xref: /linux/drivers/gpu/drm/i915/gt/uc/intel_guc.c (revision 2330437da0994321020777c605a2a8cb0ecb7001)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014-2019 Intel Corporation
4  */
5 
6 #include "gem/i915_gem_lmem.h"
7 #include "gt/intel_gt.h"
8 #include "gt/intel_gt_irq.h"
9 #include "gt/intel_gt_pm_irq.h"
10 #include "gt/intel_gt_regs.h"
11 
12 #include "i915_drv.h"
13 #include "i915_irq.h"
14 #include "i915_reg.h"
15 #include "i915_wait_util.h"
16 #include "intel_guc.h"
17 #include "intel_guc_ads.h"
18 #include "intel_guc_capture.h"
19 #include "intel_guc_print.h"
20 #include "intel_guc_slpc.h"
21 #include "intel_guc_submission.h"
22 
23 /**
24  * DOC: GuC
25  *
26  * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
27  * designed to offload some of the functionality usually performed by the host
28  * driver; currently the main operations it can take care of are:
29  *
30  * - Authentication of the HuC, which is required to fully enable HuC usage.
31  * - Low latency graphics context scheduling (a.k.a. GuC submission).
32  * - GT Power management.
33  *
34  * The enable_guc module parameter can be used to select which of those
35  * operations to enable within GuC. Note that not all the operations are
36  * supported on all gen9+ platforms.
37  *
38  * Enabling the GuC is not mandatory and therefore the firmware is only loaded
39  * if at least one of the operations is selected. However, not loading the GuC
40  * might result in the loss of some features that do require the GuC (currently
41  * just the HuC, but more are expected to land in the future).
42  */
43 
44 void intel_guc_notify(struct intel_guc *guc)
45 {
46 	struct intel_gt *gt = guc_to_gt(guc);
47 
48 	/*
49 	 * On Gen11+, the value written to the register is passes as a payload
50 	 * to the FW. However, the FW currently treats all values the same way
51 	 * (H2G interrupt), so we can just write the value that the HW expects
52 	 * on older gens.
53 	 */
54 	intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER);
55 }
56 
57 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
58 {
59 	GEM_BUG_ON(!guc->send_regs.base);
60 	GEM_BUG_ON(!guc->send_regs.count);
61 	GEM_BUG_ON(i >= guc->send_regs.count);
62 
63 	return _MMIO(guc->send_regs.base + 4 * i);
64 }
65 
66 void intel_guc_init_send_regs(struct intel_guc *guc)
67 {
68 	struct intel_gt *gt = guc_to_gt(guc);
69 	enum forcewake_domains fw_domains = 0;
70 	unsigned int i;
71 
72 	GEM_BUG_ON(!guc->send_regs.base);
73 	GEM_BUG_ON(!guc->send_regs.count);
74 
75 	for (i = 0; i < guc->send_regs.count; i++) {
76 		fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
77 					guc_send_reg(guc, i),
78 					FW_REG_READ | FW_REG_WRITE);
79 	}
80 	guc->send_regs.fw_domains = fw_domains;
81 }
82 
83 static void gen9_reset_guc_interrupts(struct intel_guc *guc)
84 {
85 	struct intel_gt *gt = guc_to_gt(guc);
86 
87 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
88 
89 	spin_lock_irq(gt->irq_lock);
90 	gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
91 	spin_unlock_irq(gt->irq_lock);
92 }
93 
94 static void gen9_enable_guc_interrupts(struct intel_guc *guc)
95 {
96 	struct intel_gt *gt = guc_to_gt(guc);
97 
98 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
99 
100 	spin_lock_irq(gt->irq_lock);
101 	guc_WARN_ON_ONCE(guc, intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
102 			 gt->pm_guc_events);
103 	gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
104 	spin_unlock_irq(gt->irq_lock);
105 
106 	guc->interrupts.enabled = true;
107 }
108 
109 static void gen9_disable_guc_interrupts(struct intel_guc *guc)
110 {
111 	struct intel_gt *gt = guc_to_gt(guc);
112 
113 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
114 	guc->interrupts.enabled = false;
115 
116 	spin_lock_irq(gt->irq_lock);
117 
118 	gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
119 
120 	spin_unlock_irq(gt->irq_lock);
121 	intel_synchronize_irq(gt->i915);
122 
123 	gen9_reset_guc_interrupts(guc);
124 }
125 
126 static bool __gen11_reset_guc_interrupts(struct intel_gt *gt)
127 {
128 	u32 irq = gt->type == GT_MEDIA ? MTL_MGUC : GEN11_GUC;
129 
130 	lockdep_assert_held(gt->irq_lock);
131 	return gen11_gt_reset_one_iir(gt, 0, irq);
132 }
133 
134 static void gen11_reset_guc_interrupts(struct intel_guc *guc)
135 {
136 	struct intel_gt *gt = guc_to_gt(guc);
137 
138 	spin_lock_irq(gt->irq_lock);
139 	__gen11_reset_guc_interrupts(gt);
140 	spin_unlock_irq(gt->irq_lock);
141 }
142 
143 static void gen11_enable_guc_interrupts(struct intel_guc *guc)
144 {
145 	struct intel_gt *gt = guc_to_gt(guc);
146 
147 	spin_lock_irq(gt->irq_lock);
148 	__gen11_reset_guc_interrupts(gt);
149 	spin_unlock_irq(gt->irq_lock);
150 
151 	guc->interrupts.enabled = true;
152 }
153 
154 static void gen11_disable_guc_interrupts(struct intel_guc *guc)
155 {
156 	struct intel_gt *gt = guc_to_gt(guc);
157 
158 	guc->interrupts.enabled = false;
159 	intel_synchronize_irq(gt->i915);
160 
161 	gen11_reset_guc_interrupts(guc);
162 }
163 
164 static void guc_dead_worker_func(struct work_struct *w)
165 {
166 	struct intel_guc *guc = container_of(w, struct intel_guc, dead_guc_worker);
167 	struct intel_gt *gt = guc_to_gt(guc);
168 	unsigned long last = guc->last_dead_guc_jiffies;
169 	unsigned long delta = jiffies_to_msecs(jiffies - last);
170 
171 	if (delta < 500) {
172 		intel_gt_set_wedged(gt);
173 	} else {
174 		intel_gt_handle_error(gt, ALL_ENGINES, I915_ERROR_CAPTURE, "dead GuC");
175 		guc->last_dead_guc_jiffies = jiffies;
176 	}
177 }
178 
179 void intel_guc_init_early(struct intel_guc *guc)
180 {
181 	struct intel_gt *gt = guc_to_gt(guc);
182 	struct drm_i915_private *i915 = gt->i915;
183 
184 	intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC, true);
185 	intel_guc_ct_init_early(&guc->ct);
186 	intel_guc_log_init_early(&guc->log);
187 	intel_guc_submission_init_early(guc);
188 	intel_guc_slpc_init_early(&guc->slpc);
189 	intel_guc_rc_init_early(guc);
190 
191 	INIT_WORK(&guc->dead_guc_worker, guc_dead_worker_func);
192 
193 	mutex_init(&guc->send_mutex);
194 	spin_lock_init(&guc->irq_lock);
195 	if (GRAPHICS_VER(i915) >= 11) {
196 		guc->interrupts.reset = gen11_reset_guc_interrupts;
197 		guc->interrupts.enable = gen11_enable_guc_interrupts;
198 		guc->interrupts.disable = gen11_disable_guc_interrupts;
199 		if (gt->type == GT_MEDIA) {
200 			guc->notify_reg = MEDIA_GUC_HOST_INTERRUPT;
201 			guc->send_regs.base = i915_mmio_reg_offset(MEDIA_SOFT_SCRATCH(0));
202 		} else {
203 			guc->notify_reg = GEN11_GUC_HOST_INTERRUPT;
204 			guc->send_regs.base = i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
205 		}
206 
207 		guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
208 
209 	} else {
210 		guc->notify_reg = GUC_SEND_INTERRUPT;
211 		guc->interrupts.reset = gen9_reset_guc_interrupts;
212 		guc->interrupts.enable = gen9_enable_guc_interrupts;
213 		guc->interrupts.disable = gen9_disable_guc_interrupts;
214 		guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
215 		guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
216 		BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
217 	}
218 
219 	intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION |
220 				  INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
221 }
222 
223 void intel_guc_init_late(struct intel_guc *guc)
224 {
225 	intel_guc_ads_init_late(guc);
226 }
227 
228 static u32 guc_ctl_debug_flags(struct intel_guc *guc)
229 {
230 	u32 level = intel_guc_log_get_level(&guc->log);
231 	u32 flags = 0;
232 
233 	if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
234 		flags |= GUC_LOG_DISABLED;
235 	else
236 		flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
237 			 GUC_LOG_VERBOSITY_SHIFT;
238 
239 	return flags;
240 }
241 
242 static u32 guc_ctl_feature_flags(struct intel_guc *guc)
243 {
244 	struct intel_gt *gt = guc_to_gt(guc);
245 	u32 flags = 0;
246 
247 	/*
248 	 * Enable PXP GuC autoteardown flow.
249 	 * NB: MTL does things differently.
250 	 */
251 	if (HAS_PXP(gt->i915) && !IS_METEORLAKE(gt->i915))
252 		flags |= GUC_CTL_ENABLE_GUC_PXP_CTL;
253 
254 	if (!intel_guc_submission_is_used(guc))
255 		flags |= GUC_CTL_DISABLE_SCHEDULER;
256 
257 	if (intel_guc_slpc_is_used(guc))
258 		flags |= GUC_CTL_ENABLE_SLPC;
259 
260 	return flags;
261 }
262 
263 static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
264 {
265 	struct intel_guc_log *log = &guc->log;
266 	u32 offset, flags;
267 
268 	GEM_BUG_ON(!log->sizes_initialised);
269 
270 	offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT;
271 
272 	flags = GUC_LOG_VALID |
273 		GUC_LOG_NOTIFY_ON_HALF_FULL |
274 		log->sizes[GUC_LOG_SECTIONS_DEBUG].flag |
275 		log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag |
276 		(log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) |
277 		(log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) |
278 		(log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) |
279 		(offset << GUC_LOG_BUF_ADDR_SHIFT);
280 
281 	return flags;
282 }
283 
284 static u32 guc_ctl_ads_flags(struct intel_guc *guc)
285 {
286 	u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
287 	u32 flags = ads << GUC_ADS_ADDR_SHIFT;
288 
289 	return flags;
290 }
291 
292 static u32 guc_ctl_wa_flags(struct intel_guc *guc)
293 {
294 	struct intel_gt *gt = guc_to_gt(guc);
295 	u32 flags = 0;
296 
297 	/* Wa_22012773006:gen11,gen12 < XeHP */
298 	if (GRAPHICS_VER(gt->i915) >= 11 &&
299 	    GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 55))
300 		flags |= GUC_WA_POLLCS;
301 
302 	/* Wa_14014475959 */
303 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
304 	    IS_DG2(gt->i915))
305 		flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
306 
307 	/* Wa_16019325821 */
308 	/* Wa_14019159160 */
309 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)))
310 		flags |= GUC_WA_RCS_CCS_SWITCHOUT;
311 
312 	/*
313 	 * Wa_14012197797
314 	 * Wa_22011391025
315 	 *
316 	 * The same WA bit is used for both and 22011391025 is applicable to
317 	 * all DG2.
318 	 *
319 	 * Platforms post DG2 prevent this issue in hardware by stalling
320 	 * submissions. With this flag GuC will schedule as to avoid such
321 	 * stalls.
322 	 */
323 	if (IS_DG2(gt->i915) ||
324 	    (CCS_MASK(gt) && GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)))
325 		flags |= GUC_WA_DUAL_QUEUE;
326 
327 	/* Wa_22011802037: graphics version 11/12 */
328 	if (intel_engine_reset_needs_wa_22011802037(gt))
329 		flags |= GUC_WA_PRE_PARSER;
330 
331 	/*
332 	 * Wa_22012727170
333 	 * Wa_22012727685
334 	 */
335 	if (IS_DG2_G11(gt->i915))
336 		flags |= GUC_WA_CONTEXT_ISOLATION;
337 
338 	/*
339 	 * Wa_14018913170: Applicable to all platforms supported by i915 so
340 	 * don't bother testing for all X/Y/Z platforms explicitly.
341 	 */
342 	if (GUC_FIRMWARE_VER(guc) >= MAKE_GUC_VER(70, 7, 0))
343 		flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6;
344 
345 	return flags;
346 }
347 
348 static u32 guc_ctl_devid(struct intel_guc *guc)
349 {
350 	struct drm_i915_private *i915 = guc_to_i915(guc);
351 
352 	return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915);
353 }
354 
355 /*
356  * Initialise the GuC parameter block before starting the firmware
357  * transfer. These parameters are read by the firmware on startup
358  * and cannot be changed thereafter.
359  */
360 static void guc_init_params(struct intel_guc *guc)
361 {
362 	u32 *params = guc->params;
363 	int i;
364 
365 	BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
366 
367 	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
368 	params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
369 	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
370 	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
371 	params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
372 	params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
373 
374 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
375 		guc_dbg(guc, "param[%2d] = %#x\n", i, params[i]);
376 }
377 
378 /*
379  * Initialise the GuC parameter block before starting the firmware
380  * transfer. These parameters are read by the firmware on startup
381  * and cannot be changed thereafter.
382  */
383 void intel_guc_write_params(struct intel_guc *guc)
384 {
385 	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
386 	int i;
387 
388 	/*
389 	 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and
390 	 * they are power context saved so it's ok to release forcewake
391 	 * when we are done here and take it again at xfer time.
392 	 */
393 	intel_uncore_forcewake_get(uncore, FORCEWAKE_GT);
394 
395 	intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
396 
397 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
398 		intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
399 
400 	intel_uncore_forcewake_put(uncore, FORCEWAKE_GT);
401 }
402 
403 void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p)
404 {
405 	struct intel_gt *gt = guc_to_gt(guc);
406 	intel_wakeref_t wakeref;
407 	u32 stamp = 0;
408 	u64 ktime;
409 
410 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
411 		stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP);
412 	ktime = ktime_get_boottime_ns();
413 
414 	drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime);
415 	drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp);
416 	drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n",
417 		   gt->clock_frequency, gt->clock_period_ns);
418 }
419 
420 int intel_guc_init(struct intel_guc *guc)
421 {
422 	int ret;
423 
424 	ret = intel_uc_fw_init(&guc->fw);
425 	if (ret)
426 		goto out;
427 
428 	ret = intel_guc_log_create(&guc->log);
429 	if (ret)
430 		goto err_fw;
431 
432 	ret = intel_guc_capture_init(guc);
433 	if (ret)
434 		goto err_log;
435 
436 	ret = intel_guc_ads_create(guc);
437 	if (ret)
438 		goto err_capture;
439 
440 	GEM_BUG_ON(!guc->ads_vma);
441 
442 	ret = intel_guc_ct_init(&guc->ct);
443 	if (ret)
444 		goto err_ads;
445 
446 	if (intel_guc_submission_is_used(guc)) {
447 		/*
448 		 * This is stuff we need to have available at fw load time
449 		 * if we are planning to enable submission later
450 		 */
451 		ret = intel_guc_submission_init(guc);
452 		if (ret)
453 			goto err_ct;
454 	}
455 
456 	if (intel_guc_slpc_is_used(guc)) {
457 		ret = intel_guc_slpc_init(&guc->slpc);
458 		if (ret)
459 			goto err_submission;
460 	}
461 
462 	/* now that everything is perma-pinned, initialize the parameters */
463 	guc_init_params(guc);
464 
465 	intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE);
466 
467 	return 0;
468 
469 err_submission:
470 	intel_guc_submission_fini(guc);
471 err_ct:
472 	intel_guc_ct_fini(&guc->ct);
473 err_ads:
474 	intel_guc_ads_destroy(guc);
475 err_capture:
476 	intel_guc_capture_destroy(guc);
477 err_log:
478 	intel_guc_log_destroy(&guc->log);
479 err_fw:
480 	intel_uc_fw_fini(&guc->fw);
481 out:
482 	intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_INIT_FAIL);
483 	guc_probe_error(guc, "failed with %pe\n", ERR_PTR(ret));
484 	return ret;
485 }
486 
487 void intel_guc_fini(struct intel_guc *guc)
488 {
489 	if (!intel_uc_fw_is_loadable(&guc->fw))
490 		return;
491 
492 	flush_work(&guc->dead_guc_worker);
493 
494 	if (intel_guc_slpc_is_used(guc))
495 		intel_guc_slpc_fini(&guc->slpc);
496 
497 	if (intel_guc_submission_is_used(guc))
498 		intel_guc_submission_fini(guc);
499 
500 	intel_guc_ct_fini(&guc->ct);
501 
502 	intel_guc_ads_destroy(guc);
503 	intel_guc_capture_destroy(guc);
504 	intel_guc_log_destroy(&guc->log);
505 	intel_uc_fw_fini(&guc->fw);
506 }
507 
508 /*
509  * This function implements the MMIO based host to GuC interface.
510  */
511 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len,
512 			u32 *response_buf, u32 response_buf_size)
513 {
514 	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
515 	u32 header;
516 	int i;
517 	int ret;
518 
519 	GEM_BUG_ON(!len);
520 	GEM_BUG_ON(len > guc->send_regs.count);
521 
522 	GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST);
523 	GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST);
524 
525 	mutex_lock(&guc->send_mutex);
526 	intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
527 
528 retry:
529 	for (i = 0; i < len; i++)
530 		intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]);
531 
532 	intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
533 
534 	intel_guc_notify(guc);
535 
536 	/*
537 	 * No GuC command should ever take longer than 10ms.
538 	 * Fast commands should still complete in 10us.
539 	 */
540 	ret = __intel_wait_for_register_fw(uncore,
541 					   guc_send_reg(guc, 0),
542 					   GUC_HXG_MSG_0_ORIGIN,
543 					   FIELD_PREP(GUC_HXG_MSG_0_ORIGIN,
544 						      GUC_HXG_ORIGIN_GUC),
545 					   10, 10, &header);
546 	if (unlikely(ret)) {
547 timeout:
548 		guc_err(guc, "mmio request %#x: no reply %x\n",
549 			request[0], header);
550 		goto out;
551 	}
552 
553 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
554 #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \
555 		FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \
556 		FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; })
557 
558 		ret = wait_for(done, 1000);
559 		if (unlikely(ret))
560 			goto timeout;
561 		if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
562 				       GUC_HXG_ORIGIN_GUC))
563 			goto proto;
564 #undef done
565 	}
566 
567 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
568 		u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
569 
570 		guc_dbg(guc, "mmio request %#x: retrying, reason %u\n",
571 			request[0], reason);
572 		goto retry;
573 	}
574 
575 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) {
576 		u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
577 		u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
578 
579 		guc_err(guc, "mmio request %#x: failure %x/%u\n",
580 			request[0], error, hint);
581 		ret = -ENXIO;
582 		goto out;
583 	}
584 
585 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) {
586 proto:
587 		guc_err(guc, "mmio request %#x: unexpected reply %#x\n",
588 			request[0], header);
589 		ret = -EPROTO;
590 		goto out;
591 	}
592 
593 	if (response_buf) {
594 		int count = min(response_buf_size, guc->send_regs.count);
595 
596 		GEM_BUG_ON(!count);
597 
598 		response_buf[0] = header;
599 
600 		for (i = 1; i < count; i++)
601 			response_buf[i] = intel_uncore_read(uncore,
602 							    guc_send_reg(guc, i));
603 
604 		/* Use number of copied dwords as our return value */
605 		ret = count;
606 	} else {
607 		/* Use data from the GuC response as our return value */
608 		ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
609 	}
610 
611 out:
612 	intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
613 	mutex_unlock(&guc->send_mutex);
614 
615 	return ret;
616 }
617 
618 int intel_guc_crash_process_msg(struct intel_guc *guc, u32 action)
619 {
620 	if (action == INTEL_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED)
621 		guc_err(guc, "Crash dump notification\n");
622 	else if (action == INTEL_GUC_ACTION_NOTIFY_EXCEPTION)
623 		guc_err(guc, "Exception notification\n");
624 	else
625 		guc_err(guc, "Unknown crash notification: 0x%04X\n", action);
626 
627 	queue_work(system_unbound_wq, &guc->dead_guc_worker);
628 
629 	return 0;
630 }
631 
632 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
633 				       const u32 *payload, u32 len)
634 {
635 	u32 msg;
636 
637 	if (unlikely(!len))
638 		return -EPROTO;
639 
640 	/* Make sure to handle only enabled messages */
641 	msg = payload[0] & guc->msg_enabled_mask;
642 
643 	if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED)
644 		guc_err(guc, "Received early crash dump notification!\n");
645 	if (msg & INTEL_GUC_RECV_MSG_EXCEPTION)
646 		guc_err(guc, "Received early exception notification!\n");
647 
648 	if (msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED | INTEL_GUC_RECV_MSG_EXCEPTION))
649 		queue_work(system_unbound_wq, &guc->dead_guc_worker);
650 
651 	return 0;
652 }
653 
654 /**
655  * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
656  * @guc: intel_guc structure
657  * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
658  *
659  * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
660  * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
661  * intel_huc_auth().
662  *
663  * Return:	non-zero code on error
664  */
665 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
666 {
667 	u32 action[] = {
668 		INTEL_GUC_ACTION_AUTHENTICATE_HUC,
669 		rsa_offset
670 	};
671 
672 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
673 }
674 
675 /**
676  * intel_guc_suspend() - notify GuC entering suspend state
677  * @guc:	the guc
678  */
679 int intel_guc_suspend(struct intel_guc *guc)
680 {
681 	int ret;
682 	u32 action[] = {
683 		INTEL_GUC_ACTION_CLIENT_SOFT_RESET,
684 	};
685 
686 	if (!intel_guc_is_ready(guc))
687 		return 0;
688 
689 	if (intel_guc_submission_is_used(guc)) {
690 		flush_work(&guc->dead_guc_worker);
691 
692 		/*
693 		 * This H2G MMIO command tears down the GuC in two steps. First it will
694 		 * generate a G2H CTB for every active context indicating a reset. In
695 		 * practice the i915 shouldn't ever get a G2H as suspend should only be
696 		 * called when the GPU is idle. Next, it tears down the CTBs and this
697 		 * H2G MMIO command completes.
698 		 *
699 		 * Don't abort on a failure code from the GuC. Keep going and do the
700 		 * clean up in sanitize() and re-initialisation on resume and hopefully
701 		 * the error here won't be problematic.
702 		 */
703 		ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0);
704 		if (ret)
705 			guc_err(guc, "suspend: RESET_CLIENT action failed with %pe\n",
706 				ERR_PTR(ret));
707 	}
708 
709 	/* Signal that the GuC isn't running. */
710 	intel_guc_sanitize(guc);
711 
712 	return 0;
713 }
714 
715 /**
716  * intel_guc_resume() - notify GuC resuming from suspend state
717  * @guc:	the guc
718  */
719 int intel_guc_resume(struct intel_guc *guc)
720 {
721 	/*
722 	 * NB: This function can still be called even if GuC submission is
723 	 * disabled, e.g. if GuC is enabled for HuC authentication only. Thus,
724 	 * if any code is later added here, it must be support doing nothing
725 	 * if submission is disabled (as per intel_guc_suspend).
726 	 */
727 	return 0;
728 }
729 
730 /**
731  * DOC: GuC Memory Management
732  *
733  * GuC can't allocate any memory for its own usage, so all the allocations must
734  * be handled by the host driver. GuC accesses the memory via the GGTT, with the
735  * exception of the top and bottom parts of the 4GB address space, which are
736  * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
737  * or other parts of the HW. The driver must take care not to place objects that
738  * the GuC is going to access in these reserved ranges. The layout of the GuC
739  * address space is shown below:
740  *
741  * ::
742  *
743  *     +===========> +====================+ <== FFFF_FFFF
744  *     ^             |      Reserved      |
745  *     |             +====================+ <== GUC_GGTT_TOP
746  *     |             |                    |
747  *     |             |        DRAM        |
748  *    GuC            |                    |
749  *  Address    +===> +====================+ <== GuC ggtt_pin_bias
750  *   Space     ^     |                    |
751  *     |       |     |                    |
752  *     |      GuC    |        GuC         |
753  *     |     WOPCM   |       WOPCM        |
754  *     |      Size   |                    |
755  *     |       |     |                    |
756  *     v       v     |                    |
757  *     +=======+===> +====================+ <== 0000_0000
758  *
759  * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
760  * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
761  * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
762  */
763 
764 /**
765  * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
766  * @guc:	the guc
767  * @size:	size of area to allocate (both virtual space and memory)
768  *
769  * This is a wrapper to create an object for use with the GuC. In order to
770  * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
771  * both some backing storage and a range inside the Global GTT. We must pin
772  * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
773  * range is reserved inside GuC.
774  *
775  * Return:	A i915_vma if successful, otherwise an ERR_PTR.
776  */
777 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
778 {
779 	struct intel_gt *gt = guc_to_gt(guc);
780 	struct drm_i915_gem_object *obj;
781 	struct i915_vma *vma;
782 	u64 flags;
783 	int ret;
784 
785 	if (HAS_LMEM(gt->i915))
786 		obj = i915_gem_object_create_lmem(gt->i915, size,
787 						  I915_BO_ALLOC_CPU_CLEAR |
788 						  I915_BO_ALLOC_CONTIGUOUS |
789 						  I915_BO_ALLOC_PM_EARLY);
790 	else
791 		obj = i915_gem_object_create_shmem(gt->i915, size);
792 
793 	if (IS_ERR(obj))
794 		return ERR_CAST(obj);
795 
796 	/*
797 	 * Wa_22016122933: For Media version 13.0, all Media GT shared
798 	 * memory needs to be mapped as WC on CPU side and UC (PAT
799 	 * index 2) on GPU side.
800 	 */
801 	if (intel_gt_needs_wa_22016122933(gt))
802 		i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE);
803 
804 	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
805 	if (IS_ERR(vma))
806 		goto err;
807 
808 	flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
809 	ret = i915_ggtt_pin(vma, NULL, 0, flags);
810 	if (ret) {
811 		vma = ERR_PTR(ret);
812 		goto err;
813 	}
814 
815 	return i915_vma_make_unshrinkable(vma);
816 
817 err:
818 	i915_gem_object_put(obj);
819 	return vma;
820 }
821 
822 /**
823  * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage
824  * @guc:	the guc
825  * @size:	size of area to allocate (both virtual space and memory)
826  * @out_vma:	return variable for the allocated vma pointer
827  * @out_vaddr:	return variable for the obj mapping
828  *
829  * This wrapper calls intel_guc_allocate_vma() and then maps the allocated
830  * object with I915_MAP_WB.
831  *
832  * Return:	0 if successful, a negative errno code otherwise.
833  */
834 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size,
835 				   struct i915_vma **out_vma, void **out_vaddr)
836 {
837 	struct i915_vma *vma;
838 	void *vaddr;
839 
840 	vma = intel_guc_allocate_vma(guc, size);
841 	if (IS_ERR(vma))
842 		return PTR_ERR(vma);
843 
844 	vaddr = i915_gem_object_pin_map_unlocked(vma->obj,
845 						 intel_gt_coherent_map_type(guc_to_gt(guc),
846 									    vma->obj, true));
847 	if (IS_ERR(vaddr)) {
848 		i915_vma_unpin_and_release(&vma, 0);
849 		return PTR_ERR(vaddr);
850 	}
851 
852 	*out_vma = vma;
853 	*out_vaddr = vaddr;
854 
855 	return 0;
856 }
857 
858 static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
859 {
860 	u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
861 		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
862 		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
863 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG),
864 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
865 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
866 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)),
867 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)),
868 	};
869 	int ret;
870 
871 	GEM_BUG_ON(len > 2);
872 	GEM_BUG_ON(len == 1 && upper_32_bits(value));
873 
874 	/* Self config must go over MMIO */
875 	ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0);
876 
877 	if (unlikely(ret < 0))
878 		return ret;
879 	if (unlikely(ret > 1))
880 		return -EPROTO;
881 	if (unlikely(!ret))
882 		return -ENOKEY;
883 
884 	return 0;
885 }
886 
887 static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
888 {
889 	int err = __guc_action_self_cfg(guc, key, len, value);
890 
891 	if (unlikely(err))
892 		guc_probe_error(guc, "Unsuccessful self-config (%pe) key %#hx value %#llx\n",
893 				ERR_PTR(err), key, value);
894 	return err;
895 }
896 
897 int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value)
898 {
899 	return __guc_self_cfg(guc, key, 1, value);
900 }
901 
902 int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value)
903 {
904 	return __guc_self_cfg(guc, key, 2, value);
905 }
906 
907 /**
908  * intel_guc_load_status - dump information about GuC load status
909  * @guc: the GuC
910  * @p: the &drm_printer
911  *
912  * Pretty printer for GuC load status.
913  */
914 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p)
915 {
916 	struct intel_gt *gt = guc_to_gt(guc);
917 	struct intel_uncore *uncore = gt->uncore;
918 	intel_wakeref_t wakeref;
919 
920 	if (!intel_guc_is_supported(guc)) {
921 		drm_printf(p, "GuC not supported\n");
922 		return;
923 	}
924 
925 	if (!intel_guc_is_wanted(guc)) {
926 		drm_printf(p, "GuC disabled\n");
927 		return;
928 	}
929 
930 	intel_uc_fw_dump(&guc->fw, p);
931 
932 	with_intel_runtime_pm(uncore->rpm, wakeref) {
933 		u32 status = intel_uncore_read(uncore, GUC_STATUS);
934 		u32 i;
935 
936 		drm_printf(p, "GuC status 0x%08x:\n", status);
937 		drm_printf(p, "\tBootrom status = 0x%x\n",
938 			   (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
939 		drm_printf(p, "\tuKernel status = 0x%x\n",
940 			   (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
941 		drm_printf(p, "\tMIA Core status = 0x%x\n",
942 			   (status & GS_MIA_MASK) >> GS_MIA_SHIFT);
943 		drm_puts(p, "Scratch registers:\n");
944 		for (i = 0; i < 16; i++) {
945 			drm_printf(p, "\t%2d: \t0x%x\n",
946 				   i, intel_uncore_read(uncore, SOFT_SCRATCH(i)));
947 		}
948 	}
949 }
950 
951 void intel_guc_write_barrier(struct intel_guc *guc)
952 {
953 	struct intel_gt *gt = guc_to_gt(guc);
954 
955 	if (i915_gem_object_is_lmem(guc->ct.vma->obj)) {
956 		/*
957 		 * Ensure intel_uncore_write_fw can be used rather than
958 		 * intel_uncore_write.
959 		 */
960 		GEM_BUG_ON(guc->send_regs.fw_domains);
961 
962 		/*
963 		 * This register is used by the i915 and GuC for MMIO based
964 		 * communication. Once we are in this code CTBs are the only
965 		 * method the i915 uses to communicate with the GuC so it is
966 		 * safe to write to this register (a value of 0 is NOP for MMIO
967 		 * communication). If we ever start mixing CTBs and MMIOs a new
968 		 * register will have to be chosen. This function is also used
969 		 * to enforce ordering of a work queue item write and an update
970 		 * to the process descriptor. When a work queue is being used,
971 		 * CTBs are also the only mechanism of communication.
972 		 */
973 		intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0);
974 	} else {
975 		/* wmb() sufficient for a barrier if in smem */
976 		wmb();
977 	}
978 }
979