1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2019 Intel Corporation 4 */ 5 6 #include "gem/i915_gem_lmem.h" 7 #include "gt/intel_gt.h" 8 #include "gt/intel_gt_irq.h" 9 #include "gt/intel_gt_pm_irq.h" 10 #include "gt/intel_gt_regs.h" 11 #include "intel_guc.h" 12 #include "intel_guc_ads.h" 13 #include "intel_guc_capture.h" 14 #include "intel_guc_print.h" 15 #include "intel_guc_slpc.h" 16 #include "intel_guc_submission.h" 17 #include "i915_drv.h" 18 #include "i915_irq.h" 19 20 /** 21 * DOC: GuC 22 * 23 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is 24 * designed to offload some of the functionality usually performed by the host 25 * driver; currently the main operations it can take care of are: 26 * 27 * - Authentication of the HuC, which is required to fully enable HuC usage. 28 * - Low latency graphics context scheduling (a.k.a. GuC submission). 29 * - GT Power management. 30 * 31 * The enable_guc module parameter can be used to select which of those 32 * operations to enable within GuC. Note that not all the operations are 33 * supported on all gen9+ platforms. 34 * 35 * Enabling the GuC is not mandatory and therefore the firmware is only loaded 36 * if at least one of the operations is selected. However, not loading the GuC 37 * might result in the loss of some features that do require the GuC (currently 38 * just the HuC, but more are expected to land in the future). 39 */ 40 41 void intel_guc_notify(struct intel_guc *guc) 42 { 43 struct intel_gt *gt = guc_to_gt(guc); 44 45 /* 46 * On Gen11+, the value written to the register is passes as a payload 47 * to the FW. However, the FW currently treats all values the same way 48 * (H2G interrupt), so we can just write the value that the HW expects 49 * on older gens. 50 */ 51 intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER); 52 } 53 54 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i) 55 { 56 GEM_BUG_ON(!guc->send_regs.base); 57 GEM_BUG_ON(!guc->send_regs.count); 58 GEM_BUG_ON(i >= guc->send_regs.count); 59 60 return _MMIO(guc->send_regs.base + 4 * i); 61 } 62 63 void intel_guc_init_send_regs(struct intel_guc *guc) 64 { 65 struct intel_gt *gt = guc_to_gt(guc); 66 enum forcewake_domains fw_domains = 0; 67 unsigned int i; 68 69 GEM_BUG_ON(!guc->send_regs.base); 70 GEM_BUG_ON(!guc->send_regs.count); 71 72 for (i = 0; i < guc->send_regs.count; i++) { 73 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore, 74 guc_send_reg(guc, i), 75 FW_REG_READ | FW_REG_WRITE); 76 } 77 guc->send_regs.fw_domains = fw_domains; 78 } 79 80 static void gen9_reset_guc_interrupts(struct intel_guc *guc) 81 { 82 struct intel_gt *gt = guc_to_gt(guc); 83 84 assert_rpm_wakelock_held(>->i915->runtime_pm); 85 86 spin_lock_irq(gt->irq_lock); 87 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events); 88 spin_unlock_irq(gt->irq_lock); 89 } 90 91 static void gen9_enable_guc_interrupts(struct intel_guc *guc) 92 { 93 struct intel_gt *gt = guc_to_gt(guc); 94 95 assert_rpm_wakelock_held(>->i915->runtime_pm); 96 97 spin_lock_irq(gt->irq_lock); 98 guc_WARN_ON_ONCE(guc, intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) & 99 gt->pm_guc_events); 100 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events); 101 spin_unlock_irq(gt->irq_lock); 102 103 guc->interrupts.enabled = true; 104 } 105 106 static void gen9_disable_guc_interrupts(struct intel_guc *guc) 107 { 108 struct intel_gt *gt = guc_to_gt(guc); 109 110 assert_rpm_wakelock_held(>->i915->runtime_pm); 111 guc->interrupts.enabled = false; 112 113 spin_lock_irq(gt->irq_lock); 114 115 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events); 116 117 spin_unlock_irq(gt->irq_lock); 118 intel_synchronize_irq(gt->i915); 119 120 gen9_reset_guc_interrupts(guc); 121 } 122 123 static bool __gen11_reset_guc_interrupts(struct intel_gt *gt) 124 { 125 u32 irq = gt->type == GT_MEDIA ? MTL_MGUC : GEN11_GUC; 126 127 lockdep_assert_held(gt->irq_lock); 128 return gen11_gt_reset_one_iir(gt, 0, irq); 129 } 130 131 static void gen11_reset_guc_interrupts(struct intel_guc *guc) 132 { 133 struct intel_gt *gt = guc_to_gt(guc); 134 135 spin_lock_irq(gt->irq_lock); 136 __gen11_reset_guc_interrupts(gt); 137 spin_unlock_irq(gt->irq_lock); 138 } 139 140 static void gen11_enable_guc_interrupts(struct intel_guc *guc) 141 { 142 struct intel_gt *gt = guc_to_gt(guc); 143 144 spin_lock_irq(gt->irq_lock); 145 __gen11_reset_guc_interrupts(gt); 146 spin_unlock_irq(gt->irq_lock); 147 148 guc->interrupts.enabled = true; 149 } 150 151 static void gen11_disable_guc_interrupts(struct intel_guc *guc) 152 { 153 struct intel_gt *gt = guc_to_gt(guc); 154 155 guc->interrupts.enabled = false; 156 intel_synchronize_irq(gt->i915); 157 158 gen11_reset_guc_interrupts(guc); 159 } 160 161 void intel_guc_init_early(struct intel_guc *guc) 162 { 163 struct intel_gt *gt = guc_to_gt(guc); 164 struct drm_i915_private *i915 = gt->i915; 165 166 intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC); 167 intel_guc_ct_init_early(&guc->ct); 168 intel_guc_log_init_early(&guc->log); 169 intel_guc_submission_init_early(guc); 170 intel_guc_slpc_init_early(&guc->slpc); 171 intel_guc_rc_init_early(guc); 172 173 mutex_init(&guc->send_mutex); 174 spin_lock_init(&guc->irq_lock); 175 if (GRAPHICS_VER(i915) >= 11) { 176 guc->interrupts.reset = gen11_reset_guc_interrupts; 177 guc->interrupts.enable = gen11_enable_guc_interrupts; 178 guc->interrupts.disable = gen11_disable_guc_interrupts; 179 if (gt->type == GT_MEDIA) { 180 guc->notify_reg = MEDIA_GUC_HOST_INTERRUPT; 181 guc->send_regs.base = i915_mmio_reg_offset(MEDIA_SOFT_SCRATCH(0)); 182 } else { 183 guc->notify_reg = GEN11_GUC_HOST_INTERRUPT; 184 guc->send_regs.base = i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0)); 185 } 186 187 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT; 188 189 } else { 190 guc->notify_reg = GUC_SEND_INTERRUPT; 191 guc->interrupts.reset = gen9_reset_guc_interrupts; 192 guc->interrupts.enable = gen9_enable_guc_interrupts; 193 guc->interrupts.disable = gen9_disable_guc_interrupts; 194 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0)); 195 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN; 196 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT); 197 } 198 199 intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION | 200 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED); 201 } 202 203 void intel_guc_init_late(struct intel_guc *guc) 204 { 205 intel_guc_ads_init_late(guc); 206 } 207 208 static u32 guc_ctl_debug_flags(struct intel_guc *guc) 209 { 210 u32 level = intel_guc_log_get_level(&guc->log); 211 u32 flags = 0; 212 213 if (!GUC_LOG_LEVEL_IS_VERBOSE(level)) 214 flags |= GUC_LOG_DISABLED; 215 else 216 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) << 217 GUC_LOG_VERBOSITY_SHIFT; 218 219 return flags; 220 } 221 222 static u32 guc_ctl_feature_flags(struct intel_guc *guc) 223 { 224 u32 flags = 0; 225 226 if (!intel_guc_submission_is_used(guc)) 227 flags |= GUC_CTL_DISABLE_SCHEDULER; 228 229 if (intel_guc_slpc_is_used(guc)) 230 flags |= GUC_CTL_ENABLE_SLPC; 231 232 return flags; 233 } 234 235 static u32 guc_ctl_log_params_flags(struct intel_guc *guc) 236 { 237 struct intel_guc_log *log = &guc->log; 238 u32 offset, flags; 239 240 GEM_BUG_ON(!log->sizes_initialised); 241 242 offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT; 243 244 flags = GUC_LOG_VALID | 245 GUC_LOG_NOTIFY_ON_HALF_FULL | 246 log->sizes[GUC_LOG_SECTIONS_DEBUG].flag | 247 log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag | 248 (log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) | 249 (log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) | 250 (log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) | 251 (offset << GUC_LOG_BUF_ADDR_SHIFT); 252 253 return flags; 254 } 255 256 static u32 guc_ctl_ads_flags(struct intel_guc *guc) 257 { 258 u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT; 259 u32 flags = ads << GUC_ADS_ADDR_SHIFT; 260 261 return flags; 262 } 263 264 static u32 guc_ctl_wa_flags(struct intel_guc *guc) 265 { 266 struct intel_gt *gt = guc_to_gt(guc); 267 u32 flags = 0; 268 269 /* Wa_22012773006:gen11,gen12 < XeHP */ 270 if (GRAPHICS_VER(gt->i915) >= 11 && 271 GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 50)) 272 flags |= GUC_WA_POLLCS; 273 274 /* Wa_16011759253:dg2_g10:a0 */ 275 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0)) 276 flags |= GUC_WA_GAM_CREDITS; 277 278 /* Wa_14014475959 */ 279 if (IS_MTL_GRAPHICS_STEP(gt->i915, M, STEP_A0, STEP_B0) || 280 IS_DG2(gt->i915)) 281 flags |= GUC_WA_HOLD_CCS_SWITCHOUT; 282 283 /* 284 * Wa_14012197797:dg2_g10:a0,dg2_g11:a0 285 * Wa_22011391025:dg2_g10,dg2_g11,dg2_g12 286 * 287 * The same WA bit is used for both and 22011391025 is applicable to 288 * all DG2. 289 */ 290 if (IS_DG2(gt->i915)) 291 flags |= GUC_WA_DUAL_QUEUE; 292 293 /* Wa_22011802037: graphics version 11/12 */ 294 if (IS_MTL_GRAPHICS_STEP(gt->i915, M, STEP_A0, STEP_B0) || 295 (GRAPHICS_VER(gt->i915) >= 11 && 296 GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70))) 297 flags |= GUC_WA_PRE_PARSER; 298 299 /* Wa_16011777198:dg2 */ 300 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) || 301 IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0)) 302 flags |= GUC_WA_RCS_RESET_BEFORE_RC6; 303 304 /* 305 * Wa_22012727170:dg2_g10[a0-c0), dg2_g11[a0..) 306 * Wa_22012727685:dg2_g11[a0..) 307 */ 308 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) || 309 IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_FOREVER)) 310 flags |= GUC_WA_CONTEXT_ISOLATION; 311 312 /* Wa_16015675438 */ 313 if (!RCS_MASK(gt)) 314 flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST; 315 316 return flags; 317 } 318 319 static u32 guc_ctl_devid(struct intel_guc *guc) 320 { 321 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 322 323 return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915); 324 } 325 326 /* 327 * Initialise the GuC parameter block before starting the firmware 328 * transfer. These parameters are read by the firmware on startup 329 * and cannot be changed thereafter. 330 */ 331 static void guc_init_params(struct intel_guc *guc) 332 { 333 u32 *params = guc->params; 334 int i; 335 336 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32)); 337 338 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); 339 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc); 340 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); 341 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); 342 params[GUC_CTL_WA] = guc_ctl_wa_flags(guc); 343 params[GUC_CTL_DEVID] = guc_ctl_devid(guc); 344 345 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 346 guc_dbg(guc, "param[%2d] = %#x\n", i, params[i]); 347 } 348 349 /* 350 * Initialise the GuC parameter block before starting the firmware 351 * transfer. These parameters are read by the firmware on startup 352 * and cannot be changed thereafter. 353 */ 354 void intel_guc_write_params(struct intel_guc *guc) 355 { 356 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 357 int i; 358 359 /* 360 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and 361 * they are power context saved so it's ok to release forcewake 362 * when we are done here and take it again at xfer time. 363 */ 364 intel_uncore_forcewake_get(uncore, FORCEWAKE_GT); 365 366 intel_uncore_write(uncore, SOFT_SCRATCH(0), 0); 367 368 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 369 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]); 370 371 intel_uncore_forcewake_put(uncore, FORCEWAKE_GT); 372 } 373 374 void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p) 375 { 376 struct intel_gt *gt = guc_to_gt(guc); 377 intel_wakeref_t wakeref; 378 u32 stamp = 0; 379 u64 ktime; 380 381 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) 382 stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP); 383 ktime = ktime_get_boottime_ns(); 384 385 drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime); 386 drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp); 387 drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n", 388 gt->clock_frequency, gt->clock_period_ns); 389 } 390 391 int intel_guc_init(struct intel_guc *guc) 392 { 393 int ret; 394 395 ret = intel_uc_fw_init(&guc->fw); 396 if (ret) 397 goto out; 398 399 ret = intel_guc_log_create(&guc->log); 400 if (ret) 401 goto err_fw; 402 403 ret = intel_guc_capture_init(guc); 404 if (ret) 405 goto err_log; 406 407 ret = intel_guc_ads_create(guc); 408 if (ret) 409 goto err_capture; 410 411 GEM_BUG_ON(!guc->ads_vma); 412 413 ret = intel_guc_ct_init(&guc->ct); 414 if (ret) 415 goto err_ads; 416 417 if (intel_guc_submission_is_used(guc)) { 418 /* 419 * This is stuff we need to have available at fw load time 420 * if we are planning to enable submission later 421 */ 422 ret = intel_guc_submission_init(guc); 423 if (ret) 424 goto err_ct; 425 } 426 427 if (intel_guc_slpc_is_used(guc)) { 428 ret = intel_guc_slpc_init(&guc->slpc); 429 if (ret) 430 goto err_submission; 431 } 432 433 /* now that everything is perma-pinned, initialize the parameters */ 434 guc_init_params(guc); 435 436 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE); 437 438 return 0; 439 440 err_submission: 441 intel_guc_submission_fini(guc); 442 err_ct: 443 intel_guc_ct_fini(&guc->ct); 444 err_ads: 445 intel_guc_ads_destroy(guc); 446 err_capture: 447 intel_guc_capture_destroy(guc); 448 err_log: 449 intel_guc_log_destroy(&guc->log); 450 err_fw: 451 intel_uc_fw_fini(&guc->fw); 452 out: 453 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_INIT_FAIL); 454 guc_probe_error(guc, "failed with %pe\n", ERR_PTR(ret)); 455 return ret; 456 } 457 458 void intel_guc_fini(struct intel_guc *guc) 459 { 460 if (!intel_uc_fw_is_loadable(&guc->fw)) 461 return; 462 463 if (intel_guc_slpc_is_used(guc)) 464 intel_guc_slpc_fini(&guc->slpc); 465 466 if (intel_guc_submission_is_used(guc)) 467 intel_guc_submission_fini(guc); 468 469 intel_guc_ct_fini(&guc->ct); 470 471 intel_guc_ads_destroy(guc); 472 intel_guc_capture_destroy(guc); 473 intel_guc_log_destroy(&guc->log); 474 intel_uc_fw_fini(&guc->fw); 475 } 476 477 /* 478 * This function implements the MMIO based host to GuC interface. 479 */ 480 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len, 481 u32 *response_buf, u32 response_buf_size) 482 { 483 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 484 u32 header; 485 int i; 486 int ret; 487 488 GEM_BUG_ON(!len); 489 GEM_BUG_ON(len > guc->send_regs.count); 490 491 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST); 492 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST); 493 494 mutex_lock(&guc->send_mutex); 495 intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains); 496 497 retry: 498 for (i = 0; i < len; i++) 499 intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]); 500 501 intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1)); 502 503 intel_guc_notify(guc); 504 505 /* 506 * No GuC command should ever take longer than 10ms. 507 * Fast commands should still complete in 10us. 508 */ 509 ret = __intel_wait_for_register_fw(uncore, 510 guc_send_reg(guc, 0), 511 GUC_HXG_MSG_0_ORIGIN, 512 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, 513 GUC_HXG_ORIGIN_GUC), 514 10, 10, &header); 515 if (unlikely(ret)) { 516 timeout: 517 guc_err(guc, "mmio request %#x: no reply %x\n", 518 request[0], header); 519 goto out; 520 } 521 522 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) { 523 #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \ 524 FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \ 525 FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; }) 526 527 ret = wait_for(done, 1000); 528 if (unlikely(ret)) 529 goto timeout; 530 if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != 531 GUC_HXG_ORIGIN_GUC)) 532 goto proto; 533 #undef done 534 } 535 536 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) { 537 u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header); 538 539 guc_dbg(guc, "mmio request %#x: retrying, reason %u\n", 540 request[0], reason); 541 goto retry; 542 } 543 544 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) { 545 u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header); 546 u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header); 547 548 guc_err(guc, "mmio request %#x: failure %x/%u\n", 549 request[0], error, hint); 550 ret = -ENXIO; 551 goto out; 552 } 553 554 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) { 555 proto: 556 guc_err(guc, "mmio request %#x: unexpected reply %#x\n", 557 request[0], header); 558 ret = -EPROTO; 559 goto out; 560 } 561 562 if (response_buf) { 563 int count = min(response_buf_size, guc->send_regs.count); 564 565 GEM_BUG_ON(!count); 566 567 response_buf[0] = header; 568 569 for (i = 1; i < count; i++) 570 response_buf[i] = intel_uncore_read(uncore, 571 guc_send_reg(guc, i)); 572 573 /* Use number of copied dwords as our return value */ 574 ret = count; 575 } else { 576 /* Use data from the GuC response as our return value */ 577 ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header); 578 } 579 580 out: 581 intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains); 582 mutex_unlock(&guc->send_mutex); 583 584 return ret; 585 } 586 587 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc, 588 const u32 *payload, u32 len) 589 { 590 u32 msg; 591 592 if (unlikely(!len)) 593 return -EPROTO; 594 595 /* Make sure to handle only enabled messages */ 596 msg = payload[0] & guc->msg_enabled_mask; 597 598 if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED) 599 guc_err(guc, "Received early crash dump notification!\n"); 600 if (msg & INTEL_GUC_RECV_MSG_EXCEPTION) 601 guc_err(guc, "Received early exception notification!\n"); 602 603 return 0; 604 } 605 606 /** 607 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode 608 * @guc: intel_guc structure 609 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma 610 * 611 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send 612 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by 613 * intel_huc_auth(). 614 * 615 * Return: non-zero code on error 616 */ 617 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset) 618 { 619 u32 action[] = { 620 INTEL_GUC_ACTION_AUTHENTICATE_HUC, 621 rsa_offset 622 }; 623 624 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 625 } 626 627 /** 628 * intel_guc_suspend() - notify GuC entering suspend state 629 * @guc: the guc 630 */ 631 int intel_guc_suspend(struct intel_guc *guc) 632 { 633 int ret; 634 u32 action[] = { 635 INTEL_GUC_ACTION_CLIENT_SOFT_RESET, 636 }; 637 638 if (!intel_guc_is_ready(guc)) 639 return 0; 640 641 if (intel_guc_submission_is_used(guc)) { 642 /* 643 * This H2G MMIO command tears down the GuC in two steps. First it will 644 * generate a G2H CTB for every active context indicating a reset. In 645 * practice the i915 shouldn't ever get a G2H as suspend should only be 646 * called when the GPU is idle. Next, it tears down the CTBs and this 647 * H2G MMIO command completes. 648 * 649 * Don't abort on a failure code from the GuC. Keep going and do the 650 * clean up in santize() and re-initialisation on resume and hopefully 651 * the error here won't be problematic. 652 */ 653 ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0); 654 if (ret) 655 guc_err(guc, "suspend: RESET_CLIENT action failed with %pe\n", 656 ERR_PTR(ret)); 657 } 658 659 /* Signal that the GuC isn't running. */ 660 intel_guc_sanitize(guc); 661 662 return 0; 663 } 664 665 /** 666 * intel_guc_resume() - notify GuC resuming from suspend state 667 * @guc: the guc 668 */ 669 int intel_guc_resume(struct intel_guc *guc) 670 { 671 /* 672 * NB: This function can still be called even if GuC submission is 673 * disabled, e.g. if GuC is enabled for HuC authentication only. Thus, 674 * if any code is later added here, it must be support doing nothing 675 * if submission is disabled (as per intel_guc_suspend). 676 */ 677 return 0; 678 } 679 680 /** 681 * DOC: GuC Memory Management 682 * 683 * GuC can't allocate any memory for its own usage, so all the allocations must 684 * be handled by the host driver. GuC accesses the memory via the GGTT, with the 685 * exception of the top and bottom parts of the 4GB address space, which are 686 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM) 687 * or other parts of the HW. The driver must take care not to place objects that 688 * the GuC is going to access in these reserved ranges. The layout of the GuC 689 * address space is shown below: 690 * 691 * :: 692 * 693 * +===========> +====================+ <== FFFF_FFFF 694 * ^ | Reserved | 695 * | +====================+ <== GUC_GGTT_TOP 696 * | | | 697 * | | DRAM | 698 * GuC | | 699 * Address +===> +====================+ <== GuC ggtt_pin_bias 700 * Space ^ | | 701 * | | | | 702 * | GuC | GuC | 703 * | WOPCM | WOPCM | 704 * | Size | | 705 * | | | | 706 * v v | | 707 * +=======+===> +====================+ <== 0000_0000 708 * 709 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM 710 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped 711 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size. 712 */ 713 714 /** 715 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage 716 * @guc: the guc 717 * @size: size of area to allocate (both virtual space and memory) 718 * 719 * This is a wrapper to create an object for use with the GuC. In order to 720 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate 721 * both some backing storage and a range inside the Global GTT. We must pin 722 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that 723 * range is reserved inside GuC. 724 * 725 * Return: A i915_vma if successful, otherwise an ERR_PTR. 726 */ 727 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size) 728 { 729 struct intel_gt *gt = guc_to_gt(guc); 730 struct drm_i915_gem_object *obj; 731 struct i915_vma *vma; 732 u64 flags; 733 int ret; 734 735 if (HAS_LMEM(gt->i915)) 736 obj = i915_gem_object_create_lmem(gt->i915, size, 737 I915_BO_ALLOC_CPU_CLEAR | 738 I915_BO_ALLOC_CONTIGUOUS | 739 I915_BO_ALLOC_PM_EARLY); 740 else 741 obj = i915_gem_object_create_shmem(gt->i915, size); 742 743 if (IS_ERR(obj)) 744 return ERR_CAST(obj); 745 746 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 747 if (IS_ERR(vma)) 748 goto err; 749 750 flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma); 751 ret = i915_ggtt_pin(vma, NULL, 0, flags); 752 if (ret) { 753 vma = ERR_PTR(ret); 754 goto err; 755 } 756 757 return i915_vma_make_unshrinkable(vma); 758 759 err: 760 i915_gem_object_put(obj); 761 return vma; 762 } 763 764 /** 765 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage 766 * @guc: the guc 767 * @size: size of area to allocate (both virtual space and memory) 768 * @out_vma: return variable for the allocated vma pointer 769 * @out_vaddr: return variable for the obj mapping 770 * 771 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated 772 * object with I915_MAP_WB. 773 * 774 * Return: 0 if successful, a negative errno code otherwise. 775 */ 776 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size, 777 struct i915_vma **out_vma, void **out_vaddr) 778 { 779 struct i915_vma *vma; 780 void *vaddr; 781 782 vma = intel_guc_allocate_vma(guc, size); 783 if (IS_ERR(vma)) 784 return PTR_ERR(vma); 785 786 vaddr = i915_gem_object_pin_map_unlocked(vma->obj, 787 i915_coherent_map_type(guc_to_gt(guc)->i915, 788 vma->obj, true)); 789 if (IS_ERR(vaddr)) { 790 i915_vma_unpin_and_release(&vma, 0); 791 return PTR_ERR(vaddr); 792 } 793 794 *out_vma = vma; 795 *out_vaddr = vaddr; 796 797 return 0; 798 } 799 800 static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) 801 { 802 u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = { 803 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) | 804 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | 805 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG), 806 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) | 807 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len), 808 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)), 809 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)), 810 }; 811 int ret; 812 813 GEM_BUG_ON(len > 2); 814 GEM_BUG_ON(len == 1 && upper_32_bits(value)); 815 816 /* Self config must go over MMIO */ 817 ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0); 818 819 if (unlikely(ret < 0)) 820 return ret; 821 if (unlikely(ret > 1)) 822 return -EPROTO; 823 if (unlikely(!ret)) 824 return -ENOKEY; 825 826 return 0; 827 } 828 829 static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) 830 { 831 int err = __guc_action_self_cfg(guc, key, len, value); 832 833 if (unlikely(err)) 834 guc_probe_error(guc, "Unsuccessful self-config (%pe) key %#hx value %#llx\n", 835 ERR_PTR(err), key, value); 836 return err; 837 } 838 839 int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value) 840 { 841 return __guc_self_cfg(guc, key, 1, value); 842 } 843 844 int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value) 845 { 846 return __guc_self_cfg(guc, key, 2, value); 847 } 848 849 /** 850 * intel_guc_load_status - dump information about GuC load status 851 * @guc: the GuC 852 * @p: the &drm_printer 853 * 854 * Pretty printer for GuC load status. 855 */ 856 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p) 857 { 858 struct intel_gt *gt = guc_to_gt(guc); 859 struct intel_uncore *uncore = gt->uncore; 860 intel_wakeref_t wakeref; 861 862 if (!intel_guc_is_supported(guc)) { 863 drm_printf(p, "GuC not supported\n"); 864 return; 865 } 866 867 if (!intel_guc_is_wanted(guc)) { 868 drm_printf(p, "GuC disabled\n"); 869 return; 870 } 871 872 intel_uc_fw_dump(&guc->fw, p); 873 874 with_intel_runtime_pm(uncore->rpm, wakeref) { 875 u32 status = intel_uncore_read(uncore, GUC_STATUS); 876 u32 i; 877 878 drm_printf(p, "GuC status 0x%08x:\n", status); 879 drm_printf(p, "\tBootrom status = 0x%x\n", 880 (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT); 881 drm_printf(p, "\tuKernel status = 0x%x\n", 882 (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT); 883 drm_printf(p, "\tMIA Core status = 0x%x\n", 884 (status & GS_MIA_MASK) >> GS_MIA_SHIFT); 885 drm_puts(p, "Scratch registers:\n"); 886 for (i = 0; i < 16; i++) { 887 drm_printf(p, "\t%2d: \t0x%x\n", 888 i, intel_uncore_read(uncore, SOFT_SCRATCH(i))); 889 } 890 } 891 } 892 893 void intel_guc_write_barrier(struct intel_guc *guc) 894 { 895 struct intel_gt *gt = guc_to_gt(guc); 896 897 if (i915_gem_object_is_lmem(guc->ct.vma->obj)) { 898 /* 899 * Ensure intel_uncore_write_fw can be used rather than 900 * intel_uncore_write. 901 */ 902 GEM_BUG_ON(guc->send_regs.fw_domains); 903 904 /* 905 * This register is used by the i915 and GuC for MMIO based 906 * communication. Once we are in this code CTBs are the only 907 * method the i915 uses to communicate with the GuC so it is 908 * safe to write to this register (a value of 0 is NOP for MMIO 909 * communication). If we ever start mixing CTBs and MMIOs a new 910 * register will have to be chosen. This function is also used 911 * to enforce ordering of a work queue item write and an update 912 * to the process descriptor. When a work queue is being used, 913 * CTBs are also the only mechanism of communication. 914 */ 915 intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0); 916 } else { 917 /* wmb() sufficient for a barrier if in smem */ 918 wmb(); 919 } 920 } 921