1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2016 Intel Corporation 4 */ 5 6 #include <linux/string_helpers.h> 7 8 #include <drm/drm_print.h> 9 10 #include "gem/i915_gem_context.h" 11 #include "gem/i915_gem_internal.h" 12 #include "gt/intel_gt_print.h" 13 #include "gt/intel_gt_regs.h" 14 15 #include "i915_cmd_parser.h" 16 #include "i915_drv.h" 17 #include "i915_irq.h" 18 #include "i915_reg.h" 19 #include "intel_breadcrumbs.h" 20 #include "intel_context.h" 21 #include "intel_engine.h" 22 #include "intel_engine_pm.h" 23 #include "intel_engine_regs.h" 24 #include "intel_engine_user.h" 25 #include "intel_execlists_submission.h" 26 #include "intel_gt.h" 27 #include "intel_gt_mcr.h" 28 #include "intel_gt_pm.h" 29 #include "intel_gt_requests.h" 30 #include "intel_lrc.h" 31 #include "intel_lrc_reg.h" 32 #include "intel_reset.h" 33 #include "intel_ring.h" 34 #include "uc/intel_guc_submission.h" 35 36 /* Haswell does have the CXT_SIZE register however it does not appear to be 37 * valid. Now, docs explain in dwords what is in the context object. The full 38 * size is 70720 bytes, however, the power context and execlist context will 39 * never be saved (power context is stored elsewhere, and execlists don't work 40 * on HSW) - so the final size, including the extra state required for the 41 * Resource Streamer, is 66944 bytes, which rounds to 17 pages. 42 */ 43 #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE) 44 45 #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) 46 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE) 47 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) 48 #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE) 49 50 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE) 51 52 #define MAX_MMIO_BASES 3 53 struct engine_info { 54 u8 class; 55 u8 instance; 56 /* mmio bases table *must* be sorted in reverse graphics_ver order */ 57 struct engine_mmio_base { 58 u32 graphics_ver : 8; 59 u32 base : 24; 60 } mmio_bases[MAX_MMIO_BASES]; 61 }; 62 63 static const struct engine_info intel_engines[] = { 64 [RCS0] = { 65 .class = RENDER_CLASS, 66 .instance = 0, 67 .mmio_bases = { 68 { .graphics_ver = 1, .base = RENDER_RING_BASE } 69 }, 70 }, 71 [BCS0] = { 72 .class = COPY_ENGINE_CLASS, 73 .instance = 0, 74 .mmio_bases = { 75 { .graphics_ver = 6, .base = BLT_RING_BASE } 76 }, 77 }, 78 [BCS1] = { 79 .class = COPY_ENGINE_CLASS, 80 .instance = 1, 81 .mmio_bases = { 82 { .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE } 83 }, 84 }, 85 [BCS2] = { 86 .class = COPY_ENGINE_CLASS, 87 .instance = 2, 88 .mmio_bases = { 89 { .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE } 90 }, 91 }, 92 [BCS3] = { 93 .class = COPY_ENGINE_CLASS, 94 .instance = 3, 95 .mmio_bases = { 96 { .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE } 97 }, 98 }, 99 [BCS4] = { 100 .class = COPY_ENGINE_CLASS, 101 .instance = 4, 102 .mmio_bases = { 103 { .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE } 104 }, 105 }, 106 [BCS5] = { 107 .class = COPY_ENGINE_CLASS, 108 .instance = 5, 109 .mmio_bases = { 110 { .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE } 111 }, 112 }, 113 [BCS6] = { 114 .class = COPY_ENGINE_CLASS, 115 .instance = 6, 116 .mmio_bases = { 117 { .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE } 118 }, 119 }, 120 [BCS7] = { 121 .class = COPY_ENGINE_CLASS, 122 .instance = 7, 123 .mmio_bases = { 124 { .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE } 125 }, 126 }, 127 [BCS8] = { 128 .class = COPY_ENGINE_CLASS, 129 .instance = 8, 130 .mmio_bases = { 131 { .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE } 132 }, 133 }, 134 [VCS0] = { 135 .class = VIDEO_DECODE_CLASS, 136 .instance = 0, 137 .mmio_bases = { 138 { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE }, 139 { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE }, 140 { .graphics_ver = 4, .base = BSD_RING_BASE } 141 }, 142 }, 143 [VCS1] = { 144 .class = VIDEO_DECODE_CLASS, 145 .instance = 1, 146 .mmio_bases = { 147 { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE }, 148 { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE } 149 }, 150 }, 151 [VCS2] = { 152 .class = VIDEO_DECODE_CLASS, 153 .instance = 2, 154 .mmio_bases = { 155 { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE } 156 }, 157 }, 158 [VCS3] = { 159 .class = VIDEO_DECODE_CLASS, 160 .instance = 3, 161 .mmio_bases = { 162 { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE } 163 }, 164 }, 165 [VCS4] = { 166 .class = VIDEO_DECODE_CLASS, 167 .instance = 4, 168 .mmio_bases = { 169 { .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE } 170 }, 171 }, 172 [VCS5] = { 173 .class = VIDEO_DECODE_CLASS, 174 .instance = 5, 175 .mmio_bases = { 176 { .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE } 177 }, 178 }, 179 [VCS6] = { 180 .class = VIDEO_DECODE_CLASS, 181 .instance = 6, 182 .mmio_bases = { 183 { .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE } 184 }, 185 }, 186 [VCS7] = { 187 .class = VIDEO_DECODE_CLASS, 188 .instance = 7, 189 .mmio_bases = { 190 { .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE } 191 }, 192 }, 193 [VECS0] = { 194 .class = VIDEO_ENHANCEMENT_CLASS, 195 .instance = 0, 196 .mmio_bases = { 197 { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE }, 198 { .graphics_ver = 7, .base = VEBOX_RING_BASE } 199 }, 200 }, 201 [VECS1] = { 202 .class = VIDEO_ENHANCEMENT_CLASS, 203 .instance = 1, 204 .mmio_bases = { 205 { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE } 206 }, 207 }, 208 [VECS2] = { 209 .class = VIDEO_ENHANCEMENT_CLASS, 210 .instance = 2, 211 .mmio_bases = { 212 { .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE } 213 }, 214 }, 215 [VECS3] = { 216 .class = VIDEO_ENHANCEMENT_CLASS, 217 .instance = 3, 218 .mmio_bases = { 219 { .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE } 220 }, 221 }, 222 [CCS0] = { 223 .class = COMPUTE_CLASS, 224 .instance = 0, 225 .mmio_bases = { 226 { .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE } 227 } 228 }, 229 [CCS1] = { 230 .class = COMPUTE_CLASS, 231 .instance = 1, 232 .mmio_bases = { 233 { .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE } 234 } 235 }, 236 [CCS2] = { 237 .class = COMPUTE_CLASS, 238 .instance = 2, 239 .mmio_bases = { 240 { .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE } 241 } 242 }, 243 [CCS3] = { 244 .class = COMPUTE_CLASS, 245 .instance = 3, 246 .mmio_bases = { 247 { .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE } 248 } 249 }, 250 [GSC0] = { 251 .class = OTHER_CLASS, 252 .instance = OTHER_GSC_INSTANCE, 253 .mmio_bases = { 254 { .graphics_ver = 12, .base = MTL_GSC_RING_BASE } 255 } 256 }, 257 }; 258 259 /** 260 * intel_engine_context_size() - return the size of the context for an engine 261 * @gt: the gt 262 * @class: engine class 263 * 264 * Each engine class may require a different amount of space for a context 265 * image. 266 * 267 * Return: size (in bytes) of an engine class specific context image 268 * 269 * Note: this size includes the HWSP, which is part of the context image 270 * in LRC mode, but does not include the "shared data page" used with 271 * GuC submission. The caller should account for this if using the GuC. 272 */ 273 u32 intel_engine_context_size(struct intel_gt *gt, u8 class) 274 { 275 struct intel_uncore *uncore = gt->uncore; 276 u32 cxt_size; 277 278 BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE); 279 280 switch (class) { 281 case COMPUTE_CLASS: 282 fallthrough; 283 case RENDER_CLASS: 284 switch (GRAPHICS_VER(gt->i915)) { 285 default: 286 MISSING_CASE(GRAPHICS_VER(gt->i915)); 287 return DEFAULT_LR_CONTEXT_RENDER_SIZE; 288 case 12: 289 case 11: 290 return GEN11_LR_CONTEXT_RENDER_SIZE; 291 case 9: 292 return GEN9_LR_CONTEXT_RENDER_SIZE; 293 case 8: 294 return GEN8_LR_CONTEXT_RENDER_SIZE; 295 case 7: 296 if (IS_HASWELL(gt->i915)) 297 return HSW_CXT_TOTAL_SIZE; 298 299 cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE); 300 return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64, 301 PAGE_SIZE); 302 case 6: 303 cxt_size = intel_uncore_read(uncore, CXT_SIZE); 304 return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64, 305 PAGE_SIZE); 306 case 5: 307 case 4: 308 /* 309 * There is a discrepancy here between the size reported 310 * by the register and the size of the context layout 311 * in the docs. Both are described as authorative! 312 * 313 * The discrepancy is on the order of a few cachelines, 314 * but the total is under one page (4k), which is our 315 * minimum allocation anyway so it should all come 316 * out in the wash. 317 */ 318 cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1; 319 gt_dbg(gt, "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n", 320 GRAPHICS_VER(gt->i915), cxt_size * 64, 321 cxt_size - 1); 322 return round_up(cxt_size * 64, PAGE_SIZE); 323 case 3: 324 case 2: 325 /* For the special day when i810 gets merged. */ 326 case 1: 327 return 0; 328 } 329 break; 330 default: 331 MISSING_CASE(class); 332 fallthrough; 333 case VIDEO_DECODE_CLASS: 334 case VIDEO_ENHANCEMENT_CLASS: 335 case COPY_ENGINE_CLASS: 336 case OTHER_CLASS: 337 if (GRAPHICS_VER(gt->i915) < 8) 338 return 0; 339 return GEN8_LR_CONTEXT_OTHER_SIZE; 340 } 341 } 342 343 static u32 __engine_mmio_base(struct drm_i915_private *i915, 344 const struct engine_mmio_base *bases) 345 { 346 int i; 347 348 for (i = 0; i < MAX_MMIO_BASES; i++) 349 if (GRAPHICS_VER(i915) >= bases[i].graphics_ver) 350 break; 351 352 GEM_BUG_ON(i == MAX_MMIO_BASES); 353 GEM_BUG_ON(!bases[i].base); 354 355 return bases[i].base; 356 } 357 358 static void __sprint_engine_name(struct intel_engine_cs *engine) 359 { 360 /* 361 * Before we know what the uABI name for this engine will be, 362 * we still would like to keep track of this engine in the debug logs. 363 * We throw in a ' here as a reminder that this isn't its final name. 364 */ 365 GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u", 366 intel_engine_class_repr(engine->class), 367 engine->instance) >= sizeof(engine->name)); 368 } 369 370 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask) 371 { 372 /* 373 * Though they added more rings on g4x/ilk, they did not add 374 * per-engine HWSTAM until gen6. 375 */ 376 if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS) 377 return; 378 379 if (GRAPHICS_VER(engine->i915) >= 3) 380 ENGINE_WRITE(engine, RING_HWSTAM, mask); 381 else 382 ENGINE_WRITE16(engine, RING_HWSTAM, mask); 383 } 384 385 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine) 386 { 387 /* Mask off all writes into the unknown HWSP */ 388 intel_engine_set_hwsp_writemask(engine, ~0u); 389 } 390 391 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir) 392 { 393 GEM_DEBUG_WARN_ON(iir); 394 } 395 396 static u32 get_reset_domain(u8 ver, enum intel_engine_id id) 397 { 398 u32 reset_domain; 399 400 if (ver >= 11) { 401 static const u32 engine_reset_domains[] = { 402 [RCS0] = GEN11_GRDOM_RENDER, 403 [BCS0] = GEN11_GRDOM_BLT, 404 [BCS1] = XEHPC_GRDOM_BLT1, 405 [BCS2] = XEHPC_GRDOM_BLT2, 406 [BCS3] = XEHPC_GRDOM_BLT3, 407 [BCS4] = XEHPC_GRDOM_BLT4, 408 [BCS5] = XEHPC_GRDOM_BLT5, 409 [BCS6] = XEHPC_GRDOM_BLT6, 410 [BCS7] = XEHPC_GRDOM_BLT7, 411 [BCS8] = XEHPC_GRDOM_BLT8, 412 [VCS0] = GEN11_GRDOM_MEDIA, 413 [VCS1] = GEN11_GRDOM_MEDIA2, 414 [VCS2] = GEN11_GRDOM_MEDIA3, 415 [VCS3] = GEN11_GRDOM_MEDIA4, 416 [VCS4] = GEN11_GRDOM_MEDIA5, 417 [VCS5] = GEN11_GRDOM_MEDIA6, 418 [VCS6] = GEN11_GRDOM_MEDIA7, 419 [VCS7] = GEN11_GRDOM_MEDIA8, 420 [VECS0] = GEN11_GRDOM_VECS, 421 [VECS1] = GEN11_GRDOM_VECS2, 422 [VECS2] = GEN11_GRDOM_VECS3, 423 [VECS3] = GEN11_GRDOM_VECS4, 424 [CCS0] = GEN11_GRDOM_RENDER, 425 [CCS1] = GEN11_GRDOM_RENDER, 426 [CCS2] = GEN11_GRDOM_RENDER, 427 [CCS3] = GEN11_GRDOM_RENDER, 428 [GSC0] = GEN12_GRDOM_GSC, 429 }; 430 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) || 431 !engine_reset_domains[id]); 432 reset_domain = engine_reset_domains[id]; 433 } else { 434 static const u32 engine_reset_domains[] = { 435 [RCS0] = GEN6_GRDOM_RENDER, 436 [BCS0] = GEN6_GRDOM_BLT, 437 [VCS0] = GEN6_GRDOM_MEDIA, 438 [VCS1] = GEN8_GRDOM_MEDIA2, 439 [VECS0] = GEN6_GRDOM_VECS, 440 }; 441 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) || 442 !engine_reset_domains[id]); 443 reset_domain = engine_reset_domains[id]; 444 } 445 446 return reset_domain; 447 } 448 449 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id, 450 u8 logical_instance) 451 { 452 const struct engine_info *info = &intel_engines[id]; 453 struct drm_i915_private *i915 = gt->i915; 454 struct intel_engine_cs *engine; 455 u8 guc_class; 456 457 BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH)); 458 BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH)); 459 BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1)); 460 BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1)); 461 462 if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine))) 463 return -EINVAL; 464 465 if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS)) 466 return -EINVAL; 467 468 if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE)) 469 return -EINVAL; 470 471 if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance])) 472 return -EINVAL; 473 474 engine = kzalloc(sizeof(*engine), GFP_KERNEL); 475 if (!engine) 476 return -ENOMEM; 477 478 BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES); 479 480 INIT_LIST_HEAD(&engine->pinned_contexts_list); 481 engine->id = id; 482 engine->legacy_idx = INVALID_ENGINE; 483 engine->mask = BIT(id); 484 engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915), 485 id); 486 engine->i915 = i915; 487 engine->gt = gt; 488 engine->uncore = gt->uncore; 489 guc_class = engine_class_to_guc_class(info->class); 490 engine->guc_id = MAKE_GUC_ID(guc_class, info->instance); 491 engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases); 492 493 engine->irq_handler = nop_irq_handler; 494 495 engine->class = info->class; 496 engine->instance = info->instance; 497 engine->logical_mask = BIT(logical_instance); 498 __sprint_engine_name(engine); 499 500 if ((engine->class == COMPUTE_CLASS || engine->class == RENDER_CLASS) && 501 __ffs(CCS_MASK(engine->gt) | RCS_MASK(engine->gt)) == engine->instance) 502 engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE; 503 504 /* features common between engines sharing EUs */ 505 if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) { 506 engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE; 507 engine->flags |= I915_ENGINE_HAS_EU_PRIORITY; 508 } 509 510 engine->props.heartbeat_interval_ms = 511 CONFIG_DRM_I915_HEARTBEAT_INTERVAL; 512 engine->props.max_busywait_duration_ns = 513 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT; 514 engine->props.preempt_timeout_ms = 515 CONFIG_DRM_I915_PREEMPT_TIMEOUT; 516 engine->props.stop_timeout_ms = 517 CONFIG_DRM_I915_STOP_TIMEOUT; 518 engine->props.timeslice_duration_ms = 519 CONFIG_DRM_I915_TIMESLICE_DURATION; 520 521 /* 522 * Mid-thread pre-emption is not available in Gen12. Unfortunately, 523 * some compute workloads run quite long threads. That means they get 524 * reset due to not pre-empting in a timely manner. So, bump the 525 * pre-emption timeout value to be much higher for compute engines. 526 */ 527 if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)) 528 engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE; 529 530 /* Cap properties according to any system limits */ 531 #define CLAMP_PROP(field) \ 532 do { \ 533 u64 clamp = intel_clamp_##field(engine, engine->props.field); \ 534 if (clamp != engine->props.field) { \ 535 drm_notice(&engine->i915->drm, \ 536 "Warning, clamping %s to %lld to prevent overflow\n", \ 537 #field, clamp); \ 538 engine->props.field = clamp; \ 539 } \ 540 } while (0) 541 542 CLAMP_PROP(heartbeat_interval_ms); 543 CLAMP_PROP(max_busywait_duration_ns); 544 CLAMP_PROP(preempt_timeout_ms); 545 CLAMP_PROP(stop_timeout_ms); 546 CLAMP_PROP(timeslice_duration_ms); 547 548 #undef CLAMP_PROP 549 550 engine->defaults = engine->props; /* never to change again */ 551 552 engine->context_size = intel_engine_context_size(gt, engine->class); 553 if (WARN_ON(engine->context_size > BIT(20))) 554 engine->context_size = 0; 555 if (engine->context_size) 556 DRIVER_CAPS(i915)->has_logical_contexts = true; 557 558 ewma__engine_latency_init(&engine->latency); 559 560 ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier); 561 562 /* Scrub mmio state on takeover */ 563 intel_engine_sanitize_mmio(engine); 564 565 gt->engine_class[info->class][info->instance] = engine; 566 gt->engine[id] = engine; 567 568 return 0; 569 } 570 571 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value) 572 { 573 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); 574 575 return value; 576 } 577 578 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value) 579 { 580 value = min(value, jiffies_to_nsecs(2)); 581 582 return value; 583 } 584 585 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value) 586 { 587 /* 588 * NB: The GuC API only supports 32bit values. However, the limit is further 589 * reduced due to internal calculations which would otherwise overflow. 590 */ 591 if (intel_guc_submission_is_wanted(gt_to_guc(engine->gt))) 592 value = min_t(u64, value, guc_policy_max_preempt_timeout_ms()); 593 594 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); 595 596 return value; 597 } 598 599 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value) 600 { 601 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); 602 603 return value; 604 } 605 606 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value) 607 { 608 /* 609 * NB: The GuC API only supports 32bit values. However, the limit is further 610 * reduced due to internal calculations which would otherwise overflow. 611 */ 612 if (intel_guc_submission_is_wanted(gt_to_guc(engine->gt))) 613 value = min_t(u64, value, guc_policy_max_exec_quantum_ms()); 614 615 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); 616 617 return value; 618 } 619 620 static void __setup_engine_capabilities(struct intel_engine_cs *engine) 621 { 622 struct drm_i915_private *i915 = engine->i915; 623 624 if (engine->class == VIDEO_DECODE_CLASS) { 625 /* 626 * HEVC support is present on first engine instance 627 * before Gen11 and on all instances afterwards. 628 */ 629 if (GRAPHICS_VER(i915) >= 11 || 630 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0)) 631 engine->uabi_capabilities |= 632 I915_VIDEO_CLASS_CAPABILITY_HEVC; 633 634 /* 635 * SFC block is present only on even logical engine 636 * instances. 637 */ 638 if ((GRAPHICS_VER(i915) >= 11 && 639 (engine->gt->info.vdbox_sfc_access & 640 BIT(engine->instance))) || 641 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0)) 642 engine->uabi_capabilities |= 643 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; 644 } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) { 645 if (GRAPHICS_VER(i915) >= 9 && 646 engine->gt->info.sfc_mask & BIT(engine->instance)) 647 engine->uabi_capabilities |= 648 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; 649 } 650 } 651 652 static void intel_setup_engine_capabilities(struct intel_gt *gt) 653 { 654 struct intel_engine_cs *engine; 655 enum intel_engine_id id; 656 657 for_each_engine(engine, gt, id) 658 __setup_engine_capabilities(engine); 659 } 660 661 /** 662 * intel_engines_release() - free the resources allocated for Command Streamers 663 * @gt: pointer to struct intel_gt 664 */ 665 void intel_engines_release(struct intel_gt *gt) 666 { 667 struct intel_engine_cs *engine; 668 enum intel_engine_id id; 669 670 /* 671 * Before we release the resources held by engine, we must be certain 672 * that the HW is no longer accessing them -- having the GPU scribble 673 * to or read from a page being used for something else causes no end 674 * of fun. 675 * 676 * The GPU should be reset by this point, but assume the worst just 677 * in case we aborted before completely initialising the engines. 678 */ 679 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 680 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 681 intel_gt_reset_all_engines(gt); 682 683 /* Decouple the backend; but keep the layout for late GPU resets */ 684 for_each_engine(engine, gt, id) { 685 if (!engine->release) 686 continue; 687 688 intel_wakeref_wait_for_idle(&engine->wakeref); 689 GEM_BUG_ON(intel_engine_pm_is_awake(engine)); 690 691 engine->release(engine); 692 engine->release = NULL; 693 694 memset(&engine->reset, 0, sizeof(engine->reset)); 695 } 696 } 697 698 void intel_engine_free_request_pool(struct intel_engine_cs *engine) 699 { 700 if (!engine->request_pool) 701 return; 702 703 kmem_cache_free(i915_request_slab_cache(), engine->request_pool); 704 } 705 706 void intel_engines_free(struct intel_gt *gt) 707 { 708 struct intel_engine_cs *engine; 709 enum intel_engine_id id; 710 711 /* Free the requests! dma-resv keeps fences around for an eternity */ 712 rcu_barrier(); 713 714 for_each_engine(engine, gt, id) { 715 intel_engine_free_request_pool(engine); 716 kfree(engine); 717 gt->engine[id] = NULL; 718 } 719 } 720 721 static 722 bool gen11_vdbox_has_sfc(struct intel_gt *gt, 723 unsigned int physical_vdbox, 724 unsigned int logical_vdbox, u16 vdbox_mask) 725 { 726 struct drm_i915_private *i915 = gt->i915; 727 728 /* 729 * In Gen11, only even numbered logical VDBOXes are hooked 730 * up to an SFC (Scaler & Format Converter) unit. 731 * In Gen12, Even numbered physical instance always are connected 732 * to an SFC. Odd numbered physical instances have SFC only if 733 * previous even instance is fused off. 734 * 735 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field 736 * in the fuse register that tells us whether a specific SFC is present. 737 */ 738 if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0) 739 return false; 740 else if (MEDIA_VER(i915) >= 12) 741 return (physical_vdbox % 2 == 0) || 742 !(BIT(physical_vdbox - 1) & vdbox_mask); 743 else if (MEDIA_VER(i915) == 11) 744 return logical_vdbox % 2 == 0; 745 746 return false; 747 } 748 749 static void engine_mask_apply_media_fuses(struct intel_gt *gt) 750 { 751 struct drm_i915_private *i915 = gt->i915; 752 unsigned int logical_vdbox = 0; 753 unsigned int i; 754 u32 media_fuse, fuse1; 755 u16 vdbox_mask; 756 u16 vebox_mask; 757 758 if (MEDIA_VER(gt->i915) < 11) 759 return; 760 761 /* 762 * On newer platforms the fusing register is called 'enable' and has 763 * enable semantics, while on older platforms it is called 'disable' 764 * and bits have disable semantices. 765 */ 766 media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE); 767 if (MEDIA_VER_FULL(i915) < IP_VER(12, 55)) 768 media_fuse = ~media_fuse; 769 770 vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK; 771 vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >> 772 GEN11_GT_VEBOX_DISABLE_SHIFT; 773 774 if (MEDIA_VER_FULL(i915) >= IP_VER(12, 55)) { 775 fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1); 776 gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1); 777 } else { 778 gt->info.sfc_mask = ~0; 779 } 780 781 for (i = 0; i < I915_MAX_VCS; i++) { 782 if (!HAS_ENGINE(gt, _VCS(i))) { 783 vdbox_mask &= ~BIT(i); 784 continue; 785 } 786 787 if (!(BIT(i) & vdbox_mask)) { 788 gt->info.engine_mask &= ~BIT(_VCS(i)); 789 gt_dbg(gt, "vcs%u fused off\n", i); 790 continue; 791 } 792 793 if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask)) 794 gt->info.vdbox_sfc_access |= BIT(i); 795 logical_vdbox++; 796 } 797 gt_dbg(gt, "vdbox enable: %04x, instances: %04lx\n", vdbox_mask, VDBOX_MASK(gt)); 798 GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt)); 799 800 for (i = 0; i < I915_MAX_VECS; i++) { 801 if (!HAS_ENGINE(gt, _VECS(i))) { 802 vebox_mask &= ~BIT(i); 803 continue; 804 } 805 806 if (!(BIT(i) & vebox_mask)) { 807 gt->info.engine_mask &= ~BIT(_VECS(i)); 808 gt_dbg(gt, "vecs%u fused off\n", i); 809 } 810 } 811 gt_dbg(gt, "vebox enable: %04x, instances: %04lx\n", vebox_mask, VEBOX_MASK(gt)); 812 GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt)); 813 } 814 815 static void engine_mask_apply_compute_fuses(struct intel_gt *gt) 816 { 817 struct drm_i915_private *i915 = gt->i915; 818 struct intel_gt_info *info = >->info; 819 int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS; 820 unsigned long ccs_mask; 821 unsigned int i; 822 823 if (GRAPHICS_VER(i915) < 11) 824 return; 825 826 if (hweight32(CCS_MASK(gt)) <= 1) 827 return; 828 829 ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask, 830 ss_per_ccs); 831 /* 832 * If all DSS in a quadrant are fused off, the corresponding CCS 833 * engine is not available for use. 834 */ 835 for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) { 836 info->engine_mask &= ~BIT(_CCS(i)); 837 gt_dbg(gt, "ccs%u fused off\n", i); 838 } 839 } 840 841 /* 842 * Determine which engines are fused off in our particular hardware. 843 * Note that we have a catch-22 situation where we need to be able to access 844 * the blitter forcewake domain to read the engine fuses, but at the same time 845 * we need to know which engines are available on the system to know which 846 * forcewake domains are present. We solve this by intializing the forcewake 847 * domains based on the full engine mask in the platform capabilities before 848 * calling this function and pruning the domains for fused-off engines 849 * afterwards. 850 */ 851 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt) 852 { 853 struct intel_gt_info *info = >->info; 854 855 GEM_BUG_ON(!info->engine_mask); 856 857 engine_mask_apply_media_fuses(gt); 858 engine_mask_apply_compute_fuses(gt); 859 860 /* 861 * The only use of the GSC CS is to load and communicate with the GSC 862 * FW, so we have no use for it if we don't have the FW. 863 * 864 * IMPORTANT: in cases where we don't have the GSC FW, we have a 865 * catch-22 situation that breaks media C6 due to 2 requirements: 866 * 1) once turned on, the GSC power well will not go to sleep unless the 867 * GSC FW is loaded. 868 * 2) to enable idling (which is required for media C6) we need to 869 * initialize the IDLE_MSG register for the GSC CS and do at least 1 870 * submission, which will wake up the GSC power well. 871 */ 872 if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(>->uc)) { 873 gt_notice(gt, "No GSC FW selected, disabling GSC CS and media C6\n"); 874 info->engine_mask &= ~BIT(GSC0); 875 } 876 877 /* 878 * Do not create the command streamer for CCS slices beyond the first. 879 * All the workload submitted to the first engine will be shared among 880 * all the slices. 881 * 882 * Once the user will be allowed to customize the CCS mode, then this 883 * check needs to be removed. 884 */ 885 if (IS_DG2(gt->i915)) { 886 u8 first_ccs = __ffs(CCS_MASK(gt)); 887 888 /* Mask off all the CCS engine */ 889 info->engine_mask &= ~GENMASK(CCS3, CCS0); 890 /* Put back in the first CCS engine */ 891 info->engine_mask |= BIT(_CCS(first_ccs)); 892 } 893 894 return info->engine_mask; 895 } 896 897 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids, 898 u8 class, const u8 *map, u8 num_instances) 899 { 900 int i, j; 901 u8 current_logical_id = 0; 902 903 for (j = 0; j < num_instances; ++j) { 904 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) { 905 if (!HAS_ENGINE(gt, i) || 906 intel_engines[i].class != class) 907 continue; 908 909 if (intel_engines[i].instance == map[j]) { 910 logical_ids[intel_engines[i].instance] = 911 current_logical_id++; 912 break; 913 } 914 } 915 } 916 } 917 918 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class) 919 { 920 /* 921 * Logical to physical mapping is needed for proper support 922 * to split-frame feature. 923 */ 924 if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) { 925 const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 }; 926 927 populate_logical_ids(gt, logical_ids, class, 928 map, ARRAY_SIZE(map)); 929 } else { 930 int i; 931 u8 map[MAX_ENGINE_INSTANCE + 1]; 932 933 for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i) 934 map[i] = i; 935 populate_logical_ids(gt, logical_ids, class, 936 map, ARRAY_SIZE(map)); 937 } 938 } 939 940 /** 941 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers 942 * @gt: pointer to struct intel_gt 943 * 944 * Return: non-zero if the initialization failed. 945 */ 946 int intel_engines_init_mmio(struct intel_gt *gt) 947 { 948 struct drm_i915_private *i915 = gt->i915; 949 const unsigned int engine_mask = init_engine_mask(gt); 950 unsigned int mask = 0; 951 unsigned int i, class; 952 u8 logical_ids[MAX_ENGINE_INSTANCE + 1]; 953 int err; 954 955 drm_WARN_ON(&i915->drm, engine_mask == 0); 956 drm_WARN_ON(&i915->drm, engine_mask & 957 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES)); 958 959 if (i915_inject_probe_failure(i915)) 960 return -ENODEV; 961 962 for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) { 963 setup_logical_ids(gt, logical_ids, class); 964 965 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) { 966 u8 instance = intel_engines[i].instance; 967 968 if (intel_engines[i].class != class || 969 !HAS_ENGINE(gt, i)) 970 continue; 971 972 err = intel_engine_setup(gt, i, 973 logical_ids[instance]); 974 if (err) 975 goto cleanup; 976 977 mask |= BIT(i); 978 } 979 } 980 981 /* 982 * Catch failures to update intel_engines table when the new engines 983 * are added to the driver by a warning and disabling the forgotten 984 * engines. 985 */ 986 if (drm_WARN_ON(&i915->drm, mask != engine_mask)) 987 gt->info.engine_mask = mask; 988 989 gt->info.num_engines = hweight32(mask); 990 991 intel_gt_check_and_clear_faults(gt); 992 993 intel_setup_engine_capabilities(gt); 994 995 intel_uncore_prune_engine_fw_domains(gt->uncore, gt); 996 997 return 0; 998 999 cleanup: 1000 intel_engines_free(gt); 1001 return err; 1002 } 1003 1004 void intel_engine_init_execlists(struct intel_engine_cs *engine) 1005 { 1006 struct intel_engine_execlists * const execlists = &engine->execlists; 1007 1008 execlists->port_mask = 1; 1009 GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists))); 1010 GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS); 1011 1012 memset(execlists->pending, 0, sizeof(execlists->pending)); 1013 execlists->active = 1014 memset(execlists->inflight, 0, sizeof(execlists->inflight)); 1015 } 1016 1017 static void cleanup_status_page(struct intel_engine_cs *engine) 1018 { 1019 struct i915_vma *vma; 1020 1021 /* Prevent writes into HWSP after returning the page to the system */ 1022 intel_engine_set_hwsp_writemask(engine, ~0u); 1023 1024 vma = fetch_and_zero(&engine->status_page.vma); 1025 if (!vma) 1026 return; 1027 1028 if (!HWS_NEEDS_PHYSICAL(engine->i915)) 1029 i915_vma_unpin(vma); 1030 1031 i915_gem_object_unpin_map(vma->obj); 1032 i915_gem_object_put(vma->obj); 1033 } 1034 1035 static int pin_ggtt_status_page(struct intel_engine_cs *engine, 1036 struct i915_gem_ww_ctx *ww, 1037 struct i915_vma *vma) 1038 { 1039 unsigned int flags; 1040 1041 if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt)) 1042 /* 1043 * On g33, we cannot place HWS above 256MiB, so 1044 * restrict its pinning to the low mappable arena. 1045 * Though this restriction is not documented for 1046 * gen4, gen5, or byt, they also behave similarly 1047 * and hang if the HWS is placed at the top of the 1048 * GTT. To generalise, it appears that all !llc 1049 * platforms have issues with us placing the HWS 1050 * above the mappable region (even though we never 1051 * actually map it). 1052 */ 1053 flags = PIN_MAPPABLE; 1054 else 1055 flags = PIN_HIGH; 1056 1057 return i915_ggtt_pin(vma, ww, 0, flags); 1058 } 1059 1060 static int init_status_page(struct intel_engine_cs *engine) 1061 { 1062 struct drm_i915_gem_object *obj; 1063 struct i915_gem_ww_ctx ww; 1064 struct i915_vma *vma; 1065 void *vaddr; 1066 int ret; 1067 1068 INIT_LIST_HEAD(&engine->status_page.timelines); 1069 1070 /* 1071 * Though the HWS register does support 36bit addresses, historically 1072 * we have had hangs and corruption reported due to wild writes if 1073 * the HWS is placed above 4G. We only allow objects to be allocated 1074 * in GFP_DMA32 for i965, and no earlier physical address users had 1075 * access to more than 4G. 1076 */ 1077 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE); 1078 if (IS_ERR(obj)) { 1079 gt_err(engine->gt, "Failed to allocate status page\n"); 1080 return PTR_ERR(obj); 1081 } 1082 1083 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC); 1084 1085 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); 1086 if (IS_ERR(vma)) { 1087 ret = PTR_ERR(vma); 1088 goto err_put; 1089 } 1090 1091 i915_gem_ww_ctx_init(&ww, true); 1092 retry: 1093 ret = i915_gem_object_lock(obj, &ww); 1094 if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915)) 1095 ret = pin_ggtt_status_page(engine, &ww, vma); 1096 if (ret) 1097 goto err; 1098 1099 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB); 1100 if (IS_ERR(vaddr)) { 1101 ret = PTR_ERR(vaddr); 1102 goto err_unpin; 1103 } 1104 1105 engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE); 1106 engine->status_page.vma = vma; 1107 1108 err_unpin: 1109 if (ret) 1110 i915_vma_unpin(vma); 1111 err: 1112 if (ret == -EDEADLK) { 1113 ret = i915_gem_ww_ctx_backoff(&ww); 1114 if (!ret) 1115 goto retry; 1116 } 1117 i915_gem_ww_ctx_fini(&ww); 1118 err_put: 1119 if (ret) 1120 i915_gem_object_put(obj); 1121 return ret; 1122 } 1123 1124 static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine) 1125 { 1126 static const union intel_engine_tlb_inv_reg gen8_regs[] = { 1127 [RENDER_CLASS].reg = GEN8_RTCR, 1128 [VIDEO_DECODE_CLASS].reg = GEN8_M1TCR, /* , GEN8_M2TCR */ 1129 [VIDEO_ENHANCEMENT_CLASS].reg = GEN8_VTCR, 1130 [COPY_ENGINE_CLASS].reg = GEN8_BTCR, 1131 }; 1132 static const union intel_engine_tlb_inv_reg gen12_regs[] = { 1133 [RENDER_CLASS].reg = GEN12_GFX_TLB_INV_CR, 1134 [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR, 1135 [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR, 1136 [COPY_ENGINE_CLASS].reg = GEN12_BLT_TLB_INV_CR, 1137 [COMPUTE_CLASS].reg = GEN12_COMPCTX_TLB_INV_CR, 1138 }; 1139 static const union intel_engine_tlb_inv_reg xehp_regs[] = { 1140 [RENDER_CLASS].mcr_reg = XEHP_GFX_TLB_INV_CR, 1141 [VIDEO_DECODE_CLASS].mcr_reg = XEHP_VD_TLB_INV_CR, 1142 [VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR, 1143 [COPY_ENGINE_CLASS].mcr_reg = XEHP_BLT_TLB_INV_CR, 1144 [COMPUTE_CLASS].mcr_reg = XEHP_COMPCTX_TLB_INV_CR, 1145 }; 1146 static const union intel_engine_tlb_inv_reg xelpmp_regs[] = { 1147 [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR, 1148 [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR, 1149 [OTHER_CLASS].reg = XELPMP_GSC_TLB_INV_CR, 1150 }; 1151 struct drm_i915_private *i915 = engine->i915; 1152 const unsigned int instance = engine->instance; 1153 const unsigned int class = engine->class; 1154 const union intel_engine_tlb_inv_reg *regs; 1155 union intel_engine_tlb_inv_reg reg; 1156 unsigned int num = 0; 1157 u32 val; 1158 1159 /* 1160 * New platforms should not be added with catch-all-newer (>=) 1161 * condition so that any later platform added triggers the below warning 1162 * and in turn mandates a human cross-check of whether the invalidation 1163 * flows have compatible semantics. 1164 * 1165 * For instance with the 11.00 -> 12.00 transition three out of five 1166 * respective engine registers were moved to masked type. Then after the 1167 * 12.00 -> 12.50 transition multi cast handling is required too. 1168 */ 1169 1170 if (engine->gt->type == GT_MEDIA) { 1171 if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) { 1172 regs = xelpmp_regs; 1173 num = ARRAY_SIZE(xelpmp_regs); 1174 } 1175 } else { 1176 if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 74) || 1177 GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) || 1178 GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) || 1179 GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) { 1180 regs = xehp_regs; 1181 num = ARRAY_SIZE(xehp_regs); 1182 } else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) || 1183 GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) { 1184 regs = gen12_regs; 1185 num = ARRAY_SIZE(gen12_regs); 1186 } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) { 1187 regs = gen8_regs; 1188 num = ARRAY_SIZE(gen8_regs); 1189 } else if (GRAPHICS_VER(i915) < 8) { 1190 return 0; 1191 } 1192 } 1193 1194 if (gt_WARN_ONCE(engine->gt, !num, 1195 "Platform does not implement TLB invalidation!")) 1196 return -ENODEV; 1197 1198 if (gt_WARN_ON_ONCE(engine->gt, 1199 class >= num || 1200 (!regs[class].reg.reg && 1201 !regs[class].mcr_reg.reg))) 1202 return -ERANGE; 1203 1204 reg = regs[class]; 1205 1206 if (regs == xelpmp_regs && class == OTHER_CLASS) { 1207 /* 1208 * There's only a single GSC instance, but it uses register bit 1209 * 1 instead of either 0 or OTHER_GSC_INSTANCE. 1210 */ 1211 GEM_WARN_ON(instance != OTHER_GSC_INSTANCE); 1212 val = 1; 1213 } else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) { 1214 reg.reg = GEN8_M2TCR; 1215 val = 0; 1216 } else { 1217 val = instance; 1218 } 1219 1220 val = BIT(val); 1221 1222 engine->tlb_inv.mcr = regs == xehp_regs; 1223 engine->tlb_inv.reg = reg; 1224 engine->tlb_inv.done = val; 1225 1226 if (GRAPHICS_VER(i915) >= 12 && 1227 (engine->class == VIDEO_DECODE_CLASS || 1228 engine->class == VIDEO_ENHANCEMENT_CLASS || 1229 engine->class == COMPUTE_CLASS || 1230 engine->class == OTHER_CLASS)) 1231 engine->tlb_inv.request = _MASKED_BIT_ENABLE(val); 1232 else 1233 engine->tlb_inv.request = val; 1234 1235 return 0; 1236 } 1237 1238 static int engine_setup_common(struct intel_engine_cs *engine) 1239 { 1240 int err; 1241 1242 init_llist_head(&engine->barrier_tasks); 1243 1244 err = intel_engine_init_tlb_invalidation(engine); 1245 if (err) 1246 return err; 1247 1248 err = init_status_page(engine); 1249 if (err) 1250 return err; 1251 1252 engine->breadcrumbs = intel_breadcrumbs_create(engine); 1253 if (!engine->breadcrumbs) { 1254 err = -ENOMEM; 1255 goto err_status; 1256 } 1257 1258 engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL); 1259 if (!engine->sched_engine) { 1260 err = -ENOMEM; 1261 goto err_sched_engine; 1262 } 1263 engine->sched_engine->private_data = engine; 1264 1265 err = intel_engine_init_cmd_parser(engine); 1266 if (err) 1267 goto err_cmd_parser; 1268 1269 intel_engine_init_execlists(engine); 1270 intel_engine_init__pm(engine); 1271 intel_engine_init_retire(engine); 1272 1273 /* Use the whole device by default */ 1274 engine->sseu = 1275 intel_sseu_from_device_info(&engine->gt->info.sseu); 1276 1277 intel_engine_init_workarounds(engine); 1278 intel_engine_init_whitelist(engine); 1279 intel_engine_init_ctx_wa(engine); 1280 1281 if (GRAPHICS_VER(engine->i915) >= 12) 1282 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO; 1283 1284 return 0; 1285 1286 err_cmd_parser: 1287 i915_sched_engine_put(engine->sched_engine); 1288 err_sched_engine: 1289 intel_breadcrumbs_put(engine->breadcrumbs); 1290 err_status: 1291 cleanup_status_page(engine); 1292 return err; 1293 } 1294 1295 struct measure_breadcrumb { 1296 struct i915_request rq; 1297 struct intel_ring ring; 1298 u32 cs[2048]; 1299 }; 1300 1301 static int measure_breadcrumb_dw(struct intel_context *ce) 1302 { 1303 struct intel_engine_cs *engine = ce->engine; 1304 struct measure_breadcrumb *frame; 1305 int dw; 1306 1307 GEM_BUG_ON(!engine->gt->scratch); 1308 1309 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1310 if (!frame) 1311 return -ENOMEM; 1312 1313 frame->rq.i915 = engine->i915; 1314 frame->rq.engine = engine; 1315 frame->rq.context = ce; 1316 rcu_assign_pointer(frame->rq.timeline, ce->timeline); 1317 frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno; 1318 1319 frame->ring.vaddr = frame->cs; 1320 frame->ring.size = sizeof(frame->cs); 1321 frame->ring.wrap = 1322 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size); 1323 frame->ring.effective_size = frame->ring.size; 1324 intel_ring_update_space(&frame->ring); 1325 frame->rq.ring = &frame->ring; 1326 1327 mutex_lock(&ce->timeline->mutex); 1328 spin_lock_irq(&engine->sched_engine->lock); 1329 1330 dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs; 1331 1332 spin_unlock_irq(&engine->sched_engine->lock); 1333 mutex_unlock(&ce->timeline->mutex); 1334 1335 GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */ 1336 1337 kfree(frame); 1338 return dw; 1339 } 1340 1341 struct intel_context * 1342 intel_engine_create_pinned_context(struct intel_engine_cs *engine, 1343 struct i915_address_space *vm, 1344 unsigned int ring_size, 1345 unsigned int hwsp, 1346 struct lock_class_key *key, 1347 const char *name) 1348 { 1349 struct intel_context *ce; 1350 int err; 1351 1352 ce = intel_context_create(engine); 1353 if (IS_ERR(ce)) 1354 return ce; 1355 1356 __set_bit(CONTEXT_BARRIER_BIT, &ce->flags); 1357 ce->timeline = page_pack_bits(NULL, hwsp); 1358 ce->ring = NULL; 1359 ce->ring_size = ring_size; 1360 1361 i915_vm_put(ce->vm); 1362 ce->vm = i915_vm_get(vm); 1363 1364 err = intel_context_pin(ce); /* perma-pin so it is always available */ 1365 if (err) { 1366 intel_context_put(ce); 1367 return ERR_PTR(err); 1368 } 1369 1370 list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list); 1371 1372 /* 1373 * Give our perma-pinned kernel timelines a separate lockdep class, 1374 * so that we can use them from within the normal user timelines 1375 * should we need to inject GPU operations during their request 1376 * construction. 1377 */ 1378 lockdep_set_class_and_name(&ce->timeline->mutex, key, name); 1379 1380 return ce; 1381 } 1382 1383 void intel_engine_destroy_pinned_context(struct intel_context *ce) 1384 { 1385 struct intel_engine_cs *engine = ce->engine; 1386 struct i915_vma *hwsp = engine->status_page.vma; 1387 1388 GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp); 1389 1390 mutex_lock(&hwsp->vm->mutex); 1391 list_del(&ce->timeline->engine_link); 1392 mutex_unlock(&hwsp->vm->mutex); 1393 1394 list_del(&ce->pinned_contexts_link); 1395 intel_context_unpin(ce); 1396 intel_context_put(ce); 1397 } 1398 1399 static struct intel_context * 1400 create_ggtt_bind_context(struct intel_engine_cs *engine) 1401 { 1402 static struct lock_class_key kernel; 1403 1404 /* 1405 * MI_UPDATE_GTT can insert up to 511 PTE entries and there could be multiple 1406 * bind requets at a time so get a bigger ring. 1407 */ 1408 return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_512K, 1409 I915_GEM_HWS_GGTT_BIND_ADDR, 1410 &kernel, "ggtt_bind_context"); 1411 } 1412 1413 static struct intel_context * 1414 create_kernel_context(struct intel_engine_cs *engine) 1415 { 1416 static struct lock_class_key kernel; 1417 1418 return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K, 1419 I915_GEM_HWS_SEQNO_ADDR, 1420 &kernel, "kernel_context"); 1421 } 1422 1423 /* 1424 * engine_init_common - initialize engine state which might require hw access 1425 * @engine: Engine to initialize. 1426 * 1427 * Initializes @engine@ structure members shared between legacy and execlists 1428 * submission modes which do require hardware access. 1429 * 1430 * Typcally done at later stages of submission mode specific engine setup. 1431 * 1432 * Returns zero on success or an error code on failure. 1433 */ 1434 static int engine_init_common(struct intel_engine_cs *engine) 1435 { 1436 struct intel_context *ce, *bce = NULL; 1437 int ret; 1438 1439 engine->set_default_submission(engine); 1440 1441 /* 1442 * We may need to do things with the shrinker which 1443 * require us to immediately switch back to the default 1444 * context. This can cause a problem as pinning the 1445 * default context also requires GTT space which may not 1446 * be available. To avoid this we always pin the default 1447 * context. 1448 */ 1449 ce = create_kernel_context(engine); 1450 if (IS_ERR(ce)) 1451 return PTR_ERR(ce); 1452 /* 1453 * Create a separate pinned context for GGTT update with blitter engine 1454 * if a platform require such service. MI_UPDATE_GTT works on other 1455 * engines as well but BCS should be less busy engine so pick that for 1456 * GGTT updates. 1457 */ 1458 if (i915_ggtt_require_binder(engine->i915) && engine->id == BCS0) { 1459 bce = create_ggtt_bind_context(engine); 1460 if (IS_ERR(bce)) { 1461 ret = PTR_ERR(bce); 1462 goto err_ce_context; 1463 } 1464 } 1465 1466 ret = measure_breadcrumb_dw(ce); 1467 if (ret < 0) 1468 goto err_bce_context; 1469 1470 engine->emit_fini_breadcrumb_dw = ret; 1471 engine->kernel_context = ce; 1472 engine->bind_context = bce; 1473 1474 return 0; 1475 1476 err_bce_context: 1477 if (bce) 1478 intel_engine_destroy_pinned_context(bce); 1479 err_ce_context: 1480 intel_engine_destroy_pinned_context(ce); 1481 return ret; 1482 } 1483 1484 int intel_engines_init(struct intel_gt *gt) 1485 { 1486 int (*setup)(struct intel_engine_cs *engine); 1487 struct intel_engine_cs *engine; 1488 enum intel_engine_id id; 1489 int err; 1490 1491 if (intel_uc_uses_guc_submission(>->uc)) { 1492 gt->submission_method = INTEL_SUBMISSION_GUC; 1493 setup = intel_guc_submission_setup; 1494 } else if (HAS_EXECLISTS(gt->i915)) { 1495 gt->submission_method = INTEL_SUBMISSION_ELSP; 1496 setup = intel_execlists_submission_setup; 1497 } else { 1498 gt->submission_method = INTEL_SUBMISSION_RING; 1499 setup = intel_ring_submission_setup; 1500 } 1501 1502 for_each_engine(engine, gt, id) { 1503 err = engine_setup_common(engine); 1504 if (err) 1505 return err; 1506 1507 err = setup(engine); 1508 if (err) { 1509 intel_engine_cleanup_common(engine); 1510 return err; 1511 } 1512 1513 /* The backend should now be responsible for cleanup */ 1514 GEM_BUG_ON(engine->release == NULL); 1515 1516 err = engine_init_common(engine); 1517 if (err) 1518 return err; 1519 1520 intel_engine_add_user(engine); 1521 } 1522 1523 return 0; 1524 } 1525 1526 /** 1527 * intel_engine_cleanup_common - cleans up the engine state created by 1528 * the common initiailizers. 1529 * @engine: Engine to cleanup. 1530 * 1531 * This cleans up everything created by the common helpers. 1532 */ 1533 void intel_engine_cleanup_common(struct intel_engine_cs *engine) 1534 { 1535 GEM_BUG_ON(!list_empty(&engine->sched_engine->requests)); 1536 1537 i915_sched_engine_put(engine->sched_engine); 1538 intel_breadcrumbs_put(engine->breadcrumbs); 1539 1540 intel_engine_fini_retire(engine); 1541 intel_engine_cleanup_cmd_parser(engine); 1542 1543 if (engine->default_state) 1544 fput(engine->default_state); 1545 1546 if (engine->kernel_context) 1547 intel_engine_destroy_pinned_context(engine->kernel_context); 1548 1549 if (engine->bind_context) 1550 intel_engine_destroy_pinned_context(engine->bind_context); 1551 1552 1553 GEM_BUG_ON(!llist_empty(&engine->barrier_tasks)); 1554 cleanup_status_page(engine); 1555 1556 intel_wa_list_free(&engine->ctx_wa_list); 1557 intel_wa_list_free(&engine->wa_list); 1558 intel_wa_list_free(&engine->whitelist); 1559 } 1560 1561 /** 1562 * intel_engine_resume - re-initializes the HW state of the engine 1563 * @engine: Engine to resume. 1564 * 1565 * Returns zero on success or an error code on failure. 1566 */ 1567 int intel_engine_resume(struct intel_engine_cs *engine) 1568 { 1569 intel_engine_apply_workarounds(engine); 1570 intel_engine_apply_whitelist(engine); 1571 1572 return engine->resume(engine); 1573 } 1574 1575 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine) 1576 { 1577 struct drm_i915_private *i915 = engine->i915; 1578 1579 u64 acthd; 1580 1581 if (GRAPHICS_VER(i915) >= 8) 1582 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW); 1583 else if (GRAPHICS_VER(i915) >= 4) 1584 acthd = ENGINE_READ(engine, RING_ACTHD); 1585 else 1586 acthd = ENGINE_READ(engine, ACTHD); 1587 1588 return acthd; 1589 } 1590 1591 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine) 1592 { 1593 u64 bbaddr; 1594 1595 if (GRAPHICS_VER(engine->i915) >= 8) 1596 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW); 1597 else 1598 bbaddr = ENGINE_READ(engine, RING_BBADDR); 1599 1600 return bbaddr; 1601 } 1602 1603 static unsigned long stop_timeout(const struct intel_engine_cs *engine) 1604 { 1605 if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */ 1606 return 0; 1607 1608 /* 1609 * If we are doing a normal GPU reset, we can take our time and allow 1610 * the engine to quiesce. We've stopped submission to the engine, and 1611 * if we wait long enough an innocent context should complete and 1612 * leave the engine idle. So they should not be caught unaware by 1613 * the forthcoming GPU reset (which usually follows the stop_cs)! 1614 */ 1615 return READ_ONCE(engine->props.stop_timeout_ms); 1616 } 1617 1618 static int __intel_engine_stop_cs(struct intel_engine_cs *engine, 1619 int fast_timeout_us, 1620 int slow_timeout_ms) 1621 { 1622 struct intel_uncore *uncore = engine->uncore; 1623 const i915_reg_t mode = RING_MI_MODE(engine->mmio_base); 1624 int err; 1625 1626 intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING)); 1627 1628 /* 1629 * Wa_22011802037: Prior to doing a reset, ensure CS is 1630 * stopped, set ring stop bit and prefetch disable bit to halt CS 1631 */ 1632 if (intel_engine_reset_needs_wa_22011802037(engine->gt)) 1633 intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base), 1634 _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE)); 1635 1636 err = __intel_wait_for_register_fw(engine->uncore, mode, 1637 MODE_IDLE, MODE_IDLE, 1638 fast_timeout_us, 1639 slow_timeout_ms, 1640 NULL); 1641 1642 /* A final mmio read to let GPU writes be hopefully flushed to memory */ 1643 intel_uncore_posting_read_fw(uncore, mode); 1644 return err; 1645 } 1646 1647 int intel_engine_stop_cs(struct intel_engine_cs *engine) 1648 { 1649 int err = 0; 1650 1651 if (GRAPHICS_VER(engine->i915) < 3) 1652 return -ENODEV; 1653 1654 ENGINE_TRACE(engine, "\n"); 1655 /* 1656 * TODO: Find out why occasionally stopping the CS times out. Seen 1657 * especially with gem_eio tests. 1658 * 1659 * Occasionally trying to stop the cs times out, but does not adversely 1660 * affect functionality. The timeout is set as a config parameter that 1661 * defaults to 100ms. In most cases the follow up operation is to wait 1662 * for pending MI_FORCE_WAKES. The assumption is that this timeout is 1663 * sufficient for any pending MI_FORCEWAKEs to complete. Once root 1664 * caused, the caller must check and handle the return from this 1665 * function. 1666 */ 1667 if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) { 1668 ENGINE_TRACE(engine, 1669 "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n", 1670 ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR, 1671 ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR); 1672 1673 /* 1674 * Sometimes we observe that the idle flag is not 1675 * set even though the ring is empty. So double 1676 * check before giving up. 1677 */ 1678 if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) != 1679 (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR)) 1680 err = -ETIMEDOUT; 1681 } 1682 1683 return err; 1684 } 1685 1686 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine) 1687 { 1688 ENGINE_TRACE(engine, "\n"); 1689 1690 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); 1691 } 1692 1693 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine) 1694 { 1695 static const i915_reg_t _reg[I915_NUM_ENGINES] = { 1696 [RCS0] = MSG_IDLE_CS, 1697 [BCS0] = MSG_IDLE_BCS, 1698 [VCS0] = MSG_IDLE_VCS0, 1699 [VCS1] = MSG_IDLE_VCS1, 1700 [VCS2] = MSG_IDLE_VCS2, 1701 [VCS3] = MSG_IDLE_VCS3, 1702 [VCS4] = MSG_IDLE_VCS4, 1703 [VCS5] = MSG_IDLE_VCS5, 1704 [VCS6] = MSG_IDLE_VCS6, 1705 [VCS7] = MSG_IDLE_VCS7, 1706 [VECS0] = MSG_IDLE_VECS0, 1707 [VECS1] = MSG_IDLE_VECS1, 1708 [VECS2] = MSG_IDLE_VECS2, 1709 [VECS3] = MSG_IDLE_VECS3, 1710 [CCS0] = MSG_IDLE_CS, 1711 [CCS1] = MSG_IDLE_CS, 1712 [CCS2] = MSG_IDLE_CS, 1713 [CCS3] = MSG_IDLE_CS, 1714 }; 1715 u32 val; 1716 1717 if (!_reg[engine->id].reg) 1718 return 0; 1719 1720 val = intel_uncore_read(engine->uncore, _reg[engine->id]); 1721 1722 /* bits[29:25] & bits[13:9] >> shift */ 1723 return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT; 1724 } 1725 1726 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask) 1727 { 1728 int ret; 1729 1730 /* Ensure GPM receives fw up/down after CS is stopped */ 1731 udelay(1); 1732 1733 /* Wait for forcewake request to complete in GPM */ 1734 ret = __intel_wait_for_register_fw(gt->uncore, 1735 GEN9_PWRGT_DOMAIN_STATUS, 1736 fw_mask, fw_mask, 5000, 0, NULL); 1737 1738 /* Ensure CS receives fw ack from GPM */ 1739 udelay(1); 1740 1741 if (ret) 1742 GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret); 1743 } 1744 1745 /* 1746 * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any 1747 * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The 1748 * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the 1749 * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we 1750 * are concerned only with the gt reset here, we use a logical OR of pending 1751 * forcewakeups from all reset domains and then wait for them to complete by 1752 * querying PWRGT_DOMAIN_STATUS. 1753 */ 1754 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine) 1755 { 1756 u32 fw_pending = __cs_pending_mi_force_wakes(engine); 1757 1758 if (fw_pending) 1759 __gpm_wait_for_fw_complete(engine->gt, fw_pending); 1760 } 1761 1762 /* NB: please notice the memset */ 1763 void intel_engine_get_instdone(const struct intel_engine_cs *engine, 1764 struct intel_instdone *instdone) 1765 { 1766 struct drm_i915_private *i915 = engine->i915; 1767 struct intel_uncore *uncore = engine->uncore; 1768 u32 mmio_base = engine->mmio_base; 1769 int slice; 1770 int subslice; 1771 int iter; 1772 1773 memset(instdone, 0, sizeof(*instdone)); 1774 1775 if (GRAPHICS_VER(i915) >= 8) { 1776 instdone->instdone = 1777 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1778 1779 if (engine->id != RCS0) 1780 return; 1781 1782 instdone->slice_common = 1783 intel_uncore_read(uncore, GEN7_SC_INSTDONE); 1784 if (GRAPHICS_VER(i915) >= 12) { 1785 instdone->slice_common_extra[0] = 1786 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA); 1787 instdone->slice_common_extra[1] = 1788 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2); 1789 } 1790 1791 for_each_ss_steering(iter, engine->gt, slice, subslice) { 1792 instdone->sampler[slice][subslice] = 1793 intel_gt_mcr_read(engine->gt, 1794 GEN8_SAMPLER_INSTDONE, 1795 slice, subslice); 1796 instdone->row[slice][subslice] = 1797 intel_gt_mcr_read(engine->gt, 1798 GEN8_ROW_INSTDONE, 1799 slice, subslice); 1800 } 1801 1802 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) { 1803 for_each_ss_steering(iter, engine->gt, slice, subslice) 1804 instdone->geom_svg[slice][subslice] = 1805 intel_gt_mcr_read(engine->gt, 1806 XEHPG_INSTDONE_GEOM_SVG, 1807 slice, subslice); 1808 } 1809 } else if (GRAPHICS_VER(i915) >= 7) { 1810 instdone->instdone = 1811 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1812 1813 if (engine->id != RCS0) 1814 return; 1815 1816 instdone->slice_common = 1817 intel_uncore_read(uncore, GEN7_SC_INSTDONE); 1818 instdone->sampler[0][0] = 1819 intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE); 1820 instdone->row[0][0] = 1821 intel_uncore_read(uncore, GEN7_ROW_INSTDONE); 1822 } else if (GRAPHICS_VER(i915) >= 4) { 1823 instdone->instdone = 1824 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1825 if (engine->id == RCS0) 1826 /* HACK: Using the wrong struct member */ 1827 instdone->slice_common = 1828 intel_uncore_read(uncore, GEN4_INSTDONE1); 1829 } else { 1830 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE); 1831 } 1832 } 1833 1834 static bool ring_is_idle(struct intel_engine_cs *engine) 1835 { 1836 bool idle = true; 1837 1838 if (I915_SELFTEST_ONLY(!engine->mmio_base)) 1839 return true; 1840 1841 if (!intel_engine_pm_get_if_awake(engine)) 1842 return true; 1843 1844 /* First check that no commands are left in the ring */ 1845 if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) != 1846 (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR)) 1847 idle = false; 1848 1849 /* No bit for gen2, so assume the CS parser is idle */ 1850 if (GRAPHICS_VER(engine->i915) > 2 && 1851 !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE)) 1852 idle = false; 1853 1854 intel_engine_pm_put(engine); 1855 1856 return idle; 1857 } 1858 1859 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync) 1860 { 1861 struct tasklet_struct *t = &engine->sched_engine->tasklet; 1862 1863 if (!t->callback) 1864 return; 1865 1866 local_bh_disable(); 1867 if (tasklet_trylock(t)) { 1868 /* Must wait for any GPU reset in progress. */ 1869 if (__tasklet_is_enabled(t)) 1870 t->callback(t); 1871 tasklet_unlock(t); 1872 } 1873 local_bh_enable(); 1874 1875 /* Synchronise and wait for the tasklet on another CPU */ 1876 if (sync) 1877 tasklet_unlock_wait(t); 1878 } 1879 1880 /** 1881 * intel_engine_is_idle() - Report if the engine has finished process all work 1882 * @engine: the intel_engine_cs 1883 * 1884 * Return true if there are no requests pending, nothing left to be submitted 1885 * to hardware, and that the engine is idle. 1886 */ 1887 bool intel_engine_is_idle(struct intel_engine_cs *engine) 1888 { 1889 /* More white lies, if wedged, hw state is inconsistent */ 1890 if (intel_gt_is_wedged(engine->gt)) 1891 return true; 1892 1893 if (!intel_engine_pm_is_awake(engine)) 1894 return true; 1895 1896 /* Waiting to drain ELSP? */ 1897 intel_synchronize_hardirq(engine->i915); 1898 intel_engine_flush_submission(engine); 1899 1900 /* ELSP is empty, but there are ready requests? E.g. after reset */ 1901 if (!i915_sched_engine_is_empty(engine->sched_engine)) 1902 return false; 1903 1904 /* Ring stopped? */ 1905 return ring_is_idle(engine); 1906 } 1907 1908 bool intel_engines_are_idle(struct intel_gt *gt) 1909 { 1910 struct intel_engine_cs *engine; 1911 enum intel_engine_id id; 1912 1913 /* 1914 * If the driver is wedged, HW state may be very inconsistent and 1915 * report that it is still busy, even though we have stopped using it. 1916 */ 1917 if (intel_gt_is_wedged(gt)) 1918 return true; 1919 1920 /* Already parked (and passed an idleness test); must still be idle */ 1921 if (!READ_ONCE(gt->awake)) 1922 return true; 1923 1924 for_each_engine(engine, gt, id) { 1925 if (!intel_engine_is_idle(engine)) 1926 return false; 1927 } 1928 1929 return true; 1930 } 1931 1932 bool intel_engine_irq_enable(struct intel_engine_cs *engine) 1933 { 1934 if (!engine->irq_enable) 1935 return false; 1936 1937 /* Caller disables interrupts */ 1938 spin_lock(engine->gt->irq_lock); 1939 engine->irq_enable(engine); 1940 spin_unlock(engine->gt->irq_lock); 1941 1942 return true; 1943 } 1944 1945 void intel_engine_irq_disable(struct intel_engine_cs *engine) 1946 { 1947 if (!engine->irq_disable) 1948 return; 1949 1950 /* Caller disables interrupts */ 1951 spin_lock(engine->gt->irq_lock); 1952 engine->irq_disable(engine); 1953 spin_unlock(engine->gt->irq_lock); 1954 } 1955 1956 void intel_engines_reset_default_submission(struct intel_gt *gt) 1957 { 1958 struct intel_engine_cs *engine; 1959 enum intel_engine_id id; 1960 1961 for_each_engine(engine, gt, id) { 1962 if (engine->sanitize) 1963 engine->sanitize(engine); 1964 1965 engine->set_default_submission(engine); 1966 } 1967 } 1968 1969 bool intel_engine_can_store_dword(struct intel_engine_cs *engine) 1970 { 1971 switch (GRAPHICS_VER(engine->i915)) { 1972 case 2: 1973 return false; /* uses physical not virtual addresses */ 1974 case 3: 1975 /* maybe only uses physical not virtual addresses */ 1976 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915)); 1977 case 4: 1978 return !IS_I965G(engine->i915); /* who knows! */ 1979 case 6: 1980 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */ 1981 default: 1982 return true; 1983 } 1984 } 1985 1986 static struct intel_timeline *get_timeline(struct i915_request *rq) 1987 { 1988 struct intel_timeline *tl; 1989 1990 /* 1991 * Even though we are holding the engine->sched_engine->lock here, there 1992 * is no control over the submission queue per-se and we are 1993 * inspecting the active state at a random point in time, with an 1994 * unknown queue. Play safe and make sure the timeline remains valid. 1995 * (Only being used for pretty printing, one extra kref shouldn't 1996 * cause a camel stampede!) 1997 */ 1998 rcu_read_lock(); 1999 tl = rcu_dereference(rq->timeline); 2000 if (!kref_get_unless_zero(&tl->kref)) 2001 tl = NULL; 2002 rcu_read_unlock(); 2003 2004 return tl; 2005 } 2006 2007 static int print_ring(char *buf, int sz, struct i915_request *rq) 2008 { 2009 int len = 0; 2010 2011 if (!i915_request_signaled(rq)) { 2012 struct intel_timeline *tl = get_timeline(rq); 2013 2014 len = scnprintf(buf, sz, 2015 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ", 2016 i915_ggtt_offset(rq->ring->vma), 2017 tl ? tl->hwsp_offset : 0, 2018 hwsp_seqno(rq), 2019 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context), 2020 1000 * 1000)); 2021 2022 if (tl) 2023 intel_timeline_put(tl); 2024 } 2025 2026 return len; 2027 } 2028 2029 static void hexdump(struct drm_printer *m, const void *buf, size_t len) 2030 { 2031 const size_t rowsize = 8 * sizeof(u32); 2032 const void *prev = NULL; 2033 bool skip = false; 2034 size_t pos; 2035 2036 for (pos = 0; pos < len; pos += rowsize) { 2037 char line[128]; 2038 2039 if (prev && !memcmp(prev, buf + pos, rowsize)) { 2040 if (!skip) { 2041 drm_printf(m, "*\n"); 2042 skip = true; 2043 } 2044 continue; 2045 } 2046 2047 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos, 2048 rowsize, sizeof(u32), 2049 line, sizeof(line), 2050 false) >= sizeof(line)); 2051 drm_printf(m, "[%04zx] %s\n", pos, line); 2052 2053 prev = buf + pos; 2054 skip = false; 2055 } 2056 } 2057 2058 static const char *repr_timer(const struct timer_list *t) 2059 { 2060 if (!READ_ONCE(t->expires)) 2061 return "inactive"; 2062 2063 if (timer_pending(t)) 2064 return "active"; 2065 2066 return "expired"; 2067 } 2068 2069 static void intel_engine_print_registers(struct intel_engine_cs *engine, 2070 struct drm_printer *m) 2071 { 2072 struct drm_i915_private *i915 = engine->i915; 2073 struct intel_engine_execlists * const execlists = &engine->execlists; 2074 u64 addr; 2075 2076 if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7)) 2077 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID)); 2078 if (HAS_EXECLISTS(i915)) { 2079 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n", 2080 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI)); 2081 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n", 2082 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO)); 2083 } 2084 drm_printf(m, "\tRING_START: 0x%08x\n", 2085 ENGINE_READ(engine, RING_START)); 2086 drm_printf(m, "\tRING_HEAD: 0x%08x\n", 2087 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR); 2088 drm_printf(m, "\tRING_TAIL: 0x%08x\n", 2089 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR); 2090 drm_printf(m, "\tRING_CTL: 0x%08x%s\n", 2091 ENGINE_READ(engine, RING_CTL), 2092 ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : ""); 2093 if (GRAPHICS_VER(engine->i915) > 2) { 2094 drm_printf(m, "\tRING_MODE: 0x%08x%s\n", 2095 ENGINE_READ(engine, RING_MI_MODE), 2096 ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : ""); 2097 } 2098 2099 if (GRAPHICS_VER(i915) >= 6) { 2100 drm_printf(m, "\tRING_IMR: 0x%08x\n", 2101 ENGINE_READ(engine, RING_IMR)); 2102 drm_printf(m, "\tRING_ESR: 0x%08x\n", 2103 ENGINE_READ(engine, RING_ESR)); 2104 drm_printf(m, "\tRING_EMR: 0x%08x\n", 2105 ENGINE_READ(engine, RING_EMR)); 2106 drm_printf(m, "\tRING_EIR: 0x%08x\n", 2107 ENGINE_READ(engine, RING_EIR)); 2108 } 2109 2110 addr = intel_engine_get_active_head(engine); 2111 drm_printf(m, "\tACTHD: 0x%08x_%08x\n", 2112 upper_32_bits(addr), lower_32_bits(addr)); 2113 addr = intel_engine_get_last_batch_head(engine); 2114 drm_printf(m, "\tBBADDR: 0x%08x_%08x\n", 2115 upper_32_bits(addr), lower_32_bits(addr)); 2116 if (GRAPHICS_VER(i915) >= 8) 2117 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW); 2118 else if (GRAPHICS_VER(i915) >= 4) 2119 addr = ENGINE_READ(engine, RING_DMA_FADD); 2120 else 2121 addr = ENGINE_READ(engine, DMA_FADD_I8XX); 2122 drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n", 2123 upper_32_bits(addr), lower_32_bits(addr)); 2124 if (GRAPHICS_VER(i915) >= 4) { 2125 drm_printf(m, "\tIPEIR: 0x%08x\n", 2126 ENGINE_READ(engine, RING_IPEIR)); 2127 drm_printf(m, "\tIPEHR: 0x%08x\n", 2128 ENGINE_READ(engine, RING_IPEHR)); 2129 } else { 2130 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR)); 2131 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR)); 2132 } 2133 2134 if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) { 2135 struct i915_request * const *port, *rq; 2136 const u32 *hws = 2137 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX]; 2138 const u8 num_entries = execlists->csb_size; 2139 unsigned int idx; 2140 u8 read, write; 2141 2142 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n", 2143 str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)), 2144 str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)), 2145 repr_timer(&engine->execlists.preempt), 2146 repr_timer(&engine->execlists.timer)); 2147 2148 read = execlists->csb_head; 2149 write = READ_ONCE(*execlists->csb_write); 2150 2151 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n", 2152 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO), 2153 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI), 2154 read, write, num_entries); 2155 2156 if (read >= num_entries) 2157 read = 0; 2158 if (write >= num_entries) 2159 write = 0; 2160 if (read > write) 2161 write += num_entries; 2162 while (read < write) { 2163 idx = ++read % num_entries; 2164 drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n", 2165 idx, hws[idx * 2], hws[idx * 2 + 1]); 2166 } 2167 2168 i915_sched_engine_active_lock_bh(engine->sched_engine); 2169 rcu_read_lock(); 2170 for (port = execlists->active; (rq = *port); port++) { 2171 char hdr[160]; 2172 int len; 2173 2174 len = scnprintf(hdr, sizeof(hdr), 2175 "\t\tActive[%d]: ccid:%08x%s%s, ", 2176 (int)(port - execlists->active), 2177 rq->context->lrc.ccid, 2178 intel_context_is_closed(rq->context) ? "!" : "", 2179 intel_context_is_banned(rq->context) ? "*" : ""); 2180 len += print_ring(hdr + len, sizeof(hdr) - len, rq); 2181 scnprintf(hdr + len, sizeof(hdr) - len, "rq: "); 2182 i915_request_show(m, rq, hdr, 0); 2183 } 2184 for (port = execlists->pending; (rq = *port); port++) { 2185 char hdr[160]; 2186 int len; 2187 2188 len = scnprintf(hdr, sizeof(hdr), 2189 "\t\tPending[%d]: ccid:%08x%s%s, ", 2190 (int)(port - execlists->pending), 2191 rq->context->lrc.ccid, 2192 intel_context_is_closed(rq->context) ? "!" : "", 2193 intel_context_is_banned(rq->context) ? "*" : ""); 2194 len += print_ring(hdr + len, sizeof(hdr) - len, rq); 2195 scnprintf(hdr + len, sizeof(hdr) - len, "rq: "); 2196 i915_request_show(m, rq, hdr, 0); 2197 } 2198 rcu_read_unlock(); 2199 i915_sched_engine_active_unlock_bh(engine->sched_engine); 2200 } else if (GRAPHICS_VER(i915) > 6) { 2201 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n", 2202 ENGINE_READ(engine, RING_PP_DIR_BASE)); 2203 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n", 2204 ENGINE_READ(engine, RING_PP_DIR_BASE_READ)); 2205 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n", 2206 ENGINE_READ(engine, RING_PP_DIR_DCLV)); 2207 } 2208 } 2209 2210 static void print_request_ring(struct drm_printer *m, struct i915_request *rq) 2211 { 2212 struct i915_vma_resource *vma_res = rq->batch_res; 2213 void *ring; 2214 int size; 2215 2216 drm_printf(m, 2217 "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n", 2218 rq->head, rq->postfix, rq->tail, 2219 vma_res ? upper_32_bits(vma_res->start) : ~0u, 2220 vma_res ? lower_32_bits(vma_res->start) : ~0u); 2221 2222 size = rq->tail - rq->head; 2223 if (rq->tail < rq->head) 2224 size += rq->ring->size; 2225 2226 ring = kmalloc(size, GFP_ATOMIC); 2227 if (ring) { 2228 const void *vaddr = rq->ring->vaddr; 2229 unsigned int head = rq->head; 2230 unsigned int len = 0; 2231 2232 if (rq->tail < head) { 2233 len = rq->ring->size - head; 2234 memcpy(ring, vaddr + head, len); 2235 head = 0; 2236 } 2237 memcpy(ring + len, vaddr + head, size - len); 2238 2239 hexdump(m, ring, size); 2240 kfree(ring); 2241 } 2242 } 2243 2244 static unsigned long read_ul(void *p, size_t x) 2245 { 2246 return *(unsigned long *)(p + x); 2247 } 2248 2249 static void print_properties(struct intel_engine_cs *engine, 2250 struct drm_printer *m) 2251 { 2252 static const struct pmap { 2253 size_t offset; 2254 const char *name; 2255 } props[] = { 2256 #define P(x) { \ 2257 .offset = offsetof(typeof(engine->props), x), \ 2258 .name = #x \ 2259 } 2260 P(heartbeat_interval_ms), 2261 P(max_busywait_duration_ns), 2262 P(preempt_timeout_ms), 2263 P(stop_timeout_ms), 2264 P(timeslice_duration_ms), 2265 2266 {}, 2267 #undef P 2268 }; 2269 const struct pmap *p; 2270 2271 drm_printf(m, "\tProperties:\n"); 2272 for (p = props; p->name; p++) 2273 drm_printf(m, "\t\t%s: %lu [default %lu]\n", 2274 p->name, 2275 read_ul(&engine->props, p->offset), 2276 read_ul(&engine->defaults, p->offset)); 2277 } 2278 2279 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg) 2280 { 2281 struct intel_timeline *tl = get_timeline(rq); 2282 2283 i915_request_show(m, rq, msg, 0); 2284 2285 drm_printf(m, "\t\tring->start: 0x%08x\n", 2286 i915_ggtt_offset(rq->ring->vma)); 2287 drm_printf(m, "\t\tring->head: 0x%08x\n", 2288 rq->ring->head); 2289 drm_printf(m, "\t\tring->tail: 0x%08x\n", 2290 rq->ring->tail); 2291 drm_printf(m, "\t\tring->emit: 0x%08x\n", 2292 rq->ring->emit); 2293 drm_printf(m, "\t\tring->space: 0x%08x\n", 2294 rq->ring->space); 2295 2296 if (tl) { 2297 drm_printf(m, "\t\tring->hwsp: 0x%08x\n", 2298 tl->hwsp_offset); 2299 intel_timeline_put(tl); 2300 } 2301 2302 print_request_ring(m, rq); 2303 2304 if (rq->context->lrc_reg_state) { 2305 drm_printf(m, "Logical Ring Context:\n"); 2306 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE); 2307 } 2308 } 2309 2310 void intel_engine_dump_active_requests(struct list_head *requests, 2311 struct i915_request *hung_rq, 2312 struct drm_printer *m) 2313 { 2314 struct i915_request *rq; 2315 const char *msg; 2316 enum i915_request_state state; 2317 2318 list_for_each_entry(rq, requests, sched.link) { 2319 if (rq == hung_rq) 2320 continue; 2321 2322 state = i915_test_request_state(rq); 2323 if (state < I915_REQUEST_QUEUED) 2324 continue; 2325 2326 if (state == I915_REQUEST_ACTIVE) 2327 msg = "\t\tactive on engine"; 2328 else 2329 msg = "\t\tactive in queue"; 2330 2331 engine_dump_request(rq, m, msg); 2332 } 2333 } 2334 2335 static void engine_dump_active_requests(struct intel_engine_cs *engine, 2336 struct drm_printer *m) 2337 { 2338 struct intel_context *hung_ce = NULL; 2339 struct i915_request *hung_rq = NULL; 2340 2341 /* 2342 * No need for an engine->irq_seqno_barrier() before the seqno reads. 2343 * The GPU is still running so requests are still executing and any 2344 * hardware reads will be out of date by the time they are reported. 2345 * But the intention here is just to report an instantaneous snapshot 2346 * so that's fine. 2347 */ 2348 intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq); 2349 2350 drm_printf(m, "\tRequests:\n"); 2351 2352 if (hung_rq) 2353 engine_dump_request(hung_rq, m, "\t\thung"); 2354 else if (hung_ce) 2355 drm_printf(m, "\t\tGot hung ce but no hung rq!\n"); 2356 2357 if (intel_uc_uses_guc_submission(&engine->gt->uc)) 2358 intel_guc_dump_active_requests(engine, hung_rq, m); 2359 else 2360 intel_execlists_dump_active_requests(engine, hung_rq, m); 2361 2362 if (hung_rq) 2363 i915_request_put(hung_rq); 2364 } 2365 2366 void intel_engine_dump(struct intel_engine_cs *engine, 2367 struct drm_printer *m, 2368 const char *header, ...) 2369 { 2370 struct i915_gpu_error * const error = &engine->i915->gpu_error; 2371 struct i915_request *rq; 2372 intel_wakeref_t wakeref; 2373 ktime_t dummy; 2374 2375 if (header) { 2376 va_list ap; 2377 2378 va_start(ap, header); 2379 drm_vprintf(m, header, &ap); 2380 va_end(ap); 2381 } 2382 2383 if (intel_gt_is_wedged(engine->gt)) 2384 drm_printf(m, "*** WEDGED ***\n"); 2385 2386 drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count)); 2387 drm_printf(m, "\tBarriers?: %s\n", 2388 str_yes_no(!llist_empty(&engine->barrier_tasks))); 2389 drm_printf(m, "\tLatency: %luus\n", 2390 ewma__engine_latency_read(&engine->latency)); 2391 if (intel_engine_supports_stats(engine)) 2392 drm_printf(m, "\tRuntime: %llums\n", 2393 ktime_to_ms(intel_engine_get_busy_time(engine, 2394 &dummy))); 2395 drm_printf(m, "\tForcewake: %x domains, %d active\n", 2396 engine->fw_domain, READ_ONCE(engine->fw_active)); 2397 2398 rcu_read_lock(); 2399 rq = READ_ONCE(engine->heartbeat.systole); 2400 if (rq) 2401 drm_printf(m, "\tHeartbeat: %d ms ago\n", 2402 jiffies_to_msecs(jiffies - rq->emitted_jiffies)); 2403 rcu_read_unlock(); 2404 drm_printf(m, "\tReset count: %d (global %d)\n", 2405 i915_reset_engine_count(error, engine), 2406 i915_reset_count(error)); 2407 print_properties(engine, m); 2408 2409 engine_dump_active_requests(engine, m); 2410 2411 drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base); 2412 wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm); 2413 if (wakeref) { 2414 intel_engine_print_registers(engine, m); 2415 intel_runtime_pm_put(engine->uncore->rpm, wakeref); 2416 } else { 2417 drm_printf(m, "\tDevice is asleep; skipping register dump\n"); 2418 } 2419 2420 intel_execlists_show_requests(engine, m, i915_request_show, 8); 2421 2422 drm_printf(m, "HWSP:\n"); 2423 hexdump(m, engine->status_page.addr, PAGE_SIZE); 2424 2425 drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine))); 2426 2427 intel_engine_print_breadcrumbs(engine, m); 2428 } 2429 2430 /** 2431 * intel_engine_get_busy_time() - Return current accumulated engine busyness 2432 * @engine: engine to report on 2433 * @now: monotonic timestamp of sampling 2434 * 2435 * Returns accumulated time @engine was busy since engine stats were enabled. 2436 */ 2437 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now) 2438 { 2439 return engine->busyness(engine, now); 2440 } 2441 2442 struct intel_context * 2443 intel_engine_create_virtual(struct intel_engine_cs **siblings, 2444 unsigned int count, unsigned long flags) 2445 { 2446 if (count == 0) 2447 return ERR_PTR(-EINVAL); 2448 2449 if (count == 1 && !(flags & FORCE_VIRTUAL)) 2450 return intel_context_create(siblings[0]); 2451 2452 GEM_BUG_ON(!siblings[0]->cops->create_virtual); 2453 return siblings[0]->cops->create_virtual(siblings, count, flags); 2454 } 2455 2456 static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine) 2457 { 2458 struct i915_request *request, *active = NULL; 2459 2460 /* 2461 * This search does not work in GuC submission mode. However, the GuC 2462 * will report the hanging context directly to the driver itself. So 2463 * the driver should never get here when in GuC mode. 2464 */ 2465 GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc)); 2466 2467 /* 2468 * We are called by the error capture, reset and to dump engine 2469 * state at random points in time. In particular, note that neither is 2470 * crucially ordered with an interrupt. After a hang, the GPU is dead 2471 * and we assume that no more writes can happen (we waited long enough 2472 * for all writes that were in transaction to be flushed) - adding an 2473 * extra delay for a recent interrupt is pointless. Hence, we do 2474 * not need an engine->irq_seqno_barrier() before the seqno reads. 2475 * At all other times, we must assume the GPU is still running, but 2476 * we only care about the snapshot of this moment. 2477 */ 2478 lockdep_assert_held(&engine->sched_engine->lock); 2479 2480 rcu_read_lock(); 2481 request = execlists_active(&engine->execlists); 2482 if (request) { 2483 struct intel_timeline *tl = request->context->timeline; 2484 2485 list_for_each_entry_from_reverse(request, &tl->requests, link) { 2486 if (__i915_request_is_complete(request)) 2487 break; 2488 2489 active = request; 2490 } 2491 } 2492 rcu_read_unlock(); 2493 if (active) 2494 return active; 2495 2496 list_for_each_entry(request, &engine->sched_engine->requests, 2497 sched.link) { 2498 if (i915_test_request_state(request) != I915_REQUEST_ACTIVE) 2499 continue; 2500 2501 active = request; 2502 break; 2503 } 2504 2505 return active; 2506 } 2507 2508 void intel_engine_get_hung_entity(struct intel_engine_cs *engine, 2509 struct intel_context **ce, struct i915_request **rq) 2510 { 2511 unsigned long flags; 2512 2513 *ce = intel_engine_get_hung_context(engine); 2514 if (*ce) { 2515 intel_engine_clear_hung_context(engine); 2516 2517 *rq = intel_context_get_active_request(*ce); 2518 return; 2519 } 2520 2521 /* 2522 * Getting here with GuC enabled means it is a forced error capture 2523 * with no actual hang. So, no need to attempt the execlist search. 2524 */ 2525 if (intel_uc_uses_guc_submission(&engine->gt->uc)) 2526 return; 2527 2528 spin_lock_irqsave(&engine->sched_engine->lock, flags); 2529 *rq = engine_execlist_find_hung_request(engine); 2530 if (*rq) 2531 *rq = i915_request_get_rcu(*rq); 2532 spin_unlock_irqrestore(&engine->sched_engine->lock, flags); 2533 } 2534 2535 void xehp_enable_ccs_engines(struct intel_engine_cs *engine) 2536 { 2537 /* 2538 * If there are any non-fused-off CCS engines, we need to enable CCS 2539 * support in the RCU_MODE register. This only needs to be done once, 2540 * so for simplicity we'll take care of this in the RCS engine's 2541 * resume handler; since the RCS and all CCS engines belong to the 2542 * same reset domain and are reset together, this will also take care 2543 * of re-applying the setting after i915-triggered resets. 2544 */ 2545 if (!CCS_MASK(engine->gt)) 2546 return; 2547 2548 intel_uncore_write(engine->uncore, GEN12_RCU_MODE, 2549 _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE)); 2550 } 2551 2552 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 2553 #include "mock_engine.c" 2554 #include "selftest_engine.c" 2555 #include "selftest_engine_cs.c" 2556 #endif 2557