1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2019 Intel Corporation 4 */ 5 6 #include "gem/i915_gem_lmem.h" 7 #include "gt/intel_gt.h" 8 #include "gt/intel_gt_irq.h" 9 #include "gt/intel_gt_pm_irq.h" 10 #include "gt/intel_gt_regs.h" 11 12 #include "i915_drv.h" 13 #include "i915_irq.h" 14 #include "i915_reg.h" 15 #include "i915_wait_util.h" 16 #include "intel_guc.h" 17 #include "intel_guc_ads.h" 18 #include "intel_guc_capture.h" 19 #include "intel_guc_print.h" 20 #include "intel_guc_slpc.h" 21 #include "intel_guc_submission.h" 22 23 /** 24 * DOC: GuC 25 * 26 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is 27 * designed to offload some of the functionality usually performed by the host 28 * driver; currently the main operations it can take care of are: 29 * 30 * - Authentication of the HuC, which is required to fully enable HuC usage. 31 * - Low latency graphics context scheduling (a.k.a. GuC submission). 32 * - GT Power management. 33 * 34 * The enable_guc module parameter can be used to select which of those 35 * operations to enable within GuC. Note that not all the operations are 36 * supported on all gen9+ platforms. 37 * 38 * Enabling the GuC is not mandatory and therefore the firmware is only loaded 39 * if at least one of the operations is selected. However, not loading the GuC 40 * might result in the loss of some features that do require the GuC (currently 41 * just the HuC, but more are expected to land in the future). 42 */ 43 44 void intel_guc_notify(struct intel_guc *guc) 45 { 46 struct intel_gt *gt = guc_to_gt(guc); 47 48 /* 49 * On Gen11+, the value written to the register is passes as a payload 50 * to the FW. However, the FW currently treats all values the same way 51 * (H2G interrupt), so we can just write the value that the HW expects 52 * on older gens. 53 */ 54 intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER); 55 } 56 57 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i) 58 { 59 GEM_BUG_ON(!guc->send_regs.base); 60 GEM_BUG_ON(!guc->send_regs.count); 61 GEM_BUG_ON(i >= guc->send_regs.count); 62 63 return _MMIO(guc->send_regs.base + 4 * i); 64 } 65 66 void intel_guc_init_send_regs(struct intel_guc *guc) 67 { 68 struct intel_gt *gt = guc_to_gt(guc); 69 enum forcewake_domains fw_domains = 0; 70 unsigned int i; 71 72 GEM_BUG_ON(!guc->send_regs.base); 73 GEM_BUG_ON(!guc->send_regs.count); 74 75 for (i = 0; i < guc->send_regs.count; i++) { 76 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore, 77 guc_send_reg(guc, i), 78 FW_REG_READ | FW_REG_WRITE); 79 } 80 guc->send_regs.fw_domains = fw_domains; 81 } 82 83 static void gen9_reset_guc_interrupts(struct intel_guc *guc) 84 { 85 struct intel_gt *gt = guc_to_gt(guc); 86 87 assert_rpm_wakelock_held(>->i915->runtime_pm); 88 89 spin_lock_irq(gt->irq_lock); 90 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events); 91 spin_unlock_irq(gt->irq_lock); 92 } 93 94 static void gen9_enable_guc_interrupts(struct intel_guc *guc) 95 { 96 struct intel_gt *gt = guc_to_gt(guc); 97 98 assert_rpm_wakelock_held(>->i915->runtime_pm); 99 100 spin_lock_irq(gt->irq_lock); 101 guc_WARN_ON_ONCE(guc, intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) & 102 gt->pm_guc_events); 103 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events); 104 spin_unlock_irq(gt->irq_lock); 105 106 guc->interrupts.enabled = true; 107 } 108 109 static void gen9_disable_guc_interrupts(struct intel_guc *guc) 110 { 111 struct intel_gt *gt = guc_to_gt(guc); 112 113 assert_rpm_wakelock_held(>->i915->runtime_pm); 114 guc->interrupts.enabled = false; 115 116 spin_lock_irq(gt->irq_lock); 117 118 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events); 119 120 spin_unlock_irq(gt->irq_lock); 121 intel_synchronize_irq(gt->i915); 122 123 gen9_reset_guc_interrupts(guc); 124 } 125 126 static bool __gen11_reset_guc_interrupts(struct intel_gt *gt) 127 { 128 u32 irq = gt->type == GT_MEDIA ? MTL_MGUC : GEN11_GUC; 129 130 lockdep_assert_held(gt->irq_lock); 131 return gen11_gt_reset_one_iir(gt, 0, irq); 132 } 133 134 static void gen11_reset_guc_interrupts(struct intel_guc *guc) 135 { 136 struct intel_gt *gt = guc_to_gt(guc); 137 138 spin_lock_irq(gt->irq_lock); 139 __gen11_reset_guc_interrupts(gt); 140 spin_unlock_irq(gt->irq_lock); 141 } 142 143 static void gen11_enable_guc_interrupts(struct intel_guc *guc) 144 { 145 struct intel_gt *gt = guc_to_gt(guc); 146 147 spin_lock_irq(gt->irq_lock); 148 __gen11_reset_guc_interrupts(gt); 149 spin_unlock_irq(gt->irq_lock); 150 151 guc->interrupts.enabled = true; 152 } 153 154 static void gen11_disable_guc_interrupts(struct intel_guc *guc) 155 { 156 struct intel_gt *gt = guc_to_gt(guc); 157 158 guc->interrupts.enabled = false; 159 intel_synchronize_irq(gt->i915); 160 161 gen11_reset_guc_interrupts(guc); 162 } 163 164 static void guc_dead_worker_func(struct work_struct *w) 165 { 166 struct intel_guc *guc = container_of(w, struct intel_guc, dead_guc_worker); 167 struct intel_gt *gt = guc_to_gt(guc); 168 unsigned long last = guc->last_dead_guc_jiffies; 169 unsigned long delta = jiffies_to_msecs(jiffies - last); 170 171 if (delta < 500) { 172 intel_gt_set_wedged(gt); 173 } else { 174 intel_gt_handle_error(gt, ALL_ENGINES, I915_ERROR_CAPTURE, "dead GuC"); 175 guc->last_dead_guc_jiffies = jiffies; 176 } 177 } 178 179 void intel_guc_init_early(struct intel_guc *guc) 180 { 181 struct intel_gt *gt = guc_to_gt(guc); 182 struct drm_i915_private *i915 = gt->i915; 183 184 intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC, true); 185 intel_guc_ct_init_early(&guc->ct); 186 intel_guc_log_init_early(&guc->log); 187 intel_guc_submission_init_early(guc); 188 intel_guc_slpc_init_early(&guc->slpc); 189 intel_guc_rc_init_early(guc); 190 191 INIT_WORK(&guc->dead_guc_worker, guc_dead_worker_func); 192 193 mutex_init(&guc->send_mutex); 194 spin_lock_init(&guc->irq_lock); 195 if (GRAPHICS_VER(i915) >= 11) { 196 guc->interrupts.reset = gen11_reset_guc_interrupts; 197 guc->interrupts.enable = gen11_enable_guc_interrupts; 198 guc->interrupts.disable = gen11_disable_guc_interrupts; 199 if (gt->type == GT_MEDIA) { 200 guc->notify_reg = MEDIA_GUC_HOST_INTERRUPT; 201 guc->send_regs.base = i915_mmio_reg_offset(MEDIA_SOFT_SCRATCH(0)); 202 } else { 203 guc->notify_reg = GEN11_GUC_HOST_INTERRUPT; 204 guc->send_regs.base = i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0)); 205 } 206 207 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT; 208 209 } else { 210 guc->notify_reg = GUC_SEND_INTERRUPT; 211 guc->interrupts.reset = gen9_reset_guc_interrupts; 212 guc->interrupts.enable = gen9_enable_guc_interrupts; 213 guc->interrupts.disable = gen9_disable_guc_interrupts; 214 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0)); 215 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN; 216 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT); 217 } 218 219 intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION | 220 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED); 221 } 222 223 void intel_guc_init_late(struct intel_guc *guc) 224 { 225 intel_guc_ads_init_late(guc); 226 } 227 228 static u32 guc_ctl_debug_flags(struct intel_guc *guc) 229 { 230 u32 level = intel_guc_log_get_level(&guc->log); 231 u32 flags = 0; 232 233 if (!GUC_LOG_LEVEL_IS_VERBOSE(level)) 234 flags |= GUC_LOG_DISABLED; 235 else 236 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) << 237 GUC_LOG_VERBOSITY_SHIFT; 238 239 return flags; 240 } 241 242 static u32 guc_ctl_feature_flags(struct intel_guc *guc) 243 { 244 struct intel_gt *gt = guc_to_gt(guc); 245 u32 flags = 0; 246 247 /* 248 * Enable PXP GuC autoteardown flow. 249 * NB: MTL does things differently. 250 */ 251 if (HAS_PXP(gt->i915) && !IS_METEORLAKE(gt->i915)) 252 flags |= GUC_CTL_ENABLE_GUC_PXP_CTL; 253 254 if (!intel_guc_submission_is_used(guc)) 255 flags |= GUC_CTL_DISABLE_SCHEDULER; 256 257 if (intel_guc_slpc_is_used(guc)) 258 flags |= GUC_CTL_ENABLE_SLPC; 259 260 return flags; 261 } 262 263 static u32 guc_ctl_log_params_flags(struct intel_guc *guc) 264 { 265 struct intel_guc_log *log = &guc->log; 266 u32 offset, flags; 267 268 GEM_BUG_ON(!log->sizes_initialised); 269 270 offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT; 271 272 flags = GUC_LOG_VALID | 273 GUC_LOG_NOTIFY_ON_HALF_FULL | 274 log->sizes[GUC_LOG_SECTIONS_DEBUG].flag | 275 log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag | 276 (log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) | 277 (log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) | 278 (log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) | 279 (offset << GUC_LOG_BUF_ADDR_SHIFT); 280 281 return flags; 282 } 283 284 static u32 guc_ctl_ads_flags(struct intel_guc *guc) 285 { 286 u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT; 287 u32 flags = ads << GUC_ADS_ADDR_SHIFT; 288 289 return flags; 290 } 291 292 static u32 guc_ctl_wa_flags(struct intel_guc *guc) 293 { 294 struct intel_gt *gt = guc_to_gt(guc); 295 u32 flags = 0; 296 297 /* Wa_22012773006:gen11,gen12 < XeHP */ 298 if (GRAPHICS_VER(gt->i915) >= 11 && 299 GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 55)) 300 flags |= GUC_WA_POLLCS; 301 302 /* Wa_14014475959 */ 303 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 304 IS_DG2(gt->i915)) 305 flags |= GUC_WA_HOLD_CCS_SWITCHOUT; 306 307 /* Wa_16019325821 */ 308 /* Wa_14019159160 */ 309 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) 310 flags |= GUC_WA_RCS_CCS_SWITCHOUT; 311 312 /* 313 * Wa_14012197797 314 * Wa_22011391025 315 * 316 * The same WA bit is used for both and 22011391025 is applicable to 317 * all DG2. 318 * 319 * Platforms post DG2 prevent this issue in hardware by stalling 320 * submissions. With this flag GuC will schedule as to avoid such 321 * stalls. 322 */ 323 if (IS_DG2(gt->i915) || 324 (CCS_MASK(gt) && GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70))) 325 flags |= GUC_WA_DUAL_QUEUE; 326 327 /* Wa_22011802037: graphics version 11/12 */ 328 if (intel_engine_reset_needs_wa_22011802037(gt)) 329 flags |= GUC_WA_PRE_PARSER; 330 331 /* 332 * Wa_22012727170 333 * Wa_22012727685 334 */ 335 if (IS_DG2_G11(gt->i915)) 336 flags |= GUC_WA_CONTEXT_ISOLATION; 337 338 /* 339 * Wa_14018913170: Applicable to all platforms supported by i915 so 340 * don't bother testing for all X/Y/Z platforms explicitly. 341 */ 342 if (GUC_FIRMWARE_VER(guc) >= MAKE_GUC_VER(70, 7, 0)) 343 flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6; 344 345 return flags; 346 } 347 348 static u32 guc_ctl_devid(struct intel_guc *guc) 349 { 350 struct drm_i915_private *i915 = guc_to_i915(guc); 351 352 return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915); 353 } 354 355 /* 356 * Initialise the GuC parameter block before starting the firmware 357 * transfer. These parameters are read by the firmware on startup 358 * and cannot be changed thereafter. 359 */ 360 static void guc_init_params(struct intel_guc *guc) 361 { 362 u32 *params = guc->params; 363 int i; 364 365 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32)); 366 367 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); 368 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc); 369 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); 370 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); 371 params[GUC_CTL_WA] = guc_ctl_wa_flags(guc); 372 params[GUC_CTL_DEVID] = guc_ctl_devid(guc); 373 374 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 375 guc_dbg(guc, "param[%2d] = %#x\n", i, params[i]); 376 } 377 378 /* 379 * Initialise the GuC parameter block before starting the firmware 380 * transfer. These parameters are read by the firmware on startup 381 * and cannot be changed thereafter. 382 */ 383 void intel_guc_write_params(struct intel_guc *guc) 384 { 385 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 386 int i; 387 388 /* 389 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and 390 * they are power context saved so it's ok to release forcewake 391 * when we are done here and take it again at xfer time. 392 */ 393 intel_uncore_forcewake_get(uncore, FORCEWAKE_GT); 394 395 intel_uncore_write(uncore, SOFT_SCRATCH(0), 0); 396 397 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 398 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]); 399 400 intel_uncore_forcewake_put(uncore, FORCEWAKE_GT); 401 } 402 403 void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p) 404 { 405 struct intel_gt *gt = guc_to_gt(guc); 406 intel_wakeref_t wakeref; 407 u32 stamp = 0; 408 u64 ktime; 409 410 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) 411 stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP); 412 ktime = ktime_get_boottime_ns(); 413 414 drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime); 415 drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp); 416 drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n", 417 gt->clock_frequency, gt->clock_period_ns); 418 } 419 420 int intel_guc_init(struct intel_guc *guc) 421 { 422 int ret; 423 424 ret = intel_uc_fw_init(&guc->fw); 425 if (ret) 426 goto out; 427 428 ret = intel_guc_log_create(&guc->log); 429 if (ret) 430 goto err_fw; 431 432 ret = intel_guc_capture_init(guc); 433 if (ret) 434 goto err_log; 435 436 ret = intel_guc_ads_create(guc); 437 if (ret) 438 goto err_capture; 439 440 GEM_BUG_ON(!guc->ads_vma); 441 442 ret = intel_guc_ct_init(&guc->ct); 443 if (ret) 444 goto err_ads; 445 446 if (intel_guc_submission_is_used(guc)) { 447 /* 448 * This is stuff we need to have available at fw load time 449 * if we are planning to enable submission later 450 */ 451 ret = intel_guc_submission_init(guc); 452 if (ret) 453 goto err_ct; 454 } 455 456 if (intel_guc_slpc_is_used(guc)) { 457 ret = intel_guc_slpc_init(&guc->slpc); 458 if (ret) 459 goto err_submission; 460 } 461 462 /* now that everything is perma-pinned, initialize the parameters */ 463 guc_init_params(guc); 464 465 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE); 466 467 return 0; 468 469 err_submission: 470 intel_guc_submission_fini(guc); 471 err_ct: 472 intel_guc_ct_fini(&guc->ct); 473 err_ads: 474 intel_guc_ads_destroy(guc); 475 err_capture: 476 intel_guc_capture_destroy(guc); 477 err_log: 478 intel_guc_log_destroy(&guc->log); 479 err_fw: 480 intel_uc_fw_fini(&guc->fw); 481 out: 482 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_INIT_FAIL); 483 guc_probe_error(guc, "failed with %pe\n", ERR_PTR(ret)); 484 return ret; 485 } 486 487 void intel_guc_fini(struct intel_guc *guc) 488 { 489 if (!intel_uc_fw_is_loadable(&guc->fw)) 490 return; 491 492 flush_work(&guc->dead_guc_worker); 493 494 if (intel_guc_slpc_is_used(guc)) 495 intel_guc_slpc_fini(&guc->slpc); 496 497 if (intel_guc_submission_is_used(guc)) 498 intel_guc_submission_fini(guc); 499 500 intel_guc_ct_fini(&guc->ct); 501 502 intel_guc_ads_destroy(guc); 503 intel_guc_capture_destroy(guc); 504 intel_guc_log_destroy(&guc->log); 505 intel_uc_fw_fini(&guc->fw); 506 } 507 508 /* 509 * This function implements the MMIO based host to GuC interface. 510 */ 511 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len, 512 u32 *response_buf, u32 response_buf_size) 513 { 514 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 515 u32 header; 516 int i; 517 int ret; 518 519 GEM_BUG_ON(!len); 520 GEM_BUG_ON(len > guc->send_regs.count); 521 522 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST); 523 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST); 524 525 mutex_lock(&guc->send_mutex); 526 intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains); 527 528 retry: 529 for (i = 0; i < len; i++) 530 intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]); 531 532 intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1)); 533 534 intel_guc_notify(guc); 535 536 /* 537 * No GuC command should ever take longer than 10ms. 538 * Fast commands should still complete in 10us. 539 */ 540 ret = __intel_wait_for_register_fw(uncore, 541 guc_send_reg(guc, 0), 542 GUC_HXG_MSG_0_ORIGIN, 543 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, 544 GUC_HXG_ORIGIN_GUC), 545 10, 10, &header); 546 if (unlikely(ret)) { 547 timeout: 548 guc_err(guc, "mmio request %#x: no reply %x\n", 549 request[0], header); 550 goto out; 551 } 552 553 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) { 554 #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \ 555 FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \ 556 FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; }) 557 558 ret = wait_for(done, 1000); 559 if (unlikely(ret)) 560 goto timeout; 561 if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != 562 GUC_HXG_ORIGIN_GUC)) 563 goto proto; 564 #undef done 565 } 566 567 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) { 568 u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header); 569 570 guc_dbg(guc, "mmio request %#x: retrying, reason %u\n", 571 request[0], reason); 572 goto retry; 573 } 574 575 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) { 576 u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header); 577 u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header); 578 579 guc_err(guc, "mmio request %#x: failure %x/%u\n", 580 request[0], error, hint); 581 ret = -ENXIO; 582 goto out; 583 } 584 585 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) { 586 proto: 587 guc_err(guc, "mmio request %#x: unexpected reply %#x\n", 588 request[0], header); 589 ret = -EPROTO; 590 goto out; 591 } 592 593 if (response_buf) { 594 int count = min(response_buf_size, guc->send_regs.count); 595 596 GEM_BUG_ON(!count); 597 598 response_buf[0] = header; 599 600 for (i = 1; i < count; i++) 601 response_buf[i] = intel_uncore_read(uncore, 602 guc_send_reg(guc, i)); 603 604 /* Use number of copied dwords as our return value */ 605 ret = count; 606 } else { 607 /* Use data from the GuC response as our return value */ 608 ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header); 609 } 610 611 out: 612 intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains); 613 mutex_unlock(&guc->send_mutex); 614 615 return ret; 616 } 617 618 int intel_guc_crash_process_msg(struct intel_guc *guc, u32 action) 619 { 620 if (action == INTEL_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED) 621 guc_err(guc, "Crash dump notification\n"); 622 else if (action == INTEL_GUC_ACTION_NOTIFY_EXCEPTION) 623 guc_err(guc, "Exception notification\n"); 624 else 625 guc_err(guc, "Unknown crash notification: 0x%04X\n", action); 626 627 queue_work(system_unbound_wq, &guc->dead_guc_worker); 628 629 return 0; 630 } 631 632 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc, 633 const u32 *payload, u32 len) 634 { 635 u32 msg; 636 637 if (unlikely(!len)) 638 return -EPROTO; 639 640 /* Make sure to handle only enabled messages */ 641 msg = payload[0] & guc->msg_enabled_mask; 642 643 if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED) 644 guc_err(guc, "Received early crash dump notification!\n"); 645 if (msg & INTEL_GUC_RECV_MSG_EXCEPTION) 646 guc_err(guc, "Received early exception notification!\n"); 647 648 if (msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED | INTEL_GUC_RECV_MSG_EXCEPTION)) 649 queue_work(system_unbound_wq, &guc->dead_guc_worker); 650 651 return 0; 652 } 653 654 /** 655 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode 656 * @guc: intel_guc structure 657 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma 658 * 659 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send 660 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by 661 * intel_huc_auth(). 662 * 663 * Return: non-zero code on error 664 */ 665 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset) 666 { 667 u32 action[] = { 668 INTEL_GUC_ACTION_AUTHENTICATE_HUC, 669 rsa_offset 670 }; 671 672 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 673 } 674 675 /** 676 * intel_guc_suspend() - notify GuC entering suspend state 677 * @guc: the guc 678 */ 679 int intel_guc_suspend(struct intel_guc *guc) 680 { 681 int ret; 682 u32 action[] = { 683 INTEL_GUC_ACTION_CLIENT_SOFT_RESET, 684 }; 685 686 if (!intel_guc_is_ready(guc)) 687 return 0; 688 689 if (intel_guc_submission_is_used(guc)) { 690 flush_work(&guc->dead_guc_worker); 691 692 /* 693 * This H2G MMIO command tears down the GuC in two steps. First it will 694 * generate a G2H CTB for every active context indicating a reset. In 695 * practice the i915 shouldn't ever get a G2H as suspend should only be 696 * called when the GPU is idle. Next, it tears down the CTBs and this 697 * H2G MMIO command completes. 698 * 699 * Don't abort on a failure code from the GuC. Keep going and do the 700 * clean up in sanitize() and re-initialisation on resume and hopefully 701 * the error here won't be problematic. 702 */ 703 ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0); 704 if (ret) 705 guc_err(guc, "suspend: RESET_CLIENT action failed with %pe\n", 706 ERR_PTR(ret)); 707 } 708 709 /* Signal that the GuC isn't running. */ 710 intel_guc_sanitize(guc); 711 712 return 0; 713 } 714 715 /** 716 * intel_guc_resume() - notify GuC resuming from suspend state 717 * @guc: the guc 718 */ 719 int intel_guc_resume(struct intel_guc *guc) 720 { 721 /* 722 * NB: This function can still be called even if GuC submission is 723 * disabled, e.g. if GuC is enabled for HuC authentication only. Thus, 724 * if any code is later added here, it must be support doing nothing 725 * if submission is disabled (as per intel_guc_suspend). 726 */ 727 return 0; 728 } 729 730 /** 731 * DOC: GuC Memory Management 732 * 733 * GuC can't allocate any memory for its own usage, so all the allocations must 734 * be handled by the host driver. GuC accesses the memory via the GGTT, with the 735 * exception of the top and bottom parts of the 4GB address space, which are 736 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM) 737 * or other parts of the HW. The driver must take care not to place objects that 738 * the GuC is going to access in these reserved ranges. The layout of the GuC 739 * address space is shown below: 740 * 741 * :: 742 * 743 * +===========> +====================+ <== FFFF_FFFF 744 * ^ | Reserved | 745 * | +====================+ <== GUC_GGTT_TOP 746 * | | | 747 * | | DRAM | 748 * GuC | | 749 * Address +===> +====================+ <== GuC ggtt_pin_bias 750 * Space ^ | | 751 * | | | | 752 * | GuC | GuC | 753 * | WOPCM | WOPCM | 754 * | Size | | 755 * | | | | 756 * v v | | 757 * +=======+===> +====================+ <== 0000_0000 758 * 759 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM 760 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped 761 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size. 762 */ 763 764 /** 765 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage 766 * @guc: the guc 767 * @size: size of area to allocate (both virtual space and memory) 768 * 769 * This is a wrapper to create an object for use with the GuC. In order to 770 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate 771 * both some backing storage and a range inside the Global GTT. We must pin 772 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that 773 * range is reserved inside GuC. 774 * 775 * Return: A i915_vma if successful, otherwise an ERR_PTR. 776 */ 777 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size) 778 { 779 struct intel_gt *gt = guc_to_gt(guc); 780 struct drm_i915_gem_object *obj; 781 struct i915_vma *vma; 782 u64 flags; 783 int ret; 784 785 if (HAS_LMEM(gt->i915)) 786 obj = i915_gem_object_create_lmem(gt->i915, size, 787 I915_BO_ALLOC_CPU_CLEAR | 788 I915_BO_ALLOC_CONTIGUOUS | 789 I915_BO_ALLOC_PM_EARLY); 790 else 791 obj = i915_gem_object_create_shmem(gt->i915, size); 792 793 if (IS_ERR(obj)) 794 return ERR_CAST(obj); 795 796 /* 797 * Wa_22016122933: For Media version 13.0, all Media GT shared 798 * memory needs to be mapped as WC on CPU side and UC (PAT 799 * index 2) on GPU side. 800 */ 801 if (intel_gt_needs_wa_22016122933(gt)) 802 i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE); 803 804 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 805 if (IS_ERR(vma)) 806 goto err; 807 808 flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma); 809 ret = i915_ggtt_pin(vma, NULL, 0, flags); 810 if (ret) { 811 vma = ERR_PTR(ret); 812 goto err; 813 } 814 815 return i915_vma_make_unshrinkable(vma); 816 817 err: 818 i915_gem_object_put(obj); 819 return vma; 820 } 821 822 /** 823 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage 824 * @guc: the guc 825 * @size: size of area to allocate (both virtual space and memory) 826 * @out_vma: return variable for the allocated vma pointer 827 * @out_vaddr: return variable for the obj mapping 828 * 829 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated 830 * object with I915_MAP_WB. 831 * 832 * Return: 0 if successful, a negative errno code otherwise. 833 */ 834 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size, 835 struct i915_vma **out_vma, void **out_vaddr) 836 { 837 struct i915_vma *vma; 838 void *vaddr; 839 840 vma = intel_guc_allocate_vma(guc, size); 841 if (IS_ERR(vma)) 842 return PTR_ERR(vma); 843 844 vaddr = i915_gem_object_pin_map_unlocked(vma->obj, 845 intel_gt_coherent_map_type(guc_to_gt(guc), 846 vma->obj, true)); 847 if (IS_ERR(vaddr)) { 848 i915_vma_unpin_and_release(&vma, 0); 849 return PTR_ERR(vaddr); 850 } 851 852 *out_vma = vma; 853 *out_vaddr = vaddr; 854 855 return 0; 856 } 857 858 static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) 859 { 860 u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = { 861 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) | 862 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | 863 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG), 864 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) | 865 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len), 866 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)), 867 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)), 868 }; 869 int ret; 870 871 GEM_BUG_ON(len > 2); 872 GEM_BUG_ON(len == 1 && upper_32_bits(value)); 873 874 /* Self config must go over MMIO */ 875 ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0); 876 877 if (unlikely(ret < 0)) 878 return ret; 879 if (unlikely(ret > 1)) 880 return -EPROTO; 881 if (unlikely(!ret)) 882 return -ENOKEY; 883 884 return 0; 885 } 886 887 static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) 888 { 889 int err = __guc_action_self_cfg(guc, key, len, value); 890 891 if (unlikely(err)) 892 guc_probe_error(guc, "Unsuccessful self-config (%pe) key %#hx value %#llx\n", 893 ERR_PTR(err), key, value); 894 return err; 895 } 896 897 int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value) 898 { 899 return __guc_self_cfg(guc, key, 1, value); 900 } 901 902 int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value) 903 { 904 return __guc_self_cfg(guc, key, 2, value); 905 } 906 907 /** 908 * intel_guc_load_status - dump information about GuC load status 909 * @guc: the GuC 910 * @p: the &drm_printer 911 * 912 * Pretty printer for GuC load status. 913 */ 914 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p) 915 { 916 struct intel_gt *gt = guc_to_gt(guc); 917 struct intel_uncore *uncore = gt->uncore; 918 intel_wakeref_t wakeref; 919 920 if (!intel_guc_is_supported(guc)) { 921 drm_printf(p, "GuC not supported\n"); 922 return; 923 } 924 925 if (!intel_guc_is_wanted(guc)) { 926 drm_printf(p, "GuC disabled\n"); 927 return; 928 } 929 930 intel_uc_fw_dump(&guc->fw, p); 931 932 with_intel_runtime_pm(uncore->rpm, wakeref) { 933 u32 status = intel_uncore_read(uncore, GUC_STATUS); 934 u32 i; 935 936 drm_printf(p, "GuC status 0x%08x:\n", status); 937 drm_printf(p, "\tBootrom status = 0x%x\n", 938 (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT); 939 drm_printf(p, "\tuKernel status = 0x%x\n", 940 (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT); 941 drm_printf(p, "\tMIA Core status = 0x%x\n", 942 (status & GS_MIA_MASK) >> GS_MIA_SHIFT); 943 drm_puts(p, "Scratch registers:\n"); 944 for (i = 0; i < 16; i++) { 945 drm_printf(p, "\t%2d: \t0x%x\n", 946 i, intel_uncore_read(uncore, SOFT_SCRATCH(i))); 947 } 948 } 949 } 950 951 void intel_guc_write_barrier(struct intel_guc *guc) 952 { 953 struct intel_gt *gt = guc_to_gt(guc); 954 955 if (i915_gem_object_is_lmem(guc->ct.vma->obj)) { 956 /* 957 * Ensure intel_uncore_write_fw can be used rather than 958 * intel_uncore_write. 959 */ 960 GEM_BUG_ON(guc->send_regs.fw_domains); 961 962 /* 963 * This register is used by the i915 and GuC for MMIO based 964 * communication. Once we are in this code CTBs are the only 965 * method the i915 uses to communicate with the GuC so it is 966 * safe to write to this register (a value of 0 is NOP for MMIO 967 * communication). If we ever start mixing CTBs and MMIOs a new 968 * register will have to be chosen. This function is also used 969 * to enforce ordering of a work queue item write and an update 970 * to the process descriptor. When a work queue is being used, 971 * CTBs are also the only mechanism of communication. 972 */ 973 intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0); 974 } else { 975 /* wmb() sufficient for a barrier if in smem */ 976 wmb(); 977 } 978 } 979