1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2016 Intel Corporation
4 */
5
6 #include <linux/string_helpers.h>
7
8 #include <drm/drm_print.h>
9
10 #include "gem/i915_gem_context.h"
11 #include "gem/i915_gem_internal.h"
12 #include "gt/intel_gt_print.h"
13 #include "gt/intel_gt_regs.h"
14
15 #include "i915_cmd_parser.h"
16 #include "i915_drv.h"
17 #include "i915_irq.h"
18 #include "i915_reg.h"
19 #include "intel_breadcrumbs.h"
20 #include "intel_context.h"
21 #include "intel_engine.h"
22 #include "intel_engine_pm.h"
23 #include "intel_engine_regs.h"
24 #include "intel_engine_user.h"
25 #include "intel_execlists_submission.h"
26 #include "intel_gt.h"
27 #include "intel_gt_mcr.h"
28 #include "intel_gt_pm.h"
29 #include "intel_gt_requests.h"
30 #include "intel_lrc.h"
31 #include "intel_lrc_reg.h"
32 #include "intel_reset.h"
33 #include "intel_ring.h"
34 #include "uc/intel_guc_submission.h"
35
36 /* Haswell does have the CXT_SIZE register however it does not appear to be
37 * valid. Now, docs explain in dwords what is in the context object. The full
38 * size is 70720 bytes, however, the power context and execlist context will
39 * never be saved (power context is stored elsewhere, and execlists don't work
40 * on HSW) - so the final size, including the extra state required for the
41 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
42 */
43 #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE)
44
45 #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
46 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
47 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
48 #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE)
49
50 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
51
52 #define MAX_MMIO_BASES 3
53 struct engine_info {
54 u8 class;
55 u8 instance;
56 /* mmio bases table *must* be sorted in reverse graphics_ver order */
57 struct engine_mmio_base {
58 u32 graphics_ver : 8;
59 u32 base : 24;
60 } mmio_bases[MAX_MMIO_BASES];
61 };
62
63 static const struct engine_info intel_engines[] = {
64 [RCS0] = {
65 .class = RENDER_CLASS,
66 .instance = 0,
67 .mmio_bases = {
68 { .graphics_ver = 1, .base = RENDER_RING_BASE }
69 },
70 },
71 [BCS0] = {
72 .class = COPY_ENGINE_CLASS,
73 .instance = 0,
74 .mmio_bases = {
75 { .graphics_ver = 6, .base = BLT_RING_BASE }
76 },
77 },
78 [BCS1] = {
79 .class = COPY_ENGINE_CLASS,
80 .instance = 1,
81 .mmio_bases = {
82 { .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
83 },
84 },
85 [BCS2] = {
86 .class = COPY_ENGINE_CLASS,
87 .instance = 2,
88 .mmio_bases = {
89 { .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
90 },
91 },
92 [BCS3] = {
93 .class = COPY_ENGINE_CLASS,
94 .instance = 3,
95 .mmio_bases = {
96 { .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
97 },
98 },
99 [BCS4] = {
100 .class = COPY_ENGINE_CLASS,
101 .instance = 4,
102 .mmio_bases = {
103 { .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
104 },
105 },
106 [BCS5] = {
107 .class = COPY_ENGINE_CLASS,
108 .instance = 5,
109 .mmio_bases = {
110 { .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
111 },
112 },
113 [BCS6] = {
114 .class = COPY_ENGINE_CLASS,
115 .instance = 6,
116 .mmio_bases = {
117 { .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
118 },
119 },
120 [BCS7] = {
121 .class = COPY_ENGINE_CLASS,
122 .instance = 7,
123 .mmio_bases = {
124 { .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
125 },
126 },
127 [BCS8] = {
128 .class = COPY_ENGINE_CLASS,
129 .instance = 8,
130 .mmio_bases = {
131 { .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
132 },
133 },
134 [VCS0] = {
135 .class = VIDEO_DECODE_CLASS,
136 .instance = 0,
137 .mmio_bases = {
138 { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
139 { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
140 { .graphics_ver = 4, .base = BSD_RING_BASE }
141 },
142 },
143 [VCS1] = {
144 .class = VIDEO_DECODE_CLASS,
145 .instance = 1,
146 .mmio_bases = {
147 { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
148 { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
149 },
150 },
151 [VCS2] = {
152 .class = VIDEO_DECODE_CLASS,
153 .instance = 2,
154 .mmio_bases = {
155 { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
156 },
157 },
158 [VCS3] = {
159 .class = VIDEO_DECODE_CLASS,
160 .instance = 3,
161 .mmio_bases = {
162 { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
163 },
164 },
165 [VCS4] = {
166 .class = VIDEO_DECODE_CLASS,
167 .instance = 4,
168 .mmio_bases = {
169 { .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
170 },
171 },
172 [VCS5] = {
173 .class = VIDEO_DECODE_CLASS,
174 .instance = 5,
175 .mmio_bases = {
176 { .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
177 },
178 },
179 [VCS6] = {
180 .class = VIDEO_DECODE_CLASS,
181 .instance = 6,
182 .mmio_bases = {
183 { .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
184 },
185 },
186 [VCS7] = {
187 .class = VIDEO_DECODE_CLASS,
188 .instance = 7,
189 .mmio_bases = {
190 { .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
191 },
192 },
193 [VECS0] = {
194 .class = VIDEO_ENHANCEMENT_CLASS,
195 .instance = 0,
196 .mmio_bases = {
197 { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
198 { .graphics_ver = 7, .base = VEBOX_RING_BASE }
199 },
200 },
201 [VECS1] = {
202 .class = VIDEO_ENHANCEMENT_CLASS,
203 .instance = 1,
204 .mmio_bases = {
205 { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
206 },
207 },
208 [VECS2] = {
209 .class = VIDEO_ENHANCEMENT_CLASS,
210 .instance = 2,
211 .mmio_bases = {
212 { .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
213 },
214 },
215 [VECS3] = {
216 .class = VIDEO_ENHANCEMENT_CLASS,
217 .instance = 3,
218 .mmio_bases = {
219 { .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
220 },
221 },
222 [CCS0] = {
223 .class = COMPUTE_CLASS,
224 .instance = 0,
225 .mmio_bases = {
226 { .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
227 }
228 },
229 [CCS1] = {
230 .class = COMPUTE_CLASS,
231 .instance = 1,
232 .mmio_bases = {
233 { .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
234 }
235 },
236 [CCS2] = {
237 .class = COMPUTE_CLASS,
238 .instance = 2,
239 .mmio_bases = {
240 { .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
241 }
242 },
243 [CCS3] = {
244 .class = COMPUTE_CLASS,
245 .instance = 3,
246 .mmio_bases = {
247 { .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
248 }
249 },
250 [GSC0] = {
251 .class = OTHER_CLASS,
252 .instance = OTHER_GSC_INSTANCE,
253 .mmio_bases = {
254 { .graphics_ver = 12, .base = MTL_GSC_RING_BASE }
255 }
256 },
257 };
258
259 /**
260 * intel_engine_context_size() - return the size of the context for an engine
261 * @gt: the gt
262 * @class: engine class
263 *
264 * Each engine class may require a different amount of space for a context
265 * image.
266 *
267 * Return: size (in bytes) of an engine class specific context image
268 *
269 * Note: this size includes the HWSP, which is part of the context image
270 * in LRC mode, but does not include the "shared data page" used with
271 * GuC submission. The caller should account for this if using the GuC.
272 */
intel_engine_context_size(struct intel_gt * gt,u8 class)273 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
274 {
275 struct intel_uncore *uncore = gt->uncore;
276 u32 cxt_size;
277
278 BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
279
280 switch (class) {
281 case COMPUTE_CLASS:
282 fallthrough;
283 case RENDER_CLASS:
284 switch (GRAPHICS_VER(gt->i915)) {
285 default:
286 MISSING_CASE(GRAPHICS_VER(gt->i915));
287 return DEFAULT_LR_CONTEXT_RENDER_SIZE;
288 case 12:
289 case 11:
290 return GEN11_LR_CONTEXT_RENDER_SIZE;
291 case 9:
292 return GEN9_LR_CONTEXT_RENDER_SIZE;
293 case 8:
294 return GEN8_LR_CONTEXT_RENDER_SIZE;
295 case 7:
296 if (IS_HASWELL(gt->i915))
297 return HSW_CXT_TOTAL_SIZE;
298
299 cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
300 return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
301 PAGE_SIZE);
302 case 6:
303 cxt_size = intel_uncore_read(uncore, CXT_SIZE);
304 return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
305 PAGE_SIZE);
306 case 5:
307 case 4:
308 /*
309 * There is a discrepancy here between the size reported
310 * by the register and the size of the context layout
311 * in the docs. Both are described as authorative!
312 *
313 * The discrepancy is on the order of a few cachelines,
314 * but the total is under one page (4k), which is our
315 * minimum allocation anyway so it should all come
316 * out in the wash.
317 */
318 cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
319 gt_dbg(gt, "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
320 GRAPHICS_VER(gt->i915), cxt_size * 64,
321 cxt_size - 1);
322 return round_up(cxt_size * 64, PAGE_SIZE);
323 case 3:
324 case 2:
325 /* For the special day when i810 gets merged. */
326 case 1:
327 return 0;
328 }
329 break;
330 default:
331 MISSING_CASE(class);
332 fallthrough;
333 case VIDEO_DECODE_CLASS:
334 case VIDEO_ENHANCEMENT_CLASS:
335 case COPY_ENGINE_CLASS:
336 case OTHER_CLASS:
337 if (GRAPHICS_VER(gt->i915) < 8)
338 return 0;
339 return GEN8_LR_CONTEXT_OTHER_SIZE;
340 }
341 }
342
__engine_mmio_base(struct drm_i915_private * i915,const struct engine_mmio_base * bases)343 static u32 __engine_mmio_base(struct drm_i915_private *i915,
344 const struct engine_mmio_base *bases)
345 {
346 int i;
347
348 for (i = 0; i < MAX_MMIO_BASES; i++)
349 if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
350 break;
351
352 GEM_BUG_ON(i == MAX_MMIO_BASES);
353 GEM_BUG_ON(!bases[i].base);
354
355 return bases[i].base;
356 }
357
__sprint_engine_name(struct intel_engine_cs * engine)358 static void __sprint_engine_name(struct intel_engine_cs *engine)
359 {
360 /*
361 * Before we know what the uABI name for this engine will be,
362 * we still would like to keep track of this engine in the debug logs.
363 * We throw in a ' here as a reminder that this isn't its final name.
364 */
365 GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
366 intel_engine_class_repr(engine->class),
367 engine->instance) >= sizeof(engine->name));
368 }
369
intel_engine_set_hwsp_writemask(struct intel_engine_cs * engine,u32 mask)370 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
371 {
372 /*
373 * Though they added more rings on g4x/ilk, they did not add
374 * per-engine HWSTAM until gen6.
375 */
376 if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
377 return;
378
379 if (GRAPHICS_VER(engine->i915) >= 3)
380 ENGINE_WRITE(engine, RING_HWSTAM, mask);
381 else
382 ENGINE_WRITE16(engine, RING_HWSTAM, mask);
383 }
384
intel_engine_sanitize_mmio(struct intel_engine_cs * engine)385 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
386 {
387 /* Mask off all writes into the unknown HWSP */
388 intel_engine_set_hwsp_writemask(engine, ~0u);
389 }
390
nop_irq_handler(struct intel_engine_cs * engine,u16 iir)391 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
392 {
393 GEM_DEBUG_WARN_ON(iir);
394 }
395
get_reset_domain(u8 ver,enum intel_engine_id id)396 static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
397 {
398 u32 reset_domain;
399
400 if (ver >= 11) {
401 static const u32 engine_reset_domains[] = {
402 [RCS0] = GEN11_GRDOM_RENDER,
403 [BCS0] = GEN11_GRDOM_BLT,
404 [BCS1] = XEHPC_GRDOM_BLT1,
405 [BCS2] = XEHPC_GRDOM_BLT2,
406 [BCS3] = XEHPC_GRDOM_BLT3,
407 [BCS4] = XEHPC_GRDOM_BLT4,
408 [BCS5] = XEHPC_GRDOM_BLT5,
409 [BCS6] = XEHPC_GRDOM_BLT6,
410 [BCS7] = XEHPC_GRDOM_BLT7,
411 [BCS8] = XEHPC_GRDOM_BLT8,
412 [VCS0] = GEN11_GRDOM_MEDIA,
413 [VCS1] = GEN11_GRDOM_MEDIA2,
414 [VCS2] = GEN11_GRDOM_MEDIA3,
415 [VCS3] = GEN11_GRDOM_MEDIA4,
416 [VCS4] = GEN11_GRDOM_MEDIA5,
417 [VCS5] = GEN11_GRDOM_MEDIA6,
418 [VCS6] = GEN11_GRDOM_MEDIA7,
419 [VCS7] = GEN11_GRDOM_MEDIA8,
420 [VECS0] = GEN11_GRDOM_VECS,
421 [VECS1] = GEN11_GRDOM_VECS2,
422 [VECS2] = GEN11_GRDOM_VECS3,
423 [VECS3] = GEN11_GRDOM_VECS4,
424 [CCS0] = GEN11_GRDOM_RENDER,
425 [CCS1] = GEN11_GRDOM_RENDER,
426 [CCS2] = GEN11_GRDOM_RENDER,
427 [CCS3] = GEN11_GRDOM_RENDER,
428 [GSC0] = GEN12_GRDOM_GSC,
429 };
430 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
431 !engine_reset_domains[id]);
432 reset_domain = engine_reset_domains[id];
433 } else {
434 static const u32 engine_reset_domains[] = {
435 [RCS0] = GEN6_GRDOM_RENDER,
436 [BCS0] = GEN6_GRDOM_BLT,
437 [VCS0] = GEN6_GRDOM_MEDIA,
438 [VCS1] = GEN8_GRDOM_MEDIA2,
439 [VECS0] = GEN6_GRDOM_VECS,
440 };
441 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
442 !engine_reset_domains[id]);
443 reset_domain = engine_reset_domains[id];
444 }
445
446 return reset_domain;
447 }
448
intel_engine_setup(struct intel_gt * gt,enum intel_engine_id id,u8 logical_instance)449 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
450 u8 logical_instance)
451 {
452 const struct engine_info *info = &intel_engines[id];
453 struct drm_i915_private *i915 = gt->i915;
454 struct intel_engine_cs *engine;
455 u8 guc_class;
456
457 BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
458 BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
459 BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
460 BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
461
462 if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
463 return -EINVAL;
464
465 if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
466 return -EINVAL;
467
468 if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
469 return -EINVAL;
470
471 if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
472 return -EINVAL;
473
474 engine = kzalloc(sizeof(*engine), GFP_KERNEL);
475 if (!engine)
476 return -ENOMEM;
477
478 BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
479
480 INIT_LIST_HEAD(&engine->pinned_contexts_list);
481 engine->id = id;
482 engine->legacy_idx = INVALID_ENGINE;
483 engine->mask = BIT(id);
484 engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
485 id);
486 engine->i915 = i915;
487 engine->gt = gt;
488 engine->uncore = gt->uncore;
489 guc_class = engine_class_to_guc_class(info->class);
490 engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
491 engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
492
493 engine->irq_handler = nop_irq_handler;
494
495 engine->class = info->class;
496 engine->instance = info->instance;
497 engine->logical_mask = BIT(logical_instance);
498 __sprint_engine_name(engine);
499
500 if ((engine->class == COMPUTE_CLASS || engine->class == RENDER_CLASS) &&
501 __ffs(CCS_MASK(engine->gt) | RCS_MASK(engine->gt)) == engine->instance)
502 engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
503
504 /* features common between engines sharing EUs */
505 if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
506 engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
507 engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
508 }
509
510 engine->props.heartbeat_interval_ms =
511 CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
512 engine->props.max_busywait_duration_ns =
513 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
514 engine->props.preempt_timeout_ms =
515 CONFIG_DRM_I915_PREEMPT_TIMEOUT;
516 engine->props.stop_timeout_ms =
517 CONFIG_DRM_I915_STOP_TIMEOUT;
518 engine->props.timeslice_duration_ms =
519 CONFIG_DRM_I915_TIMESLICE_DURATION;
520
521 /*
522 * Mid-thread pre-emption is not available in Gen12. Unfortunately,
523 * some compute workloads run quite long threads. That means they get
524 * reset due to not pre-empting in a timely manner. So, bump the
525 * pre-emption timeout value to be much higher for compute engines.
526 */
527 if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
528 engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE;
529
530 /* Cap properties according to any system limits */
531 #define CLAMP_PROP(field) \
532 do { \
533 u64 clamp = intel_clamp_##field(engine, engine->props.field); \
534 if (clamp != engine->props.field) { \
535 drm_notice(&engine->i915->drm, \
536 "Warning, clamping %s to %lld to prevent overflow\n", \
537 #field, clamp); \
538 engine->props.field = clamp; \
539 } \
540 } while (0)
541
542 CLAMP_PROP(heartbeat_interval_ms);
543 CLAMP_PROP(max_busywait_duration_ns);
544 CLAMP_PROP(preempt_timeout_ms);
545 CLAMP_PROP(stop_timeout_ms);
546 CLAMP_PROP(timeslice_duration_ms);
547
548 #undef CLAMP_PROP
549
550 engine->defaults = engine->props; /* never to change again */
551
552 engine->context_size = intel_engine_context_size(gt, engine->class);
553 if (WARN_ON(engine->context_size > BIT(20)))
554 engine->context_size = 0;
555 if (engine->context_size)
556 DRIVER_CAPS(i915)->has_logical_contexts = true;
557
558 ewma__engine_latency_init(&engine->latency);
559
560 ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
561
562 /* Scrub mmio state on takeover */
563 intel_engine_sanitize_mmio(engine);
564
565 gt->engine_class[info->class][info->instance] = engine;
566 gt->engine[id] = engine;
567
568 return 0;
569 }
570
intel_clamp_heartbeat_interval_ms(struct intel_engine_cs * engine,u64 value)571 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
572 {
573 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
574
575 return value;
576 }
577
intel_clamp_max_busywait_duration_ns(struct intel_engine_cs * engine,u64 value)578 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
579 {
580 value = min(value, jiffies_to_nsecs(2));
581
582 return value;
583 }
584
intel_clamp_preempt_timeout_ms(struct intel_engine_cs * engine,u64 value)585 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
586 {
587 /*
588 * NB: The GuC API only supports 32bit values. However, the limit is further
589 * reduced due to internal calculations which would otherwise overflow.
590 */
591 if (intel_guc_submission_is_wanted(gt_to_guc(engine->gt)))
592 value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
593
594 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
595
596 return value;
597 }
598
intel_clamp_stop_timeout_ms(struct intel_engine_cs * engine,u64 value)599 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
600 {
601 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
602
603 return value;
604 }
605
intel_clamp_timeslice_duration_ms(struct intel_engine_cs * engine,u64 value)606 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
607 {
608 /*
609 * NB: The GuC API only supports 32bit values. However, the limit is further
610 * reduced due to internal calculations which would otherwise overflow.
611 */
612 if (intel_guc_submission_is_wanted(gt_to_guc(engine->gt)))
613 value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
614
615 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
616
617 return value;
618 }
619
__setup_engine_capabilities(struct intel_engine_cs * engine)620 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
621 {
622 struct drm_i915_private *i915 = engine->i915;
623
624 if (engine->class == VIDEO_DECODE_CLASS) {
625 /*
626 * HEVC support is present on first engine instance
627 * before Gen11 and on all instances afterwards.
628 */
629 if (GRAPHICS_VER(i915) >= 11 ||
630 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
631 engine->uabi_capabilities |=
632 I915_VIDEO_CLASS_CAPABILITY_HEVC;
633
634 /*
635 * SFC block is present only on even logical engine
636 * instances.
637 */
638 if ((GRAPHICS_VER(i915) >= 11 &&
639 (engine->gt->info.vdbox_sfc_access &
640 BIT(engine->instance))) ||
641 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
642 engine->uabi_capabilities |=
643 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
644 } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
645 if (GRAPHICS_VER(i915) >= 9 &&
646 engine->gt->info.sfc_mask & BIT(engine->instance))
647 engine->uabi_capabilities |=
648 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
649 }
650 }
651
intel_setup_engine_capabilities(struct intel_gt * gt)652 static void intel_setup_engine_capabilities(struct intel_gt *gt)
653 {
654 struct intel_engine_cs *engine;
655 enum intel_engine_id id;
656
657 for_each_engine(engine, gt, id)
658 __setup_engine_capabilities(engine);
659 }
660
661 /**
662 * intel_engines_release() - free the resources allocated for Command Streamers
663 * @gt: pointer to struct intel_gt
664 */
intel_engines_release(struct intel_gt * gt)665 void intel_engines_release(struct intel_gt *gt)
666 {
667 struct intel_engine_cs *engine;
668 enum intel_engine_id id;
669
670 /*
671 * Before we release the resources held by engine, we must be certain
672 * that the HW is no longer accessing them -- having the GPU scribble
673 * to or read from a page being used for something else causes no end
674 * of fun.
675 *
676 * The GPU should be reset by this point, but assume the worst just
677 * in case we aborted before completely initialising the engines.
678 */
679 GEM_BUG_ON(intel_gt_pm_is_awake(gt));
680 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
681 intel_gt_reset_all_engines(gt);
682
683 /* Decouple the backend; but keep the layout for late GPU resets */
684 for_each_engine(engine, gt, id) {
685 if (!engine->release)
686 continue;
687
688 intel_wakeref_wait_for_idle(&engine->wakeref);
689 GEM_BUG_ON(intel_engine_pm_is_awake(engine));
690
691 engine->release(engine);
692 engine->release = NULL;
693
694 memset(&engine->reset, 0, sizeof(engine->reset));
695 }
696
697 llist_del_all(>->i915->uabi_engines_llist);
698 }
699
intel_engine_free_request_pool(struct intel_engine_cs * engine)700 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
701 {
702 if (!engine->request_pool)
703 return;
704
705 kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
706 }
707
intel_engines_free(struct intel_gt * gt)708 void intel_engines_free(struct intel_gt *gt)
709 {
710 struct intel_engine_cs *engine;
711 enum intel_engine_id id;
712
713 /* Free the requests! dma-resv keeps fences around for an eternity */
714 rcu_barrier();
715
716 for_each_engine(engine, gt, id) {
717 intel_engine_free_request_pool(engine);
718 kfree(engine);
719 gt->engine[id] = NULL;
720 }
721 }
722
723 static
gen11_vdbox_has_sfc(struct intel_gt * gt,unsigned int physical_vdbox,unsigned int logical_vdbox,u16 vdbox_mask)724 bool gen11_vdbox_has_sfc(struct intel_gt *gt,
725 unsigned int physical_vdbox,
726 unsigned int logical_vdbox, u16 vdbox_mask)
727 {
728 struct drm_i915_private *i915 = gt->i915;
729
730 /*
731 * In Gen11, only even numbered logical VDBOXes are hooked
732 * up to an SFC (Scaler & Format Converter) unit.
733 * In Gen12, Even numbered physical instance always are connected
734 * to an SFC. Odd numbered physical instances have SFC only if
735 * previous even instance is fused off.
736 *
737 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
738 * in the fuse register that tells us whether a specific SFC is present.
739 */
740 if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
741 return false;
742 else if (MEDIA_VER(i915) >= 12)
743 return (physical_vdbox % 2 == 0) ||
744 !(BIT(physical_vdbox - 1) & vdbox_mask);
745 else if (MEDIA_VER(i915) == 11)
746 return logical_vdbox % 2 == 0;
747
748 return false;
749 }
750
engine_mask_apply_media_fuses(struct intel_gt * gt)751 static void engine_mask_apply_media_fuses(struct intel_gt *gt)
752 {
753 struct drm_i915_private *i915 = gt->i915;
754 unsigned int logical_vdbox = 0;
755 unsigned int i;
756 u32 media_fuse, fuse1;
757 u16 vdbox_mask;
758 u16 vebox_mask;
759
760 if (MEDIA_VER(gt->i915) < 11)
761 return;
762
763 /*
764 * On newer platforms the fusing register is called 'enable' and has
765 * enable semantics, while on older platforms it is called 'disable'
766 * and bits have disable semantices.
767 */
768 media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
769 if (MEDIA_VER_FULL(i915) < IP_VER(12, 55))
770 media_fuse = ~media_fuse;
771
772 vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
773 vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
774 GEN11_GT_VEBOX_DISABLE_SHIFT;
775
776 if (MEDIA_VER_FULL(i915) >= IP_VER(12, 55)) {
777 fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
778 gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
779 } else {
780 gt->info.sfc_mask = ~0;
781 }
782
783 for (i = 0; i < I915_MAX_VCS; i++) {
784 if (!HAS_ENGINE(gt, _VCS(i))) {
785 vdbox_mask &= ~BIT(i);
786 continue;
787 }
788
789 if (!(BIT(i) & vdbox_mask)) {
790 gt->info.engine_mask &= ~BIT(_VCS(i));
791 gt_dbg(gt, "vcs%u fused off\n", i);
792 continue;
793 }
794
795 if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
796 gt->info.vdbox_sfc_access |= BIT(i);
797 logical_vdbox++;
798 }
799 gt_dbg(gt, "vdbox enable: %04x, instances: %04lx\n", vdbox_mask, VDBOX_MASK(gt));
800 GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
801
802 for (i = 0; i < I915_MAX_VECS; i++) {
803 if (!HAS_ENGINE(gt, _VECS(i))) {
804 vebox_mask &= ~BIT(i);
805 continue;
806 }
807
808 if (!(BIT(i) & vebox_mask)) {
809 gt->info.engine_mask &= ~BIT(_VECS(i));
810 gt_dbg(gt, "vecs%u fused off\n", i);
811 }
812 }
813 gt_dbg(gt, "vebox enable: %04x, instances: %04lx\n", vebox_mask, VEBOX_MASK(gt));
814 GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
815 }
816
engine_mask_apply_compute_fuses(struct intel_gt * gt)817 static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
818 {
819 struct drm_i915_private *i915 = gt->i915;
820 struct intel_gt_info *info = >->info;
821 int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
822 unsigned long ccs_mask;
823 unsigned int i;
824
825 if (GRAPHICS_VER(i915) < 11)
826 return;
827
828 if (hweight32(CCS_MASK(gt)) <= 1)
829 return;
830
831 ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
832 ss_per_ccs);
833 /*
834 * If all DSS in a quadrant are fused off, the corresponding CCS
835 * engine is not available for use.
836 */
837 for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
838 info->engine_mask &= ~BIT(_CCS(i));
839 gt_dbg(gt, "ccs%u fused off\n", i);
840 }
841 }
842
843 /*
844 * Determine which engines are fused off in our particular hardware.
845 * Note that we have a catch-22 situation where we need to be able to access
846 * the blitter forcewake domain to read the engine fuses, but at the same time
847 * we need to know which engines are available on the system to know which
848 * forcewake domains are present. We solve this by intializing the forcewake
849 * domains based on the full engine mask in the platform capabilities before
850 * calling this function and pruning the domains for fused-off engines
851 * afterwards.
852 */
init_engine_mask(struct intel_gt * gt)853 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
854 {
855 struct intel_gt_info *info = >->info;
856
857 GEM_BUG_ON(!info->engine_mask);
858
859 engine_mask_apply_media_fuses(gt);
860 engine_mask_apply_compute_fuses(gt);
861
862 /*
863 * The only use of the GSC CS is to load and communicate with the GSC
864 * FW, so we have no use for it if we don't have the FW.
865 *
866 * IMPORTANT: in cases where we don't have the GSC FW, we have a
867 * catch-22 situation that breaks media C6 due to 2 requirements:
868 * 1) once turned on, the GSC power well will not go to sleep unless the
869 * GSC FW is loaded.
870 * 2) to enable idling (which is required for media C6) we need to
871 * initialize the IDLE_MSG register for the GSC CS and do at least 1
872 * submission, which will wake up the GSC power well.
873 */
874 if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(>->uc)) {
875 gt_notice(gt, "No GSC FW selected, disabling GSC CS and media C6\n");
876 info->engine_mask &= ~BIT(GSC0);
877 }
878
879 /*
880 * Do not create the command streamer for CCS slices beyond the first.
881 * All the workload submitted to the first engine will be shared among
882 * all the slices.
883 *
884 * Once the user will be allowed to customize the CCS mode, then this
885 * check needs to be removed.
886 */
887 if (IS_DG2(gt->i915)) {
888 u8 first_ccs = __ffs(CCS_MASK(gt));
889
890 /*
891 * Store the number of active cslices before
892 * changing the CCS engine configuration
893 */
894 gt->ccs.cslices = CCS_MASK(gt);
895
896 /* Mask off all the CCS engine */
897 info->engine_mask &= ~GENMASK(CCS3, CCS0);
898 /* Put back in the first CCS engine */
899 info->engine_mask |= BIT(_CCS(first_ccs));
900 }
901
902 return info->engine_mask;
903 }
904
populate_logical_ids(struct intel_gt * gt,u8 * logical_ids,u8 class,const u8 * map,u8 num_instances)905 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
906 u8 class, const u8 *map, u8 num_instances)
907 {
908 int i, j;
909 u8 current_logical_id = 0;
910
911 for (j = 0; j < num_instances; ++j) {
912 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
913 if (!HAS_ENGINE(gt, i) ||
914 intel_engines[i].class != class)
915 continue;
916
917 if (intel_engines[i].instance == map[j]) {
918 logical_ids[intel_engines[i].instance] =
919 current_logical_id++;
920 break;
921 }
922 }
923 }
924 }
925
setup_logical_ids(struct intel_gt * gt,u8 * logical_ids,u8 class)926 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
927 {
928 /*
929 * Logical to physical mapping is needed for proper support
930 * to split-frame feature.
931 */
932 if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
933 const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
934
935 populate_logical_ids(gt, logical_ids, class,
936 map, ARRAY_SIZE(map));
937 } else {
938 int i;
939 u8 map[MAX_ENGINE_INSTANCE + 1];
940
941 for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
942 map[i] = i;
943 populate_logical_ids(gt, logical_ids, class,
944 map, ARRAY_SIZE(map));
945 }
946 }
947
948 /**
949 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
950 * @gt: pointer to struct intel_gt
951 *
952 * Return: non-zero if the initialization failed.
953 */
intel_engines_init_mmio(struct intel_gt * gt)954 int intel_engines_init_mmio(struct intel_gt *gt)
955 {
956 struct drm_i915_private *i915 = gt->i915;
957 const unsigned int engine_mask = init_engine_mask(gt);
958 unsigned int mask = 0;
959 unsigned int i, class;
960 u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
961 int err;
962
963 drm_WARN_ON(&i915->drm, engine_mask == 0);
964 drm_WARN_ON(&i915->drm, engine_mask &
965 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
966
967 if (i915_inject_probe_failure(i915))
968 return -ENODEV;
969
970 for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
971 setup_logical_ids(gt, logical_ids, class);
972
973 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
974 u8 instance = intel_engines[i].instance;
975
976 if (intel_engines[i].class != class ||
977 !HAS_ENGINE(gt, i))
978 continue;
979
980 err = intel_engine_setup(gt, i,
981 logical_ids[instance]);
982 if (err)
983 goto cleanup;
984
985 mask |= BIT(i);
986 }
987 }
988
989 /*
990 * Catch failures to update intel_engines table when the new engines
991 * are added to the driver by a warning and disabling the forgotten
992 * engines.
993 */
994 if (drm_WARN_ON(&i915->drm, mask != engine_mask))
995 gt->info.engine_mask = mask;
996
997 gt->info.num_engines = hweight32(mask);
998
999 intel_gt_check_and_clear_faults(gt);
1000
1001 intel_setup_engine_capabilities(gt);
1002
1003 intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
1004
1005 return 0;
1006
1007 cleanup:
1008 intel_engines_free(gt);
1009 return err;
1010 }
1011
intel_engine_init_execlists(struct intel_engine_cs * engine)1012 void intel_engine_init_execlists(struct intel_engine_cs *engine)
1013 {
1014 struct intel_engine_execlists * const execlists = &engine->execlists;
1015
1016 execlists->port_mask = 1;
1017 GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
1018 GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
1019
1020 memset(execlists->pending, 0, sizeof(execlists->pending));
1021 execlists->active =
1022 memset(execlists->inflight, 0, sizeof(execlists->inflight));
1023 }
1024
cleanup_status_page(struct intel_engine_cs * engine)1025 static void cleanup_status_page(struct intel_engine_cs *engine)
1026 {
1027 struct i915_vma *vma;
1028
1029 /* Prevent writes into HWSP after returning the page to the system */
1030 intel_engine_set_hwsp_writemask(engine, ~0u);
1031
1032 vma = fetch_and_zero(&engine->status_page.vma);
1033 if (!vma)
1034 return;
1035
1036 if (!HWS_NEEDS_PHYSICAL(engine->i915))
1037 i915_vma_unpin(vma);
1038
1039 i915_gem_object_unpin_map(vma->obj);
1040 i915_gem_object_put(vma->obj);
1041 }
1042
pin_ggtt_status_page(struct intel_engine_cs * engine,struct i915_gem_ww_ctx * ww,struct i915_vma * vma)1043 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
1044 struct i915_gem_ww_ctx *ww,
1045 struct i915_vma *vma)
1046 {
1047 unsigned int flags;
1048
1049 if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
1050 /*
1051 * On g33, we cannot place HWS above 256MiB, so
1052 * restrict its pinning to the low mappable arena.
1053 * Though this restriction is not documented for
1054 * gen4, gen5, or byt, they also behave similarly
1055 * and hang if the HWS is placed at the top of the
1056 * GTT. To generalise, it appears that all !llc
1057 * platforms have issues with us placing the HWS
1058 * above the mappable region (even though we never
1059 * actually map it).
1060 */
1061 flags = PIN_MAPPABLE;
1062 else
1063 flags = PIN_HIGH;
1064
1065 return i915_ggtt_pin(vma, ww, 0, flags);
1066 }
1067
init_status_page(struct intel_engine_cs * engine)1068 static int init_status_page(struct intel_engine_cs *engine)
1069 {
1070 struct drm_i915_gem_object *obj;
1071 struct i915_gem_ww_ctx ww;
1072 struct i915_vma *vma;
1073 void *vaddr;
1074 int ret;
1075
1076 INIT_LIST_HEAD(&engine->status_page.timelines);
1077
1078 /*
1079 * Though the HWS register does support 36bit addresses, historically
1080 * we have had hangs and corruption reported due to wild writes if
1081 * the HWS is placed above 4G. We only allow objects to be allocated
1082 * in GFP_DMA32 for i965, and no earlier physical address users had
1083 * access to more than 4G.
1084 */
1085 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1086 if (IS_ERR(obj)) {
1087 gt_err(engine->gt, "Failed to allocate status page\n");
1088 return PTR_ERR(obj);
1089 }
1090
1091 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
1092
1093 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1094 if (IS_ERR(vma)) {
1095 ret = PTR_ERR(vma);
1096 goto err_put;
1097 }
1098
1099 i915_gem_ww_ctx_init(&ww, true);
1100 retry:
1101 ret = i915_gem_object_lock(obj, &ww);
1102 if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1103 ret = pin_ggtt_status_page(engine, &ww, vma);
1104 if (ret)
1105 goto err;
1106
1107 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1108 if (IS_ERR(vaddr)) {
1109 ret = PTR_ERR(vaddr);
1110 goto err_unpin;
1111 }
1112
1113 engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1114 engine->status_page.vma = vma;
1115
1116 err_unpin:
1117 if (ret)
1118 i915_vma_unpin(vma);
1119 err:
1120 if (ret == -EDEADLK) {
1121 ret = i915_gem_ww_ctx_backoff(&ww);
1122 if (!ret)
1123 goto retry;
1124 }
1125 i915_gem_ww_ctx_fini(&ww);
1126 err_put:
1127 if (ret)
1128 i915_gem_object_put(obj);
1129 return ret;
1130 }
1131
intel_engine_init_tlb_invalidation(struct intel_engine_cs * engine)1132 static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine)
1133 {
1134 static const union intel_engine_tlb_inv_reg gen8_regs[] = {
1135 [RENDER_CLASS].reg = GEN8_RTCR,
1136 [VIDEO_DECODE_CLASS].reg = GEN8_M1TCR, /* , GEN8_M2TCR */
1137 [VIDEO_ENHANCEMENT_CLASS].reg = GEN8_VTCR,
1138 [COPY_ENGINE_CLASS].reg = GEN8_BTCR,
1139 };
1140 static const union intel_engine_tlb_inv_reg gen12_regs[] = {
1141 [RENDER_CLASS].reg = GEN12_GFX_TLB_INV_CR,
1142 [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR,
1143 [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR,
1144 [COPY_ENGINE_CLASS].reg = GEN12_BLT_TLB_INV_CR,
1145 [COMPUTE_CLASS].reg = GEN12_COMPCTX_TLB_INV_CR,
1146 };
1147 static const union intel_engine_tlb_inv_reg xehp_regs[] = {
1148 [RENDER_CLASS].mcr_reg = XEHP_GFX_TLB_INV_CR,
1149 [VIDEO_DECODE_CLASS].mcr_reg = XEHP_VD_TLB_INV_CR,
1150 [VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR,
1151 [COPY_ENGINE_CLASS].mcr_reg = XEHP_BLT_TLB_INV_CR,
1152 [COMPUTE_CLASS].mcr_reg = XEHP_COMPCTX_TLB_INV_CR,
1153 };
1154 static const union intel_engine_tlb_inv_reg xelpmp_regs[] = {
1155 [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR,
1156 [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR,
1157 [OTHER_CLASS].reg = XELPMP_GSC_TLB_INV_CR,
1158 };
1159 struct drm_i915_private *i915 = engine->i915;
1160 const unsigned int instance = engine->instance;
1161 const unsigned int class = engine->class;
1162 const union intel_engine_tlb_inv_reg *regs;
1163 union intel_engine_tlb_inv_reg reg;
1164 unsigned int num = 0;
1165 u32 val;
1166
1167 /*
1168 * New platforms should not be added with catch-all-newer (>=)
1169 * condition so that any later platform added triggers the below warning
1170 * and in turn mandates a human cross-check of whether the invalidation
1171 * flows have compatible semantics.
1172 *
1173 * For instance with the 11.00 -> 12.00 transition three out of five
1174 * respective engine registers were moved to masked type. Then after the
1175 * 12.00 -> 12.50 transition multi cast handling is required too.
1176 */
1177
1178 if (engine->gt->type == GT_MEDIA) {
1179 if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) {
1180 regs = xelpmp_regs;
1181 num = ARRAY_SIZE(xelpmp_regs);
1182 }
1183 } else {
1184 if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 74) ||
1185 GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) ||
1186 GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) ||
1187 GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) {
1188 regs = xehp_regs;
1189 num = ARRAY_SIZE(xehp_regs);
1190 } else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) ||
1191 GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) {
1192 regs = gen12_regs;
1193 num = ARRAY_SIZE(gen12_regs);
1194 } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
1195 regs = gen8_regs;
1196 num = ARRAY_SIZE(gen8_regs);
1197 } else if (GRAPHICS_VER(i915) < 8) {
1198 return 0;
1199 }
1200 }
1201
1202 if (gt_WARN_ONCE(engine->gt, !num,
1203 "Platform does not implement TLB invalidation!"))
1204 return -ENODEV;
1205
1206 if (gt_WARN_ON_ONCE(engine->gt,
1207 class >= num ||
1208 (!regs[class].reg.reg &&
1209 !regs[class].mcr_reg.reg)))
1210 return -ERANGE;
1211
1212 reg = regs[class];
1213
1214 if (regs == xelpmp_regs && class == OTHER_CLASS) {
1215 /*
1216 * There's only a single GSC instance, but it uses register bit
1217 * 1 instead of either 0 or OTHER_GSC_INSTANCE.
1218 */
1219 GEM_WARN_ON(instance != OTHER_GSC_INSTANCE);
1220 val = 1;
1221 } else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) {
1222 reg.reg = GEN8_M2TCR;
1223 val = 0;
1224 } else {
1225 val = instance;
1226 }
1227
1228 val = BIT(val);
1229
1230 engine->tlb_inv.mcr = regs == xehp_regs;
1231 engine->tlb_inv.reg = reg;
1232 engine->tlb_inv.done = val;
1233
1234 if (GRAPHICS_VER(i915) >= 12 &&
1235 (engine->class == VIDEO_DECODE_CLASS ||
1236 engine->class == VIDEO_ENHANCEMENT_CLASS ||
1237 engine->class == COMPUTE_CLASS ||
1238 engine->class == OTHER_CLASS))
1239 engine->tlb_inv.request = _MASKED_BIT_ENABLE(val);
1240 else
1241 engine->tlb_inv.request = val;
1242
1243 return 0;
1244 }
1245
engine_setup_common(struct intel_engine_cs * engine)1246 static int engine_setup_common(struct intel_engine_cs *engine)
1247 {
1248 int err;
1249
1250 init_llist_head(&engine->barrier_tasks);
1251
1252 err = intel_engine_init_tlb_invalidation(engine);
1253 if (err)
1254 return err;
1255
1256 err = init_status_page(engine);
1257 if (err)
1258 return err;
1259
1260 engine->breadcrumbs = intel_breadcrumbs_create(engine);
1261 if (!engine->breadcrumbs) {
1262 err = -ENOMEM;
1263 goto err_status;
1264 }
1265
1266 engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1267 if (!engine->sched_engine) {
1268 err = -ENOMEM;
1269 goto err_sched_engine;
1270 }
1271 engine->sched_engine->private_data = engine;
1272
1273 err = intel_engine_init_cmd_parser(engine);
1274 if (err)
1275 goto err_cmd_parser;
1276
1277 intel_engine_init_execlists(engine);
1278 intel_engine_init__pm(engine);
1279 intel_engine_init_retire(engine);
1280
1281 /* Use the whole device by default */
1282 engine->sseu =
1283 intel_sseu_from_device_info(&engine->gt->info.sseu);
1284
1285 intel_engine_init_workarounds(engine);
1286 intel_engine_init_whitelist(engine);
1287 intel_engine_init_ctx_wa(engine);
1288
1289 if (GRAPHICS_VER(engine->i915) >= 12)
1290 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1291
1292 return 0;
1293
1294 err_cmd_parser:
1295 i915_sched_engine_put(engine->sched_engine);
1296 err_sched_engine:
1297 intel_breadcrumbs_put(engine->breadcrumbs);
1298 err_status:
1299 cleanup_status_page(engine);
1300 return err;
1301 }
1302
1303 struct measure_breadcrumb {
1304 struct i915_request rq;
1305 struct intel_ring ring;
1306 u32 cs[2048];
1307 };
1308
measure_breadcrumb_dw(struct intel_context * ce)1309 static int measure_breadcrumb_dw(struct intel_context *ce)
1310 {
1311 struct intel_engine_cs *engine = ce->engine;
1312 struct measure_breadcrumb *frame;
1313 int dw;
1314
1315 GEM_BUG_ON(!engine->gt->scratch);
1316
1317 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1318 if (!frame)
1319 return -ENOMEM;
1320
1321 frame->rq.i915 = engine->i915;
1322 frame->rq.engine = engine;
1323 frame->rq.context = ce;
1324 rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1325 frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1326
1327 frame->ring.vaddr = frame->cs;
1328 frame->ring.size = sizeof(frame->cs);
1329 frame->ring.wrap =
1330 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1331 frame->ring.effective_size = frame->ring.size;
1332 intel_ring_update_space(&frame->ring);
1333 frame->rq.ring = &frame->ring;
1334
1335 mutex_lock(&ce->timeline->mutex);
1336 spin_lock_irq(&engine->sched_engine->lock);
1337
1338 dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1339
1340 spin_unlock_irq(&engine->sched_engine->lock);
1341 mutex_unlock(&ce->timeline->mutex);
1342
1343 GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1344
1345 kfree(frame);
1346 return dw;
1347 }
1348
1349 struct intel_context *
intel_engine_create_pinned_context(struct intel_engine_cs * engine,struct i915_address_space * vm,unsigned int ring_size,unsigned int hwsp,struct lock_class_key * key,const char * name)1350 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1351 struct i915_address_space *vm,
1352 unsigned int ring_size,
1353 unsigned int hwsp,
1354 struct lock_class_key *key,
1355 const char *name)
1356 {
1357 struct intel_context *ce;
1358 int err;
1359
1360 ce = intel_context_create(engine);
1361 if (IS_ERR(ce))
1362 return ce;
1363
1364 __set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1365 ce->timeline = page_pack_bits(NULL, hwsp);
1366 ce->ring = NULL;
1367 ce->ring_size = ring_size;
1368
1369 i915_vm_put(ce->vm);
1370 ce->vm = i915_vm_get(vm);
1371
1372 err = intel_context_pin(ce); /* perma-pin so it is always available */
1373 if (err) {
1374 intel_context_put(ce);
1375 return ERR_PTR(err);
1376 }
1377
1378 list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1379
1380 /*
1381 * Give our perma-pinned kernel timelines a separate lockdep class,
1382 * so that we can use them from within the normal user timelines
1383 * should we need to inject GPU operations during their request
1384 * construction.
1385 */
1386 lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1387
1388 return ce;
1389 }
1390
intel_engine_destroy_pinned_context(struct intel_context * ce)1391 void intel_engine_destroy_pinned_context(struct intel_context *ce)
1392 {
1393 struct intel_engine_cs *engine = ce->engine;
1394 struct i915_vma *hwsp = engine->status_page.vma;
1395
1396 GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1397
1398 mutex_lock(&hwsp->vm->mutex);
1399 list_del(&ce->timeline->engine_link);
1400 mutex_unlock(&hwsp->vm->mutex);
1401
1402 list_del(&ce->pinned_contexts_link);
1403 intel_context_unpin(ce);
1404 intel_context_put(ce);
1405 }
1406
1407 static struct intel_context *
create_ggtt_bind_context(struct intel_engine_cs * engine)1408 create_ggtt_bind_context(struct intel_engine_cs *engine)
1409 {
1410 static struct lock_class_key kernel;
1411
1412 /*
1413 * MI_UPDATE_GTT can insert up to 511 PTE entries and there could be multiple
1414 * bind requets at a time so get a bigger ring.
1415 */
1416 return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_512K,
1417 I915_GEM_HWS_GGTT_BIND_ADDR,
1418 &kernel, "ggtt_bind_context");
1419 }
1420
1421 static struct intel_context *
create_kernel_context(struct intel_engine_cs * engine)1422 create_kernel_context(struct intel_engine_cs *engine)
1423 {
1424 static struct lock_class_key kernel;
1425
1426 return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1427 I915_GEM_HWS_SEQNO_ADDR,
1428 &kernel, "kernel_context");
1429 }
1430
1431 /*
1432 * engine_init_common - initialize engine state which might require hw access
1433 * @engine: Engine to initialize.
1434 *
1435 * Initializes @engine@ structure members shared between legacy and execlists
1436 * submission modes which do require hardware access.
1437 *
1438 * Typcally done at later stages of submission mode specific engine setup.
1439 *
1440 * Returns zero on success or an error code on failure.
1441 */
engine_init_common(struct intel_engine_cs * engine)1442 static int engine_init_common(struct intel_engine_cs *engine)
1443 {
1444 struct intel_context *ce, *bce = NULL;
1445 int ret;
1446
1447 engine->set_default_submission(engine);
1448
1449 /*
1450 * We may need to do things with the shrinker which
1451 * require us to immediately switch back to the default
1452 * context. This can cause a problem as pinning the
1453 * default context also requires GTT space which may not
1454 * be available. To avoid this we always pin the default
1455 * context.
1456 */
1457 ce = create_kernel_context(engine);
1458 if (IS_ERR(ce))
1459 return PTR_ERR(ce);
1460 /*
1461 * Create a separate pinned context for GGTT update with blitter engine
1462 * if a platform require such service. MI_UPDATE_GTT works on other
1463 * engines as well but BCS should be less busy engine so pick that for
1464 * GGTT updates.
1465 */
1466 if (i915_ggtt_require_binder(engine->i915) && engine->id == BCS0) {
1467 bce = create_ggtt_bind_context(engine);
1468 if (IS_ERR(bce)) {
1469 ret = PTR_ERR(bce);
1470 goto err_ce_context;
1471 }
1472 }
1473
1474 ret = measure_breadcrumb_dw(ce);
1475 if (ret < 0)
1476 goto err_bce_context;
1477
1478 engine->emit_fini_breadcrumb_dw = ret;
1479 engine->kernel_context = ce;
1480 engine->bind_context = bce;
1481
1482 return 0;
1483
1484 err_bce_context:
1485 if (bce)
1486 intel_engine_destroy_pinned_context(bce);
1487 err_ce_context:
1488 intel_engine_destroy_pinned_context(ce);
1489 return ret;
1490 }
1491
intel_engines_init(struct intel_gt * gt)1492 int intel_engines_init(struct intel_gt *gt)
1493 {
1494 int (*setup)(struct intel_engine_cs *engine);
1495 struct intel_engine_cs *engine;
1496 enum intel_engine_id id;
1497 int err;
1498
1499 if (intel_uc_uses_guc_submission(>->uc)) {
1500 gt->submission_method = INTEL_SUBMISSION_GUC;
1501 setup = intel_guc_submission_setup;
1502 } else if (HAS_EXECLISTS(gt->i915)) {
1503 gt->submission_method = INTEL_SUBMISSION_ELSP;
1504 setup = intel_execlists_submission_setup;
1505 } else {
1506 gt->submission_method = INTEL_SUBMISSION_RING;
1507 setup = intel_ring_submission_setup;
1508 }
1509
1510 for_each_engine(engine, gt, id) {
1511 err = engine_setup_common(engine);
1512 if (err)
1513 return err;
1514
1515 err = setup(engine);
1516 if (err) {
1517 intel_engine_cleanup_common(engine);
1518 return err;
1519 }
1520
1521 /* The backend should now be responsible for cleanup */
1522 GEM_BUG_ON(engine->release == NULL);
1523
1524 err = engine_init_common(engine);
1525 if (err)
1526 return err;
1527
1528 intel_engine_add_user(engine);
1529 }
1530
1531 return 0;
1532 }
1533
1534 /**
1535 * intel_engine_cleanup_common - cleans up the engine state created by
1536 * the common initiailizers.
1537 * @engine: Engine to cleanup.
1538 *
1539 * This cleans up everything created by the common helpers.
1540 */
intel_engine_cleanup_common(struct intel_engine_cs * engine)1541 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1542 {
1543 GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1544
1545 i915_sched_engine_put(engine->sched_engine);
1546 intel_breadcrumbs_put(engine->breadcrumbs);
1547
1548 intel_engine_fini_retire(engine);
1549 intel_engine_cleanup_cmd_parser(engine);
1550
1551 if (engine->default_state)
1552 fput(engine->default_state);
1553
1554 if (engine->kernel_context)
1555 intel_engine_destroy_pinned_context(engine->kernel_context);
1556
1557 if (engine->bind_context)
1558 intel_engine_destroy_pinned_context(engine->bind_context);
1559
1560
1561 GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1562 cleanup_status_page(engine);
1563
1564 intel_wa_list_free(&engine->ctx_wa_list);
1565 intel_wa_list_free(&engine->wa_list);
1566 intel_wa_list_free(&engine->whitelist);
1567 }
1568
1569 /**
1570 * intel_engine_resume - re-initializes the HW state of the engine
1571 * @engine: Engine to resume.
1572 *
1573 * Returns zero on success or an error code on failure.
1574 */
intel_engine_resume(struct intel_engine_cs * engine)1575 int intel_engine_resume(struct intel_engine_cs *engine)
1576 {
1577 intel_engine_apply_workarounds(engine);
1578 intel_engine_apply_whitelist(engine);
1579
1580 return engine->resume(engine);
1581 }
1582
intel_engine_get_active_head(const struct intel_engine_cs * engine)1583 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1584 {
1585 struct drm_i915_private *i915 = engine->i915;
1586
1587 u64 acthd;
1588
1589 if (GRAPHICS_VER(i915) >= 8)
1590 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1591 else if (GRAPHICS_VER(i915) >= 4)
1592 acthd = ENGINE_READ(engine, RING_ACTHD);
1593 else
1594 acthd = ENGINE_READ(engine, ACTHD);
1595
1596 return acthd;
1597 }
1598
intel_engine_get_last_batch_head(const struct intel_engine_cs * engine)1599 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1600 {
1601 u64 bbaddr;
1602
1603 if (GRAPHICS_VER(engine->i915) >= 8)
1604 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1605 else
1606 bbaddr = ENGINE_READ(engine, RING_BBADDR);
1607
1608 return bbaddr;
1609 }
1610
stop_timeout(const struct intel_engine_cs * engine)1611 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1612 {
1613 if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1614 return 0;
1615
1616 /*
1617 * If we are doing a normal GPU reset, we can take our time and allow
1618 * the engine to quiesce. We've stopped submission to the engine, and
1619 * if we wait long enough an innocent context should complete and
1620 * leave the engine idle. So they should not be caught unaware by
1621 * the forthcoming GPU reset (which usually follows the stop_cs)!
1622 */
1623 return READ_ONCE(engine->props.stop_timeout_ms);
1624 }
1625
__intel_engine_stop_cs(struct intel_engine_cs * engine,int fast_timeout_us,int slow_timeout_ms)1626 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1627 int fast_timeout_us,
1628 int slow_timeout_ms)
1629 {
1630 struct intel_uncore *uncore = engine->uncore;
1631 const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1632 int err;
1633
1634 intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1635
1636 /*
1637 * Wa_22011802037: Prior to doing a reset, ensure CS is
1638 * stopped, set ring stop bit and prefetch disable bit to halt CS
1639 */
1640 if (intel_engine_reset_needs_wa_22011802037(engine->gt))
1641 intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1642 _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1643
1644 err = __intel_wait_for_register_fw(engine->uncore, mode,
1645 MODE_IDLE, MODE_IDLE,
1646 fast_timeout_us,
1647 slow_timeout_ms,
1648 NULL);
1649
1650 /* A final mmio read to let GPU writes be hopefully flushed to memory */
1651 intel_uncore_posting_read_fw(uncore, mode);
1652 return err;
1653 }
1654
intel_engine_stop_cs(struct intel_engine_cs * engine)1655 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1656 {
1657 int err = 0;
1658
1659 if (GRAPHICS_VER(engine->i915) < 3)
1660 return -ENODEV;
1661
1662 ENGINE_TRACE(engine, "\n");
1663 /*
1664 * TODO: Find out why occasionally stopping the CS times out. Seen
1665 * especially with gem_eio tests.
1666 *
1667 * Occasionally trying to stop the cs times out, but does not adversely
1668 * affect functionality. The timeout is set as a config parameter that
1669 * defaults to 100ms. In most cases the follow up operation is to wait
1670 * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1671 * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1672 * caused, the caller must check and handle the return from this
1673 * function.
1674 */
1675 if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1676 ENGINE_TRACE(engine,
1677 "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1678 ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1679 ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1680
1681 /*
1682 * Sometimes we observe that the idle flag is not
1683 * set even though the ring is empty. So double
1684 * check before giving up.
1685 */
1686 if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1687 (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1688 err = -ETIMEDOUT;
1689 }
1690
1691 return err;
1692 }
1693
intel_engine_cancel_stop_cs(struct intel_engine_cs * engine)1694 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1695 {
1696 ENGINE_TRACE(engine, "\n");
1697
1698 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1699 }
1700
__cs_pending_mi_force_wakes(struct intel_engine_cs * engine)1701 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1702 {
1703 static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1704 [RCS0] = MSG_IDLE_CS,
1705 [BCS0] = MSG_IDLE_BCS,
1706 [VCS0] = MSG_IDLE_VCS0,
1707 [VCS1] = MSG_IDLE_VCS1,
1708 [VCS2] = MSG_IDLE_VCS2,
1709 [VCS3] = MSG_IDLE_VCS3,
1710 [VCS4] = MSG_IDLE_VCS4,
1711 [VCS5] = MSG_IDLE_VCS5,
1712 [VCS6] = MSG_IDLE_VCS6,
1713 [VCS7] = MSG_IDLE_VCS7,
1714 [VECS0] = MSG_IDLE_VECS0,
1715 [VECS1] = MSG_IDLE_VECS1,
1716 [VECS2] = MSG_IDLE_VECS2,
1717 [VECS3] = MSG_IDLE_VECS3,
1718 [CCS0] = MSG_IDLE_CS,
1719 [CCS1] = MSG_IDLE_CS,
1720 [CCS2] = MSG_IDLE_CS,
1721 [CCS3] = MSG_IDLE_CS,
1722 };
1723 u32 val;
1724
1725 if (!_reg[engine->id].reg)
1726 return 0;
1727
1728 val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1729
1730 /* bits[29:25] & bits[13:9] >> shift */
1731 return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1732 }
1733
__gpm_wait_for_fw_complete(struct intel_gt * gt,u32 fw_mask)1734 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1735 {
1736 int ret;
1737
1738 /* Ensure GPM receives fw up/down after CS is stopped */
1739 udelay(1);
1740
1741 /* Wait for forcewake request to complete in GPM */
1742 ret = __intel_wait_for_register_fw(gt->uncore,
1743 GEN9_PWRGT_DOMAIN_STATUS,
1744 fw_mask, fw_mask, 5000, 0, NULL);
1745
1746 /* Ensure CS receives fw ack from GPM */
1747 udelay(1);
1748
1749 if (ret)
1750 GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1751 }
1752
1753 /*
1754 * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1755 * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1756 * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1757 * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1758 * are concerned only with the gt reset here, we use a logical OR of pending
1759 * forcewakeups from all reset domains and then wait for them to complete by
1760 * querying PWRGT_DOMAIN_STATUS.
1761 */
intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs * engine)1762 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1763 {
1764 u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1765
1766 if (fw_pending)
1767 __gpm_wait_for_fw_complete(engine->gt, fw_pending);
1768 }
1769
1770 /* NB: please notice the memset */
intel_engine_get_instdone(const struct intel_engine_cs * engine,struct intel_instdone * instdone)1771 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1772 struct intel_instdone *instdone)
1773 {
1774 struct drm_i915_private *i915 = engine->i915;
1775 struct intel_uncore *uncore = engine->uncore;
1776 u32 mmio_base = engine->mmio_base;
1777 int slice;
1778 int subslice;
1779 int iter;
1780
1781 memset(instdone, 0, sizeof(*instdone));
1782
1783 if (GRAPHICS_VER(i915) >= 8) {
1784 instdone->instdone =
1785 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1786
1787 if (engine->id != RCS0)
1788 return;
1789
1790 instdone->slice_common =
1791 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1792 if (GRAPHICS_VER(i915) >= 12) {
1793 instdone->slice_common_extra[0] =
1794 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1795 instdone->slice_common_extra[1] =
1796 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1797 }
1798
1799 for_each_ss_steering(iter, engine->gt, slice, subslice) {
1800 instdone->sampler[slice][subslice] =
1801 intel_gt_mcr_read(engine->gt,
1802 GEN8_SAMPLER_INSTDONE,
1803 slice, subslice);
1804 instdone->row[slice][subslice] =
1805 intel_gt_mcr_read(engine->gt,
1806 GEN8_ROW_INSTDONE,
1807 slice, subslice);
1808 }
1809
1810 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1811 for_each_ss_steering(iter, engine->gt, slice, subslice)
1812 instdone->geom_svg[slice][subslice] =
1813 intel_gt_mcr_read(engine->gt,
1814 XEHPG_INSTDONE_GEOM_SVG,
1815 slice, subslice);
1816 }
1817 } else if (GRAPHICS_VER(i915) >= 7) {
1818 instdone->instdone =
1819 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1820
1821 if (engine->id != RCS0)
1822 return;
1823
1824 instdone->slice_common =
1825 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1826 instdone->sampler[0][0] =
1827 intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1828 instdone->row[0][0] =
1829 intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1830 } else if (GRAPHICS_VER(i915) >= 4) {
1831 instdone->instdone =
1832 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1833 if (engine->id == RCS0)
1834 /* HACK: Using the wrong struct member */
1835 instdone->slice_common =
1836 intel_uncore_read(uncore, GEN4_INSTDONE1);
1837 } else {
1838 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1839 }
1840 }
1841
ring_is_idle(struct intel_engine_cs * engine)1842 static bool ring_is_idle(struct intel_engine_cs *engine)
1843 {
1844 bool idle = true;
1845
1846 if (I915_SELFTEST_ONLY(!engine->mmio_base))
1847 return true;
1848
1849 if (!intel_engine_pm_get_if_awake(engine))
1850 return true;
1851
1852 /* First check that no commands are left in the ring */
1853 if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1854 (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1855 idle = false;
1856
1857 /* No bit for gen2, so assume the CS parser is idle */
1858 if (GRAPHICS_VER(engine->i915) > 2 &&
1859 !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1860 idle = false;
1861
1862 intel_engine_pm_put(engine);
1863
1864 return idle;
1865 }
1866
__intel_engine_flush_submission(struct intel_engine_cs * engine,bool sync)1867 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1868 {
1869 struct tasklet_struct *t = &engine->sched_engine->tasklet;
1870
1871 if (!t->callback)
1872 return;
1873
1874 local_bh_disable();
1875 if (tasklet_trylock(t)) {
1876 /* Must wait for any GPU reset in progress. */
1877 if (__tasklet_is_enabled(t))
1878 t->callback(t);
1879 tasklet_unlock(t);
1880 }
1881 local_bh_enable();
1882
1883 /* Synchronise and wait for the tasklet on another CPU */
1884 if (sync)
1885 tasklet_unlock_wait(t);
1886 }
1887
1888 /**
1889 * intel_engine_is_idle() - Report if the engine has finished process all work
1890 * @engine: the intel_engine_cs
1891 *
1892 * Return true if there are no requests pending, nothing left to be submitted
1893 * to hardware, and that the engine is idle.
1894 */
intel_engine_is_idle(struct intel_engine_cs * engine)1895 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1896 {
1897 /* More white lies, if wedged, hw state is inconsistent */
1898 if (intel_gt_is_wedged(engine->gt))
1899 return true;
1900
1901 if (!intel_engine_pm_is_awake(engine))
1902 return true;
1903
1904 /* Waiting to drain ELSP? */
1905 intel_synchronize_hardirq(engine->i915);
1906 intel_engine_flush_submission(engine);
1907
1908 /* ELSP is empty, but there are ready requests? E.g. after reset */
1909 if (!i915_sched_engine_is_empty(engine->sched_engine))
1910 return false;
1911
1912 /* Ring stopped? */
1913 return ring_is_idle(engine);
1914 }
1915
intel_engines_are_idle(struct intel_gt * gt)1916 bool intel_engines_are_idle(struct intel_gt *gt)
1917 {
1918 struct intel_engine_cs *engine;
1919 enum intel_engine_id id;
1920
1921 /*
1922 * If the driver is wedged, HW state may be very inconsistent and
1923 * report that it is still busy, even though we have stopped using it.
1924 */
1925 if (intel_gt_is_wedged(gt))
1926 return true;
1927
1928 /* Already parked (and passed an idleness test); must still be idle */
1929 if (!READ_ONCE(gt->awake))
1930 return true;
1931
1932 for_each_engine(engine, gt, id) {
1933 if (!intel_engine_is_idle(engine))
1934 return false;
1935 }
1936
1937 return true;
1938 }
1939
intel_engine_irq_enable(struct intel_engine_cs * engine)1940 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1941 {
1942 if (!engine->irq_enable)
1943 return false;
1944
1945 /* Caller disables interrupts */
1946 spin_lock(engine->gt->irq_lock);
1947 engine->irq_enable(engine);
1948 spin_unlock(engine->gt->irq_lock);
1949
1950 return true;
1951 }
1952
intel_engine_irq_disable(struct intel_engine_cs * engine)1953 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1954 {
1955 if (!engine->irq_disable)
1956 return;
1957
1958 /* Caller disables interrupts */
1959 spin_lock(engine->gt->irq_lock);
1960 engine->irq_disable(engine);
1961 spin_unlock(engine->gt->irq_lock);
1962 }
1963
intel_engines_reset_default_submission(struct intel_gt * gt)1964 void intel_engines_reset_default_submission(struct intel_gt *gt)
1965 {
1966 struct intel_engine_cs *engine;
1967 enum intel_engine_id id;
1968
1969 for_each_engine(engine, gt, id) {
1970 if (engine->sanitize)
1971 engine->sanitize(engine);
1972
1973 engine->set_default_submission(engine);
1974 }
1975 }
1976
intel_engine_can_store_dword(struct intel_engine_cs * engine)1977 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1978 {
1979 switch (GRAPHICS_VER(engine->i915)) {
1980 case 2:
1981 return false; /* uses physical not virtual addresses */
1982 case 3:
1983 /* maybe only uses physical not virtual addresses */
1984 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1985 case 4:
1986 return !IS_I965G(engine->i915); /* who knows! */
1987 case 6:
1988 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1989 default:
1990 return true;
1991 }
1992 }
1993
get_timeline(struct i915_request * rq)1994 static struct intel_timeline *get_timeline(struct i915_request *rq)
1995 {
1996 struct intel_timeline *tl;
1997
1998 /*
1999 * Even though we are holding the engine->sched_engine->lock here, there
2000 * is no control over the submission queue per-se and we are
2001 * inspecting the active state at a random point in time, with an
2002 * unknown queue. Play safe and make sure the timeline remains valid.
2003 * (Only being used for pretty printing, one extra kref shouldn't
2004 * cause a camel stampede!)
2005 */
2006 rcu_read_lock();
2007 tl = rcu_dereference(rq->timeline);
2008 if (!kref_get_unless_zero(&tl->kref))
2009 tl = NULL;
2010 rcu_read_unlock();
2011
2012 return tl;
2013 }
2014
print_ring(char * buf,int sz,struct i915_request * rq)2015 static int print_ring(char *buf, int sz, struct i915_request *rq)
2016 {
2017 int len = 0;
2018
2019 if (!i915_request_signaled(rq)) {
2020 struct intel_timeline *tl = get_timeline(rq);
2021
2022 len = scnprintf(buf, sz,
2023 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
2024 i915_ggtt_offset(rq->ring->vma),
2025 tl ? tl->hwsp_offset : 0,
2026 hwsp_seqno(rq),
2027 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
2028 1000 * 1000));
2029
2030 if (tl)
2031 intel_timeline_put(tl);
2032 }
2033
2034 return len;
2035 }
2036
hexdump(struct drm_printer * m,const void * buf,size_t len)2037 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
2038 {
2039 const size_t rowsize = 8 * sizeof(u32);
2040 const void *prev = NULL;
2041 bool skip = false;
2042 size_t pos;
2043
2044 for (pos = 0; pos < len; pos += rowsize) {
2045 char line[128];
2046
2047 if (prev && !memcmp(prev, buf + pos, rowsize)) {
2048 if (!skip) {
2049 drm_printf(m, "*\n");
2050 skip = true;
2051 }
2052 continue;
2053 }
2054
2055 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
2056 rowsize, sizeof(u32),
2057 line, sizeof(line),
2058 false) >= sizeof(line));
2059 drm_printf(m, "[%04zx] %s\n", pos, line);
2060
2061 prev = buf + pos;
2062 skip = false;
2063 }
2064 }
2065
repr_timer(const struct timer_list * t)2066 static const char *repr_timer(const struct timer_list *t)
2067 {
2068 if (!READ_ONCE(t->expires))
2069 return "inactive";
2070
2071 if (timer_pending(t))
2072 return "active";
2073
2074 return "expired";
2075 }
2076
intel_engine_print_registers(struct intel_engine_cs * engine,struct drm_printer * m)2077 static void intel_engine_print_registers(struct intel_engine_cs *engine,
2078 struct drm_printer *m)
2079 {
2080 struct drm_i915_private *i915 = engine->i915;
2081 struct intel_engine_execlists * const execlists = &engine->execlists;
2082 u64 addr;
2083
2084 if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7))
2085 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
2086 if (HAS_EXECLISTS(i915)) {
2087 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
2088 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
2089 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
2090 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
2091 }
2092 drm_printf(m, "\tRING_START: 0x%08x\n",
2093 ENGINE_READ(engine, RING_START));
2094 drm_printf(m, "\tRING_HEAD: 0x%08x\n",
2095 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
2096 drm_printf(m, "\tRING_TAIL: 0x%08x\n",
2097 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
2098 drm_printf(m, "\tRING_CTL: 0x%08x%s\n",
2099 ENGINE_READ(engine, RING_CTL),
2100 ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
2101 if (GRAPHICS_VER(engine->i915) > 2) {
2102 drm_printf(m, "\tRING_MODE: 0x%08x%s\n",
2103 ENGINE_READ(engine, RING_MI_MODE),
2104 ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
2105 }
2106
2107 if (GRAPHICS_VER(i915) >= 6) {
2108 drm_printf(m, "\tRING_IMR: 0x%08x\n",
2109 ENGINE_READ(engine, RING_IMR));
2110 drm_printf(m, "\tRING_ESR: 0x%08x\n",
2111 ENGINE_READ(engine, RING_ESR));
2112 drm_printf(m, "\tRING_EMR: 0x%08x\n",
2113 ENGINE_READ(engine, RING_EMR));
2114 drm_printf(m, "\tRING_EIR: 0x%08x\n",
2115 ENGINE_READ(engine, RING_EIR));
2116 }
2117
2118 addr = intel_engine_get_active_head(engine);
2119 drm_printf(m, "\tACTHD: 0x%08x_%08x\n",
2120 upper_32_bits(addr), lower_32_bits(addr));
2121 addr = intel_engine_get_last_batch_head(engine);
2122 drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
2123 upper_32_bits(addr), lower_32_bits(addr));
2124 if (GRAPHICS_VER(i915) >= 8)
2125 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
2126 else if (GRAPHICS_VER(i915) >= 4)
2127 addr = ENGINE_READ(engine, RING_DMA_FADD);
2128 else
2129 addr = ENGINE_READ(engine, DMA_FADD_I8XX);
2130 drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
2131 upper_32_bits(addr), lower_32_bits(addr));
2132 if (GRAPHICS_VER(i915) >= 4) {
2133 drm_printf(m, "\tIPEIR: 0x%08x\n",
2134 ENGINE_READ(engine, RING_IPEIR));
2135 drm_printf(m, "\tIPEHR: 0x%08x\n",
2136 ENGINE_READ(engine, RING_IPEHR));
2137 } else {
2138 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
2139 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
2140 }
2141
2142 if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) {
2143 struct i915_request * const *port, *rq;
2144 const u32 *hws =
2145 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2146 const u8 num_entries = execlists->csb_size;
2147 unsigned int idx;
2148 u8 read, write;
2149
2150 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
2151 str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
2152 str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
2153 repr_timer(&engine->execlists.preempt),
2154 repr_timer(&engine->execlists.timer));
2155
2156 read = execlists->csb_head;
2157 write = READ_ONCE(*execlists->csb_write);
2158
2159 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
2160 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
2161 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
2162 read, write, num_entries);
2163
2164 if (read >= num_entries)
2165 read = 0;
2166 if (write >= num_entries)
2167 write = 0;
2168 if (read > write)
2169 write += num_entries;
2170 while (read < write) {
2171 idx = ++read % num_entries;
2172 drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
2173 idx, hws[idx * 2], hws[idx * 2 + 1]);
2174 }
2175
2176 i915_sched_engine_active_lock_bh(engine->sched_engine);
2177 rcu_read_lock();
2178 for (port = execlists->active; (rq = *port); port++) {
2179 char hdr[160];
2180 int len;
2181
2182 len = scnprintf(hdr, sizeof(hdr),
2183 "\t\tActive[%d]: ccid:%08x%s%s, ",
2184 (int)(port - execlists->active),
2185 rq->context->lrc.ccid,
2186 intel_context_is_closed(rq->context) ? "!" : "",
2187 intel_context_is_banned(rq->context) ? "*" : "");
2188 len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2189 scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2190 i915_request_show(m, rq, hdr, 0);
2191 }
2192 for (port = execlists->pending; (rq = *port); port++) {
2193 char hdr[160];
2194 int len;
2195
2196 len = scnprintf(hdr, sizeof(hdr),
2197 "\t\tPending[%d]: ccid:%08x%s%s, ",
2198 (int)(port - execlists->pending),
2199 rq->context->lrc.ccid,
2200 intel_context_is_closed(rq->context) ? "!" : "",
2201 intel_context_is_banned(rq->context) ? "*" : "");
2202 len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2203 scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2204 i915_request_show(m, rq, hdr, 0);
2205 }
2206 rcu_read_unlock();
2207 i915_sched_engine_active_unlock_bh(engine->sched_engine);
2208 } else if (GRAPHICS_VER(i915) > 6) {
2209 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
2210 ENGINE_READ(engine, RING_PP_DIR_BASE));
2211 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
2212 ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
2213 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
2214 ENGINE_READ(engine, RING_PP_DIR_DCLV));
2215 }
2216 }
2217
print_request_ring(struct drm_printer * m,struct i915_request * rq)2218 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
2219 {
2220 struct i915_vma_resource *vma_res = rq->batch_res;
2221 void *ring;
2222 int size;
2223
2224 drm_printf(m,
2225 "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
2226 rq->head, rq->postfix, rq->tail,
2227 vma_res ? upper_32_bits(vma_res->start) : ~0u,
2228 vma_res ? lower_32_bits(vma_res->start) : ~0u);
2229
2230 size = rq->tail - rq->head;
2231 if (rq->tail < rq->head)
2232 size += rq->ring->size;
2233
2234 ring = kmalloc(size, GFP_ATOMIC);
2235 if (ring) {
2236 const void *vaddr = rq->ring->vaddr;
2237 unsigned int head = rq->head;
2238 unsigned int len = 0;
2239
2240 if (rq->tail < head) {
2241 len = rq->ring->size - head;
2242 memcpy(ring, vaddr + head, len);
2243 head = 0;
2244 }
2245 memcpy(ring + len, vaddr + head, size - len);
2246
2247 hexdump(m, ring, size);
2248 kfree(ring);
2249 }
2250 }
2251
read_ul(void * p,size_t x)2252 static unsigned long read_ul(void *p, size_t x)
2253 {
2254 return *(unsigned long *)(p + x);
2255 }
2256
print_properties(struct intel_engine_cs * engine,struct drm_printer * m)2257 static void print_properties(struct intel_engine_cs *engine,
2258 struct drm_printer *m)
2259 {
2260 static const struct pmap {
2261 size_t offset;
2262 const char *name;
2263 } props[] = {
2264 #define P(x) { \
2265 .offset = offsetof(typeof(engine->props), x), \
2266 .name = #x \
2267 }
2268 P(heartbeat_interval_ms),
2269 P(max_busywait_duration_ns),
2270 P(preempt_timeout_ms),
2271 P(stop_timeout_ms),
2272 P(timeslice_duration_ms),
2273
2274 {},
2275 #undef P
2276 };
2277 const struct pmap *p;
2278
2279 drm_printf(m, "\tProperties:\n");
2280 for (p = props; p->name; p++)
2281 drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2282 p->name,
2283 read_ul(&engine->props, p->offset),
2284 read_ul(&engine->defaults, p->offset));
2285 }
2286
engine_dump_request(struct i915_request * rq,struct drm_printer * m,const char * msg)2287 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2288 {
2289 struct intel_timeline *tl = get_timeline(rq);
2290
2291 i915_request_show(m, rq, msg, 0);
2292
2293 drm_printf(m, "\t\tring->start: 0x%08x\n",
2294 i915_ggtt_offset(rq->ring->vma));
2295 drm_printf(m, "\t\tring->head: 0x%08x\n",
2296 rq->ring->head);
2297 drm_printf(m, "\t\tring->tail: 0x%08x\n",
2298 rq->ring->tail);
2299 drm_printf(m, "\t\tring->emit: 0x%08x\n",
2300 rq->ring->emit);
2301 drm_printf(m, "\t\tring->space: 0x%08x\n",
2302 rq->ring->space);
2303
2304 if (tl) {
2305 drm_printf(m, "\t\tring->hwsp: 0x%08x\n",
2306 tl->hwsp_offset);
2307 intel_timeline_put(tl);
2308 }
2309
2310 print_request_ring(m, rq);
2311
2312 if (rq->context->lrc_reg_state) {
2313 drm_printf(m, "Logical Ring Context:\n");
2314 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2315 }
2316 }
2317
intel_engine_dump_active_requests(struct list_head * requests,struct i915_request * hung_rq,struct drm_printer * m)2318 void intel_engine_dump_active_requests(struct list_head *requests,
2319 struct i915_request *hung_rq,
2320 struct drm_printer *m)
2321 {
2322 struct i915_request *rq;
2323 const char *msg;
2324 enum i915_request_state state;
2325
2326 list_for_each_entry(rq, requests, sched.link) {
2327 if (rq == hung_rq)
2328 continue;
2329
2330 state = i915_test_request_state(rq);
2331 if (state < I915_REQUEST_QUEUED)
2332 continue;
2333
2334 if (state == I915_REQUEST_ACTIVE)
2335 msg = "\t\tactive on engine";
2336 else
2337 msg = "\t\tactive in queue";
2338
2339 engine_dump_request(rq, m, msg);
2340 }
2341 }
2342
engine_dump_active_requests(struct intel_engine_cs * engine,struct drm_printer * m)2343 static void engine_dump_active_requests(struct intel_engine_cs *engine,
2344 struct drm_printer *m)
2345 {
2346 struct intel_context *hung_ce = NULL;
2347 struct i915_request *hung_rq = NULL;
2348
2349 /*
2350 * No need for an engine->irq_seqno_barrier() before the seqno reads.
2351 * The GPU is still running so requests are still executing and any
2352 * hardware reads will be out of date by the time they are reported.
2353 * But the intention here is just to report an instantaneous snapshot
2354 * so that's fine.
2355 */
2356 intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq);
2357
2358 drm_printf(m, "\tRequests:\n");
2359
2360 if (hung_rq)
2361 engine_dump_request(hung_rq, m, "\t\thung");
2362 else if (hung_ce)
2363 drm_printf(m, "\t\tGot hung ce but no hung rq!\n");
2364
2365 if (intel_uc_uses_guc_submission(&engine->gt->uc))
2366 intel_guc_dump_active_requests(engine, hung_rq, m);
2367 else
2368 intel_execlists_dump_active_requests(engine, hung_rq, m);
2369
2370 if (hung_rq)
2371 i915_request_put(hung_rq);
2372 }
2373
intel_engine_dump(struct intel_engine_cs * engine,struct drm_printer * m,const char * header,...)2374 void intel_engine_dump(struct intel_engine_cs *engine,
2375 struct drm_printer *m,
2376 const char *header, ...)
2377 {
2378 struct i915_gpu_error * const error = &engine->i915->gpu_error;
2379 struct i915_request *rq;
2380 intel_wakeref_t wakeref;
2381 ktime_t dummy;
2382
2383 if (header) {
2384 va_list ap;
2385
2386 va_start(ap, header);
2387 drm_vprintf(m, header, &ap);
2388 va_end(ap);
2389 }
2390
2391 if (intel_gt_is_wedged(engine->gt))
2392 drm_printf(m, "*** WEDGED ***\n");
2393
2394 drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2395 drm_printf(m, "\tBarriers?: %s\n",
2396 str_yes_no(!llist_empty(&engine->barrier_tasks)));
2397 drm_printf(m, "\tLatency: %luus\n",
2398 ewma__engine_latency_read(&engine->latency));
2399 if (intel_engine_supports_stats(engine))
2400 drm_printf(m, "\tRuntime: %llums\n",
2401 ktime_to_ms(intel_engine_get_busy_time(engine,
2402 &dummy)));
2403 drm_printf(m, "\tForcewake: %x domains, %d active\n",
2404 engine->fw_domain, READ_ONCE(engine->fw_active));
2405
2406 rcu_read_lock();
2407 rq = READ_ONCE(engine->heartbeat.systole);
2408 if (rq)
2409 drm_printf(m, "\tHeartbeat: %d ms ago\n",
2410 jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2411 rcu_read_unlock();
2412 drm_printf(m, "\tReset count: %d (global %d)\n",
2413 i915_reset_engine_count(error, engine),
2414 i915_reset_count(error));
2415 print_properties(engine, m);
2416
2417 engine_dump_active_requests(engine, m);
2418
2419 drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base);
2420 wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2421 if (wakeref) {
2422 intel_engine_print_registers(engine, m);
2423 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2424 } else {
2425 drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2426 }
2427
2428 intel_execlists_show_requests(engine, m, i915_request_show, 8);
2429
2430 drm_printf(m, "HWSP:\n");
2431 hexdump(m, engine->status_page.addr, PAGE_SIZE);
2432
2433 drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2434
2435 intel_engine_print_breadcrumbs(engine, m);
2436 }
2437
2438 /**
2439 * intel_engine_get_busy_time() - Return current accumulated engine busyness
2440 * @engine: engine to report on
2441 * @now: monotonic timestamp of sampling
2442 *
2443 * Returns accumulated time @engine was busy since engine stats were enabled.
2444 */
intel_engine_get_busy_time(struct intel_engine_cs * engine,ktime_t * now)2445 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2446 {
2447 return engine->busyness(engine, now);
2448 }
2449
2450 struct intel_context *
intel_engine_create_virtual(struct intel_engine_cs ** siblings,unsigned int count,unsigned long flags)2451 intel_engine_create_virtual(struct intel_engine_cs **siblings,
2452 unsigned int count, unsigned long flags)
2453 {
2454 if (count == 0)
2455 return ERR_PTR(-EINVAL);
2456
2457 if (count == 1 && !(flags & FORCE_VIRTUAL))
2458 return intel_context_create(siblings[0]);
2459
2460 GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2461 return siblings[0]->cops->create_virtual(siblings, count, flags);
2462 }
2463
engine_execlist_find_hung_request(struct intel_engine_cs * engine)2464 static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2465 {
2466 struct i915_request *request, *active = NULL;
2467
2468 /*
2469 * This search does not work in GuC submission mode. However, the GuC
2470 * will report the hanging context directly to the driver itself. So
2471 * the driver should never get here when in GuC mode.
2472 */
2473 GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2474
2475 /*
2476 * We are called by the error capture, reset and to dump engine
2477 * state at random points in time. In particular, note that neither is
2478 * crucially ordered with an interrupt. After a hang, the GPU is dead
2479 * and we assume that no more writes can happen (we waited long enough
2480 * for all writes that were in transaction to be flushed) - adding an
2481 * extra delay for a recent interrupt is pointless. Hence, we do
2482 * not need an engine->irq_seqno_barrier() before the seqno reads.
2483 * At all other times, we must assume the GPU is still running, but
2484 * we only care about the snapshot of this moment.
2485 */
2486 lockdep_assert_held(&engine->sched_engine->lock);
2487
2488 rcu_read_lock();
2489 request = execlists_active(&engine->execlists);
2490 if (request) {
2491 struct intel_timeline *tl = request->context->timeline;
2492
2493 list_for_each_entry_from_reverse(request, &tl->requests, link) {
2494 if (__i915_request_is_complete(request))
2495 break;
2496
2497 active = request;
2498 }
2499 }
2500 rcu_read_unlock();
2501 if (active)
2502 return active;
2503
2504 list_for_each_entry(request, &engine->sched_engine->requests,
2505 sched.link) {
2506 if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2507 continue;
2508
2509 active = request;
2510 break;
2511 }
2512
2513 return active;
2514 }
2515
intel_engine_get_hung_entity(struct intel_engine_cs * engine,struct intel_context ** ce,struct i915_request ** rq)2516 void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
2517 struct intel_context **ce, struct i915_request **rq)
2518 {
2519 unsigned long flags;
2520
2521 *ce = intel_engine_get_hung_context(engine);
2522 if (*ce) {
2523 intel_engine_clear_hung_context(engine);
2524
2525 *rq = intel_context_get_active_request(*ce);
2526 return;
2527 }
2528
2529 /*
2530 * Getting here with GuC enabled means it is a forced error capture
2531 * with no actual hang. So, no need to attempt the execlist search.
2532 */
2533 if (intel_uc_uses_guc_submission(&engine->gt->uc))
2534 return;
2535
2536 spin_lock_irqsave(&engine->sched_engine->lock, flags);
2537 *rq = engine_execlist_find_hung_request(engine);
2538 if (*rq)
2539 *rq = i915_request_get_rcu(*rq);
2540 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2541 }
2542
xehp_enable_ccs_engines(struct intel_engine_cs * engine)2543 void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2544 {
2545 /*
2546 * If there are any non-fused-off CCS engines, we need to enable CCS
2547 * support in the RCU_MODE register. This only needs to be done once,
2548 * so for simplicity we'll take care of this in the RCS engine's
2549 * resume handler; since the RCS and all CCS engines belong to the
2550 * same reset domain and are reset together, this will also take care
2551 * of re-applying the setting after i915-triggered resets.
2552 */
2553 if (!CCS_MASK(engine->gt))
2554 return;
2555
2556 intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2557 _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2558 }
2559
2560 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2561 #include "mock_engine.c"
2562 #include "selftest_engine.c"
2563 #include "selftest_engine_cs.c"
2564 #endif
2565