xref: /linux/drivers/gpu/drm/i915/gt/uc/intel_guc.c (revision 0e9b70c1e3623fa110fb6be553e644524228ef60)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014-2019 Intel Corporation
4  */
5 
6 #include "gem/i915_gem_lmem.h"
7 #include "gt/intel_gt.h"
8 #include "gt/intel_gt_irq.h"
9 #include "gt/intel_gt_pm_irq.h"
10 #include "gt/intel_gt_regs.h"
11 #include "intel_guc.h"
12 #include "intel_guc_ads.h"
13 #include "intel_guc_capture.h"
14 #include "intel_guc_print.h"
15 #include "intel_guc_slpc.h"
16 #include "intel_guc_submission.h"
17 #include "i915_drv.h"
18 #include "i915_irq.h"
19 
20 /**
21  * DOC: GuC
22  *
23  * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
24  * designed to offload some of the functionality usually performed by the host
25  * driver; currently the main operations it can take care of are:
26  *
27  * - Authentication of the HuC, which is required to fully enable HuC usage.
28  * - Low latency graphics context scheduling (a.k.a. GuC submission).
29  * - GT Power management.
30  *
31  * The enable_guc module parameter can be used to select which of those
32  * operations to enable within GuC. Note that not all the operations are
33  * supported on all gen9+ platforms.
34  *
35  * Enabling the GuC is not mandatory and therefore the firmware is only loaded
36  * if at least one of the operations is selected. However, not loading the GuC
37  * might result in the loss of some features that do require the GuC (currently
38  * just the HuC, but more are expected to land in the future).
39  */
40 
41 void intel_guc_notify(struct intel_guc *guc)
42 {
43 	struct intel_gt *gt = guc_to_gt(guc);
44 
45 	/*
46 	 * On Gen11+, the value written to the register is passes as a payload
47 	 * to the FW. However, the FW currently treats all values the same way
48 	 * (H2G interrupt), so we can just write the value that the HW expects
49 	 * on older gens.
50 	 */
51 	intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER);
52 }
53 
54 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
55 {
56 	GEM_BUG_ON(!guc->send_regs.base);
57 	GEM_BUG_ON(!guc->send_regs.count);
58 	GEM_BUG_ON(i >= guc->send_regs.count);
59 
60 	return _MMIO(guc->send_regs.base + 4 * i);
61 }
62 
63 void intel_guc_init_send_regs(struct intel_guc *guc)
64 {
65 	struct intel_gt *gt = guc_to_gt(guc);
66 	enum forcewake_domains fw_domains = 0;
67 	unsigned int i;
68 
69 	GEM_BUG_ON(!guc->send_regs.base);
70 	GEM_BUG_ON(!guc->send_regs.count);
71 
72 	for (i = 0; i < guc->send_regs.count; i++) {
73 		fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
74 					guc_send_reg(guc, i),
75 					FW_REG_READ | FW_REG_WRITE);
76 	}
77 	guc->send_regs.fw_domains = fw_domains;
78 }
79 
80 static void gen9_reset_guc_interrupts(struct intel_guc *guc)
81 {
82 	struct intel_gt *gt = guc_to_gt(guc);
83 
84 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
85 
86 	spin_lock_irq(gt->irq_lock);
87 	gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
88 	spin_unlock_irq(gt->irq_lock);
89 }
90 
91 static void gen9_enable_guc_interrupts(struct intel_guc *guc)
92 {
93 	struct intel_gt *gt = guc_to_gt(guc);
94 
95 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
96 
97 	spin_lock_irq(gt->irq_lock);
98 	guc_WARN_ON_ONCE(guc, intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
99 			 gt->pm_guc_events);
100 	gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
101 	spin_unlock_irq(gt->irq_lock);
102 
103 	guc->interrupts.enabled = true;
104 }
105 
106 static void gen9_disable_guc_interrupts(struct intel_guc *guc)
107 {
108 	struct intel_gt *gt = guc_to_gt(guc);
109 
110 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
111 	guc->interrupts.enabled = false;
112 
113 	spin_lock_irq(gt->irq_lock);
114 
115 	gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
116 
117 	spin_unlock_irq(gt->irq_lock);
118 	intel_synchronize_irq(gt->i915);
119 
120 	gen9_reset_guc_interrupts(guc);
121 }
122 
123 static bool __gen11_reset_guc_interrupts(struct intel_gt *gt)
124 {
125 	u32 irq = gt->type == GT_MEDIA ? MTL_MGUC : GEN11_GUC;
126 
127 	lockdep_assert_held(gt->irq_lock);
128 	return gen11_gt_reset_one_iir(gt, 0, irq);
129 }
130 
131 static void gen11_reset_guc_interrupts(struct intel_guc *guc)
132 {
133 	struct intel_gt *gt = guc_to_gt(guc);
134 
135 	spin_lock_irq(gt->irq_lock);
136 	__gen11_reset_guc_interrupts(gt);
137 	spin_unlock_irq(gt->irq_lock);
138 }
139 
140 static void gen11_enable_guc_interrupts(struct intel_guc *guc)
141 {
142 	struct intel_gt *gt = guc_to_gt(guc);
143 
144 	spin_lock_irq(gt->irq_lock);
145 	__gen11_reset_guc_interrupts(gt);
146 	spin_unlock_irq(gt->irq_lock);
147 
148 	guc->interrupts.enabled = true;
149 }
150 
151 static void gen11_disable_guc_interrupts(struct intel_guc *guc)
152 {
153 	struct intel_gt *gt = guc_to_gt(guc);
154 
155 	guc->interrupts.enabled = false;
156 	intel_synchronize_irq(gt->i915);
157 
158 	gen11_reset_guc_interrupts(guc);
159 }
160 
161 void intel_guc_init_early(struct intel_guc *guc)
162 {
163 	struct intel_gt *gt = guc_to_gt(guc);
164 	struct drm_i915_private *i915 = gt->i915;
165 
166 	intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC);
167 	intel_guc_ct_init_early(&guc->ct);
168 	intel_guc_log_init_early(&guc->log);
169 	intel_guc_submission_init_early(guc);
170 	intel_guc_slpc_init_early(&guc->slpc);
171 	intel_guc_rc_init_early(guc);
172 
173 	mutex_init(&guc->send_mutex);
174 	spin_lock_init(&guc->irq_lock);
175 	if (GRAPHICS_VER(i915) >= 11) {
176 		guc->interrupts.reset = gen11_reset_guc_interrupts;
177 		guc->interrupts.enable = gen11_enable_guc_interrupts;
178 		guc->interrupts.disable = gen11_disable_guc_interrupts;
179 		if (gt->type == GT_MEDIA) {
180 			guc->notify_reg = MEDIA_GUC_HOST_INTERRUPT;
181 			guc->send_regs.base = i915_mmio_reg_offset(MEDIA_SOFT_SCRATCH(0));
182 		} else {
183 			guc->notify_reg = GEN11_GUC_HOST_INTERRUPT;
184 			guc->send_regs.base = i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
185 		}
186 
187 		guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
188 
189 	} else {
190 		guc->notify_reg = GUC_SEND_INTERRUPT;
191 		guc->interrupts.reset = gen9_reset_guc_interrupts;
192 		guc->interrupts.enable = gen9_enable_guc_interrupts;
193 		guc->interrupts.disable = gen9_disable_guc_interrupts;
194 		guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
195 		guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
196 		BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
197 	}
198 
199 	intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION |
200 				  INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
201 }
202 
203 void intel_guc_init_late(struct intel_guc *guc)
204 {
205 	intel_guc_ads_init_late(guc);
206 }
207 
208 static u32 guc_ctl_debug_flags(struct intel_guc *guc)
209 {
210 	u32 level = intel_guc_log_get_level(&guc->log);
211 	u32 flags = 0;
212 
213 	if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
214 		flags |= GUC_LOG_DISABLED;
215 	else
216 		flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
217 			 GUC_LOG_VERBOSITY_SHIFT;
218 
219 	return flags;
220 }
221 
222 static u32 guc_ctl_feature_flags(struct intel_guc *guc)
223 {
224 	u32 flags = 0;
225 
226 	if (!intel_guc_submission_is_used(guc))
227 		flags |= GUC_CTL_DISABLE_SCHEDULER;
228 
229 	if (intel_guc_slpc_is_used(guc))
230 		flags |= GUC_CTL_ENABLE_SLPC;
231 
232 	return flags;
233 }
234 
235 static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
236 {
237 	struct intel_guc_log *log = &guc->log;
238 	u32 offset, flags;
239 
240 	GEM_BUG_ON(!log->sizes_initialised);
241 
242 	offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT;
243 
244 	flags = GUC_LOG_VALID |
245 		GUC_LOG_NOTIFY_ON_HALF_FULL |
246 		log->sizes[GUC_LOG_SECTIONS_DEBUG].flag |
247 		log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag |
248 		(log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) |
249 		(log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) |
250 		(log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) |
251 		(offset << GUC_LOG_BUF_ADDR_SHIFT);
252 
253 	return flags;
254 }
255 
256 static u32 guc_ctl_ads_flags(struct intel_guc *guc)
257 {
258 	u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
259 	u32 flags = ads << GUC_ADS_ADDR_SHIFT;
260 
261 	return flags;
262 }
263 
264 static u32 guc_ctl_wa_flags(struct intel_guc *guc)
265 {
266 	struct intel_gt *gt = guc_to_gt(guc);
267 	u32 flags = 0;
268 
269 	/* Wa_22012773006:gen11,gen12 < XeHP */
270 	if (GRAPHICS_VER(gt->i915) >= 11 &&
271 	    GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 50))
272 		flags |= GUC_WA_POLLCS;
273 
274 	/* Wa_16011759253:dg2_g10:a0 */
275 	if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0))
276 		flags |= GUC_WA_GAM_CREDITS;
277 
278 	/* Wa_14014475959 */
279 	if (IS_MTL_GRAPHICS_STEP(gt->i915, M, STEP_A0, STEP_B0) ||
280 	    IS_DG2(gt->i915))
281 		flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
282 
283 	/*
284 	 * Wa_14012197797:dg2_g10:a0,dg2_g11:a0
285 	 * Wa_22011391025:dg2_g10,dg2_g11,dg2_g12
286 	 *
287 	 * The same WA bit is used for both and 22011391025 is applicable to
288 	 * all DG2.
289 	 */
290 	if (IS_DG2(gt->i915))
291 		flags |= GUC_WA_DUAL_QUEUE;
292 
293 	/* Wa_22011802037: graphics version 11/12 */
294 	if (IS_MTL_GRAPHICS_STEP(gt->i915, M, STEP_A0, STEP_B0) ||
295 	    (GRAPHICS_VER(gt->i915) >= 11 &&
296 	    GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70)))
297 		flags |= GUC_WA_PRE_PARSER;
298 
299 	/* Wa_16011777198:dg2 */
300 	if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
301 	    IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))
302 		flags |= GUC_WA_RCS_RESET_BEFORE_RC6;
303 
304 	/*
305 	 * Wa_22012727170:dg2_g10[a0-c0), dg2_g11[a0..)
306 	 * Wa_22012727685:dg2_g11[a0..)
307 	 */
308 	if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
309 	    IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_FOREVER))
310 		flags |= GUC_WA_CONTEXT_ISOLATION;
311 
312 	/* Wa_16015675438 */
313 	if (!RCS_MASK(gt))
314 		flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST;
315 
316 	return flags;
317 }
318 
319 static u32 guc_ctl_devid(struct intel_guc *guc)
320 {
321 	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
322 
323 	return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915);
324 }
325 
326 /*
327  * Initialise the GuC parameter block before starting the firmware
328  * transfer. These parameters are read by the firmware on startup
329  * and cannot be changed thereafter.
330  */
331 static void guc_init_params(struct intel_guc *guc)
332 {
333 	u32 *params = guc->params;
334 	int i;
335 
336 	BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
337 
338 	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
339 	params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
340 	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
341 	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
342 	params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
343 	params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
344 
345 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
346 		guc_dbg(guc, "param[%2d] = %#x\n", i, params[i]);
347 }
348 
349 /*
350  * Initialise the GuC parameter block before starting the firmware
351  * transfer. These parameters are read by the firmware on startup
352  * and cannot be changed thereafter.
353  */
354 void intel_guc_write_params(struct intel_guc *guc)
355 {
356 	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
357 	int i;
358 
359 	/*
360 	 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and
361 	 * they are power context saved so it's ok to release forcewake
362 	 * when we are done here and take it again at xfer time.
363 	 */
364 	intel_uncore_forcewake_get(uncore, FORCEWAKE_GT);
365 
366 	intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
367 
368 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
369 		intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
370 
371 	intel_uncore_forcewake_put(uncore, FORCEWAKE_GT);
372 }
373 
374 void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p)
375 {
376 	struct intel_gt *gt = guc_to_gt(guc);
377 	intel_wakeref_t wakeref;
378 	u32 stamp = 0;
379 	u64 ktime;
380 
381 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
382 		stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP);
383 	ktime = ktime_get_boottime_ns();
384 
385 	drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime);
386 	drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp);
387 	drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n",
388 		   gt->clock_frequency, gt->clock_period_ns);
389 }
390 
391 int intel_guc_init(struct intel_guc *guc)
392 {
393 	int ret;
394 
395 	ret = intel_uc_fw_init(&guc->fw);
396 	if (ret)
397 		goto out;
398 
399 	ret = intel_guc_log_create(&guc->log);
400 	if (ret)
401 		goto err_fw;
402 
403 	ret = intel_guc_capture_init(guc);
404 	if (ret)
405 		goto err_log;
406 
407 	ret = intel_guc_ads_create(guc);
408 	if (ret)
409 		goto err_capture;
410 
411 	GEM_BUG_ON(!guc->ads_vma);
412 
413 	ret = intel_guc_ct_init(&guc->ct);
414 	if (ret)
415 		goto err_ads;
416 
417 	if (intel_guc_submission_is_used(guc)) {
418 		/*
419 		 * This is stuff we need to have available at fw load time
420 		 * if we are planning to enable submission later
421 		 */
422 		ret = intel_guc_submission_init(guc);
423 		if (ret)
424 			goto err_ct;
425 	}
426 
427 	if (intel_guc_slpc_is_used(guc)) {
428 		ret = intel_guc_slpc_init(&guc->slpc);
429 		if (ret)
430 			goto err_submission;
431 	}
432 
433 	/* now that everything is perma-pinned, initialize the parameters */
434 	guc_init_params(guc);
435 
436 	intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE);
437 
438 	return 0;
439 
440 err_submission:
441 	intel_guc_submission_fini(guc);
442 err_ct:
443 	intel_guc_ct_fini(&guc->ct);
444 err_ads:
445 	intel_guc_ads_destroy(guc);
446 err_capture:
447 	intel_guc_capture_destroy(guc);
448 err_log:
449 	intel_guc_log_destroy(&guc->log);
450 err_fw:
451 	intel_uc_fw_fini(&guc->fw);
452 out:
453 	intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_INIT_FAIL);
454 	guc_probe_error(guc, "failed with %pe\n", ERR_PTR(ret));
455 	return ret;
456 }
457 
458 void intel_guc_fini(struct intel_guc *guc)
459 {
460 	if (!intel_uc_fw_is_loadable(&guc->fw))
461 		return;
462 
463 	if (intel_guc_slpc_is_used(guc))
464 		intel_guc_slpc_fini(&guc->slpc);
465 
466 	if (intel_guc_submission_is_used(guc))
467 		intel_guc_submission_fini(guc);
468 
469 	intel_guc_ct_fini(&guc->ct);
470 
471 	intel_guc_ads_destroy(guc);
472 	intel_guc_capture_destroy(guc);
473 	intel_guc_log_destroy(&guc->log);
474 	intel_uc_fw_fini(&guc->fw);
475 }
476 
477 /*
478  * This function implements the MMIO based host to GuC interface.
479  */
480 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len,
481 			u32 *response_buf, u32 response_buf_size)
482 {
483 	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
484 	u32 header;
485 	int i;
486 	int ret;
487 
488 	GEM_BUG_ON(!len);
489 	GEM_BUG_ON(len > guc->send_regs.count);
490 
491 	GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST);
492 	GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST);
493 
494 	mutex_lock(&guc->send_mutex);
495 	intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
496 
497 retry:
498 	for (i = 0; i < len; i++)
499 		intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]);
500 
501 	intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
502 
503 	intel_guc_notify(guc);
504 
505 	/*
506 	 * No GuC command should ever take longer than 10ms.
507 	 * Fast commands should still complete in 10us.
508 	 */
509 	ret = __intel_wait_for_register_fw(uncore,
510 					   guc_send_reg(guc, 0),
511 					   GUC_HXG_MSG_0_ORIGIN,
512 					   FIELD_PREP(GUC_HXG_MSG_0_ORIGIN,
513 						      GUC_HXG_ORIGIN_GUC),
514 					   10, 10, &header);
515 	if (unlikely(ret)) {
516 timeout:
517 		guc_err(guc, "mmio request %#x: no reply %x\n",
518 			request[0], header);
519 		goto out;
520 	}
521 
522 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
523 #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \
524 		FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \
525 		FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; })
526 
527 		ret = wait_for(done, 1000);
528 		if (unlikely(ret))
529 			goto timeout;
530 		if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
531 				       GUC_HXG_ORIGIN_GUC))
532 			goto proto;
533 #undef done
534 	}
535 
536 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
537 		u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
538 
539 		guc_dbg(guc, "mmio request %#x: retrying, reason %u\n",
540 			request[0], reason);
541 		goto retry;
542 	}
543 
544 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) {
545 		u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
546 		u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
547 
548 		guc_err(guc, "mmio request %#x: failure %x/%u\n",
549 			request[0], error, hint);
550 		ret = -ENXIO;
551 		goto out;
552 	}
553 
554 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) {
555 proto:
556 		guc_err(guc, "mmio request %#x: unexpected reply %#x\n",
557 			request[0], header);
558 		ret = -EPROTO;
559 		goto out;
560 	}
561 
562 	if (response_buf) {
563 		int count = min(response_buf_size, guc->send_regs.count);
564 
565 		GEM_BUG_ON(!count);
566 
567 		response_buf[0] = header;
568 
569 		for (i = 1; i < count; i++)
570 			response_buf[i] = intel_uncore_read(uncore,
571 							    guc_send_reg(guc, i));
572 
573 		/* Use number of copied dwords as our return value */
574 		ret = count;
575 	} else {
576 		/* Use data from the GuC response as our return value */
577 		ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
578 	}
579 
580 out:
581 	intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
582 	mutex_unlock(&guc->send_mutex);
583 
584 	return ret;
585 }
586 
587 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
588 				       const u32 *payload, u32 len)
589 {
590 	u32 msg;
591 
592 	if (unlikely(!len))
593 		return -EPROTO;
594 
595 	/* Make sure to handle only enabled messages */
596 	msg = payload[0] & guc->msg_enabled_mask;
597 
598 	if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED)
599 		guc_err(guc, "Received early crash dump notification!\n");
600 	if (msg & INTEL_GUC_RECV_MSG_EXCEPTION)
601 		guc_err(guc, "Received early exception notification!\n");
602 
603 	return 0;
604 }
605 
606 /**
607  * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
608  * @guc: intel_guc structure
609  * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
610  *
611  * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
612  * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
613  * intel_huc_auth().
614  *
615  * Return:	non-zero code on error
616  */
617 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
618 {
619 	u32 action[] = {
620 		INTEL_GUC_ACTION_AUTHENTICATE_HUC,
621 		rsa_offset
622 	};
623 
624 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
625 }
626 
627 /**
628  * intel_guc_suspend() - notify GuC entering suspend state
629  * @guc:	the guc
630  */
631 int intel_guc_suspend(struct intel_guc *guc)
632 {
633 	int ret;
634 	u32 action[] = {
635 		INTEL_GUC_ACTION_CLIENT_SOFT_RESET,
636 	};
637 
638 	if (!intel_guc_is_ready(guc))
639 		return 0;
640 
641 	if (intel_guc_submission_is_used(guc)) {
642 		/*
643 		 * This H2G MMIO command tears down the GuC in two steps. First it will
644 		 * generate a G2H CTB for every active context indicating a reset. In
645 		 * practice the i915 shouldn't ever get a G2H as suspend should only be
646 		 * called when the GPU is idle. Next, it tears down the CTBs and this
647 		 * H2G MMIO command completes.
648 		 *
649 		 * Don't abort on a failure code from the GuC. Keep going and do the
650 		 * clean up in santize() and re-initialisation on resume and hopefully
651 		 * the error here won't be problematic.
652 		 */
653 		ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0);
654 		if (ret)
655 			guc_err(guc, "suspend: RESET_CLIENT action failed with %pe\n",
656 				ERR_PTR(ret));
657 	}
658 
659 	/* Signal that the GuC isn't running. */
660 	intel_guc_sanitize(guc);
661 
662 	return 0;
663 }
664 
665 /**
666  * intel_guc_resume() - notify GuC resuming from suspend state
667  * @guc:	the guc
668  */
669 int intel_guc_resume(struct intel_guc *guc)
670 {
671 	/*
672 	 * NB: This function can still be called even if GuC submission is
673 	 * disabled, e.g. if GuC is enabled for HuC authentication only. Thus,
674 	 * if any code is later added here, it must be support doing nothing
675 	 * if submission is disabled (as per intel_guc_suspend).
676 	 */
677 	return 0;
678 }
679 
680 /**
681  * DOC: GuC Memory Management
682  *
683  * GuC can't allocate any memory for its own usage, so all the allocations must
684  * be handled by the host driver. GuC accesses the memory via the GGTT, with the
685  * exception of the top and bottom parts of the 4GB address space, which are
686  * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
687  * or other parts of the HW. The driver must take care not to place objects that
688  * the GuC is going to access in these reserved ranges. The layout of the GuC
689  * address space is shown below:
690  *
691  * ::
692  *
693  *     +===========> +====================+ <== FFFF_FFFF
694  *     ^             |      Reserved      |
695  *     |             +====================+ <== GUC_GGTT_TOP
696  *     |             |                    |
697  *     |             |        DRAM        |
698  *    GuC            |                    |
699  *  Address    +===> +====================+ <== GuC ggtt_pin_bias
700  *   Space     ^     |                    |
701  *     |       |     |                    |
702  *     |      GuC    |        GuC         |
703  *     |     WOPCM   |       WOPCM        |
704  *     |      Size   |                    |
705  *     |       |     |                    |
706  *     v       v     |                    |
707  *     +=======+===> +====================+ <== 0000_0000
708  *
709  * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
710  * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
711  * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
712  */
713 
714 /**
715  * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
716  * @guc:	the guc
717  * @size:	size of area to allocate (both virtual space and memory)
718  *
719  * This is a wrapper to create an object for use with the GuC. In order to
720  * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
721  * both some backing storage and a range inside the Global GTT. We must pin
722  * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
723  * range is reserved inside GuC.
724  *
725  * Return:	A i915_vma if successful, otherwise an ERR_PTR.
726  */
727 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
728 {
729 	struct intel_gt *gt = guc_to_gt(guc);
730 	struct drm_i915_gem_object *obj;
731 	struct i915_vma *vma;
732 	u64 flags;
733 	int ret;
734 
735 	if (HAS_LMEM(gt->i915))
736 		obj = i915_gem_object_create_lmem(gt->i915, size,
737 						  I915_BO_ALLOC_CPU_CLEAR |
738 						  I915_BO_ALLOC_CONTIGUOUS |
739 						  I915_BO_ALLOC_PM_EARLY);
740 	else
741 		obj = i915_gem_object_create_shmem(gt->i915, size);
742 
743 	if (IS_ERR(obj))
744 		return ERR_CAST(obj);
745 
746 	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
747 	if (IS_ERR(vma))
748 		goto err;
749 
750 	flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
751 	ret = i915_ggtt_pin(vma, NULL, 0, flags);
752 	if (ret) {
753 		vma = ERR_PTR(ret);
754 		goto err;
755 	}
756 
757 	return i915_vma_make_unshrinkable(vma);
758 
759 err:
760 	i915_gem_object_put(obj);
761 	return vma;
762 }
763 
764 /**
765  * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage
766  * @guc:	the guc
767  * @size:	size of area to allocate (both virtual space and memory)
768  * @out_vma:	return variable for the allocated vma pointer
769  * @out_vaddr:	return variable for the obj mapping
770  *
771  * This wrapper calls intel_guc_allocate_vma() and then maps the allocated
772  * object with I915_MAP_WB.
773  *
774  * Return:	0 if successful, a negative errno code otherwise.
775  */
776 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size,
777 				   struct i915_vma **out_vma, void **out_vaddr)
778 {
779 	struct i915_vma *vma;
780 	void *vaddr;
781 
782 	vma = intel_guc_allocate_vma(guc, size);
783 	if (IS_ERR(vma))
784 		return PTR_ERR(vma);
785 
786 	vaddr = i915_gem_object_pin_map_unlocked(vma->obj,
787 						 i915_coherent_map_type(guc_to_gt(guc)->i915,
788 									vma->obj, true));
789 	if (IS_ERR(vaddr)) {
790 		i915_vma_unpin_and_release(&vma, 0);
791 		return PTR_ERR(vaddr);
792 	}
793 
794 	*out_vma = vma;
795 	*out_vaddr = vaddr;
796 
797 	return 0;
798 }
799 
800 static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
801 {
802 	u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
803 		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
804 		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
805 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG),
806 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
807 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
808 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)),
809 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)),
810 	};
811 	int ret;
812 
813 	GEM_BUG_ON(len > 2);
814 	GEM_BUG_ON(len == 1 && upper_32_bits(value));
815 
816 	/* Self config must go over MMIO */
817 	ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0);
818 
819 	if (unlikely(ret < 0))
820 		return ret;
821 	if (unlikely(ret > 1))
822 		return -EPROTO;
823 	if (unlikely(!ret))
824 		return -ENOKEY;
825 
826 	return 0;
827 }
828 
829 static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
830 {
831 	int err = __guc_action_self_cfg(guc, key, len, value);
832 
833 	if (unlikely(err))
834 		guc_probe_error(guc, "Unsuccessful self-config (%pe) key %#hx value %#llx\n",
835 				ERR_PTR(err), key, value);
836 	return err;
837 }
838 
839 int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value)
840 {
841 	return __guc_self_cfg(guc, key, 1, value);
842 }
843 
844 int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value)
845 {
846 	return __guc_self_cfg(guc, key, 2, value);
847 }
848 
849 /**
850  * intel_guc_load_status - dump information about GuC load status
851  * @guc: the GuC
852  * @p: the &drm_printer
853  *
854  * Pretty printer for GuC load status.
855  */
856 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p)
857 {
858 	struct intel_gt *gt = guc_to_gt(guc);
859 	struct intel_uncore *uncore = gt->uncore;
860 	intel_wakeref_t wakeref;
861 
862 	if (!intel_guc_is_supported(guc)) {
863 		drm_printf(p, "GuC not supported\n");
864 		return;
865 	}
866 
867 	if (!intel_guc_is_wanted(guc)) {
868 		drm_printf(p, "GuC disabled\n");
869 		return;
870 	}
871 
872 	intel_uc_fw_dump(&guc->fw, p);
873 
874 	with_intel_runtime_pm(uncore->rpm, wakeref) {
875 		u32 status = intel_uncore_read(uncore, GUC_STATUS);
876 		u32 i;
877 
878 		drm_printf(p, "GuC status 0x%08x:\n", status);
879 		drm_printf(p, "\tBootrom status = 0x%x\n",
880 			   (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
881 		drm_printf(p, "\tuKernel status = 0x%x\n",
882 			   (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
883 		drm_printf(p, "\tMIA Core status = 0x%x\n",
884 			   (status & GS_MIA_MASK) >> GS_MIA_SHIFT);
885 		drm_puts(p, "Scratch registers:\n");
886 		for (i = 0; i < 16; i++) {
887 			drm_printf(p, "\t%2d: \t0x%x\n",
888 				   i, intel_uncore_read(uncore, SOFT_SCRATCH(i)));
889 		}
890 	}
891 }
892 
893 void intel_guc_write_barrier(struct intel_guc *guc)
894 {
895 	struct intel_gt *gt = guc_to_gt(guc);
896 
897 	if (i915_gem_object_is_lmem(guc->ct.vma->obj)) {
898 		/*
899 		 * Ensure intel_uncore_write_fw can be used rather than
900 		 * intel_uncore_write.
901 		 */
902 		GEM_BUG_ON(guc->send_regs.fw_domains);
903 
904 		/*
905 		 * This register is used by the i915 and GuC for MMIO based
906 		 * communication. Once we are in this code CTBs are the only
907 		 * method the i915 uses to communicate with the GuC so it is
908 		 * safe to write to this register (a value of 0 is NOP for MMIO
909 		 * communication). If we ever start mixing CTBs and MMIOs a new
910 		 * register will have to be chosen. This function is also used
911 		 * to enforce ordering of a work queue item write and an update
912 		 * to the process descriptor. When a work queue is being used,
913 		 * CTBs are also the only mechanism of communication.
914 		 */
915 		intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0);
916 	} else {
917 		/* wmb() sufficient for a barrier if in smem */
918 		wmb();
919 	}
920 }
921