1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2016 Intel Corporation 4 */ 5 6 #include <linux/string_helpers.h> 7 8 #include <drm/drm_print.h> 9 10 #include "gem/i915_gem_context.h" 11 #include "gem/i915_gem_internal.h" 12 #include "gt/intel_gt_print.h" 13 #include "gt/intel_gt_regs.h" 14 15 #include "i915_cmd_parser.h" 16 #include "i915_drv.h" 17 #include "i915_irq.h" 18 #include "i915_reg.h" 19 #include "intel_breadcrumbs.h" 20 #include "intel_context.h" 21 #include "intel_engine.h" 22 #include "intel_engine_pm.h" 23 #include "intel_engine_regs.h" 24 #include "intel_engine_user.h" 25 #include "intel_execlists_submission.h" 26 #include "intel_gt.h" 27 #include "intel_gt_mcr.h" 28 #include "intel_gt_pm.h" 29 #include "intel_gt_requests.h" 30 #include "intel_lrc.h" 31 #include "intel_lrc_reg.h" 32 #include "intel_reset.h" 33 #include "intel_ring.h" 34 #include "uc/intel_guc_submission.h" 35 36 /* Haswell does have the CXT_SIZE register however it does not appear to be 37 * valid. Now, docs explain in dwords what is in the context object. The full 38 * size is 70720 bytes, however, the power context and execlist context will 39 * never be saved (power context is stored elsewhere, and execlists don't work 40 * on HSW) - so the final size, including the extra state required for the 41 * Resource Streamer, is 66944 bytes, which rounds to 17 pages. 42 */ 43 #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE) 44 45 #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) 46 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE) 47 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) 48 #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE) 49 50 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE) 51 52 #define MAX_MMIO_BASES 3 53 struct engine_info { 54 u8 class; 55 u8 instance; 56 /* mmio bases table *must* be sorted in reverse graphics_ver order */ 57 struct engine_mmio_base { 58 u32 graphics_ver : 8; 59 u32 base : 24; 60 } mmio_bases[MAX_MMIO_BASES]; 61 }; 62 63 static const struct engine_info intel_engines[] = { 64 [RCS0] = { 65 .class = RENDER_CLASS, 66 .instance = 0, 67 .mmio_bases = { 68 { .graphics_ver = 1, .base = RENDER_RING_BASE } 69 }, 70 }, 71 [BCS0] = { 72 .class = COPY_ENGINE_CLASS, 73 .instance = 0, 74 .mmio_bases = { 75 { .graphics_ver = 6, .base = BLT_RING_BASE } 76 }, 77 }, 78 [BCS1] = { 79 .class = COPY_ENGINE_CLASS, 80 .instance = 1, 81 .mmio_bases = { 82 { .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE } 83 }, 84 }, 85 [BCS2] = { 86 .class = COPY_ENGINE_CLASS, 87 .instance = 2, 88 .mmio_bases = { 89 { .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE } 90 }, 91 }, 92 [BCS3] = { 93 .class = COPY_ENGINE_CLASS, 94 .instance = 3, 95 .mmio_bases = { 96 { .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE } 97 }, 98 }, 99 [BCS4] = { 100 .class = COPY_ENGINE_CLASS, 101 .instance = 4, 102 .mmio_bases = { 103 { .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE } 104 }, 105 }, 106 [BCS5] = { 107 .class = COPY_ENGINE_CLASS, 108 .instance = 5, 109 .mmio_bases = { 110 { .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE } 111 }, 112 }, 113 [BCS6] = { 114 .class = COPY_ENGINE_CLASS, 115 .instance = 6, 116 .mmio_bases = { 117 { .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE } 118 }, 119 }, 120 [BCS7] = { 121 .class = COPY_ENGINE_CLASS, 122 .instance = 7, 123 .mmio_bases = { 124 { .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE } 125 }, 126 }, 127 [BCS8] = { 128 .class = COPY_ENGINE_CLASS, 129 .instance = 8, 130 .mmio_bases = { 131 { .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE } 132 }, 133 }, 134 [VCS0] = { 135 .class = VIDEO_DECODE_CLASS, 136 .instance = 0, 137 .mmio_bases = { 138 { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE }, 139 { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE }, 140 { .graphics_ver = 4, .base = BSD_RING_BASE } 141 }, 142 }, 143 [VCS1] = { 144 .class = VIDEO_DECODE_CLASS, 145 .instance = 1, 146 .mmio_bases = { 147 { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE }, 148 { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE } 149 }, 150 }, 151 [VCS2] = { 152 .class = VIDEO_DECODE_CLASS, 153 .instance = 2, 154 .mmio_bases = { 155 { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE } 156 }, 157 }, 158 [VCS3] = { 159 .class = VIDEO_DECODE_CLASS, 160 .instance = 3, 161 .mmio_bases = { 162 { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE } 163 }, 164 }, 165 [VCS4] = { 166 .class = VIDEO_DECODE_CLASS, 167 .instance = 4, 168 .mmio_bases = { 169 { .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE } 170 }, 171 }, 172 [VCS5] = { 173 .class = VIDEO_DECODE_CLASS, 174 .instance = 5, 175 .mmio_bases = { 176 { .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE } 177 }, 178 }, 179 [VCS6] = { 180 .class = VIDEO_DECODE_CLASS, 181 .instance = 6, 182 .mmio_bases = { 183 { .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE } 184 }, 185 }, 186 [VCS7] = { 187 .class = VIDEO_DECODE_CLASS, 188 .instance = 7, 189 .mmio_bases = { 190 { .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE } 191 }, 192 }, 193 [VECS0] = { 194 .class = VIDEO_ENHANCEMENT_CLASS, 195 .instance = 0, 196 .mmio_bases = { 197 { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE }, 198 { .graphics_ver = 7, .base = VEBOX_RING_BASE } 199 }, 200 }, 201 [VECS1] = { 202 .class = VIDEO_ENHANCEMENT_CLASS, 203 .instance = 1, 204 .mmio_bases = { 205 { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE } 206 }, 207 }, 208 [VECS2] = { 209 .class = VIDEO_ENHANCEMENT_CLASS, 210 .instance = 2, 211 .mmio_bases = { 212 { .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE } 213 }, 214 }, 215 [VECS3] = { 216 .class = VIDEO_ENHANCEMENT_CLASS, 217 .instance = 3, 218 .mmio_bases = { 219 { .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE } 220 }, 221 }, 222 [CCS0] = { 223 .class = COMPUTE_CLASS, 224 .instance = 0, 225 .mmio_bases = { 226 { .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE } 227 } 228 }, 229 [CCS1] = { 230 .class = COMPUTE_CLASS, 231 .instance = 1, 232 .mmio_bases = { 233 { .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE } 234 } 235 }, 236 [CCS2] = { 237 .class = COMPUTE_CLASS, 238 .instance = 2, 239 .mmio_bases = { 240 { .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE } 241 } 242 }, 243 [CCS3] = { 244 .class = COMPUTE_CLASS, 245 .instance = 3, 246 .mmio_bases = { 247 { .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE } 248 } 249 }, 250 [GSC0] = { 251 .class = OTHER_CLASS, 252 .instance = OTHER_GSC_INSTANCE, 253 .mmio_bases = { 254 { .graphics_ver = 12, .base = MTL_GSC_RING_BASE } 255 } 256 }, 257 }; 258 259 /** 260 * intel_engine_context_size() - return the size of the context for an engine 261 * @gt: the gt 262 * @class: engine class 263 * 264 * Each engine class may require a different amount of space for a context 265 * image. 266 * 267 * Return: size (in bytes) of an engine class specific context image 268 * 269 * Note: this size includes the HWSP, which is part of the context image 270 * in LRC mode, but does not include the "shared data page" used with 271 * GuC submission. The caller should account for this if using the GuC. 272 */ 273 u32 intel_engine_context_size(struct intel_gt *gt, u8 class) 274 { 275 struct intel_uncore *uncore = gt->uncore; 276 u32 cxt_size; 277 278 BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE); 279 280 switch (class) { 281 case COMPUTE_CLASS: 282 fallthrough; 283 case RENDER_CLASS: 284 switch (GRAPHICS_VER(gt->i915)) { 285 default: 286 MISSING_CASE(GRAPHICS_VER(gt->i915)); 287 return DEFAULT_LR_CONTEXT_RENDER_SIZE; 288 case 12: 289 case 11: 290 return GEN11_LR_CONTEXT_RENDER_SIZE; 291 case 9: 292 return GEN9_LR_CONTEXT_RENDER_SIZE; 293 case 8: 294 return GEN8_LR_CONTEXT_RENDER_SIZE; 295 case 7: 296 if (IS_HASWELL(gt->i915)) 297 return HSW_CXT_TOTAL_SIZE; 298 299 cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE); 300 return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64, 301 PAGE_SIZE); 302 case 6: 303 cxt_size = intel_uncore_read(uncore, CXT_SIZE); 304 return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64, 305 PAGE_SIZE); 306 case 5: 307 case 4: 308 /* 309 * There is a discrepancy here between the size reported 310 * by the register and the size of the context layout 311 * in the docs. Both are described as authorative! 312 * 313 * The discrepancy is on the order of a few cachelines, 314 * but the total is under one page (4k), which is our 315 * minimum allocation anyway so it should all come 316 * out in the wash. 317 */ 318 cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1; 319 gt_dbg(gt, "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n", 320 GRAPHICS_VER(gt->i915), cxt_size * 64, 321 cxt_size - 1); 322 return round_up(cxt_size * 64, PAGE_SIZE); 323 case 3: 324 case 2: 325 /* For the special day when i810 gets merged. */ 326 case 1: 327 return 0; 328 } 329 break; 330 default: 331 MISSING_CASE(class); 332 fallthrough; 333 case VIDEO_DECODE_CLASS: 334 case VIDEO_ENHANCEMENT_CLASS: 335 case COPY_ENGINE_CLASS: 336 case OTHER_CLASS: 337 if (GRAPHICS_VER(gt->i915) < 8) 338 return 0; 339 return GEN8_LR_CONTEXT_OTHER_SIZE; 340 } 341 } 342 343 static u32 __engine_mmio_base(struct drm_i915_private *i915, 344 const struct engine_mmio_base *bases) 345 { 346 int i; 347 348 for (i = 0; i < MAX_MMIO_BASES; i++) 349 if (GRAPHICS_VER(i915) >= bases[i].graphics_ver) 350 break; 351 352 GEM_BUG_ON(i == MAX_MMIO_BASES); 353 GEM_BUG_ON(!bases[i].base); 354 355 return bases[i].base; 356 } 357 358 static void __sprint_engine_name(struct intel_engine_cs *engine) 359 { 360 /* 361 * Before we know what the uABI name for this engine will be, 362 * we still would like to keep track of this engine in the debug logs. 363 * We throw in a ' here as a reminder that this isn't its final name. 364 */ 365 GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u", 366 intel_engine_class_repr(engine->class), 367 engine->instance) >= sizeof(engine->name)); 368 } 369 370 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask) 371 { 372 /* 373 * Though they added more rings on g4x/ilk, they did not add 374 * per-engine HWSTAM until gen6. 375 */ 376 if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS) 377 return; 378 379 if (GRAPHICS_VER(engine->i915) >= 3) 380 ENGINE_WRITE(engine, RING_HWSTAM, mask); 381 else 382 ENGINE_WRITE16(engine, RING_HWSTAM, mask); 383 } 384 385 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine) 386 { 387 /* Mask off all writes into the unknown HWSP */ 388 intel_engine_set_hwsp_writemask(engine, ~0u); 389 } 390 391 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir) 392 { 393 GEM_DEBUG_WARN_ON(iir); 394 } 395 396 static u32 get_reset_domain(u8 ver, enum intel_engine_id id) 397 { 398 u32 reset_domain; 399 400 if (ver >= 11) { 401 static const u32 engine_reset_domains[] = { 402 [RCS0] = GEN11_GRDOM_RENDER, 403 [BCS0] = GEN11_GRDOM_BLT, 404 [BCS1] = XEHPC_GRDOM_BLT1, 405 [BCS2] = XEHPC_GRDOM_BLT2, 406 [BCS3] = XEHPC_GRDOM_BLT3, 407 [BCS4] = XEHPC_GRDOM_BLT4, 408 [BCS5] = XEHPC_GRDOM_BLT5, 409 [BCS6] = XEHPC_GRDOM_BLT6, 410 [BCS7] = XEHPC_GRDOM_BLT7, 411 [BCS8] = XEHPC_GRDOM_BLT8, 412 [VCS0] = GEN11_GRDOM_MEDIA, 413 [VCS1] = GEN11_GRDOM_MEDIA2, 414 [VCS2] = GEN11_GRDOM_MEDIA3, 415 [VCS3] = GEN11_GRDOM_MEDIA4, 416 [VCS4] = GEN11_GRDOM_MEDIA5, 417 [VCS5] = GEN11_GRDOM_MEDIA6, 418 [VCS6] = GEN11_GRDOM_MEDIA7, 419 [VCS7] = GEN11_GRDOM_MEDIA8, 420 [VECS0] = GEN11_GRDOM_VECS, 421 [VECS1] = GEN11_GRDOM_VECS2, 422 [VECS2] = GEN11_GRDOM_VECS3, 423 [VECS3] = GEN11_GRDOM_VECS4, 424 [CCS0] = GEN11_GRDOM_RENDER, 425 [CCS1] = GEN11_GRDOM_RENDER, 426 [CCS2] = GEN11_GRDOM_RENDER, 427 [CCS3] = GEN11_GRDOM_RENDER, 428 [GSC0] = GEN12_GRDOM_GSC, 429 }; 430 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) || 431 !engine_reset_domains[id]); 432 reset_domain = engine_reset_domains[id]; 433 } else { 434 static const u32 engine_reset_domains[] = { 435 [RCS0] = GEN6_GRDOM_RENDER, 436 [BCS0] = GEN6_GRDOM_BLT, 437 [VCS0] = GEN6_GRDOM_MEDIA, 438 [VCS1] = GEN8_GRDOM_MEDIA2, 439 [VECS0] = GEN6_GRDOM_VECS, 440 }; 441 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) || 442 !engine_reset_domains[id]); 443 reset_domain = engine_reset_domains[id]; 444 } 445 446 return reset_domain; 447 } 448 449 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id, 450 u8 logical_instance) 451 { 452 const struct engine_info *info = &intel_engines[id]; 453 struct drm_i915_private *i915 = gt->i915; 454 struct intel_engine_cs *engine; 455 u8 guc_class; 456 457 BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH)); 458 BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH)); 459 BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1)); 460 BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1)); 461 462 if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine))) 463 return -EINVAL; 464 465 if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS)) 466 return -EINVAL; 467 468 if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE)) 469 return -EINVAL; 470 471 if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance])) 472 return -EINVAL; 473 474 engine = kzalloc(sizeof(*engine), GFP_KERNEL); 475 if (!engine) 476 return -ENOMEM; 477 478 BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES); 479 480 INIT_LIST_HEAD(&engine->pinned_contexts_list); 481 engine->id = id; 482 engine->legacy_idx = INVALID_ENGINE; 483 engine->mask = BIT(id); 484 engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915), 485 id); 486 engine->i915 = i915; 487 engine->gt = gt; 488 engine->uncore = gt->uncore; 489 guc_class = engine_class_to_guc_class(info->class); 490 engine->guc_id = MAKE_GUC_ID(guc_class, info->instance); 491 engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases); 492 493 engine->irq_handler = nop_irq_handler; 494 495 engine->class = info->class; 496 engine->instance = info->instance; 497 engine->logical_mask = BIT(logical_instance); 498 __sprint_engine_name(engine); 499 500 if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) && 501 __ffs(CCS_MASK(engine->gt)) == engine->instance) || 502 engine->class == RENDER_CLASS) 503 engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE; 504 505 /* features common between engines sharing EUs */ 506 if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) { 507 engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE; 508 engine->flags |= I915_ENGINE_HAS_EU_PRIORITY; 509 } 510 511 engine->props.heartbeat_interval_ms = 512 CONFIG_DRM_I915_HEARTBEAT_INTERVAL; 513 engine->props.max_busywait_duration_ns = 514 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT; 515 engine->props.preempt_timeout_ms = 516 CONFIG_DRM_I915_PREEMPT_TIMEOUT; 517 engine->props.stop_timeout_ms = 518 CONFIG_DRM_I915_STOP_TIMEOUT; 519 engine->props.timeslice_duration_ms = 520 CONFIG_DRM_I915_TIMESLICE_DURATION; 521 522 /* 523 * Mid-thread pre-emption is not available in Gen12. Unfortunately, 524 * some compute workloads run quite long threads. That means they get 525 * reset due to not pre-empting in a timely manner. So, bump the 526 * pre-emption timeout value to be much higher for compute engines. 527 */ 528 if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)) 529 engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE; 530 531 /* Cap properties according to any system limits */ 532 #define CLAMP_PROP(field) \ 533 do { \ 534 u64 clamp = intel_clamp_##field(engine, engine->props.field); \ 535 if (clamp != engine->props.field) { \ 536 drm_notice(&engine->i915->drm, \ 537 "Warning, clamping %s to %lld to prevent overflow\n", \ 538 #field, clamp); \ 539 engine->props.field = clamp; \ 540 } \ 541 } while (0) 542 543 CLAMP_PROP(heartbeat_interval_ms); 544 CLAMP_PROP(max_busywait_duration_ns); 545 CLAMP_PROP(preempt_timeout_ms); 546 CLAMP_PROP(stop_timeout_ms); 547 CLAMP_PROP(timeslice_duration_ms); 548 549 #undef CLAMP_PROP 550 551 engine->defaults = engine->props; /* never to change again */ 552 553 engine->context_size = intel_engine_context_size(gt, engine->class); 554 if (WARN_ON(engine->context_size > BIT(20))) 555 engine->context_size = 0; 556 if (engine->context_size) 557 DRIVER_CAPS(i915)->has_logical_contexts = true; 558 559 ewma__engine_latency_init(&engine->latency); 560 561 ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier); 562 563 /* Scrub mmio state on takeover */ 564 intel_engine_sanitize_mmio(engine); 565 566 gt->engine_class[info->class][info->instance] = engine; 567 gt->engine[id] = engine; 568 569 return 0; 570 } 571 572 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value) 573 { 574 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); 575 576 return value; 577 } 578 579 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value) 580 { 581 value = min(value, jiffies_to_nsecs(2)); 582 583 return value; 584 } 585 586 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value) 587 { 588 /* 589 * NB: The GuC API only supports 32bit values. However, the limit is further 590 * reduced due to internal calculations which would otherwise overflow. 591 */ 592 if (intel_guc_submission_is_wanted(&engine->gt->uc.guc)) 593 value = min_t(u64, value, guc_policy_max_preempt_timeout_ms()); 594 595 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); 596 597 return value; 598 } 599 600 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value) 601 { 602 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); 603 604 return value; 605 } 606 607 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value) 608 { 609 /* 610 * NB: The GuC API only supports 32bit values. However, the limit is further 611 * reduced due to internal calculations which would otherwise overflow. 612 */ 613 if (intel_guc_submission_is_wanted(&engine->gt->uc.guc)) 614 value = min_t(u64, value, guc_policy_max_exec_quantum_ms()); 615 616 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); 617 618 return value; 619 } 620 621 static void __setup_engine_capabilities(struct intel_engine_cs *engine) 622 { 623 struct drm_i915_private *i915 = engine->i915; 624 625 if (engine->class == VIDEO_DECODE_CLASS) { 626 /* 627 * HEVC support is present on first engine instance 628 * before Gen11 and on all instances afterwards. 629 */ 630 if (GRAPHICS_VER(i915) >= 11 || 631 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0)) 632 engine->uabi_capabilities |= 633 I915_VIDEO_CLASS_CAPABILITY_HEVC; 634 635 /* 636 * SFC block is present only on even logical engine 637 * instances. 638 */ 639 if ((GRAPHICS_VER(i915) >= 11 && 640 (engine->gt->info.vdbox_sfc_access & 641 BIT(engine->instance))) || 642 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0)) 643 engine->uabi_capabilities |= 644 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; 645 } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) { 646 if (GRAPHICS_VER(i915) >= 9 && 647 engine->gt->info.sfc_mask & BIT(engine->instance)) 648 engine->uabi_capabilities |= 649 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; 650 } 651 } 652 653 static void intel_setup_engine_capabilities(struct intel_gt *gt) 654 { 655 struct intel_engine_cs *engine; 656 enum intel_engine_id id; 657 658 for_each_engine(engine, gt, id) 659 __setup_engine_capabilities(engine); 660 } 661 662 /** 663 * intel_engines_release() - free the resources allocated for Command Streamers 664 * @gt: pointer to struct intel_gt 665 */ 666 void intel_engines_release(struct intel_gt *gt) 667 { 668 struct intel_engine_cs *engine; 669 enum intel_engine_id id; 670 671 /* 672 * Before we release the resources held by engine, we must be certain 673 * that the HW is no longer accessing them -- having the GPU scribble 674 * to or read from a page being used for something else causes no end 675 * of fun. 676 * 677 * The GPU should be reset by this point, but assume the worst just 678 * in case we aborted before completely initialising the engines. 679 */ 680 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 681 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 682 __intel_gt_reset(gt, ALL_ENGINES); 683 684 /* Decouple the backend; but keep the layout for late GPU resets */ 685 for_each_engine(engine, gt, id) { 686 if (!engine->release) 687 continue; 688 689 intel_wakeref_wait_for_idle(&engine->wakeref); 690 GEM_BUG_ON(intel_engine_pm_is_awake(engine)); 691 692 engine->release(engine); 693 engine->release = NULL; 694 695 memset(&engine->reset, 0, sizeof(engine->reset)); 696 } 697 } 698 699 void intel_engine_free_request_pool(struct intel_engine_cs *engine) 700 { 701 if (!engine->request_pool) 702 return; 703 704 kmem_cache_free(i915_request_slab_cache(), engine->request_pool); 705 } 706 707 void intel_engines_free(struct intel_gt *gt) 708 { 709 struct intel_engine_cs *engine; 710 enum intel_engine_id id; 711 712 /* Free the requests! dma-resv keeps fences around for an eternity */ 713 rcu_barrier(); 714 715 for_each_engine(engine, gt, id) { 716 intel_engine_free_request_pool(engine); 717 kfree(engine); 718 gt->engine[id] = NULL; 719 } 720 } 721 722 static 723 bool gen11_vdbox_has_sfc(struct intel_gt *gt, 724 unsigned int physical_vdbox, 725 unsigned int logical_vdbox, u16 vdbox_mask) 726 { 727 struct drm_i915_private *i915 = gt->i915; 728 729 /* 730 * In Gen11, only even numbered logical VDBOXes are hooked 731 * up to an SFC (Scaler & Format Converter) unit. 732 * In Gen12, Even numbered physical instance always are connected 733 * to an SFC. Odd numbered physical instances have SFC only if 734 * previous even instance is fused off. 735 * 736 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field 737 * in the fuse register that tells us whether a specific SFC is present. 738 */ 739 if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0) 740 return false; 741 else if (MEDIA_VER(i915) >= 12) 742 return (physical_vdbox % 2 == 0) || 743 !(BIT(physical_vdbox - 1) & vdbox_mask); 744 else if (MEDIA_VER(i915) == 11) 745 return logical_vdbox % 2 == 0; 746 747 return false; 748 } 749 750 static void engine_mask_apply_media_fuses(struct intel_gt *gt) 751 { 752 struct drm_i915_private *i915 = gt->i915; 753 unsigned int logical_vdbox = 0; 754 unsigned int i; 755 u32 media_fuse, fuse1; 756 u16 vdbox_mask; 757 u16 vebox_mask; 758 759 if (MEDIA_VER(gt->i915) < 11) 760 return; 761 762 /* 763 * On newer platforms the fusing register is called 'enable' and has 764 * enable semantics, while on older platforms it is called 'disable' 765 * and bits have disable semantices. 766 */ 767 media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE); 768 if (MEDIA_VER_FULL(i915) < IP_VER(12, 50)) 769 media_fuse = ~media_fuse; 770 771 vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK; 772 vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >> 773 GEN11_GT_VEBOX_DISABLE_SHIFT; 774 775 if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) { 776 fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1); 777 gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1); 778 } else { 779 gt->info.sfc_mask = ~0; 780 } 781 782 for (i = 0; i < I915_MAX_VCS; i++) { 783 if (!HAS_ENGINE(gt, _VCS(i))) { 784 vdbox_mask &= ~BIT(i); 785 continue; 786 } 787 788 if (!(BIT(i) & vdbox_mask)) { 789 gt->info.engine_mask &= ~BIT(_VCS(i)); 790 gt_dbg(gt, "vcs%u fused off\n", i); 791 continue; 792 } 793 794 if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask)) 795 gt->info.vdbox_sfc_access |= BIT(i); 796 logical_vdbox++; 797 } 798 gt_dbg(gt, "vdbox enable: %04x, instances: %04lx\n", vdbox_mask, VDBOX_MASK(gt)); 799 GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt)); 800 801 for (i = 0; i < I915_MAX_VECS; i++) { 802 if (!HAS_ENGINE(gt, _VECS(i))) { 803 vebox_mask &= ~BIT(i); 804 continue; 805 } 806 807 if (!(BIT(i) & vebox_mask)) { 808 gt->info.engine_mask &= ~BIT(_VECS(i)); 809 gt_dbg(gt, "vecs%u fused off\n", i); 810 } 811 } 812 gt_dbg(gt, "vebox enable: %04x, instances: %04lx\n", vebox_mask, VEBOX_MASK(gt)); 813 GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt)); 814 } 815 816 static void engine_mask_apply_compute_fuses(struct intel_gt *gt) 817 { 818 struct drm_i915_private *i915 = gt->i915; 819 struct intel_gt_info *info = >->info; 820 int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS; 821 unsigned long ccs_mask; 822 unsigned int i; 823 824 if (GRAPHICS_VER(i915) < 11) 825 return; 826 827 if (hweight32(CCS_MASK(gt)) <= 1) 828 return; 829 830 ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask, 831 ss_per_ccs); 832 /* 833 * If all DSS in a quadrant are fused off, the corresponding CCS 834 * engine is not available for use. 835 */ 836 for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) { 837 info->engine_mask &= ~BIT(_CCS(i)); 838 gt_dbg(gt, "ccs%u fused off\n", i); 839 } 840 } 841 842 static void engine_mask_apply_copy_fuses(struct intel_gt *gt) 843 { 844 struct drm_i915_private *i915 = gt->i915; 845 struct intel_gt_info *info = >->info; 846 unsigned long meml3_mask; 847 unsigned long quad; 848 849 if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) && 850 GRAPHICS_VER_FULL(i915) < IP_VER(12, 70))) 851 return; 852 853 meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3); 854 meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask); 855 856 /* 857 * Link Copy engines may be fused off according to meml3_mask. Each 858 * bit is a quad that houses 2 Link Copy and two Sub Copy engines. 859 */ 860 for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) { 861 unsigned int instance = quad * 2 + 1; 862 intel_engine_mask_t mask = GENMASK(_BCS(instance + 1), 863 _BCS(instance)); 864 865 if (mask & info->engine_mask) { 866 gt_dbg(gt, "bcs%u fused off\n", instance); 867 gt_dbg(gt, "bcs%u fused off\n", instance + 1); 868 869 info->engine_mask &= ~mask; 870 } 871 } 872 } 873 874 /* 875 * Determine which engines are fused off in our particular hardware. 876 * Note that we have a catch-22 situation where we need to be able to access 877 * the blitter forcewake domain to read the engine fuses, but at the same time 878 * we need to know which engines are available on the system to know which 879 * forcewake domains are present. We solve this by intializing the forcewake 880 * domains based on the full engine mask in the platform capabilities before 881 * calling this function and pruning the domains for fused-off engines 882 * afterwards. 883 */ 884 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt) 885 { 886 struct intel_gt_info *info = >->info; 887 888 GEM_BUG_ON(!info->engine_mask); 889 890 engine_mask_apply_media_fuses(gt); 891 engine_mask_apply_compute_fuses(gt); 892 engine_mask_apply_copy_fuses(gt); 893 894 /* 895 * The only use of the GSC CS is to load and communicate with the GSC 896 * FW, so we have no use for it if we don't have the FW. 897 * 898 * IMPORTANT: in cases where we don't have the GSC FW, we have a 899 * catch-22 situation that breaks media C6 due to 2 requirements: 900 * 1) once turned on, the GSC power well will not go to sleep unless the 901 * GSC FW is loaded. 902 * 2) to enable idling (which is required for media C6) we need to 903 * initialize the IDLE_MSG register for the GSC CS and do at least 1 904 * submission, which will wake up the GSC power well. 905 */ 906 if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(>->uc)) { 907 gt_notice(gt, "No GSC FW selected, disabling GSC CS and media C6\n"); 908 info->engine_mask &= ~BIT(GSC0); 909 } 910 911 return info->engine_mask; 912 } 913 914 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids, 915 u8 class, const u8 *map, u8 num_instances) 916 { 917 int i, j; 918 u8 current_logical_id = 0; 919 920 for (j = 0; j < num_instances; ++j) { 921 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) { 922 if (!HAS_ENGINE(gt, i) || 923 intel_engines[i].class != class) 924 continue; 925 926 if (intel_engines[i].instance == map[j]) { 927 logical_ids[intel_engines[i].instance] = 928 current_logical_id++; 929 break; 930 } 931 } 932 } 933 } 934 935 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class) 936 { 937 /* 938 * Logical to physical mapping is needed for proper support 939 * to split-frame feature. 940 */ 941 if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) { 942 const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 }; 943 944 populate_logical_ids(gt, logical_ids, class, 945 map, ARRAY_SIZE(map)); 946 } else { 947 int i; 948 u8 map[MAX_ENGINE_INSTANCE + 1]; 949 950 for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i) 951 map[i] = i; 952 populate_logical_ids(gt, logical_ids, class, 953 map, ARRAY_SIZE(map)); 954 } 955 } 956 957 /** 958 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers 959 * @gt: pointer to struct intel_gt 960 * 961 * Return: non-zero if the initialization failed. 962 */ 963 int intel_engines_init_mmio(struct intel_gt *gt) 964 { 965 struct drm_i915_private *i915 = gt->i915; 966 const unsigned int engine_mask = init_engine_mask(gt); 967 unsigned int mask = 0; 968 unsigned int i, class; 969 u8 logical_ids[MAX_ENGINE_INSTANCE + 1]; 970 int err; 971 972 drm_WARN_ON(&i915->drm, engine_mask == 0); 973 drm_WARN_ON(&i915->drm, engine_mask & 974 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES)); 975 976 if (i915_inject_probe_failure(i915)) 977 return -ENODEV; 978 979 for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) { 980 setup_logical_ids(gt, logical_ids, class); 981 982 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) { 983 u8 instance = intel_engines[i].instance; 984 985 if (intel_engines[i].class != class || 986 !HAS_ENGINE(gt, i)) 987 continue; 988 989 err = intel_engine_setup(gt, i, 990 logical_ids[instance]); 991 if (err) 992 goto cleanup; 993 994 mask |= BIT(i); 995 } 996 } 997 998 /* 999 * Catch failures to update intel_engines table when the new engines 1000 * are added to the driver by a warning and disabling the forgotten 1001 * engines. 1002 */ 1003 if (drm_WARN_ON(&i915->drm, mask != engine_mask)) 1004 gt->info.engine_mask = mask; 1005 1006 gt->info.num_engines = hweight32(mask); 1007 1008 intel_gt_check_and_clear_faults(gt); 1009 1010 intel_setup_engine_capabilities(gt); 1011 1012 intel_uncore_prune_engine_fw_domains(gt->uncore, gt); 1013 1014 return 0; 1015 1016 cleanup: 1017 intel_engines_free(gt); 1018 return err; 1019 } 1020 1021 void intel_engine_init_execlists(struct intel_engine_cs *engine) 1022 { 1023 struct intel_engine_execlists * const execlists = &engine->execlists; 1024 1025 execlists->port_mask = 1; 1026 GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists))); 1027 GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS); 1028 1029 memset(execlists->pending, 0, sizeof(execlists->pending)); 1030 execlists->active = 1031 memset(execlists->inflight, 0, sizeof(execlists->inflight)); 1032 } 1033 1034 static void cleanup_status_page(struct intel_engine_cs *engine) 1035 { 1036 struct i915_vma *vma; 1037 1038 /* Prevent writes into HWSP after returning the page to the system */ 1039 intel_engine_set_hwsp_writemask(engine, ~0u); 1040 1041 vma = fetch_and_zero(&engine->status_page.vma); 1042 if (!vma) 1043 return; 1044 1045 if (!HWS_NEEDS_PHYSICAL(engine->i915)) 1046 i915_vma_unpin(vma); 1047 1048 i915_gem_object_unpin_map(vma->obj); 1049 i915_gem_object_put(vma->obj); 1050 } 1051 1052 static int pin_ggtt_status_page(struct intel_engine_cs *engine, 1053 struct i915_gem_ww_ctx *ww, 1054 struct i915_vma *vma) 1055 { 1056 unsigned int flags; 1057 1058 if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt)) 1059 /* 1060 * On g33, we cannot place HWS above 256MiB, so 1061 * restrict its pinning to the low mappable arena. 1062 * Though this restriction is not documented for 1063 * gen4, gen5, or byt, they also behave similarly 1064 * and hang if the HWS is placed at the top of the 1065 * GTT. To generalise, it appears that all !llc 1066 * platforms have issues with us placing the HWS 1067 * above the mappable region (even though we never 1068 * actually map it). 1069 */ 1070 flags = PIN_MAPPABLE; 1071 else 1072 flags = PIN_HIGH; 1073 1074 return i915_ggtt_pin(vma, ww, 0, flags); 1075 } 1076 1077 static int init_status_page(struct intel_engine_cs *engine) 1078 { 1079 struct drm_i915_gem_object *obj; 1080 struct i915_gem_ww_ctx ww; 1081 struct i915_vma *vma; 1082 void *vaddr; 1083 int ret; 1084 1085 INIT_LIST_HEAD(&engine->status_page.timelines); 1086 1087 /* 1088 * Though the HWS register does support 36bit addresses, historically 1089 * we have had hangs and corruption reported due to wild writes if 1090 * the HWS is placed above 4G. We only allow objects to be allocated 1091 * in GFP_DMA32 for i965, and no earlier physical address users had 1092 * access to more than 4G. 1093 */ 1094 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE); 1095 if (IS_ERR(obj)) { 1096 gt_err(engine->gt, "Failed to allocate status page\n"); 1097 return PTR_ERR(obj); 1098 } 1099 1100 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC); 1101 1102 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); 1103 if (IS_ERR(vma)) { 1104 ret = PTR_ERR(vma); 1105 goto err_put; 1106 } 1107 1108 i915_gem_ww_ctx_init(&ww, true); 1109 retry: 1110 ret = i915_gem_object_lock(obj, &ww); 1111 if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915)) 1112 ret = pin_ggtt_status_page(engine, &ww, vma); 1113 if (ret) 1114 goto err; 1115 1116 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB); 1117 if (IS_ERR(vaddr)) { 1118 ret = PTR_ERR(vaddr); 1119 goto err_unpin; 1120 } 1121 1122 engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE); 1123 engine->status_page.vma = vma; 1124 1125 err_unpin: 1126 if (ret) 1127 i915_vma_unpin(vma); 1128 err: 1129 if (ret == -EDEADLK) { 1130 ret = i915_gem_ww_ctx_backoff(&ww); 1131 if (!ret) 1132 goto retry; 1133 } 1134 i915_gem_ww_ctx_fini(&ww); 1135 err_put: 1136 if (ret) 1137 i915_gem_object_put(obj); 1138 return ret; 1139 } 1140 1141 static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine) 1142 { 1143 static const union intel_engine_tlb_inv_reg gen8_regs[] = { 1144 [RENDER_CLASS].reg = GEN8_RTCR, 1145 [VIDEO_DECODE_CLASS].reg = GEN8_M1TCR, /* , GEN8_M2TCR */ 1146 [VIDEO_ENHANCEMENT_CLASS].reg = GEN8_VTCR, 1147 [COPY_ENGINE_CLASS].reg = GEN8_BTCR, 1148 }; 1149 static const union intel_engine_tlb_inv_reg gen12_regs[] = { 1150 [RENDER_CLASS].reg = GEN12_GFX_TLB_INV_CR, 1151 [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR, 1152 [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR, 1153 [COPY_ENGINE_CLASS].reg = GEN12_BLT_TLB_INV_CR, 1154 [COMPUTE_CLASS].reg = GEN12_COMPCTX_TLB_INV_CR, 1155 }; 1156 static const union intel_engine_tlb_inv_reg xehp_regs[] = { 1157 [RENDER_CLASS].mcr_reg = XEHP_GFX_TLB_INV_CR, 1158 [VIDEO_DECODE_CLASS].mcr_reg = XEHP_VD_TLB_INV_CR, 1159 [VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR, 1160 [COPY_ENGINE_CLASS].mcr_reg = XEHP_BLT_TLB_INV_CR, 1161 [COMPUTE_CLASS].mcr_reg = XEHP_COMPCTX_TLB_INV_CR, 1162 }; 1163 static const union intel_engine_tlb_inv_reg xelpmp_regs[] = { 1164 [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR, 1165 [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR, 1166 [OTHER_CLASS].reg = XELPMP_GSC_TLB_INV_CR, 1167 }; 1168 struct drm_i915_private *i915 = engine->i915; 1169 const unsigned int instance = engine->instance; 1170 const unsigned int class = engine->class; 1171 const union intel_engine_tlb_inv_reg *regs; 1172 union intel_engine_tlb_inv_reg reg; 1173 unsigned int num = 0; 1174 u32 val; 1175 1176 /* 1177 * New platforms should not be added with catch-all-newer (>=) 1178 * condition so that any later platform added triggers the below warning 1179 * and in turn mandates a human cross-check of whether the invalidation 1180 * flows have compatible semantics. 1181 * 1182 * For instance with the 11.00 -> 12.00 transition three out of five 1183 * respective engine registers were moved to masked type. Then after the 1184 * 12.00 -> 12.50 transition multi cast handling is required too. 1185 */ 1186 1187 if (engine->gt->type == GT_MEDIA) { 1188 if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) { 1189 regs = xelpmp_regs; 1190 num = ARRAY_SIZE(xelpmp_regs); 1191 } 1192 } else { 1193 if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) || 1194 GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) || 1195 GRAPHICS_VER_FULL(i915) == IP_VER(12, 50) || 1196 GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) { 1197 regs = xehp_regs; 1198 num = ARRAY_SIZE(xehp_regs); 1199 } else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) || 1200 GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) { 1201 regs = gen12_regs; 1202 num = ARRAY_SIZE(gen12_regs); 1203 } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) { 1204 regs = gen8_regs; 1205 num = ARRAY_SIZE(gen8_regs); 1206 } else if (GRAPHICS_VER(i915) < 8) { 1207 return 0; 1208 } 1209 } 1210 1211 if (gt_WARN_ONCE(engine->gt, !num, 1212 "Platform does not implement TLB invalidation!")) 1213 return -ENODEV; 1214 1215 if (gt_WARN_ON_ONCE(engine->gt, 1216 class >= num || 1217 (!regs[class].reg.reg && 1218 !regs[class].mcr_reg.reg))) 1219 return -ERANGE; 1220 1221 reg = regs[class]; 1222 1223 if (regs == xelpmp_regs && class == OTHER_CLASS) { 1224 /* 1225 * There's only a single GSC instance, but it uses register bit 1226 * 1 instead of either 0 or OTHER_GSC_INSTANCE. 1227 */ 1228 GEM_WARN_ON(instance != OTHER_GSC_INSTANCE); 1229 val = 1; 1230 } else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) { 1231 reg.reg = GEN8_M2TCR; 1232 val = 0; 1233 } else { 1234 val = instance; 1235 } 1236 1237 val = BIT(val); 1238 1239 engine->tlb_inv.mcr = regs == xehp_regs; 1240 engine->tlb_inv.reg = reg; 1241 engine->tlb_inv.done = val; 1242 1243 if (GRAPHICS_VER(i915) >= 12 && 1244 (engine->class == VIDEO_DECODE_CLASS || 1245 engine->class == VIDEO_ENHANCEMENT_CLASS || 1246 engine->class == COMPUTE_CLASS || 1247 engine->class == OTHER_CLASS)) 1248 engine->tlb_inv.request = _MASKED_BIT_ENABLE(val); 1249 else 1250 engine->tlb_inv.request = val; 1251 1252 return 0; 1253 } 1254 1255 static int engine_setup_common(struct intel_engine_cs *engine) 1256 { 1257 int err; 1258 1259 init_llist_head(&engine->barrier_tasks); 1260 1261 err = intel_engine_init_tlb_invalidation(engine); 1262 if (err) 1263 return err; 1264 1265 err = init_status_page(engine); 1266 if (err) 1267 return err; 1268 1269 engine->breadcrumbs = intel_breadcrumbs_create(engine); 1270 if (!engine->breadcrumbs) { 1271 err = -ENOMEM; 1272 goto err_status; 1273 } 1274 1275 engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL); 1276 if (!engine->sched_engine) { 1277 err = -ENOMEM; 1278 goto err_sched_engine; 1279 } 1280 engine->sched_engine->private_data = engine; 1281 1282 err = intel_engine_init_cmd_parser(engine); 1283 if (err) 1284 goto err_cmd_parser; 1285 1286 intel_engine_init_execlists(engine); 1287 intel_engine_init__pm(engine); 1288 intel_engine_init_retire(engine); 1289 1290 /* Use the whole device by default */ 1291 engine->sseu = 1292 intel_sseu_from_device_info(&engine->gt->info.sseu); 1293 1294 intel_engine_init_workarounds(engine); 1295 intel_engine_init_whitelist(engine); 1296 intel_engine_init_ctx_wa(engine); 1297 1298 if (GRAPHICS_VER(engine->i915) >= 12) 1299 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO; 1300 1301 return 0; 1302 1303 err_cmd_parser: 1304 i915_sched_engine_put(engine->sched_engine); 1305 err_sched_engine: 1306 intel_breadcrumbs_put(engine->breadcrumbs); 1307 err_status: 1308 cleanup_status_page(engine); 1309 return err; 1310 } 1311 1312 struct measure_breadcrumb { 1313 struct i915_request rq; 1314 struct intel_ring ring; 1315 u32 cs[2048]; 1316 }; 1317 1318 static int measure_breadcrumb_dw(struct intel_context *ce) 1319 { 1320 struct intel_engine_cs *engine = ce->engine; 1321 struct measure_breadcrumb *frame; 1322 int dw; 1323 1324 GEM_BUG_ON(!engine->gt->scratch); 1325 1326 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1327 if (!frame) 1328 return -ENOMEM; 1329 1330 frame->rq.i915 = engine->i915; 1331 frame->rq.engine = engine; 1332 frame->rq.context = ce; 1333 rcu_assign_pointer(frame->rq.timeline, ce->timeline); 1334 frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno; 1335 1336 frame->ring.vaddr = frame->cs; 1337 frame->ring.size = sizeof(frame->cs); 1338 frame->ring.wrap = 1339 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size); 1340 frame->ring.effective_size = frame->ring.size; 1341 intel_ring_update_space(&frame->ring); 1342 frame->rq.ring = &frame->ring; 1343 1344 mutex_lock(&ce->timeline->mutex); 1345 spin_lock_irq(&engine->sched_engine->lock); 1346 1347 dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs; 1348 1349 spin_unlock_irq(&engine->sched_engine->lock); 1350 mutex_unlock(&ce->timeline->mutex); 1351 1352 GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */ 1353 1354 kfree(frame); 1355 return dw; 1356 } 1357 1358 struct intel_context * 1359 intel_engine_create_pinned_context(struct intel_engine_cs *engine, 1360 struct i915_address_space *vm, 1361 unsigned int ring_size, 1362 unsigned int hwsp, 1363 struct lock_class_key *key, 1364 const char *name) 1365 { 1366 struct intel_context *ce; 1367 int err; 1368 1369 ce = intel_context_create(engine); 1370 if (IS_ERR(ce)) 1371 return ce; 1372 1373 __set_bit(CONTEXT_BARRIER_BIT, &ce->flags); 1374 ce->timeline = page_pack_bits(NULL, hwsp); 1375 ce->ring = NULL; 1376 ce->ring_size = ring_size; 1377 1378 i915_vm_put(ce->vm); 1379 ce->vm = i915_vm_get(vm); 1380 1381 err = intel_context_pin(ce); /* perma-pin so it is always available */ 1382 if (err) { 1383 intel_context_put(ce); 1384 return ERR_PTR(err); 1385 } 1386 1387 list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list); 1388 1389 /* 1390 * Give our perma-pinned kernel timelines a separate lockdep class, 1391 * so that we can use them from within the normal user timelines 1392 * should we need to inject GPU operations during their request 1393 * construction. 1394 */ 1395 lockdep_set_class_and_name(&ce->timeline->mutex, key, name); 1396 1397 return ce; 1398 } 1399 1400 void intel_engine_destroy_pinned_context(struct intel_context *ce) 1401 { 1402 struct intel_engine_cs *engine = ce->engine; 1403 struct i915_vma *hwsp = engine->status_page.vma; 1404 1405 GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp); 1406 1407 mutex_lock(&hwsp->vm->mutex); 1408 list_del(&ce->timeline->engine_link); 1409 mutex_unlock(&hwsp->vm->mutex); 1410 1411 list_del(&ce->pinned_contexts_link); 1412 intel_context_unpin(ce); 1413 intel_context_put(ce); 1414 } 1415 1416 static struct intel_context * 1417 create_ggtt_bind_context(struct intel_engine_cs *engine) 1418 { 1419 static struct lock_class_key kernel; 1420 1421 /* 1422 * MI_UPDATE_GTT can insert up to 511 PTE entries and there could be multiple 1423 * bind requets at a time so get a bigger ring. 1424 */ 1425 return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_512K, 1426 I915_GEM_HWS_GGTT_BIND_ADDR, 1427 &kernel, "ggtt_bind_context"); 1428 } 1429 1430 static struct intel_context * 1431 create_kernel_context(struct intel_engine_cs *engine) 1432 { 1433 static struct lock_class_key kernel; 1434 1435 return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K, 1436 I915_GEM_HWS_SEQNO_ADDR, 1437 &kernel, "kernel_context"); 1438 } 1439 1440 /* 1441 * engine_init_common - initialize engine state which might require hw access 1442 * @engine: Engine to initialize. 1443 * 1444 * Initializes @engine@ structure members shared between legacy and execlists 1445 * submission modes which do require hardware access. 1446 * 1447 * Typcally done at later stages of submission mode specific engine setup. 1448 * 1449 * Returns zero on success or an error code on failure. 1450 */ 1451 static int engine_init_common(struct intel_engine_cs *engine) 1452 { 1453 struct intel_context *ce, *bce = NULL; 1454 int ret; 1455 1456 engine->set_default_submission(engine); 1457 1458 /* 1459 * We may need to do things with the shrinker which 1460 * require us to immediately switch back to the default 1461 * context. This can cause a problem as pinning the 1462 * default context also requires GTT space which may not 1463 * be available. To avoid this we always pin the default 1464 * context. 1465 */ 1466 ce = create_kernel_context(engine); 1467 if (IS_ERR(ce)) 1468 return PTR_ERR(ce); 1469 /* 1470 * Create a separate pinned context for GGTT update with blitter engine 1471 * if a platform require such service. MI_UPDATE_GTT works on other 1472 * engines as well but BCS should be less busy engine so pick that for 1473 * GGTT updates. 1474 */ 1475 if (i915_ggtt_require_binder(engine->i915) && engine->id == BCS0) { 1476 bce = create_ggtt_bind_context(engine); 1477 if (IS_ERR(bce)) { 1478 ret = PTR_ERR(bce); 1479 goto err_ce_context; 1480 } 1481 } 1482 1483 ret = measure_breadcrumb_dw(ce); 1484 if (ret < 0) 1485 goto err_bce_context; 1486 1487 engine->emit_fini_breadcrumb_dw = ret; 1488 engine->kernel_context = ce; 1489 engine->bind_context = bce; 1490 1491 return 0; 1492 1493 err_bce_context: 1494 if (bce) 1495 intel_engine_destroy_pinned_context(bce); 1496 err_ce_context: 1497 intel_engine_destroy_pinned_context(ce); 1498 return ret; 1499 } 1500 1501 int intel_engines_init(struct intel_gt *gt) 1502 { 1503 int (*setup)(struct intel_engine_cs *engine); 1504 struct intel_engine_cs *engine; 1505 enum intel_engine_id id; 1506 int err; 1507 1508 if (intel_uc_uses_guc_submission(>->uc)) { 1509 gt->submission_method = INTEL_SUBMISSION_GUC; 1510 setup = intel_guc_submission_setup; 1511 } else if (HAS_EXECLISTS(gt->i915)) { 1512 gt->submission_method = INTEL_SUBMISSION_ELSP; 1513 setup = intel_execlists_submission_setup; 1514 } else { 1515 gt->submission_method = INTEL_SUBMISSION_RING; 1516 setup = intel_ring_submission_setup; 1517 } 1518 1519 for_each_engine(engine, gt, id) { 1520 err = engine_setup_common(engine); 1521 if (err) 1522 return err; 1523 1524 err = setup(engine); 1525 if (err) { 1526 intel_engine_cleanup_common(engine); 1527 return err; 1528 } 1529 1530 /* The backend should now be responsible for cleanup */ 1531 GEM_BUG_ON(engine->release == NULL); 1532 1533 err = engine_init_common(engine); 1534 if (err) 1535 return err; 1536 1537 intel_engine_add_user(engine); 1538 } 1539 1540 return 0; 1541 } 1542 1543 /** 1544 * intel_engine_cleanup_common - cleans up the engine state created by 1545 * the common initiailizers. 1546 * @engine: Engine to cleanup. 1547 * 1548 * This cleans up everything created by the common helpers. 1549 */ 1550 void intel_engine_cleanup_common(struct intel_engine_cs *engine) 1551 { 1552 GEM_BUG_ON(!list_empty(&engine->sched_engine->requests)); 1553 1554 i915_sched_engine_put(engine->sched_engine); 1555 intel_breadcrumbs_put(engine->breadcrumbs); 1556 1557 intel_engine_fini_retire(engine); 1558 intel_engine_cleanup_cmd_parser(engine); 1559 1560 if (engine->default_state) 1561 fput(engine->default_state); 1562 1563 if (engine->kernel_context) 1564 intel_engine_destroy_pinned_context(engine->kernel_context); 1565 1566 if (engine->bind_context) 1567 intel_engine_destroy_pinned_context(engine->bind_context); 1568 1569 1570 GEM_BUG_ON(!llist_empty(&engine->barrier_tasks)); 1571 cleanup_status_page(engine); 1572 1573 intel_wa_list_free(&engine->ctx_wa_list); 1574 intel_wa_list_free(&engine->wa_list); 1575 intel_wa_list_free(&engine->whitelist); 1576 } 1577 1578 /** 1579 * intel_engine_resume - re-initializes the HW state of the engine 1580 * @engine: Engine to resume. 1581 * 1582 * Returns zero on success or an error code on failure. 1583 */ 1584 int intel_engine_resume(struct intel_engine_cs *engine) 1585 { 1586 intel_engine_apply_workarounds(engine); 1587 intel_engine_apply_whitelist(engine); 1588 1589 return engine->resume(engine); 1590 } 1591 1592 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine) 1593 { 1594 struct drm_i915_private *i915 = engine->i915; 1595 1596 u64 acthd; 1597 1598 if (GRAPHICS_VER(i915) >= 8) 1599 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW); 1600 else if (GRAPHICS_VER(i915) >= 4) 1601 acthd = ENGINE_READ(engine, RING_ACTHD); 1602 else 1603 acthd = ENGINE_READ(engine, ACTHD); 1604 1605 return acthd; 1606 } 1607 1608 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine) 1609 { 1610 u64 bbaddr; 1611 1612 if (GRAPHICS_VER(engine->i915) >= 8) 1613 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW); 1614 else 1615 bbaddr = ENGINE_READ(engine, RING_BBADDR); 1616 1617 return bbaddr; 1618 } 1619 1620 static unsigned long stop_timeout(const struct intel_engine_cs *engine) 1621 { 1622 if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */ 1623 return 0; 1624 1625 /* 1626 * If we are doing a normal GPU reset, we can take our time and allow 1627 * the engine to quiesce. We've stopped submission to the engine, and 1628 * if we wait long enough an innocent context should complete and 1629 * leave the engine idle. So they should not be caught unaware by 1630 * the forthcoming GPU reset (which usually follows the stop_cs)! 1631 */ 1632 return READ_ONCE(engine->props.stop_timeout_ms); 1633 } 1634 1635 static int __intel_engine_stop_cs(struct intel_engine_cs *engine, 1636 int fast_timeout_us, 1637 int slow_timeout_ms) 1638 { 1639 struct intel_uncore *uncore = engine->uncore; 1640 const i915_reg_t mode = RING_MI_MODE(engine->mmio_base); 1641 int err; 1642 1643 intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING)); 1644 1645 /* 1646 * Wa_22011802037: Prior to doing a reset, ensure CS is 1647 * stopped, set ring stop bit and prefetch disable bit to halt CS 1648 */ 1649 if (intel_engine_reset_needs_wa_22011802037(engine->gt)) 1650 intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base), 1651 _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE)); 1652 1653 err = __intel_wait_for_register_fw(engine->uncore, mode, 1654 MODE_IDLE, MODE_IDLE, 1655 fast_timeout_us, 1656 slow_timeout_ms, 1657 NULL); 1658 1659 /* A final mmio read to let GPU writes be hopefully flushed to memory */ 1660 intel_uncore_posting_read_fw(uncore, mode); 1661 return err; 1662 } 1663 1664 int intel_engine_stop_cs(struct intel_engine_cs *engine) 1665 { 1666 int err = 0; 1667 1668 if (GRAPHICS_VER(engine->i915) < 3) 1669 return -ENODEV; 1670 1671 ENGINE_TRACE(engine, "\n"); 1672 /* 1673 * TODO: Find out why occasionally stopping the CS times out. Seen 1674 * especially with gem_eio tests. 1675 * 1676 * Occasionally trying to stop the cs times out, but does not adversely 1677 * affect functionality. The timeout is set as a config parameter that 1678 * defaults to 100ms. In most cases the follow up operation is to wait 1679 * for pending MI_FORCE_WAKES. The assumption is that this timeout is 1680 * sufficient for any pending MI_FORCEWAKEs to complete. Once root 1681 * caused, the caller must check and handle the return from this 1682 * function. 1683 */ 1684 if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) { 1685 ENGINE_TRACE(engine, 1686 "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n", 1687 ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR, 1688 ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR); 1689 1690 /* 1691 * Sometimes we observe that the idle flag is not 1692 * set even though the ring is empty. So double 1693 * check before giving up. 1694 */ 1695 if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) != 1696 (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR)) 1697 err = -ETIMEDOUT; 1698 } 1699 1700 return err; 1701 } 1702 1703 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine) 1704 { 1705 ENGINE_TRACE(engine, "\n"); 1706 1707 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); 1708 } 1709 1710 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine) 1711 { 1712 static const i915_reg_t _reg[I915_NUM_ENGINES] = { 1713 [RCS0] = MSG_IDLE_CS, 1714 [BCS0] = MSG_IDLE_BCS, 1715 [VCS0] = MSG_IDLE_VCS0, 1716 [VCS1] = MSG_IDLE_VCS1, 1717 [VCS2] = MSG_IDLE_VCS2, 1718 [VCS3] = MSG_IDLE_VCS3, 1719 [VCS4] = MSG_IDLE_VCS4, 1720 [VCS5] = MSG_IDLE_VCS5, 1721 [VCS6] = MSG_IDLE_VCS6, 1722 [VCS7] = MSG_IDLE_VCS7, 1723 [VECS0] = MSG_IDLE_VECS0, 1724 [VECS1] = MSG_IDLE_VECS1, 1725 [VECS2] = MSG_IDLE_VECS2, 1726 [VECS3] = MSG_IDLE_VECS3, 1727 [CCS0] = MSG_IDLE_CS, 1728 [CCS1] = MSG_IDLE_CS, 1729 [CCS2] = MSG_IDLE_CS, 1730 [CCS3] = MSG_IDLE_CS, 1731 }; 1732 u32 val; 1733 1734 if (!_reg[engine->id].reg) 1735 return 0; 1736 1737 val = intel_uncore_read(engine->uncore, _reg[engine->id]); 1738 1739 /* bits[29:25] & bits[13:9] >> shift */ 1740 return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT; 1741 } 1742 1743 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask) 1744 { 1745 int ret; 1746 1747 /* Ensure GPM receives fw up/down after CS is stopped */ 1748 udelay(1); 1749 1750 /* Wait for forcewake request to complete in GPM */ 1751 ret = __intel_wait_for_register_fw(gt->uncore, 1752 GEN9_PWRGT_DOMAIN_STATUS, 1753 fw_mask, fw_mask, 5000, 0, NULL); 1754 1755 /* Ensure CS receives fw ack from GPM */ 1756 udelay(1); 1757 1758 if (ret) 1759 GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret); 1760 } 1761 1762 /* 1763 * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any 1764 * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The 1765 * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the 1766 * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we 1767 * are concerned only with the gt reset here, we use a logical OR of pending 1768 * forcewakeups from all reset domains and then wait for them to complete by 1769 * querying PWRGT_DOMAIN_STATUS. 1770 */ 1771 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine) 1772 { 1773 u32 fw_pending = __cs_pending_mi_force_wakes(engine); 1774 1775 if (fw_pending) 1776 __gpm_wait_for_fw_complete(engine->gt, fw_pending); 1777 } 1778 1779 /* NB: please notice the memset */ 1780 void intel_engine_get_instdone(const struct intel_engine_cs *engine, 1781 struct intel_instdone *instdone) 1782 { 1783 struct drm_i915_private *i915 = engine->i915; 1784 struct intel_uncore *uncore = engine->uncore; 1785 u32 mmio_base = engine->mmio_base; 1786 int slice; 1787 int subslice; 1788 int iter; 1789 1790 memset(instdone, 0, sizeof(*instdone)); 1791 1792 if (GRAPHICS_VER(i915) >= 8) { 1793 instdone->instdone = 1794 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1795 1796 if (engine->id != RCS0) 1797 return; 1798 1799 instdone->slice_common = 1800 intel_uncore_read(uncore, GEN7_SC_INSTDONE); 1801 if (GRAPHICS_VER(i915) >= 12) { 1802 instdone->slice_common_extra[0] = 1803 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA); 1804 instdone->slice_common_extra[1] = 1805 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2); 1806 } 1807 1808 for_each_ss_steering(iter, engine->gt, slice, subslice) { 1809 instdone->sampler[slice][subslice] = 1810 intel_gt_mcr_read(engine->gt, 1811 GEN8_SAMPLER_INSTDONE, 1812 slice, subslice); 1813 instdone->row[slice][subslice] = 1814 intel_gt_mcr_read(engine->gt, 1815 GEN8_ROW_INSTDONE, 1816 slice, subslice); 1817 } 1818 1819 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) { 1820 for_each_ss_steering(iter, engine->gt, slice, subslice) 1821 instdone->geom_svg[slice][subslice] = 1822 intel_gt_mcr_read(engine->gt, 1823 XEHPG_INSTDONE_GEOM_SVG, 1824 slice, subslice); 1825 } 1826 } else if (GRAPHICS_VER(i915) >= 7) { 1827 instdone->instdone = 1828 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1829 1830 if (engine->id != RCS0) 1831 return; 1832 1833 instdone->slice_common = 1834 intel_uncore_read(uncore, GEN7_SC_INSTDONE); 1835 instdone->sampler[0][0] = 1836 intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE); 1837 instdone->row[0][0] = 1838 intel_uncore_read(uncore, GEN7_ROW_INSTDONE); 1839 } else if (GRAPHICS_VER(i915) >= 4) { 1840 instdone->instdone = 1841 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1842 if (engine->id == RCS0) 1843 /* HACK: Using the wrong struct member */ 1844 instdone->slice_common = 1845 intel_uncore_read(uncore, GEN4_INSTDONE1); 1846 } else { 1847 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE); 1848 } 1849 } 1850 1851 static bool ring_is_idle(struct intel_engine_cs *engine) 1852 { 1853 bool idle = true; 1854 1855 if (I915_SELFTEST_ONLY(!engine->mmio_base)) 1856 return true; 1857 1858 if (!intel_engine_pm_get_if_awake(engine)) 1859 return true; 1860 1861 /* First check that no commands are left in the ring */ 1862 if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) != 1863 (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR)) 1864 idle = false; 1865 1866 /* No bit for gen2, so assume the CS parser is idle */ 1867 if (GRAPHICS_VER(engine->i915) > 2 && 1868 !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE)) 1869 idle = false; 1870 1871 intel_engine_pm_put(engine); 1872 1873 return idle; 1874 } 1875 1876 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync) 1877 { 1878 struct tasklet_struct *t = &engine->sched_engine->tasklet; 1879 1880 if (!t->callback) 1881 return; 1882 1883 local_bh_disable(); 1884 if (tasklet_trylock(t)) { 1885 /* Must wait for any GPU reset in progress. */ 1886 if (__tasklet_is_enabled(t)) 1887 t->callback(t); 1888 tasklet_unlock(t); 1889 } 1890 local_bh_enable(); 1891 1892 /* Synchronise and wait for the tasklet on another CPU */ 1893 if (sync) 1894 tasklet_unlock_wait(t); 1895 } 1896 1897 /** 1898 * intel_engine_is_idle() - Report if the engine has finished process all work 1899 * @engine: the intel_engine_cs 1900 * 1901 * Return true if there are no requests pending, nothing left to be submitted 1902 * to hardware, and that the engine is idle. 1903 */ 1904 bool intel_engine_is_idle(struct intel_engine_cs *engine) 1905 { 1906 /* More white lies, if wedged, hw state is inconsistent */ 1907 if (intel_gt_is_wedged(engine->gt)) 1908 return true; 1909 1910 if (!intel_engine_pm_is_awake(engine)) 1911 return true; 1912 1913 /* Waiting to drain ELSP? */ 1914 intel_synchronize_hardirq(engine->i915); 1915 intel_engine_flush_submission(engine); 1916 1917 /* ELSP is empty, but there are ready requests? E.g. after reset */ 1918 if (!i915_sched_engine_is_empty(engine->sched_engine)) 1919 return false; 1920 1921 /* Ring stopped? */ 1922 return ring_is_idle(engine); 1923 } 1924 1925 bool intel_engines_are_idle(struct intel_gt *gt) 1926 { 1927 struct intel_engine_cs *engine; 1928 enum intel_engine_id id; 1929 1930 /* 1931 * If the driver is wedged, HW state may be very inconsistent and 1932 * report that it is still busy, even though we have stopped using it. 1933 */ 1934 if (intel_gt_is_wedged(gt)) 1935 return true; 1936 1937 /* Already parked (and passed an idleness test); must still be idle */ 1938 if (!READ_ONCE(gt->awake)) 1939 return true; 1940 1941 for_each_engine(engine, gt, id) { 1942 if (!intel_engine_is_idle(engine)) 1943 return false; 1944 } 1945 1946 return true; 1947 } 1948 1949 bool intel_engine_irq_enable(struct intel_engine_cs *engine) 1950 { 1951 if (!engine->irq_enable) 1952 return false; 1953 1954 /* Caller disables interrupts */ 1955 spin_lock(engine->gt->irq_lock); 1956 engine->irq_enable(engine); 1957 spin_unlock(engine->gt->irq_lock); 1958 1959 return true; 1960 } 1961 1962 void intel_engine_irq_disable(struct intel_engine_cs *engine) 1963 { 1964 if (!engine->irq_disable) 1965 return; 1966 1967 /* Caller disables interrupts */ 1968 spin_lock(engine->gt->irq_lock); 1969 engine->irq_disable(engine); 1970 spin_unlock(engine->gt->irq_lock); 1971 } 1972 1973 void intel_engines_reset_default_submission(struct intel_gt *gt) 1974 { 1975 struct intel_engine_cs *engine; 1976 enum intel_engine_id id; 1977 1978 for_each_engine(engine, gt, id) { 1979 if (engine->sanitize) 1980 engine->sanitize(engine); 1981 1982 engine->set_default_submission(engine); 1983 } 1984 } 1985 1986 bool intel_engine_can_store_dword(struct intel_engine_cs *engine) 1987 { 1988 switch (GRAPHICS_VER(engine->i915)) { 1989 case 2: 1990 return false; /* uses physical not virtual addresses */ 1991 case 3: 1992 /* maybe only uses physical not virtual addresses */ 1993 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915)); 1994 case 4: 1995 return !IS_I965G(engine->i915); /* who knows! */ 1996 case 6: 1997 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */ 1998 default: 1999 return true; 2000 } 2001 } 2002 2003 static struct intel_timeline *get_timeline(struct i915_request *rq) 2004 { 2005 struct intel_timeline *tl; 2006 2007 /* 2008 * Even though we are holding the engine->sched_engine->lock here, there 2009 * is no control over the submission queue per-se and we are 2010 * inspecting the active state at a random point in time, with an 2011 * unknown queue. Play safe and make sure the timeline remains valid. 2012 * (Only being used for pretty printing, one extra kref shouldn't 2013 * cause a camel stampede!) 2014 */ 2015 rcu_read_lock(); 2016 tl = rcu_dereference(rq->timeline); 2017 if (!kref_get_unless_zero(&tl->kref)) 2018 tl = NULL; 2019 rcu_read_unlock(); 2020 2021 return tl; 2022 } 2023 2024 static int print_ring(char *buf, int sz, struct i915_request *rq) 2025 { 2026 int len = 0; 2027 2028 if (!i915_request_signaled(rq)) { 2029 struct intel_timeline *tl = get_timeline(rq); 2030 2031 len = scnprintf(buf, sz, 2032 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ", 2033 i915_ggtt_offset(rq->ring->vma), 2034 tl ? tl->hwsp_offset : 0, 2035 hwsp_seqno(rq), 2036 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context), 2037 1000 * 1000)); 2038 2039 if (tl) 2040 intel_timeline_put(tl); 2041 } 2042 2043 return len; 2044 } 2045 2046 static void hexdump(struct drm_printer *m, const void *buf, size_t len) 2047 { 2048 const size_t rowsize = 8 * sizeof(u32); 2049 const void *prev = NULL; 2050 bool skip = false; 2051 size_t pos; 2052 2053 for (pos = 0; pos < len; pos += rowsize) { 2054 char line[128]; 2055 2056 if (prev && !memcmp(prev, buf + pos, rowsize)) { 2057 if (!skip) { 2058 drm_printf(m, "*\n"); 2059 skip = true; 2060 } 2061 continue; 2062 } 2063 2064 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos, 2065 rowsize, sizeof(u32), 2066 line, sizeof(line), 2067 false) >= sizeof(line)); 2068 drm_printf(m, "[%04zx] %s\n", pos, line); 2069 2070 prev = buf + pos; 2071 skip = false; 2072 } 2073 } 2074 2075 static const char *repr_timer(const struct timer_list *t) 2076 { 2077 if (!READ_ONCE(t->expires)) 2078 return "inactive"; 2079 2080 if (timer_pending(t)) 2081 return "active"; 2082 2083 return "expired"; 2084 } 2085 2086 static void intel_engine_print_registers(struct intel_engine_cs *engine, 2087 struct drm_printer *m) 2088 { 2089 struct drm_i915_private *i915 = engine->i915; 2090 struct intel_engine_execlists * const execlists = &engine->execlists; 2091 u64 addr; 2092 2093 if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7)) 2094 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID)); 2095 if (HAS_EXECLISTS(i915)) { 2096 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n", 2097 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI)); 2098 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n", 2099 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO)); 2100 } 2101 drm_printf(m, "\tRING_START: 0x%08x\n", 2102 ENGINE_READ(engine, RING_START)); 2103 drm_printf(m, "\tRING_HEAD: 0x%08x\n", 2104 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR); 2105 drm_printf(m, "\tRING_TAIL: 0x%08x\n", 2106 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR); 2107 drm_printf(m, "\tRING_CTL: 0x%08x%s\n", 2108 ENGINE_READ(engine, RING_CTL), 2109 ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : ""); 2110 if (GRAPHICS_VER(engine->i915) > 2) { 2111 drm_printf(m, "\tRING_MODE: 0x%08x%s\n", 2112 ENGINE_READ(engine, RING_MI_MODE), 2113 ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : ""); 2114 } 2115 2116 if (GRAPHICS_VER(i915) >= 6) { 2117 drm_printf(m, "\tRING_IMR: 0x%08x\n", 2118 ENGINE_READ(engine, RING_IMR)); 2119 drm_printf(m, "\tRING_ESR: 0x%08x\n", 2120 ENGINE_READ(engine, RING_ESR)); 2121 drm_printf(m, "\tRING_EMR: 0x%08x\n", 2122 ENGINE_READ(engine, RING_EMR)); 2123 drm_printf(m, "\tRING_EIR: 0x%08x\n", 2124 ENGINE_READ(engine, RING_EIR)); 2125 } 2126 2127 addr = intel_engine_get_active_head(engine); 2128 drm_printf(m, "\tACTHD: 0x%08x_%08x\n", 2129 upper_32_bits(addr), lower_32_bits(addr)); 2130 addr = intel_engine_get_last_batch_head(engine); 2131 drm_printf(m, "\tBBADDR: 0x%08x_%08x\n", 2132 upper_32_bits(addr), lower_32_bits(addr)); 2133 if (GRAPHICS_VER(i915) >= 8) 2134 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW); 2135 else if (GRAPHICS_VER(i915) >= 4) 2136 addr = ENGINE_READ(engine, RING_DMA_FADD); 2137 else 2138 addr = ENGINE_READ(engine, DMA_FADD_I8XX); 2139 drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n", 2140 upper_32_bits(addr), lower_32_bits(addr)); 2141 if (GRAPHICS_VER(i915) >= 4) { 2142 drm_printf(m, "\tIPEIR: 0x%08x\n", 2143 ENGINE_READ(engine, RING_IPEIR)); 2144 drm_printf(m, "\tIPEHR: 0x%08x\n", 2145 ENGINE_READ(engine, RING_IPEHR)); 2146 } else { 2147 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR)); 2148 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR)); 2149 } 2150 2151 if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) { 2152 struct i915_request * const *port, *rq; 2153 const u32 *hws = 2154 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX]; 2155 const u8 num_entries = execlists->csb_size; 2156 unsigned int idx; 2157 u8 read, write; 2158 2159 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n", 2160 str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)), 2161 str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)), 2162 repr_timer(&engine->execlists.preempt), 2163 repr_timer(&engine->execlists.timer)); 2164 2165 read = execlists->csb_head; 2166 write = READ_ONCE(*execlists->csb_write); 2167 2168 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n", 2169 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO), 2170 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI), 2171 read, write, num_entries); 2172 2173 if (read >= num_entries) 2174 read = 0; 2175 if (write >= num_entries) 2176 write = 0; 2177 if (read > write) 2178 write += num_entries; 2179 while (read < write) { 2180 idx = ++read % num_entries; 2181 drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n", 2182 idx, hws[idx * 2], hws[idx * 2 + 1]); 2183 } 2184 2185 i915_sched_engine_active_lock_bh(engine->sched_engine); 2186 rcu_read_lock(); 2187 for (port = execlists->active; (rq = *port); port++) { 2188 char hdr[160]; 2189 int len; 2190 2191 len = scnprintf(hdr, sizeof(hdr), 2192 "\t\tActive[%d]: ccid:%08x%s%s, ", 2193 (int)(port - execlists->active), 2194 rq->context->lrc.ccid, 2195 intel_context_is_closed(rq->context) ? "!" : "", 2196 intel_context_is_banned(rq->context) ? "*" : ""); 2197 len += print_ring(hdr + len, sizeof(hdr) - len, rq); 2198 scnprintf(hdr + len, sizeof(hdr) - len, "rq: "); 2199 i915_request_show(m, rq, hdr, 0); 2200 } 2201 for (port = execlists->pending; (rq = *port); port++) { 2202 char hdr[160]; 2203 int len; 2204 2205 len = scnprintf(hdr, sizeof(hdr), 2206 "\t\tPending[%d]: ccid:%08x%s%s, ", 2207 (int)(port - execlists->pending), 2208 rq->context->lrc.ccid, 2209 intel_context_is_closed(rq->context) ? "!" : "", 2210 intel_context_is_banned(rq->context) ? "*" : ""); 2211 len += print_ring(hdr + len, sizeof(hdr) - len, rq); 2212 scnprintf(hdr + len, sizeof(hdr) - len, "rq: "); 2213 i915_request_show(m, rq, hdr, 0); 2214 } 2215 rcu_read_unlock(); 2216 i915_sched_engine_active_unlock_bh(engine->sched_engine); 2217 } else if (GRAPHICS_VER(i915) > 6) { 2218 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n", 2219 ENGINE_READ(engine, RING_PP_DIR_BASE)); 2220 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n", 2221 ENGINE_READ(engine, RING_PP_DIR_BASE_READ)); 2222 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n", 2223 ENGINE_READ(engine, RING_PP_DIR_DCLV)); 2224 } 2225 } 2226 2227 static void print_request_ring(struct drm_printer *m, struct i915_request *rq) 2228 { 2229 struct i915_vma_resource *vma_res = rq->batch_res; 2230 void *ring; 2231 int size; 2232 2233 drm_printf(m, 2234 "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n", 2235 rq->head, rq->postfix, rq->tail, 2236 vma_res ? upper_32_bits(vma_res->start) : ~0u, 2237 vma_res ? lower_32_bits(vma_res->start) : ~0u); 2238 2239 size = rq->tail - rq->head; 2240 if (rq->tail < rq->head) 2241 size += rq->ring->size; 2242 2243 ring = kmalloc(size, GFP_ATOMIC); 2244 if (ring) { 2245 const void *vaddr = rq->ring->vaddr; 2246 unsigned int head = rq->head; 2247 unsigned int len = 0; 2248 2249 if (rq->tail < head) { 2250 len = rq->ring->size - head; 2251 memcpy(ring, vaddr + head, len); 2252 head = 0; 2253 } 2254 memcpy(ring + len, vaddr + head, size - len); 2255 2256 hexdump(m, ring, size); 2257 kfree(ring); 2258 } 2259 } 2260 2261 static unsigned long read_ul(void *p, size_t x) 2262 { 2263 return *(unsigned long *)(p + x); 2264 } 2265 2266 static void print_properties(struct intel_engine_cs *engine, 2267 struct drm_printer *m) 2268 { 2269 static const struct pmap { 2270 size_t offset; 2271 const char *name; 2272 } props[] = { 2273 #define P(x) { \ 2274 .offset = offsetof(typeof(engine->props), x), \ 2275 .name = #x \ 2276 } 2277 P(heartbeat_interval_ms), 2278 P(max_busywait_duration_ns), 2279 P(preempt_timeout_ms), 2280 P(stop_timeout_ms), 2281 P(timeslice_duration_ms), 2282 2283 {}, 2284 #undef P 2285 }; 2286 const struct pmap *p; 2287 2288 drm_printf(m, "\tProperties:\n"); 2289 for (p = props; p->name; p++) 2290 drm_printf(m, "\t\t%s: %lu [default %lu]\n", 2291 p->name, 2292 read_ul(&engine->props, p->offset), 2293 read_ul(&engine->defaults, p->offset)); 2294 } 2295 2296 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg) 2297 { 2298 struct intel_timeline *tl = get_timeline(rq); 2299 2300 i915_request_show(m, rq, msg, 0); 2301 2302 drm_printf(m, "\t\tring->start: 0x%08x\n", 2303 i915_ggtt_offset(rq->ring->vma)); 2304 drm_printf(m, "\t\tring->head: 0x%08x\n", 2305 rq->ring->head); 2306 drm_printf(m, "\t\tring->tail: 0x%08x\n", 2307 rq->ring->tail); 2308 drm_printf(m, "\t\tring->emit: 0x%08x\n", 2309 rq->ring->emit); 2310 drm_printf(m, "\t\tring->space: 0x%08x\n", 2311 rq->ring->space); 2312 2313 if (tl) { 2314 drm_printf(m, "\t\tring->hwsp: 0x%08x\n", 2315 tl->hwsp_offset); 2316 intel_timeline_put(tl); 2317 } 2318 2319 print_request_ring(m, rq); 2320 2321 if (rq->context->lrc_reg_state) { 2322 drm_printf(m, "Logical Ring Context:\n"); 2323 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE); 2324 } 2325 } 2326 2327 void intel_engine_dump_active_requests(struct list_head *requests, 2328 struct i915_request *hung_rq, 2329 struct drm_printer *m) 2330 { 2331 struct i915_request *rq; 2332 const char *msg; 2333 enum i915_request_state state; 2334 2335 list_for_each_entry(rq, requests, sched.link) { 2336 if (rq == hung_rq) 2337 continue; 2338 2339 state = i915_test_request_state(rq); 2340 if (state < I915_REQUEST_QUEUED) 2341 continue; 2342 2343 if (state == I915_REQUEST_ACTIVE) 2344 msg = "\t\tactive on engine"; 2345 else 2346 msg = "\t\tactive in queue"; 2347 2348 engine_dump_request(rq, m, msg); 2349 } 2350 } 2351 2352 static void engine_dump_active_requests(struct intel_engine_cs *engine, 2353 struct drm_printer *m) 2354 { 2355 struct intel_context *hung_ce = NULL; 2356 struct i915_request *hung_rq = NULL; 2357 2358 /* 2359 * No need for an engine->irq_seqno_barrier() before the seqno reads. 2360 * The GPU is still running so requests are still executing and any 2361 * hardware reads will be out of date by the time they are reported. 2362 * But the intention here is just to report an instantaneous snapshot 2363 * so that's fine. 2364 */ 2365 intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq); 2366 2367 drm_printf(m, "\tRequests:\n"); 2368 2369 if (hung_rq) 2370 engine_dump_request(hung_rq, m, "\t\thung"); 2371 else if (hung_ce) 2372 drm_printf(m, "\t\tGot hung ce but no hung rq!\n"); 2373 2374 if (intel_uc_uses_guc_submission(&engine->gt->uc)) 2375 intel_guc_dump_active_requests(engine, hung_rq, m); 2376 else 2377 intel_execlists_dump_active_requests(engine, hung_rq, m); 2378 2379 if (hung_rq) 2380 i915_request_put(hung_rq); 2381 } 2382 2383 void intel_engine_dump(struct intel_engine_cs *engine, 2384 struct drm_printer *m, 2385 const char *header, ...) 2386 { 2387 struct i915_gpu_error * const error = &engine->i915->gpu_error; 2388 struct i915_request *rq; 2389 intel_wakeref_t wakeref; 2390 ktime_t dummy; 2391 2392 if (header) { 2393 va_list ap; 2394 2395 va_start(ap, header); 2396 drm_vprintf(m, header, &ap); 2397 va_end(ap); 2398 } 2399 2400 if (intel_gt_is_wedged(engine->gt)) 2401 drm_printf(m, "*** WEDGED ***\n"); 2402 2403 drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count)); 2404 drm_printf(m, "\tBarriers?: %s\n", 2405 str_yes_no(!llist_empty(&engine->barrier_tasks))); 2406 drm_printf(m, "\tLatency: %luus\n", 2407 ewma__engine_latency_read(&engine->latency)); 2408 if (intel_engine_supports_stats(engine)) 2409 drm_printf(m, "\tRuntime: %llums\n", 2410 ktime_to_ms(intel_engine_get_busy_time(engine, 2411 &dummy))); 2412 drm_printf(m, "\tForcewake: %x domains, %d active\n", 2413 engine->fw_domain, READ_ONCE(engine->fw_active)); 2414 2415 rcu_read_lock(); 2416 rq = READ_ONCE(engine->heartbeat.systole); 2417 if (rq) 2418 drm_printf(m, "\tHeartbeat: %d ms ago\n", 2419 jiffies_to_msecs(jiffies - rq->emitted_jiffies)); 2420 rcu_read_unlock(); 2421 drm_printf(m, "\tReset count: %d (global %d)\n", 2422 i915_reset_engine_count(error, engine), 2423 i915_reset_count(error)); 2424 print_properties(engine, m); 2425 2426 engine_dump_active_requests(engine, m); 2427 2428 drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base); 2429 wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm); 2430 if (wakeref) { 2431 intel_engine_print_registers(engine, m); 2432 intel_runtime_pm_put(engine->uncore->rpm, wakeref); 2433 } else { 2434 drm_printf(m, "\tDevice is asleep; skipping register dump\n"); 2435 } 2436 2437 intel_execlists_show_requests(engine, m, i915_request_show, 8); 2438 2439 drm_printf(m, "HWSP:\n"); 2440 hexdump(m, engine->status_page.addr, PAGE_SIZE); 2441 2442 drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine))); 2443 2444 intel_engine_print_breadcrumbs(engine, m); 2445 } 2446 2447 /** 2448 * intel_engine_get_busy_time() - Return current accumulated engine busyness 2449 * @engine: engine to report on 2450 * @now: monotonic timestamp of sampling 2451 * 2452 * Returns accumulated time @engine was busy since engine stats were enabled. 2453 */ 2454 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now) 2455 { 2456 return engine->busyness(engine, now); 2457 } 2458 2459 struct intel_context * 2460 intel_engine_create_virtual(struct intel_engine_cs **siblings, 2461 unsigned int count, unsigned long flags) 2462 { 2463 if (count == 0) 2464 return ERR_PTR(-EINVAL); 2465 2466 if (count == 1 && !(flags & FORCE_VIRTUAL)) 2467 return intel_context_create(siblings[0]); 2468 2469 GEM_BUG_ON(!siblings[0]->cops->create_virtual); 2470 return siblings[0]->cops->create_virtual(siblings, count, flags); 2471 } 2472 2473 static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine) 2474 { 2475 struct i915_request *request, *active = NULL; 2476 2477 /* 2478 * This search does not work in GuC submission mode. However, the GuC 2479 * will report the hanging context directly to the driver itself. So 2480 * the driver should never get here when in GuC mode. 2481 */ 2482 GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc)); 2483 2484 /* 2485 * We are called by the error capture, reset and to dump engine 2486 * state at random points in time. In particular, note that neither is 2487 * crucially ordered with an interrupt. After a hang, the GPU is dead 2488 * and we assume that no more writes can happen (we waited long enough 2489 * for all writes that were in transaction to be flushed) - adding an 2490 * extra delay for a recent interrupt is pointless. Hence, we do 2491 * not need an engine->irq_seqno_barrier() before the seqno reads. 2492 * At all other times, we must assume the GPU is still running, but 2493 * we only care about the snapshot of this moment. 2494 */ 2495 lockdep_assert_held(&engine->sched_engine->lock); 2496 2497 rcu_read_lock(); 2498 request = execlists_active(&engine->execlists); 2499 if (request) { 2500 struct intel_timeline *tl = request->context->timeline; 2501 2502 list_for_each_entry_from_reverse(request, &tl->requests, link) { 2503 if (__i915_request_is_complete(request)) 2504 break; 2505 2506 active = request; 2507 } 2508 } 2509 rcu_read_unlock(); 2510 if (active) 2511 return active; 2512 2513 list_for_each_entry(request, &engine->sched_engine->requests, 2514 sched.link) { 2515 if (i915_test_request_state(request) != I915_REQUEST_ACTIVE) 2516 continue; 2517 2518 active = request; 2519 break; 2520 } 2521 2522 return active; 2523 } 2524 2525 void intel_engine_get_hung_entity(struct intel_engine_cs *engine, 2526 struct intel_context **ce, struct i915_request **rq) 2527 { 2528 unsigned long flags; 2529 2530 *ce = intel_engine_get_hung_context(engine); 2531 if (*ce) { 2532 intel_engine_clear_hung_context(engine); 2533 2534 *rq = intel_context_get_active_request(*ce); 2535 return; 2536 } 2537 2538 /* 2539 * Getting here with GuC enabled means it is a forced error capture 2540 * with no actual hang. So, no need to attempt the execlist search. 2541 */ 2542 if (intel_uc_uses_guc_submission(&engine->gt->uc)) 2543 return; 2544 2545 spin_lock_irqsave(&engine->sched_engine->lock, flags); 2546 *rq = engine_execlist_find_hung_request(engine); 2547 if (*rq) 2548 *rq = i915_request_get_rcu(*rq); 2549 spin_unlock_irqrestore(&engine->sched_engine->lock, flags); 2550 } 2551 2552 void xehp_enable_ccs_engines(struct intel_engine_cs *engine) 2553 { 2554 /* 2555 * If there are any non-fused-off CCS engines, we need to enable CCS 2556 * support in the RCU_MODE register. This only needs to be done once, 2557 * so for simplicity we'll take care of this in the RCS engine's 2558 * resume handler; since the RCS and all CCS engines belong to the 2559 * same reset domain and are reset together, this will also take care 2560 * of re-applying the setting after i915-triggered resets. 2561 */ 2562 if (!CCS_MASK(engine->gt)) 2563 return; 2564 2565 intel_uncore_write(engine->uncore, GEN12_RCU_MODE, 2566 _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE)); 2567 } 2568 2569 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 2570 #include "mock_engine.c" 2571 #include "selftest_engine.c" 2572 #include "selftest_engine_cs.c" 2573 #endif 2574