_capture; 418 419 GEM_BUG_ON(!guc->ads_vma); 420 421 ret = intel_guc_ct_init(&guc->ct); 422 if (ret) 423 goto err_ads; 424 425 if (intel_guc_submission_is_used(guc)) { 426 /* 427 * This is stuff we need to have available at fw load time 428 * if we are planning to enable submission later 429 */ 430 ret = intel_guc_submission_init(guc); 431 if (ret) 432 goto err_ct; 433 } 434 435 if (intel_guc_slpc_is_used(guc)) { 436 ret = intel_guc_slpc_init(&guc->slpc); 437 if (ret) 438 goto err_submission; 439 } 440 441 /* now that everything is perma-pinned, initialize the parameters */ 442 guc_init_params(guc); 443 444 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE); 445 446 return 0; 447 448 err_submission: 449 intel_guc_submission_fini(guc); 450 err_ct: 451 intel_guc_ct_fini(&guc->ct); 452 err_ads: 453 intel_guc_ads_destroy(guc); 454 err_capture: 455 intel_guc_capture_destroy(guc); 456 err_log: 457 intel_guc_log_destroy(&guc->log); 458 err_fw: 459 intel_uc_fw_fini(&guc->fw); 460 out: 461 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_INIT_FAIL); 462 guc_probe_error(guc, "failed with %pe\n", ERR_PTR(ret)); 463 return ret; 464 } 465 466 void intel_guc_fini(struct intel_guc *guc) 467 { 468 if (!intel_uc_fw_is_loadable(&guc->fw)) 469 return; 470 471 flush_work(&guc->dead_guc_worker); 472 473 if (intel_guc_slpc_is_used(guc)) 474 intel_guc_slpc_fini(&guc->slpc); 475 476 if (intel_guc_submission_is_used(guc)) 477 intel_guc_submission_fini(guc); 478 479 intel_guc_ct_fini(&guc->ct); 480 481 intel_guc_ads_destroy(guc); 482 intel_guc_capture_destroy(guc); 483 intel_guc_log_destroy(&guc->log); 484 intel_uc_fw_fini(&guc->fw); 485 } 486 487 /* 488 * This function implements the MMIO based host to GuC interface. 489 */ 490 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len, 491 u32 *response_buf, u32 response_buf_size) 492 { 493 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 494 u32 header; 495 int i; 496 int ret; 497 498 GEM_BUG_ON(!len); 499 GEM_BUG_ON(len > guc->send_regs.count); 500 501 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST); 502 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST); 503 504 mutex_lock(&guc->send_mutex); 505 intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains); 506 507 retry: 508 for (i = 0; i < len; i++) 509 intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]); 510 511 intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1)); 512 513 intel_guc_notify(guc); 514 515 /* 516 * No GuC command should ever take longer than 10ms. 517 * Fast commands should still complete in 10us. 518 */ 519 ret = __intel_wait_for_register_fw(uncore, 520 guc_send_reg(guc, 0), 521 GUC_HXG_MSG_0_ORIGIN, 522 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, 523 GUC_HXG_ORIGIN_GUC), 524 10, 10, &header); 525 if (unlikely(ret)) { 526 timeout: 527 guc_err(guc, "mmio request %#x: no reply %x\n", 528 request[0], header); 529 goto out; 530 } 531 532 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) { 533 #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \ 534 FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \ 535 FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; }) 536 537 ret = wait_for(done, 1000); 538 if (unlikely(ret)) 539 goto timeout; 540 if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != 541 GUC_HXG_ORIGIN_GUC)) 542 goto proto; 543 #undef done 544 } 545 546 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) { 547 u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header); 548 549 guc_dbg(guc, "mmio request %#x: retrying, reason %u\n", 550 request[0], reason); 551 goto retry; 552 } 553 554 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) { 555 u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header); 556 u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header); 557 558 guc_err(guc, "mmio request %#x: failure %x/%u\n", 559 request[0], error, hint); 560 ret = -ENXIO; 561 goto out; 562 } 563 564 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) { 565 proto: 566 guc_err(guc, "mmio request %#x: unexpected reply %#x\n", 567 request[0], header); 568 ret = -EPROTO; 569 goto out; 570 } 571 572 if (response_buf) { 573 int count = min(response_buf_size, guc->send_regs.count); 574 575 GEM_BUG_ON(!count); 576 577 response_buf[0] = header; 578 579 for (i = 1; i < count; i++) 580 response_buf[i] = intel_uncore_read(uncore, 581 guc_send_reg(guc, i)); 582 583 /* Use number of copied dwords as our return value */ 584 ret = count; 585 } else { 586 /* Use data from the GuC response as our return value */ 587 ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header); 588 } 589 590 out: 591 intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains); 592 mutex_unlock(&guc->send_mutex); 593 594 return ret; 595 } 596 597 int intel_guc_crash_process_msg(struct intel_guc *guc, u32 action) 598 { 599 if (action == INTEL_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED) 600 guc_err(guc, "Crash dump notification\n"); 601 else if (action == INTEL_GUC_ACTION_NOTIFY_EXCEPTION) 602 guc_err(guc, "Exception notification\n"); 603 else 604 guc_err(guc, "Unknown crash notification: 0x%04X\n", action); 605 606 queue_work(system_unbound_wq, &guc->dead_guc_worker); 607 608 return 0; 609 } 610 611 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc, 612 const u32 *payload, u32 len) 613 { 614 u32 msg; 615 616 if (unlikely(!len)) 617 return -EPROTO; 618 619 /* Make sure to handle only enabled messages */ 620 msg = payload[0] & guc->msg_enabled_mask; 621 622 if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED) 623 guc_err(guc, "Received early crash dump notification!\n"); 624 if (msg & INTEL_GUC_RECV_MSG_EXCEPTION) 625 guc_err(guc, "Received early exception notification!\n"); 626 627 if (msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED | INTEL_GUC_RECV_MSG_EXCEPTION)) 628 queue_work(system_unbound_wq, &guc->dead_guc_worker); 629 630 return 0; 631 } 632 633 /** 634 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode 635 * @guc: intel_guc structure 636 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma 637 * 638 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send 639 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by 640 * intel_huc_auth(). 641 * 642 * Return: non-zero code on error 643 */ 644 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset) 645 { 646 u32 action[] = { 647 INTEL_GUC_ACTION_AUTHENTICATE_HUC, 648 rsa_offset 649 }; 650 651 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 652 } 653 654 /** 655 * intel_guc_suspend() - notify GuC entering suspend state 656 * @guc: the guc 657 */ 658 int intel_guc_suspend(struct intel_guc *guc) 659 { 660 int ret; 661 u32 action[] = { 662 INTEL_GUC_ACTION_CLIENT_SOFT_RESET, 663 }; 664 665 if (!intel_guc_is_ready(guc)) 666 return 0; 667 668 if (intel_guc_submission_is_used(guc)) { 669 flush_work(&guc->dead_guc_worker); 670 671 /* 672 * This H2G MMIO command tears down the GuC in two steps. First it will 673 * generate a G2H CTB for every active context indicating a reset. In 674 * practice the i915 shouldn't ever get a G2H as suspend should only be 675 * called when the GPU is idle. Next, it tears down the CTBs and this 676 * H2G MMIO command completes. 677 * 678 * Don't abort on a failure code from the GuC. Keep going and do the 679 * clean up in santize() and re-initialisation on resume and hopefully 680 * the error here won't be problematic. 681 */ 682 ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0); 683 if (ret) 684 guc_err(guc, "suspend: RESET_CLIENT action failed with %pe\n", 685 ERR_PTR(ret)); 686 } 687 688 /* Signal that the GuC isn't running. */ 689 intel_guc_sanitize(guc); 690 691 return 0; 692 } 693 694 /** 695 * intel_guc_resume() - notify GuC resuming from suspend state 696 * @guc: the guc 697 */ 698 int intel_guc_resume(struct intel_guc *guc) 699 { 700 /* 701 * NB: This function can still be called even if GuC submission is 702 * disabled, e.g. if GuC is enabled for HuC authentication only. Thus, 703 * if any code is later added here, it must be support doing nothing 704 * if submission is disabled (as per intel_guc_suspend). 705 */ 706 return 0; 707 } 708 709 /** 710 * DOC: GuC Memory Management 711 * 712 * GuC can't allocate any memory for its own usage, so all the allocations must 713 * be handled by the host driver. GuC accesses the memory via the GGTT, with the 714 * exception of the top and bottom parts of the 4GB address space, which are 715 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM) 716 * or other parts of the HW. The driver must take care not to place objects that 717 * the GuC is going to access in these reserved ranges. The layout of the GuC 718 * address space is shown below: 719 * 720 * :: 721 * 722 * +===========> +====================+ <== FFFF_FFFF 723 * ^ | Reserved | 724 * | +====================+ <== GUC_GGTT_TOP 725 * | | | 726 * | | DRAM | 727 * GuC | | 728 * Address +===> +====================+ <== GuC ggtt_pin_bias 729 * Space ^ | | 730 * | | | | 731 * | GuC | GuC | 732 * | WOPCM | WOPCM | 733 * | Size | | 734 * | | | | 735 * v v | | 736 * +=======+===> +====================+ <== 0000_0000 737 * 738 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM 739 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped 740 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size. 741 */ 742 743 /** 744 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage 745 * @guc: the guc 746 * @size: size of area to allocate (both virtual space and memory) 747 * 748 * This is a wrapper to create an object for use with the GuC. In order to 749 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate 750 * both some backing storage and a range inside the Global GTT. We must pin 751 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that 752 * range is reserved inside GuC. 753 * 754 * Return: A i915_vma if successful, otherwise an ERR_PTR. 755 */ 756 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size) 757 { 758 struct intel_gt *gt = guc_to_gt(guc); 759 struct drm_i915_gem_object *obj; 760 struct i915_vma *vma; 761 u64 flags; 762 int ret; 763 764 if (HAS_LMEM(gt->i915)) 765 obj = i915_gem_object_create_lmem(gt->i915, size, 766 I915_BO_ALLOC_CPU_CLEAR | 767 I915_BO_ALLOC_CONTIGUOUS | 768 I915_BO_ALLOC_PM_EARLY); 769 else 770 obj = i915_gem_object_create_shmem(gt->i915, size); 771 772 if (IS_ERR(obj)) 773 return ERR_CAST(obj); 774 775 /* 776 * Wa_22016122933: For Media version 13.0, all Media GT shared 777 * memory needs to be mapped as WC on CPU side and UC (PAT 778 * index 2) on GPU side. 779 */ 780 if (intel_gt_needs_wa_22016122933(gt)) 781 i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE); 782 783 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 784 if (IS_ERR(vma)) 785 goto err; 786 787 flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma); 788 ret = i915_ggtt_pin(vma, NULL, 0, flags); 789 if (ret) { 790 vma = ERR_PTR(ret); 791 goto err; 792 } 793 794 return i915_vma_make_unshrinkable(vma); 795 796 err: 797 i915_gem_object_put(obj); 798 return vma; 799 } 800 801 /** 802 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage 803 * @guc: the guc 804 * @size: size of area to allocate (both virtual space and memory) 805 * @out_vma: return variable for the allocated vma pointer 806 * @out_vaddr: return variable for the obj mapping 807 * 808 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated 809 * object with I915_MAP_WB. 810 * 811 * Return: 0 if successful, a negative errno code otherwise. 812 */ 813 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size, 814 struct i915_vma **out_vma, void **out_vaddr) 815 { 816 struct i915_vma *vma; 817 void *vaddr; 818 819 vma = intel_guc_allocate_vma(guc, size); 820 if (IS_ERR(vma)) 821 return PTR_ERR(vma); 822 823 vaddr = i915_gem_object_pin_map_unlocked(vma->obj, 824 intel_gt_coherent_map_type(guc_to_gt(guc), 825 vma->obj, true)); 826 if (IS_ERR(vaddr)) { 827 i915_vma_unpin_and_release(&vma, 0); 828 return PTR_ERR(vaddr); 829 } 830 831 *out_vma = vma; 832 *out_vaddr = vaddr; 833 834 return 0; 835 } 836 837 static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) 838 { 839 u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = { 840 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) | 841 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | 842 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG), 843 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) | 844 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len), 845 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)), 846 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)), 847 }; 848 int ret; 849 850 GEM_BUG_ON(len > 2); 851 GEM_BUG_ON(len == 1 && upper_32_bits(value)); 852 853 /* Self config must go over MMIO */ 854 ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0); 855 856 if (unlikely(ret < 0)) 857 return ret; 858 if (unlikely(ret > 1)) 859 return -EPROTO; 860 if (unlikely(!ret)) 861 return -ENOKEY; 862 863 return 0; 864 } 865 866 static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) 867 { 868 int err = __guc_action_self_cfg(guc, key, len, value); 869 870 if (unlikely(err)) 871 guc_probe_error(guc, "Unsuccessful self-config (%pe) key %#hx value %#llx\n", 872 ERR_PTR(err), key, value); 873 return err; 874 } 875 876 int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value) 877 { 878 return __guc_self_cfg(guc, key, 1, value); 879 } 880 881 int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value) 882 { 883 return __guc_self_cfg(guc, key, 2, value); 884 } 885 886 /** 887 * intel_guc_load_status - dump information about GuC load status 888 * @guc: the GuC 889 * @p: the &drm_printer 890 * 891 * Pretty printer for GuC load status. 892 */ 893 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p) 894 { 895 struct intel_gt *gt = guc_to_gt(guc); 896 struct intel_uncore *uncore = gt->uncore; 897 intel_wakeref_t wakeref; 898 899 if (!intel_guc_is_supported(guc)) { 900 drm_printf(p, "GuC not supported\n"); 901 return; 902 } 903 904 if (!intel_guc_is_wanted(guc)) { 905 drm_printf(p, "GuC disabled\n"); 906 return; 907 } 908 909 intel_uc_fw_dump(&guc->fw, p); 910 911 with_intel_runtime_pm(uncore->rpm, wakeref) { 912 u32 status = intel_uncore_read(uncore, GUC_STATUS); 913 u32 i; 914 915 drm_printf(p, "GuC status 0x%08x:\n", status); 916 drm_printf(p, "\tBootrom status = 0x%x\n", 917 (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT); 918 drm_printf(p, "\tuKernel status = 0x%x\n", 919 (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT); 920 drm_printf(p, "\tMIA Core status = 0x%x\n", 921 (status & GS_MIA_MASK) >> GS_MIA_SHIFT); 922 drm_puts(p, "Scratch registers:\n"); 923 for (i = 0; i < 16; i++) { 924 drm_printf(p, "\t%2d: \t0x%x\n", 925 i, intel_uncore_read(uncore, SOFT_SCRATCH(i))); 926 } 927 } 928 } 929 930 void intel_guc_write_barrier(struct intel_guc *guc) 931 { 932 struct intel_gt *gt = guc_to_gt(guc); 933 934 if (i915_gem_object_is_lmem(guc->ct.vma->obj)) { 935 /* 936 * Ensure intel_uncore_write_fw can be used rather than 937 * intel_uncore_write. 938 */ 939 GEM_BUG_ON(guc->send_regs.fw_domains); 940 941 /* 942 * This register is used by the i915 and GuC for MMIO based 943 * communication. Once we are in this code CTBs are the only 944 * method the i915 uses to communicate with the GuC so it is 945 * safe to write to this register (a value of 0 is NOP for MMIO 946 * communication). If we ever start mixing CTBs and MMIOs a new 947 * register will have to be chosen. This function is also used 948 * to enforce ordering of a work queue item write and an update 949 * to the process descriptor. When a work queue is being used, 950 * CTBs are also the only mechanism of communication. 951 */ 952 intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0); 953 } else { 954 /* wmb() sufficient for a barrier if in smem */ 955 wmb(); 956 } 957 } 958