1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2016 Intel Corporation 4 */ 5 6 #include <linux/string_helpers.h> 7 8 #include <drm/drm_print.h> 9 10 #include "gem/i915_gem_context.h" 11 #include "gem/i915_gem_internal.h" 12 #include "gt/intel_gt_print.h" 13 #include "gt/intel_gt_regs.h" 14 15 #include "i915_cmd_parser.h" 16 #include "i915_drv.h" 17 #include "i915_irq.h" 18 #include "i915_reg.h" 19 #include "intel_breadcrumbs.h" 20 #include "intel_context.h" 21 #include "intel_engine.h" 22 #include "intel_engine_pm.h" 23 #include "intel_engine_regs.h" 24 #include "intel_engine_user.h" 25 #include "intel_execlists_submission.h" 26 #include "intel_gt.h" 27 #include "intel_gt_mcr.h" 28 #include "intel_gt_pm.h" 29 #include "intel_gt_requests.h" 30 #include "intel_lrc.h" 31 #include "intel_lrc_reg.h" 32 #include "intel_reset.h" 33 #include "intel_ring.h" 34 #include "uc/intel_guc_submission.h" 35 36 /* Haswell does have the CXT_SIZE register however it does not appear to be 37 * valid. Now, docs explain in dwords what is in the context object. The full 38 * size is 70720 bytes, however, the power context and execlist context will 39 * never be saved (power context is stored elsewhere, and execlists don't work 40 * on HSW) - so the final size, including the extra state required for the 41 * Resource Streamer, is 66944 bytes, which rounds to 17 pages. 42 */ 43 #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE) 44 45 #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) 46 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE) 47 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) 48 #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE) 49 50 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE) 51 52 #define MAX_MMIO_BASES 3 53 struct engine_info { 54 u8 class; 55 u8 instance; 56 /* mmio bases table *must* be sorted in reverse graphics_ver order */ 57 struct engine_mmio_base { 58 u32 graphics_ver : 8; 59 u32 base : 24; 60 } mmio_bases[MAX_MMIO_BASES]; 61 }; 62 63 static const struct engine_info intel_engines[] = { 64 [RCS0] = { 65 .class = RENDER_CLASS, 66 .instance = 0, 67 .mmio_bases = { 68 { .graphics_ver = 1, .base = RENDER_RING_BASE } 69 }, 70 }, 71 [BCS0] = { 72 .class = COPY_ENGINE_CLASS, 73 .instance = 0, 74 .mmio_bases = { 75 { .graphics_ver = 6, .base = BLT_RING_BASE } 76 }, 77 }, 78 [BCS1] = { 79 .class = COPY_ENGINE_CLASS, 80 .instance = 1, 81 .mmio_bases = { 82 { .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE } 83 }, 84 }, 85 [BCS2] = { 86 .class = COPY_ENGINE_CLASS, 87 .instance = 2, 88 .mmio_bases = { 89 { .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE } 90 }, 91 }, 92 [BCS3] = { 93 .class = COPY_ENGINE_CLASS, 94 .instance = 3, 95 .mmio_bases = { 96 { .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE } 97 }, 98 }, 99 [BCS4] = { 100 .class = COPY_ENGINE_CLASS, 101 .instance = 4, 102 .mmio_bases = { 103 { .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE } 104 }, 105 }, 106 [BCS5] = { 107 .class = COPY_ENGINE_CLASS, 108 .instance = 5, 109 .mmio_bases = { 110 { .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE } 111 }, 112 }, 113 [BCS6] = { 114 .class = COPY_ENGINE_CLASS, 115 .instance = 6, 116 .mmio_bases = { 117 { .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE } 118 }, 119 }, 120 [BCS7] = { 121 .class = COPY_ENGINE_CLASS, 122 .instance = 7, 123 .mmio_bases = { 124 { .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE } 125 }, 126 }, 127 [BCS8] = { 128 .class = COPY_ENGINE_CLASS, 129 .instance = 8, 130 .mmio_bases = { 131 { .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE } 132 }, 133 }, 134 [VCS0] = { 135 .class = VIDEO_DECODE_CLASS, 136 .instance = 0, 137 .mmio_bases = { 138 { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE }, 139 { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE }, 140 { .graphics_ver = 4, .base = BSD_RING_BASE } 141 }, 142 }, 143 [VCS1] = { 144 .class = VIDEO_DECODE_CLASS, 145 .instance = 1, 146 .mmio_bases = { 147 { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE }, 148 { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE } 149 }, 150 }, 151 [VCS2] = { 152 .class = VIDEO_DECODE_CLASS, 153 .instance = 2, 154 .mmio_bases = { 155 { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE } 156 }, 157 }, 158 [VCS3] = { 159 .class = VIDEO_DECODE_CLASS, 160 .instance = 3, 161 .mmio_bases = { 162 { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE } 163 }, 164 }, 165 [VCS4] = { 166 .class = VIDEO_DECODE_CLASS, 167 .instance = 4, 168 .mmio_bases = { 169 { .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE } 170 }, 171 }, 172 [VCS5] = { 173 .class = VIDEO_DECODE_CLASS, 174 .instance = 5, 175 .mmio_bases = { 176 { .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE } 177 }, 178 }, 179 [VCS6] = { 180 .class = VIDEO_DECODE_CLASS, 181 .instance = 6, 182 .mmio_bases = { 183 { .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE } 184 }, 185 }, 186 [VCS7] = { 187 .class = VIDEO_DECODE_CLASS, 188 .instance = 7, 189 .mmio_bases = { 190 { .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE } 191 }, 192 }, 193 [VECS0] = { 194 .class = VIDEO_ENHANCEMENT_CLASS, 195 .instance = 0, 196 .mmio_bases = { 197 { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE }, 198 { .graphics_ver = 7, .base = VEBOX_RING_BASE } 199 }, 200 }, 201 [VECS1] = { 202 .class = VIDEO_ENHANCEMENT_CLASS, 203 .instance = 1, 204 .mmio_bases = { 205 { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE } 206 }, 207 }, 208 [VECS2] = { 209 .class = VIDEO_ENHANCEMENT_CLASS, 210 .instance = 2, 211 .mmio_bases = { 212 { .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE } 213 }, 214 }, 215 [VECS3] = { 216 .class = VIDEO_ENHANCEMENT_CLASS, 217 .instance = 3, 218 .mmio_bases = { 219 { .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE } 220 }, 221 }, 222 [CCS0] = { 223 .class = COMPUTE_CLASS, 224 .instance = 0, 225 .mmio_bases = { 226 { .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE } 227 } 228 }, 229 [CCS1] = { 230 .class = COMPUTE_CLASS, 231 .instance = 1, 232 .mmio_bases = { 233 { .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE } 234 } 235 }, 236 [CCS2] = { 237 .class = COMPUTE_CLASS, 238 .instance = 2, 239 .mmio_bases = { 240 { .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE } 241 } 242 }, 243 [CCS3] = { 244 .class = COMPUTE_CLASS, 245 .instance = 3, 246 .mmio_bases = { 247 { .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE } 248 } 249 }, 250 [GSC0] = { 251 .class = OTHER_CLASS, 252 .instance = OTHER_GSC_INSTANCE, 253 .mmio_bases = { 254 { .graphics_ver = 12, .base = MTL_GSC_RING_BASE } 255 } 256 }, 257 }; 258 259 /** 260 * intel_engine_context_size() - return the size of the context for an engine 261 * @gt: the gt 262 * @class: engine class 263 * 264 * Each engine class may require a different amount of space for a context 265 * image. 266 * 267 * Return: size (in bytes) of an engine class specific context image 268 * 269 * Note: this size includes the HWSP, which is part of the context image 270 * in LRC mode, but does not include the "shared data page" used with 271 * GuC submission. The caller should account for this if using the GuC. 272 */ 273 u32 intel_engine_context_size(struct intel_gt *gt, u8 class) 274 { 275 struct intel_uncore *uncore = gt->uncore; 276 u32 cxt_size; 277 278 BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE); 279 280 switch (class) { 281 case COMPUTE_CLASS: 282 fallthrough; 283 case RENDER_CLASS: 284 switch (GRAPHICS_VER(gt->i915)) { 285 default: 286 MISSING_CASE(GRAPHICS_VER(gt->i915)); 287 return DEFAULT_LR_CONTEXT_RENDER_SIZE; 288 case 12: 289 case 11: 290 return GEN11_LR_CONTEXT_RENDER_SIZE; 291 case 9: 292 return GEN9_LR_CONTEXT_RENDER_SIZE; 293 case 8: 294 return GEN8_LR_CONTEXT_RENDER_SIZE; 295 case 7: 296 if (IS_HASWELL(gt->i915)) 297 return HSW_CXT_TOTAL_SIZE; 298 299 cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE); 300 return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64, 301 PAGE_SIZE); 302 case 6: 303 cxt_size = intel_uncore_read(uncore, CXT_SIZE); 304 return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64, 305 PAGE_SIZE); 306 case 5: 307 case 4: 308 /* 309 * There is a discrepancy here between the size reported 310 * by the register and the size of the context layout 311 * in the docs. Both are described as authorative! 312 * 313 * The discrepancy is on the order of a few cachelines, 314 * but the total is under one page (4k), which is our 315 * minimum allocation anyway so it should all come 316 * out in the wash. 317 */ 318 cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1; 319 gt_dbg(gt, "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n", 320 GRAPHICS_VER(gt->i915), cxt_size * 64, 321 cxt_size - 1); 322 return round_up(cxt_size * 64, PAGE_SIZE); 323 case 3: 324 case 2: 325 /* For the special day when i810 gets merged. */ 326 case 1: 327 return 0; 328 } 329 break; 330 default: 331 MISSING_CASE(class); 332 fallthrough; 333 case VIDEO_DECODE_CLASS: 334 case VIDEO_ENHANCEMENT_CLASS: 335 case COPY_ENGINE_CLASS: 336 case OTHER_CLASS: 337 if (GRAPHICS_VER(gt->i915) < 8) 338 return 0; 339 return GEN8_LR_CONTEXT_OTHER_SIZE; 340 } 341 } 342 343 static u32 __engine_mmio_base(struct drm_i915_private *i915, 344 const struct engine_mmio_base *bases) 345 { 346 int i; 347 348 for (i = 0; i < MAX_MMIO_BASES; i++) 349 if (GRAPHICS_VER(i915) >= bases[i].graphics_ver) 350 break; 351 352 GEM_BUG_ON(i == MAX_MMIO_BASES); 353 GEM_BUG_ON(!bases[i].base); 354 355 return bases[i].base; 356 } 357 358 static void __sprint_engine_name(struct intel_engine_cs *engine) 359 { 360 /* 361 * Before we know what the uABI name for this engine will be, 362 * we still would like to keep track of this engine in the debug logs. 363 * We throw in a ' here as a reminder that this isn't its final name. 364 */ 365 GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u", 366 intel_engine_class_repr(engine->class), 367 engine->instance) >= sizeof(engine->name)); 368 } 369 370 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask) 371 { 372 /* 373 * Though they added more rings on g4x/ilk, they did not add 374 * per-engine HWSTAM until gen6. 375 */ 376 if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS) 377 return; 378 379 if (GRAPHICS_VER(engine->i915) >= 3) 380 ENGINE_WRITE(engine, RING_HWSTAM, mask); 381 else 382 ENGINE_WRITE16(engine, RING_HWSTAM, mask); 383 } 384 385 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine) 386 { 387 /* Mask off all writes into the unknown HWSP */ 388 intel_engine_set_hwsp_writemask(engine, ~0u); 389 } 390 391 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir) 392 { 393 GEM_DEBUG_WARN_ON(iir); 394 } 395 396 static u32 get_reset_domain(u8 ver, enum intel_engine_id id) 397 { 398 u32 reset_domain; 399 400 if (ver >= 11) { 401 static const u32 engine_reset_domains[] = { 402 [RCS0] = GEN11_GRDOM_RENDER, 403 [BCS0] = GEN11_GRDOM_BLT, 404 [BCS1] = XEHPC_GRDOM_BLT1, 405 [BCS2] = XEHPC_GRDOM_BLT2, 406 [BCS3] = XEHPC_GRDOM_BLT3, 407 [BCS4] = XEHPC_GRDOM_BLT4, 408 [BCS5] = XEHPC_GRDOM_BLT5, 409 [BCS6] = XEHPC_GRDOM_BLT6, 410 [BCS7] = XEHPC_GRDOM_BLT7, 411 [BCS8] = XEHPC_GRDOM_BLT8, 412 [VCS0] = GEN11_GRDOM_MEDIA, 413 [VCS1] = GEN11_GRDOM_MEDIA2, 414 [VCS2] = GEN11_GRDOM_MEDIA3, 415 [VCS3] = GEN11_GRDOM_MEDIA4, 416 [VCS4] = GEN11_GRDOM_MEDIA5, 417 [VCS5] = GEN11_GRDOM_MEDIA6, 418 [VCS6] = GEN11_GRDOM_MEDIA7, 419 [VCS7] = GEN11_GRDOM_MEDIA8, 420 [VECS0] = GEN11_GRDOM_VECS, 421 [VECS1] = GEN11_GRDOM_VECS2, 422 [VECS2] = GEN11_GRDOM_VECS3, 423 [VECS3] = GEN11_GRDOM_VECS4, 424 [CCS0] = GEN11_GRDOM_RENDER, 425 [CCS1] = GEN11_GRDOM_RENDER, 426 [CCS2] = GEN11_GRDOM_RENDER, 427 [CCS3] = GEN11_GRDOM_RENDER, 428 [GSC0] = GEN12_GRDOM_GSC, 429 }; 430 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) || 431 !engine_reset_domains[id]); 432 reset_domain = engine_reset_domains[id]; 433 } else { 434 static const u32 engine_reset_domains[] = { 435 [RCS0] = GEN6_GRDOM_RENDER, 436 [BCS0] = GEN6_GRDOM_BLT, 437 [VCS0] = GEN6_GRDOM_MEDIA, 438 [VCS1] = GEN8_GRDOM_MEDIA2, 439 [VECS0] = GEN6_GRDOM_VECS, 440 }; 441 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) || 442 !engine_reset_domains[id]); 443 reset_domain = engine_reset_domains[id]; 444 } 445 446 return reset_domain; 447 } 448 449 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id, 450 u8 logical_instance) 451 { 452 const struct engine_info *info = &intel_engines[id]; 453 struct drm_i915_private *i915 = gt->i915; 454 struct intel_engine_cs *engine; 455 u8 guc_class; 456 457 BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH)); 458 BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH)); 459 BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1)); 460 BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1)); 461 462 if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine))) 463 return -EINVAL; 464 465 if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS)) 466 return -EINVAL; 467 468 if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE)) 469 return -EINVAL; 470 471 if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance])) 472 return -EINVAL; 473 474 engine = kzalloc(sizeof(*engine), GFP_KERNEL); 475 if (!engine) 476 return -ENOMEM; 477 478 BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES); 479 480 INIT_LIST_HEAD(&engine->pinned_contexts_list); 481 engine->id = id; 482 engine->legacy_idx = INVALID_ENGINE; 483 engine->mask = BIT(id); 484 engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915), 485 id); 486 engine->i915 = i915; 487 engine->gt = gt; 488 engine->uncore = gt->uncore; 489 guc_class = engine_class_to_guc_class(info->class); 490 engine->guc_id = MAKE_GUC_ID(guc_class, info->instance); 491 engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases); 492 493 engine->irq_handler = nop_irq_handler; 494 495 engine->class = info->class; 496 engine->instance = info->instance; 497 engine->logical_mask = BIT(logical_instance); 498 __sprint_engine_name(engine); 499 500 if ((engine->class == COMPUTE_CLASS || engine->class == RENDER_CLASS) && 501 __ffs(CCS_MASK(engine->gt) | RCS_MASK(engine->gt)) == engine->instance) 502 engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE; 503 504 /* features common between engines sharing EUs */ 505 if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) { 506 engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE; 507 engine->flags |= I915_ENGINE_HAS_EU_PRIORITY; 508 } 509 510 engine->props.heartbeat_interval_ms = 511 CONFIG_DRM_I915_HEARTBEAT_INTERVAL; 512 engine->props.max_busywait_duration_ns = 513 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT; 514 engine->props.preempt_timeout_ms = 515 CONFIG_DRM_I915_PREEMPT_TIMEOUT; 516 engine->props.stop_timeout_ms = 517 CONFIG_DRM_I915_STOP_TIMEOUT; 518 engine->props.timeslice_duration_ms = 519 CONFIG_DRM_I915_TIMESLICE_DURATION; 520 521 /* 522 * Mid-thread pre-emption is not available in Gen12. Unfortunately, 523 * some compute workloads run quite long threads. That means they get 524 * reset due to not pre-empting in a timely manner. So, bump the 525 * pre-emption timeout value to be much higher for compute engines. 526 */ 527 if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)) 528 engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE; 529 530 /* Cap properties according to any system limits */ 531 #define CLAMP_PROP(field) \ 532 do { \ 533 u64 clamp = intel_clamp_##field(engine, engine->props.field); \ 534 if (clamp != engine->props.field) { \ 535 drm_notice(&engine->i915->drm, \ 536 "Warning, clamping %s to %lld to prevent overflow\n", \ 537 #field, clamp); \ 538 engine->props.field = clamp; \ 539 } \ 540 } while (0) 541 542 CLAMP_PROP(heartbeat_interval_ms); 543 CLAMP_PROP(max_busywait_duration_ns); 544 CLAMP_PROP(preempt_timeout_ms); 545 CLAMP_PROP(stop_timeout_ms); 546 CLAMP_PROP(timeslice_duration_ms); 547 548 #undef CLAMP_PROP 549 550 engine->defaults = engine->props; /* never to change again */ 551 552 engine->context_size = intel_engine_context_size(gt, engine->class); 553 if (WARN_ON(engine->context_size > BIT(20))) 554 engine->context_size = 0; 555 if (engine->context_size) 556 DRIVER_CAPS(i915)->has_logical_contexts = true; 557 558 ewma__engine_latency_init(&engine->latency); 559 560 ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier); 561 562 /* Scrub mmio state on takeover */ 563 intel_engine_sanitize_mmio(engine); 564 565 gt->engine_class[info->class][info->instance] = engine; 566 gt->engine[id] = engine; 567 568 return 0; 569 } 570 571 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value) 572 { 573 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); 574 575 return value; 576 } 577 578 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value) 579 { 580 value = min(value, jiffies_to_nsecs(2)); 581 582 return value; 583 } 584 585 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value) 586 { 587 /* 588 * NB: The GuC API only supports 32bit values. However, the limit is further 589 * reduced due to internal calculations which would otherwise overflow. 590 */ 591 if (intel_guc_submission_is_wanted(gt_to_guc(engine->gt))) 592 value = min_t(u64, value, guc_policy_max_preempt_timeout_ms()); 593 594 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); 595 596 return value; 597 } 598 599 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value) 600 { 601 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); 602 603 return value; 604 } 605 606 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value) 607 { 608 /* 609 * NB: The GuC API only supports 32bit values. However, the limit is further 610 * reduced due to internal calculations which would otherwise overflow. 611 */ 612 if (intel_guc_submission_is_wanted(gt_to_guc(engine->gt))) 613 value = min_t(u64, value, guc_policy_max_exec_quantum_ms()); 614 615 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); 616 617 return value; 618 } 619 620 static void __setup_engine_capabilities(struct intel_engine_cs *engine) 621 { 622 struct drm_i915_private *i915 = engine->i915; 623 624 if (engine->class == VIDEO_DECODE_CLASS) { 625 /* 626 * HEVC support is present on first engine instance 627 * before Gen11 and on all instances afterwards. 628 */ 629 if (GRAPHICS_VER(i915) >= 11 || 630 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0)) 631 engine->uabi_capabilities |= 632 I915_VIDEO_CLASS_CAPABILITY_HEVC; 633 634 /* 635 * SFC block is present only on even logical engine 636 * instances. 637 */ 638 if ((GRAPHICS_VER(i915) >= 11 && 639 (engine->gt->info.vdbox_sfc_access & 640 BIT(engine->instance))) || 641 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0)) 642 engine->uabi_capabilities |= 643 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; 644 } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) { 645 if (GRAPHICS_VER(i915) >= 9 && 646 engine->gt->info.sfc_mask & BIT(engine->instance)) 647 engine->uabi_capabilities |= 648 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; 649 } 650 } 651 652 static void intel_setup_engine_capabilities(struct intel_gt *gt) 653 { 654 struct intel_engine_cs *engine; 655 enum intel_engine_id id; 656 657 for_each_engine(engine, gt, id) 658 __setup_engine_capabilities(engine); 659 } 660 661 /** 662 * intel_engines_release() - free the resources allocated for Command Streamers 663 * @gt: pointer to struct intel_gt 664 */ 665 void intel_engines_release(struct intel_gt *gt) 666 { 667 struct intel_engine_cs *engine; 668 enum intel_engine_id id; 669 670 /* 671 * Before we release the resources held by engine, we must be certain 672 * that the HW is no longer accessing them -- having the GPU scribble 673 * to or read from a page being used for something else causes no end 674 * of fun. 675 * 676 * The GPU should be reset by this point, but assume the worst just 677 * in case we aborted before completely initialising the engines. 678 */ 679 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 680 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 681 intel_gt_reset_all_engines(gt); 682 683 /* Decouple the backend; but keep the layout for late GPU resets */ 684 for_each_engine(engine, gt, id) { 685 if (!engine->release) 686 continue; 687 688 intel_wakeref_wait_for_idle(&engine->wakeref); 689 GEM_BUG_ON(intel_engine_pm_is_awake(engine)); 690 691 engine->release(engine); 692 engine->release = NULL; 693 694 memset(&engine->reset, 0, sizeof(engine->reset)); 695 } 696 } 697 698 void intel_engine_free_request_pool(struct intel_engine_cs *engine) 699 { 700 if (!engine->request_pool) 701 return; 702 703 kmem_cache_free(i915_request_slab_cache(), engine->request_pool); 704 } 705 706 void intel_engines_free(struct intel_gt *gt) 707 { 708 struct intel_engine_cs *engine; 709 enum intel_engine_id id; 710 711 /* Free the requests! dma-resv keeps fences around for an eternity */ 712 rcu_barrier(); 713 714 for_each_engine(engine, gt, id) { 715 intel_engine_free_request_pool(engine); 716 kfree(engine); 717 gt->engine[id] = NULL; 718 } 719 } 720 721 static 722 bool gen11_vdbox_has_sfc(struct intel_gt *gt, 723 unsigned int physical_vdbox, 724 unsigned int logical_vdbox, u16 vdbox_mask) 725 { 726 struct drm_i915_private *i915 = gt->i915; 727 728 /* 729 * In Gen11, only even numbered logical VDBOXes are hooked 730 * up to an SFC (Scaler & Format Converter) unit. 731 * In Gen12, Even numbered physical instance always are connected 732 * to an SFC. Odd numbered physical instances have SFC only if 733 * previous even instance is fused off. 734 * 735 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field 736 * in the fuse register that tells us whether a specific SFC is present. 737 */ 738 if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0) 739 return false; 740 else if (MEDIA_VER(i915) >= 12) 741 return (physical_vdbox % 2 == 0) || 742 !(BIT(physical_vdbox - 1) & vdbox_mask); 743 else if (MEDIA_VER(i915) == 11) 744 return logical_vdbox % 2 == 0; 745 746 return false; 747 } 748 749 static void engine_mask_apply_media_fuses(struct intel_gt *gt) 750 { 751 struct drm_i915_private *i915 = gt->i915; 752 unsigned int logical_vdbox = 0; 753 unsigned int i; 754 u32 media_fuse, fuse1; 755 u16 vdbox_mask; 756 u16 vebox_mask; 757 758 if (MEDIA_VER(gt->i915) < 11) 759 return; 760 761 /* 762 * On newer platforms the fusing register is called 'enable' and has 763 * enable semantics, while on older platforms it is called 'disable' 764 * and bits have disable semantices. 765 */ 766 media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE); 767 if (MEDIA_VER_FULL(i915) < IP_VER(12, 55)) 768 media_fuse = ~media_fuse; 769 770 vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK; 771 vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >> 772 GEN11_GT_VEBOX_DISABLE_SHIFT; 773 774 if (MEDIA_VER_FULL(i915) >= IP_VER(12, 55)) { 775 fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1); 776 gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1); 777 } else { 778 gt->info.sfc_mask = ~0; 779 } 780 781 for (i = 0; i < I915_MAX_VCS; i++) { 782 if (!HAS_ENGINE(gt, _VCS(i))) { 783 vdbox_mask &= ~BIT(i); 784 continue; 785 } 786 787 if (!(BIT(i) & vdbox_mask)) { 788 gt->info.engine_mask &= ~BIT(_VCS(i)); 789 gt_dbg(gt, "vcs%u fused off\n", i); 790 continue; 791 } 792 793 if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask)) 794 gt->info.vdbox_sfc_access |= BIT(i); 795 logical_vdbox++; 796 } 797 gt_dbg(gt, "vdbox enable: %04x, instances: %04lx\n", vdbox_mask, VDBOX_MASK(gt)); 798 GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt)); 799 800 for (i = 0; i < I915_MAX_VECS; i++) { 801 if (!HAS_ENGINE(gt, _VECS(i))) { 802 vebox_mask &= ~BIT(i); 803 continue; 804 } 805 806 if (!(BIT(i) & vebox_mask)) { 807 gt->info.engine_mask &= ~BIT(_VECS(i)); 808 gt_dbg(gt, "vecs%u fused off\n", i); 809 } 810 } 811 gt_dbg(gt, "vebox enable: %04x, instances: %04lx\n", vebox_mask, VEBOX_MASK(gt)); 812 GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt)); 813 } 814 815 static void engine_mask_apply_compute_fuses(struct intel_gt *gt) 816 { 817 struct drm_i915_private *i915 = gt->i915; 818 struct intel_gt_info *info = >->info; 819 int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS; 820 unsigned long ccs_mask; 821 unsigned int i; 822 823 if (GRAPHICS_VER(i915) < 11) 824 return; 825 826 if (hweight32(CCS_MASK(gt)) <= 1) 827 return; 828 829 ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask, 830 ss_per_ccs); 831 /* 832 * If all DSS in a quadrant are fused off, the corresponding CCS 833 * engine is not available for use. 834 */ 835 for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) { 836 info->engine_mask &= ~BIT(_CCS(i)); 837 gt_dbg(gt, "ccs%u fused off\n", i); 838 } 839 } 840 841 /* 842 * Determine which engines are fused off in our particular hardware. 843 * Note that we have a catch-22 situation where we need to be able to access 844 * the blitter forcewake domain to read the engine fuses, but at the same time 845 * we need to know which engines are available on the system to know which 846 * forcewake domains are present. We solve this by intializing the forcewake 847 * domains based on the full engine mask in the platform capabilities before 848 * calling this function and pruning the domains for fused-off engines 849 * afterwards. 850 */ 851 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt) 852 { 853 struct intel_gt_info *info = >->info; 854 855 GEM_BUG_ON(!info->engine_mask); 856 857 engine_mask_apply_media_fuses(gt); 858 engine_mask_apply_compute_fuses(gt); 859 860 /* 861 * The only use of the GSC CS is to load and communicate with the GSC 862 * FW, so we have no use for it if we don't have the FW. 863 * 864 * IMPORTANT: in cases where we don't have the GSC FW, we have a 865 * catch-22 situation that breaks media C6 due to 2 requirements: 866 * 1) once turned on, the GSC power well will not go to sleep unless the 867 * GSC FW is loaded. 868 * 2) to enable idling (which is required for media C6) we need to 869 * initialize the IDLE_MSG register for the GSC CS and do at least 1 870 * submission, which will wake up the GSC power well. 871 */ 872 if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(>->uc)) { 873 gt_notice(gt, "No GSC FW selected, disabling GSC CS and media C6\n"); 874 info->engine_mask &= ~BIT(GSC0); 875 } 876 877 /* 878 * Do not create the command streamer for CCS slices beyond the first. 879 * All the workload submitted to the first engine will be shared among 880 * all the slices. 881 * 882 * Once the user will be allowed to customize the CCS mode, then this 883 * check needs to be removed. 884 */ 885 if (IS_DG2(gt->i915)) { 886 u8 first_ccs = __ffs(CCS_MASK(gt)); 887 888 /* 889 * Store the number of active cslices before 890 * changing the CCS engine configuration 891 */ 892 gt->ccs.cslices = CCS_MASK(gt); 893 894 /* Mask off all the CCS engine */ 895 info->engine_mask &= ~GENMASK(CCS3, CCS0); 896 /* Put back in the first CCS engine */ 897 info->engine_mask |= BIT(_CCS(first_ccs)); 898 } 899 900 return info->engine_mask; 901 } 902 903 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids, 904 u8 class, const u8 *map, u8 num_instances) 905 { 906 int i, j; 907 u8 current_logical_id = 0; 908 909 for (j = 0; j < num_instances; ++j) { 910 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) { 911 if (!HAS_ENGINE(gt, i) || 912 intel_engines[i].class != class) 913 continue; 914 915 if (intel_engines[i].instance == map[j]) { 916 logical_ids[intel_engines[i].instance] = 917 current_logical_id++; 918 break; 919 } 920 } 921 } 922 } 923 924 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class) 925 { 926 /* 927 * Logical to physical mapping is needed for proper support 928 * to split-frame feature. 929 */ 930 if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) { 931 const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 }; 932 933 populate_logical_ids(gt, logical_ids, class, 934 map, ARRAY_SIZE(map)); 935 } else { 936 int i; 937 u8 map[MAX_ENGINE_INSTANCE + 1]; 938 939 for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i) 940 map[i] = i; 941 populate_logical_ids(gt, logical_ids, class, 942 map, ARRAY_SIZE(map)); 943 } 944 } 945 946 /** 947 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers 948 * @gt: pointer to struct intel_gt 949 * 950 * Return: non-zero if the initialization failed. 951 */ 952 int intel_engines_init_mmio(struct intel_gt *gt) 953 { 954 struct drm_i915_private *i915 = gt->i915; 955 const unsigned int engine_mask = init_engine_mask(gt); 956 unsigned int mask = 0; 957 unsigned int i, class; 958 u8 logical_ids[MAX_ENGINE_INSTANCE + 1]; 959 int err; 960 961 drm_WARN_ON(&i915->drm, engine_mask == 0); 962 drm_WARN_ON(&i915->drm, engine_mask & 963 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES)); 964 965 if (i915_inject_probe_failure(i915)) 966 return -ENODEV; 967 968 for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) { 969 setup_logical_ids(gt, logical_ids, class); 970 971 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) { 972 u8 instance = intel_engines[i].instance; 973 974 if (intel_engines[i].class != class || 975 !HAS_ENGINE(gt, i)) 976 continue; 977 978 err = intel_engine_setup(gt, i, 979 logical_ids[instance]); 980 if (err) 981 goto cleanup; 982 983 mask |= BIT(i); 984 } 985 } 986 987 /* 988 * Catch failures to update intel_engines table when the new engines 989 * are added to the driver by a warning and disabling the forgotten 990 * engines. 991 */ 992 if (drm_WARN_ON(&i915->drm, mask != engine_mask)) 993 gt->info.engine_mask = mask; 994 995 gt->info.num_engines = hweight32(mask); 996 997 intel_gt_check_and_clear_faults(gt); 998 999 intel_setup_engine_capabilities(gt); 1000 1001 intel_uncore_prune_engine_fw_domains(gt->uncore, gt); 1002 1003 return 0; 1004 1005 cleanup: 1006 intel_engines_free(gt); 1007 return err; 1008 } 1009 1010 void intel_engine_init_execlists(struct intel_engine_cs *engine) 1011 { 1012 struct intel_engine_execlists * const execlists = &engine->execlists; 1013 1014 execlists->port_mask = 1; 1015 GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists))); 1016 GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS); 1017 1018 memset(execlists->pending, 0, sizeof(execlists->pending)); 1019 execlists->active = 1020 memset(execlists->inflight, 0, sizeof(execlists->inflight)); 1021 } 1022 1023 static void cleanup_status_page(struct intel_engine_cs *engine) 1024 { 1025 struct i915_vma *vma; 1026 1027 /* Prevent writes into HWSP after returning the page to the system */ 1028 intel_engine_set_hwsp_writemask(engine, ~0u); 1029 1030 vma = fetch_and_zero(&engine->status_page.vma); 1031 if (!vma) 1032 return; 1033 1034 if (!HWS_NEEDS_PHYSICAL(engine->i915)) 1035 i915_vma_unpin(vma); 1036 1037 i915_gem_object_unpin_map(vma->obj); 1038 i915_gem_object_put(vma->obj); 1039 } 1040 1041 static int pin_ggtt_status_page(struct intel_engine_cs *engine, 1042 struct i915_gem_ww_ctx *ww, 1043 struct i915_vma *vma) 1044 { 1045 unsigned int flags; 1046 1047 if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt)) 1048 /* 1049 * On g33, we cannot place HWS above 256MiB, so 1050 * restrict its pinning to the low mappable arena. 1051 * Though this restriction is not documented for 1052 * gen4, gen5, or byt, they also behave similarly 1053 * and hang if the HWS is placed at the top of the 1054 * GTT. To generalise, it appears that all !llc 1055 * platforms have issues with us placing the HWS 1056 * above the mappable region (even though we never 1057 * actually map it). 1058 */ 1059 flags = PIN_MAPPABLE; 1060 else 1061 flags = PIN_HIGH; 1062 1063 return i915_ggtt_pin(vma, ww, 0, flags); 1064 } 1065 1066 static int init_status_page(struct intel_engine_cs *engine) 1067 { 1068 struct drm_i915_gem_object *obj; 1069 struct i915_gem_ww_ctx ww; 1070 struct i915_vma *vma; 1071 void *vaddr; 1072 int ret; 1073 1074 INIT_LIST_HEAD(&engine->status_page.timelines); 1075 1076 /* 1077 * Though the HWS register does support 36bit addresses, historically 1078 * we have had hangs and corruption reported due to wild writes if 1079 * the HWS is placed above 4G. We only allow objects to be allocated 1080 * in GFP_DMA32 for i965, and no earlier physical address users had 1081 * access to more than 4G. 1082 */ 1083 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE); 1084 if (IS_ERR(obj)) { 1085 gt_err(engine->gt, "Failed to allocate status page\n"); 1086 return PTR_ERR(obj); 1087 } 1088 1089 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC); 1090 1091 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); 1092 if (IS_ERR(vma)) { 1093 ret = PTR_ERR(vma); 1094 goto err_put; 1095 } 1096 1097 i915_gem_ww_ctx_init(&ww, true); 1098 retry: 1099 ret = i915_gem_object_lock(obj, &ww); 1100 if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915)) 1101 ret = pin_ggtt_status_page(engine, &ww, vma); 1102 if (ret) 1103 goto err; 1104 1105 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB); 1106 if (IS_ERR(vaddr)) { 1107 ret = PTR_ERR(vaddr); 1108 goto err_unpin; 1109 } 1110 1111 engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE); 1112 engine->status_page.vma = vma; 1113 1114 err_unpin: 1115 if (ret) 1116 i915_vma_unpin(vma); 1117 err: 1118 if (ret == -EDEADLK) { 1119 ret = i915_gem_ww_ctx_backoff(&ww); 1120 if (!ret) 1121 goto retry; 1122 } 1123 i915_gem_ww_ctx_fini(&ww); 1124 err_put: 1125 if (ret) 1126 i915_gem_object_put(obj); 1127 return ret; 1128 } 1129 1130 static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine) 1131 { 1132 static const union intel_engine_tlb_inv_reg gen8_regs[] = { 1133 [RENDER_CLASS].reg = GEN8_RTCR, 1134 [VIDEO_DECODE_CLASS].reg = GEN8_M1TCR, /* , GEN8_M2TCR */ 1135 [VIDEO_ENHANCEMENT_CLASS].reg = GEN8_VTCR, 1136 [COPY_ENGINE_CLASS].reg = GEN8_BTCR, 1137 }; 1138 static const union intel_engine_tlb_inv_reg gen12_regs[] = { 1139 [RENDER_CLASS].reg = GEN12_GFX_TLB_INV_CR, 1140 [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR, 1141 [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR, 1142 [COPY_ENGINE_CLASS].reg = GEN12_BLT_TLB_INV_CR, 1143 [COMPUTE_CLASS].reg = GEN12_COMPCTX_TLB_INV_CR, 1144 }; 1145 static const union intel_engine_tlb_inv_reg xehp_regs[] = { 1146 [RENDER_CLASS].mcr_reg = XEHP_GFX_TLB_INV_CR, 1147 [VIDEO_DECODE_CLASS].mcr_reg = XEHP_VD_TLB_INV_CR, 1148 [VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR, 1149 [COPY_ENGINE_CLASS].mcr_reg = XEHP_BLT_TLB_INV_CR, 1150 [COMPUTE_CLASS].mcr_reg = XEHP_COMPCTX_TLB_INV_CR, 1151 }; 1152 static const union intel_engine_tlb_inv_reg xelpmp_regs[] = { 1153 [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR, 1154 [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR, 1155 [OTHER_CLASS].reg = XELPMP_GSC_TLB_INV_CR, 1156 }; 1157 struct drm_i915_private *i915 = engine->i915; 1158 const unsigned int instance = engine->instance; 1159 const unsigned int class = engine->class; 1160 const union intel_engine_tlb_inv_reg *regs; 1161 union intel_engine_tlb_inv_reg reg; 1162 unsigned int num = 0; 1163 u32 val; 1164 1165 /* 1166 * New platforms should not be added with catch-all-newer (>=) 1167 * condition so that any later platform added triggers the below warning 1168 * and in turn mandates a human cross-check of whether the invalidation 1169 * flows have compatible semantics. 1170 * 1171 * For instance with the 11.00 -> 12.00 transition three out of five 1172 * respective engine registers were moved to masked type. Then after the 1173 * 12.00 -> 12.50 transition multi cast handling is required too. 1174 */ 1175 1176 if (engine->gt->type == GT_MEDIA) { 1177 if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) { 1178 regs = xelpmp_regs; 1179 num = ARRAY_SIZE(xelpmp_regs); 1180 } 1181 } else { 1182 if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 74) || 1183 GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) || 1184 GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) || 1185 GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) { 1186 regs = xehp_regs; 1187 num = ARRAY_SIZE(xehp_regs); 1188 } else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) || 1189 GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) { 1190 regs = gen12_regs; 1191 num = ARRAY_SIZE(gen12_regs); 1192 } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) { 1193 regs = gen8_regs; 1194 num = ARRAY_SIZE(gen8_regs); 1195 } else if (GRAPHICS_VER(i915) < 8) { 1196 return 0; 1197 } 1198 } 1199 1200 if (gt_WARN_ONCE(engine->gt, !num, 1201 "Platform does not implement TLB invalidation!")) 1202 return -ENODEV; 1203 1204 if (gt_WARN_ON_ONCE(engine->gt, 1205 class >= num || 1206 (!regs[class].reg.reg && 1207 !regs[class].mcr_reg.reg))) 1208 return -ERANGE; 1209 1210 reg = regs[class]; 1211 1212 if (regs == xelpmp_regs && class == OTHER_CLASS) { 1213 /* 1214 * There's only a single GSC instance, but it uses register bit 1215 * 1 instead of either 0 or OTHER_GSC_INSTANCE. 1216 */ 1217 GEM_WARN_ON(instance != OTHER_GSC_INSTANCE); 1218 val = 1; 1219 } else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) { 1220 reg.reg = GEN8_M2TCR; 1221 val = 0; 1222 } else { 1223 val = instance; 1224 } 1225 1226 val = BIT(val); 1227 1228 engine->tlb_inv.mcr = regs == xehp_regs; 1229 engine->tlb_inv.reg = reg; 1230 engine->tlb_inv.done = val; 1231 1232 if (GRAPHICS_VER(i915) >= 12 && 1233 (engine->class == VIDEO_DECODE_CLASS || 1234 engine->class == VIDEO_ENHANCEMENT_CLASS || 1235 engine->class == COMPUTE_CLASS || 1236 engine->class == OTHER_CLASS)) 1237 engine->tlb_inv.request = _MASKED_BIT_ENABLE(val); 1238 else 1239 engine->tlb_inv.request = val; 1240 1241 return 0; 1242 } 1243 1244 static int engine_setup_common(struct intel_engine_cs *engine) 1245 { 1246 int err; 1247 1248 init_llist_head(&engine->barrier_tasks); 1249 1250 err = intel_engine_init_tlb_invalidation(engine); 1251 if (err) 1252 return err; 1253 1254 err = init_status_page(engine); 1255 if (err) 1256 return err; 1257 1258 engine->breadcrumbs = intel_breadcrumbs_create(engine); 1259 if (!engine->breadcrumbs) { 1260 err = -ENOMEM; 1261 goto err_status; 1262 } 1263 1264 engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL); 1265 if (!engine->sched_engine) { 1266 err = -ENOMEM; 1267 goto err_sched_engine; 1268 } 1269 engine->sched_engine->private_data = engine; 1270 1271 err = intel_engine_init_cmd_parser(engine); 1272 if (err) 1273 goto err_cmd_parser; 1274 1275 intel_engine_init_execlists(engine); 1276 intel_engine_init__pm(engine); 1277 intel_engine_init_retire(engine); 1278 1279 /* Use the whole device by default */ 1280 engine->sseu = 1281 intel_sseu_from_device_info(&engine->gt->info.sseu); 1282 1283 intel_engine_init_workarounds(engine); 1284 intel_engine_init_whitelist(engine); 1285 intel_engine_init_ctx_wa(engine); 1286 1287 if (GRAPHICS_VER(engine->i915) >= 12) 1288 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO; 1289 1290 return 0; 1291 1292 err_cmd_parser: 1293 i915_sched_engine_put(engine->sched_engine); 1294 err_sched_engine: 1295 intel_breadcrumbs_put(engine->breadcrumbs); 1296 err_status: 1297 cleanup_status_page(engine); 1298 return err; 1299 } 1300 1301 struct measure_breadcrumb { 1302 struct i915_request rq; 1303 struct intel_ring ring; 1304 u32 cs[2048]; 1305 }; 1306 1307 static int measure_breadcrumb_dw(struct intel_context *ce) 1308 { 1309 struct intel_engine_cs *engine = ce->engine; 1310 struct measure_breadcrumb *frame; 1311 int dw; 1312 1313 GEM_BUG_ON(!engine->gt->scratch); 1314 1315 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1316 if (!frame) 1317 return -ENOMEM; 1318 1319 frame->rq.i915 = engine->i915; 1320 frame->rq.engine = engine; 1321 frame->rq.context = ce; 1322 rcu_assign_pointer(frame->rq.timeline, ce->timeline); 1323 frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno; 1324 1325 frame->ring.vaddr = frame->cs; 1326 frame->ring.size = sizeof(frame->cs); 1327 frame->ring.wrap = 1328 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size); 1329 frame->ring.effective_size = frame->ring.size; 1330 intel_ring_update_space(&frame->ring); 1331 frame->rq.ring = &frame->ring; 1332 1333 mutex_lock(&ce->timeline->mutex); 1334 spin_lock_irq(&engine->sched_engine->lock); 1335 1336 dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs; 1337 1338 spin_unlock_irq(&engine->sched_engine->lock); 1339 mutex_unlock(&ce->timeline->mutex); 1340 1341 GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */ 1342 1343 kfree(frame); 1344 return dw; 1345 } 1346 1347 struct intel_context * 1348 intel_engine_create_pinned_context(struct intel_engine_cs *engine, 1349 struct i915_address_space *vm, 1350 unsigned int ring_size, 1351 unsigned int hwsp, 1352 struct lock_class_key *key, 1353 const char *name) 1354 { 1355 struct intel_context *ce; 1356 int err; 1357 1358 ce = intel_context_create(engine); 1359 if (IS_ERR(ce)) 1360 return ce; 1361 1362 __set_bit(CONTEXT_BARRIER_BIT, &ce->flags); 1363 ce->timeline = page_pack_bits(NULL, hwsp); 1364 ce->ring = NULL; 1365 ce->ring_size = ring_size; 1366 1367 i915_vm_put(ce->vm); 1368 ce->vm = i915_vm_get(vm); 1369 1370 err = intel_context_pin(ce); /* perma-pin so it is always available */ 1371 if (err) { 1372 intel_context_put(ce); 1373 return ERR_PTR(err); 1374 } 1375 1376 list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list); 1377 1378 /* 1379 * Give our perma-pinned kernel timelines a separate lockdep class, 1380 * so that we can use them from within the normal user timelines 1381 * should we need to inject GPU operations during their request 1382 * construction. 1383 */ 1384 lockdep_set_class_and_name(&ce->timeline->mutex, key, name); 1385 1386 return ce; 1387 } 1388 1389 void intel_engine_destroy_pinned_context(struct intel_context *ce) 1390 { 1391 struct intel_engine_cs *engine = ce->engine; 1392 struct i915_vma *hwsp = engine->status_page.vma; 1393 1394 GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp); 1395 1396 mutex_lock(&hwsp->vm->mutex); 1397 list_del(&ce->timeline->engine_link); 1398 mutex_unlock(&hwsp->vm->mutex); 1399 1400 list_del(&ce->pinned_contexts_link); 1401 intel_context_unpin(ce); 1402 intel_context_put(ce); 1403 } 1404 1405 static struct intel_context * 1406 create_ggtt_bind_context(struct intel_engine_cs *engine) 1407 { 1408 static struct lock_class_key kernel; 1409 1410 /* 1411 * MI_UPDATE_GTT can insert up to 511 PTE entries and there could be multiple 1412 * bind requets at a time so get a bigger ring. 1413 */ 1414 return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_512K, 1415 I915_GEM_HWS_GGTT_BIND_ADDR, 1416 &kernel, "ggtt_bind_context"); 1417 } 1418 1419 static struct intel_context * 1420 create_kernel_context(struct intel_engine_cs *engine) 1421 { 1422 static struct lock_class_key kernel; 1423 1424 return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K, 1425 I915_GEM_HWS_SEQNO_ADDR, 1426 &kernel, "kernel_context"); 1427 } 1428 1429 /* 1430 * engine_init_common - initialize engine state which might require hw access 1431 * @engine: Engine to initialize. 1432 * 1433 * Initializes @engine@ structure members shared between legacy and execlists 1434 * submission modes which do require hardware access. 1435 * 1436 * Typcally done at later stages of submission mode specific engine setup. 1437 * 1438 * Returns zero on success or an error code on failure. 1439 */ 1440 static int engine_init_common(struct intel_engine_cs *engine) 1441 { 1442 struct intel_context *ce, *bce = NULL; 1443 int ret; 1444 1445 engine->set_default_submission(engine); 1446 1447 /* 1448 * We may need to do things with the shrinker which 1449 * require us to immediately switch back to the default 1450 * context. This can cause a problem as pinning the 1451 * default context also requires GTT space which may not 1452 * be available. To avoid this we always pin the default 1453 * context. 1454 */ 1455 ce = create_kernel_context(engine); 1456 if (IS_ERR(ce)) 1457 return PTR_ERR(ce); 1458 /* 1459 * Create a separate pinned context for GGTT update with blitter engine 1460 * if a platform require such service. MI_UPDATE_GTT works on other 1461 * engines as well but BCS should be less busy engine so pick that for 1462 * GGTT updates. 1463 */ 1464 if (i915_ggtt_require_binder(engine->i915) && engine->id == BCS0) { 1465 bce = create_ggtt_bind_context(engine); 1466 if (IS_ERR(bce)) { 1467 ret = PTR_ERR(bce); 1468 goto err_ce_context; 1469 } 1470 } 1471 1472 ret = measure_breadcrumb_dw(ce); 1473 if (ret < 0) 1474 goto err_bce_context; 1475 1476 engine->emit_fini_breadcrumb_dw = ret; 1477 engine->kernel_context = ce; 1478 engine->bind_context = bce; 1479 1480 return 0; 1481 1482 err_bce_context: 1483 if (bce) 1484 intel_engine_destroy_pinned_context(bce); 1485 err_ce_context: 1486 intel_engine_destroy_pinned_context(ce); 1487 return ret; 1488 } 1489 1490 int intel_engines_init(struct intel_gt *gt) 1491 { 1492 int (*setup)(struct intel_engine_cs *engine); 1493 struct intel_engine_cs *engine; 1494 enum intel_engine_id id; 1495 int err; 1496 1497 if (intel_uc_uses_guc_submission(>->uc)) { 1498 gt->submission_method = INTEL_SUBMISSION_GUC; 1499 setup = intel_guc_submission_setup; 1500 } else if (HAS_EXECLISTS(gt->i915)) { 1501 gt->submission_method = INTEL_SUBMISSION_ELSP; 1502 setup = intel_execlists_submission_setup; 1503 } else { 1504 gt->submission_method = INTEL_SUBMISSION_RING; 1505 setup = intel_ring_submission_setup; 1506 } 1507 1508 for_each_engine(engine, gt, id) { 1509 err = engine_setup_common(engine); 1510 if (err) 1511 return err; 1512 1513 err = setup(engine); 1514 if (err) { 1515 intel_engine_cleanup_common(engine); 1516 return err; 1517 } 1518 1519 /* The backend should now be responsible for cleanup */ 1520 GEM_BUG_ON(engine->release == NULL); 1521 1522 err = engine_init_common(engine); 1523 if (err) 1524 return err; 1525 1526 intel_engine_add_user(engine); 1527 } 1528 1529 return 0; 1530 } 1531 1532 /** 1533 * intel_engine_cleanup_common - cleans up the engine state created by 1534 * the common initiailizers. 1535 * @engine: Engine to cleanup. 1536 * 1537 * This cleans up everything created by the common helpers. 1538 */ 1539 void intel_engine_cleanup_common(struct intel_engine_cs *engine) 1540 { 1541 GEM_BUG_ON(!list_empty(&engine->sched_engine->requests)); 1542 1543 i915_sched_engine_put(engine->sched_engine); 1544 intel_breadcrumbs_put(engine->breadcrumbs); 1545 1546 intel_engine_fini_retire(engine); 1547 intel_engine_cleanup_cmd_parser(engine); 1548 1549 if (engine->default_state) 1550 fput(engine->default_state); 1551 1552 if (engine->kernel_context) 1553 intel_engine_destroy_pinned_context(engine->kernel_context); 1554 1555 if (engine->bind_context) 1556 intel_engine_destroy_pinned_context(engine->bind_context); 1557 1558 1559 GEM_BUG_ON(!llist_empty(&engine->barrier_tasks)); 1560 cleanup_status_page(engine); 1561 1562 intel_wa_list_free(&engine->ctx_wa_list); 1563 intel_wa_list_free(&engine->wa_list); 1564 intel_wa_list_free(&engine->whitelist); 1565 } 1566 1567 /** 1568 * intel_engine_resume - re-initializes the HW state of the engine 1569 * @engine: Engine to resume. 1570 * 1571 * Returns zero on success or an error code on failure. 1572 */ 1573 int intel_engine_resume(struct intel_engine_cs *engine) 1574 { 1575 intel_engine_apply_workarounds(engine); 1576 intel_engine_apply_whitelist(engine); 1577 1578 return engine->resume(engine); 1579 } 1580 1581 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine) 1582 { 1583 struct drm_i915_private *i915 = engine->i915; 1584 1585 u64 acthd; 1586 1587 if (GRAPHICS_VER(i915) >= 8) 1588 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW); 1589 else if (GRAPHICS_VER(i915) >= 4) 1590 acthd = ENGINE_READ(engine, RING_ACTHD); 1591 else 1592 acthd = ENGINE_READ(engine, ACTHD); 1593 1594 return acthd; 1595 } 1596 1597 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine) 1598 { 1599 u64 bbaddr; 1600 1601 if (GRAPHICS_VER(engine->i915) >= 8) 1602 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW); 1603 else 1604 bbaddr = ENGINE_READ(engine, RING_BBADDR); 1605 1606 return bbaddr; 1607 } 1608 1609 static unsigned long stop_timeout(const struct intel_engine_cs *engine) 1610 { 1611 if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */ 1612 return 0; 1613 1614 /* 1615 * If we are doing a normal GPU reset, we can take our time and allow 1616 * the engine to quiesce. We've stopped submission to the engine, and 1617 * if we wait long enough an innocent context should complete and 1618 * leave the engine idle. So they should not be caught unaware by 1619 * the forthcoming GPU reset (which usually follows the stop_cs)! 1620 */ 1621 return READ_ONCE(engine->props.stop_timeout_ms); 1622 } 1623 1624 static int __intel_engine_stop_cs(struct intel_engine_cs *engine, 1625 int fast_timeout_us, 1626 int slow_timeout_ms) 1627 { 1628 struct intel_uncore *uncore = engine->uncore; 1629 const i915_reg_t mode = RING_MI_MODE(engine->mmio_base); 1630 int err; 1631 1632 intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING)); 1633 1634 /* 1635 * Wa_22011802037: Prior to doing a reset, ensure CS is 1636 * stopped, set ring stop bit and prefetch disable bit to halt CS 1637 */ 1638 if (intel_engine_reset_needs_wa_22011802037(engine->gt)) 1639 intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base), 1640 _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE)); 1641 1642 err = __intel_wait_for_register_fw(engine->uncore, mode, 1643 MODE_IDLE, MODE_IDLE, 1644 fast_timeout_us, 1645 slow_timeout_ms, 1646 NULL); 1647 1648 /* A final mmio read to let GPU writes be hopefully flushed to memory */ 1649 intel_uncore_posting_read_fw(uncore, mode); 1650 return err; 1651 } 1652 1653 int intel_engine_stop_cs(struct intel_engine_cs *engine) 1654 { 1655 int err = 0; 1656 1657 if (GRAPHICS_VER(engine->i915) < 3) 1658 return -ENODEV; 1659 1660 ENGINE_TRACE(engine, "\n"); 1661 /* 1662 * TODO: Find out why occasionally stopping the CS times out. Seen 1663 * especially with gem_eio tests. 1664 * 1665 * Occasionally trying to stop the cs times out, but does not adversely 1666 * affect functionality. The timeout is set as a config parameter that 1667 * defaults to 100ms. In most cases the follow up operation is to wait 1668 * for pending MI_FORCE_WAKES. The assumption is that this timeout is 1669 * sufficient for any pending MI_FORCEWAKEs to complete. Once root 1670 * caused, the caller must check and handle the return from this 1671 * function. 1672 */ 1673 if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) { 1674 ENGINE_TRACE(engine, 1675 "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n", 1676 ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR, 1677 ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR); 1678 1679 /* 1680 * Sometimes we observe that the idle flag is not 1681 * set even though the ring is empty. So double 1682 * check before giving up. 1683 */ 1684 if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) != 1685 (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR)) 1686 err = -ETIMEDOUT; 1687 } 1688 1689 return err; 1690 } 1691 1692 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine) 1693 { 1694 ENGINE_TRACE(engine, "\n"); 1695 1696 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); 1697 } 1698 1699 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine) 1700 { 1701 static const i915_reg_t _reg[I915_NUM_ENGINES] = { 1702 [RCS0] = MSG_IDLE_CS, 1703 [BCS0] = MSG_IDLE_BCS, 1704 [VCS0] = MSG_IDLE_VCS0, 1705 [VCS1] = MSG_IDLE_VCS1, 1706 [VCS2] = MSG_IDLE_VCS2, 1707 [VCS3] = MSG_IDLE_VCS3, 1708 [VCS4] = MSG_IDLE_VCS4, 1709 [VCS5] = MSG_IDLE_VCS5, 1710 [VCS6] = MSG_IDLE_VCS6, 1711 [VCS7] = MSG_IDLE_VCS7, 1712 [VECS0] = MSG_IDLE_VECS0, 1713 [VECS1] = MSG_IDLE_VECS1, 1714 [VECS2] = MSG_IDLE_VECS2, 1715 [VECS3] = MSG_IDLE_VECS3, 1716 [CCS0] = MSG_IDLE_CS, 1717 [CCS1] = MSG_IDLE_CS, 1718 [CCS2] = MSG_IDLE_CS, 1719 [CCS3] = MSG_IDLE_CS, 1720 }; 1721 u32 val; 1722 1723 if (!_reg[engine->id].reg) 1724 return 0; 1725 1726 val = intel_uncore_read(engine->uncore, _reg[engine->id]); 1727 1728 /* bits[29:25] & bits[13:9] >> shift */ 1729 return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT; 1730 } 1731 1732 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask) 1733 { 1734 int ret; 1735 1736 /* Ensure GPM receives fw up/down after CS is stopped */ 1737 udelay(1); 1738 1739 /* Wait for forcewake request to complete in GPM */ 1740 ret = __intel_wait_for_register_fw(gt->uncore, 1741 GEN9_PWRGT_DOMAIN_STATUS, 1742 fw_mask, fw_mask, 5000, 0, NULL); 1743 1744 /* Ensure CS receives fw ack from GPM */ 1745 udelay(1); 1746 1747 if (ret) 1748 GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret); 1749 } 1750 1751 /* 1752 * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any 1753 * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The 1754 * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the 1755 * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we 1756 * are concerned only with the gt reset here, we use a logical OR of pending 1757 * forcewakeups from all reset domains and then wait for them to complete by 1758 * querying PWRGT_DOMAIN_STATUS. 1759 */ 1760 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine) 1761 { 1762 u32 fw_pending = __cs_pending_mi_force_wakes(engine); 1763 1764 if (fw_pending) 1765 __gpm_wait_for_fw_complete(engine->gt, fw_pending); 1766 } 1767 1768 /* NB: please notice the memset */ 1769 void intel_engine_get_instdone(const struct intel_engine_cs *engine, 1770 struct intel_instdone *instdone) 1771 { 1772 struct drm_i915_private *i915 = engine->i915; 1773 struct intel_uncore *uncore = engine->uncore; 1774 u32 mmio_base = engine->mmio_base; 1775 int slice; 1776 int subslice; 1777 int iter; 1778 1779 memset(instdone, 0, sizeof(*instdone)); 1780 1781 if (GRAPHICS_VER(i915) >= 8) { 1782 instdone->instdone = 1783 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1784 1785 if (engine->id != RCS0) 1786 return; 1787 1788 instdone->slice_common = 1789 intel_uncore_read(uncore, GEN7_SC_INSTDONE); 1790 if (GRAPHICS_VER(i915) >= 12) { 1791 instdone->slice_common_extra[0] = 1792 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA); 1793 instdone->slice_common_extra[1] = 1794 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2); 1795 } 1796 1797 for_each_ss_steering(iter, engine->gt, slice, subslice) { 1798 instdone->sampler[slice][subslice] = 1799 intel_gt_mcr_read(engine->gt, 1800 GEN8_SAMPLER_INSTDONE, 1801 slice, subslice); 1802 instdone->row[slice][subslice] = 1803 intel_gt_mcr_read(engine->gt, 1804 GEN8_ROW_INSTDONE, 1805 slice, subslice); 1806 } 1807 1808 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) { 1809 for_each_ss_steering(iter, engine->gt, slice, subslice) 1810 instdone->geom_svg[slice][subslice] = 1811 intel_gt_mcr_read(engine->gt, 1812 XEHPG_INSTDONE_GEOM_SVG, 1813 slice, subslice); 1814 } 1815 } else if (GRAPHICS_VER(i915) >= 7) { 1816 instdone->instdone = 1817 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1818 1819 if (engine->id != RCS0) 1820 return; 1821 1822 instdone->slice_common = 1823 intel_uncore_read(uncore, GEN7_SC_INSTDONE); 1824 instdone->sampler[0][0] = 1825 intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE); 1826 instdone->row[0][0] = 1827 intel_uncore_read(uncore, GEN7_ROW_INSTDONE); 1828 } else if (GRAPHICS_VER(i915) >= 4) { 1829 instdone->instdone = 1830 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1831 if (engine->id == RCS0) 1832 /* HACK: Using the wrong struct member */ 1833 instdone->slice_common = 1834 intel_uncore_read(uncore, GEN4_INSTDONE1); 1835 } else { 1836 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE); 1837 } 1838 } 1839 1840 static bool ring_is_idle(struct intel_engine_cs *engine) 1841 { 1842 bool idle = true; 1843 1844 if (I915_SELFTEST_ONLY(!engine->mmio_base)) 1845 return true; 1846 1847 if (!intel_engine_pm_get_if_awake(engine)) 1848 return true; 1849 1850 /* First check that no commands are left in the ring */ 1851 if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) != 1852 (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR)) 1853 idle = false; 1854 1855 /* No bit for gen2, so assume the CS parser is idle */ 1856 if (GRAPHICS_VER(engine->i915) > 2 && 1857 !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE)) 1858 idle = false; 1859 1860 intel_engine_pm_put(engine); 1861 1862 return idle; 1863 } 1864 1865 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync) 1866 { 1867 struct tasklet_struct *t = &engine->sched_engine->tasklet; 1868 1869 if (!t->callback) 1870 return; 1871 1872 local_bh_disable(); 1873 if (tasklet_trylock(t)) { 1874 /* Must wait for any GPU reset in progress. */ 1875 if (__tasklet_is_enabled(t)) 1876 t->callback(t); 1877 tasklet_unlock(t); 1878 } 1879 local_bh_enable(); 1880 1881 /* Synchronise and wait for the tasklet on another CPU */ 1882 if (sync) 1883 tasklet_unlock_wait(t); 1884 } 1885 1886 /** 1887 * intel_engine_is_idle() - Report if the engine has finished process all work 1888 * @engine: the intel_engine_cs 1889 * 1890 * Return true if there are no requests pending, nothing left to be submitted 1891 * to hardware, and that the engine is idle. 1892 */ 1893 bool intel_engine_is_idle(struct intel_engine_cs *engine) 1894 { 1895 /* More white lies, if wedged, hw state is inconsistent */ 1896 if (intel_gt_is_wedged(engine->gt)) 1897 return true; 1898 1899 if (!intel_engine_pm_is_awake(engine)) 1900 return true; 1901 1902 /* Waiting to drain ELSP? */ 1903 intel_synchronize_hardirq(engine->i915); 1904 intel_engine_flush_submission(engine); 1905 1906 /* ELSP is empty, but there are ready requests? E.g. after reset */ 1907 if (!i915_sched_engine_is_empty(engine->sched_engine)) 1908 return false; 1909 1910 /* Ring stopped? */ 1911 return ring_is_idle(engine); 1912 } 1913 1914 bool intel_engines_are_idle(struct intel_gt *gt) 1915 { 1916 struct intel_engine_cs *engine; 1917 enum intel_engine_id id; 1918 1919 /* 1920 * If the driver is wedged, HW state may be very inconsistent and 1921 * report that it is still busy, even though we have stopped using it. 1922 */ 1923 if (intel_gt_is_wedged(gt)) 1924 return true; 1925 1926 /* Already parked (and passed an idleness test); must still be idle */ 1927 if (!READ_ONCE(gt->awake)) 1928 return true; 1929 1930 for_each_engine(engine, gt, id) { 1931 if (!intel_engine_is_idle(engine)) 1932 return false; 1933 } 1934 1935 return true; 1936 } 1937 1938 bool intel_engine_irq_enable(struct intel_engine_cs *engine) 1939 { 1940 if (!engine->irq_enable) 1941 return false; 1942 1943 /* Caller disables interrupts */ 1944 spin_lock(engine->gt->irq_lock); 1945 engine->irq_enable(engine); 1946 spin_unlock(engine->gt->irq_lock); 1947 1948 return true; 1949 } 1950 1951 void intel_engine_irq_disable(struct intel_engine_cs *engine) 1952 { 1953 if (!engine->irq_disable) 1954 return; 1955 1956 /* Caller disables interrupts */ 1957 spin_lock(engine->gt->irq_lock); 1958 engine->irq_disable(engine); 1959 spin_unlock(engine->gt->irq_lock); 1960 } 1961 1962 void intel_engines_reset_default_submission(struct intel_gt *gt) 1963 { 1964 struct intel_engine_cs *engine; 1965 enum intel_engine_id id; 1966 1967 for_each_engine(engine, gt, id) { 1968 if (engine->sanitize) 1969 engine->sanitize(engine); 1970 1971 engine->set_default_submission(engine); 1972 } 1973 } 1974 1975 bool intel_engine_can_store_dword(struct intel_engine_cs *engine) 1976 { 1977 switch (GRAPHICS_VER(engine->i915)) { 1978 case 2: 1979 return false; /* uses physical not virtual addresses */ 1980 case 3: 1981 /* maybe only uses physical not virtual addresses */ 1982 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915)); 1983 case 4: 1984 return !IS_I965G(engine->i915); /* who knows! */ 1985 case 6: 1986 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */ 1987 default: 1988 return true; 1989 } 1990 } 1991 1992 static struct intel_timeline *get_timeline(struct i915_request *rq) 1993 { 1994 struct intel_timeline *tl; 1995 1996 /* 1997 * Even though we are holding the engine->sched_engine->lock here, there 1998 * is no control over the submission queue per-se and we are 1999 * inspecting the active state at a random point in time, with an 2000 * unknown queue. Play safe and make sure the timeline remains valid. 2001 * (Only being used for pretty printing, one extra kref shouldn't 2002 * cause a camel stampede!) 2003 */ 2004 rcu_read_lock(); 2005 tl = rcu_dereference(rq->timeline); 2006 if (!kref_get_unless_zero(&tl->kref)) 2007 tl = NULL; 2008 rcu_read_unlock(); 2009 2010 return tl; 2011 } 2012 2013 static int print_ring(char *buf, int sz, struct i915_request *rq) 2014 { 2015 int len = 0; 2016 2017 if (!i915_request_signaled(rq)) { 2018 struct intel_timeline *tl = get_timeline(rq); 2019 2020 len = scnprintf(buf, sz, 2021 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ", 2022 i915_ggtt_offset(rq->ring->vma), 2023 tl ? tl->hwsp_offset : 0, 2024 hwsp_seqno(rq), 2025 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context), 2026 1000 * 1000)); 2027 2028 if (tl) 2029 intel_timeline_put(tl); 2030 } 2031 2032 return len; 2033 } 2034 2035 static void hexdump(struct drm_printer *m, const void *buf, size_t len) 2036 { 2037 const size_t rowsize = 8 * sizeof(u32); 2038 const void *prev = NULL; 2039 bool skip = false; 2040 size_t pos; 2041 2042 for (pos = 0; pos < len; pos += rowsize) { 2043 char line[128]; 2044 2045 if (prev && !memcmp(prev, buf + pos, rowsize)) { 2046 if (!skip) { 2047 drm_printf(m, "*\n"); 2048 skip = true; 2049 } 2050 continue; 2051 } 2052 2053 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos, 2054 rowsize, sizeof(u32), 2055 line, sizeof(line), 2056 false) >= sizeof(line)); 2057 drm_printf(m, "[%04zx] %s\n", pos, line); 2058 2059 prev = buf + pos; 2060 skip = false; 2061 } 2062 } 2063 2064 static const char *repr_timer(const struct timer_list *t) 2065 { 2066 if (!READ_ONCE(t->expires)) 2067 return "inactive"; 2068 2069 if (timer_pending(t)) 2070 return "active"; 2071 2072 return "expired"; 2073 } 2074 2075 static void intel_engine_print_registers(struct intel_engine_cs *engine, 2076 struct drm_printer *m) 2077 { 2078 struct drm_i915_private *i915 = engine->i915; 2079 struct intel_engine_execlists * const execlists = &engine->execlists; 2080 u64 addr; 2081 2082 if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7)) 2083 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID)); 2084 if (HAS_EXECLISTS(i915)) { 2085 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n", 2086 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI)); 2087 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n", 2088 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO)); 2089 } 2090 drm_printf(m, "\tRING_START: 0x%08x\n", 2091 ENGINE_READ(engine, RING_START)); 2092 drm_printf(m, "\tRING_HEAD: 0x%08x\n", 2093 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR); 2094 drm_printf(m, "\tRING_TAIL: 0x%08x\n", 2095 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR); 2096 drm_printf(m, "\tRING_CTL: 0x%08x%s\n", 2097 ENGINE_READ(engine, RING_CTL), 2098 ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : ""); 2099 if (GRAPHICS_VER(engine->i915) > 2) { 2100 drm_printf(m, "\tRING_MODE: 0x%08x%s\n", 2101 ENGINE_READ(engine, RING_MI_MODE), 2102 ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : ""); 2103 } 2104 2105 if (GRAPHICS_VER(i915) >= 6) { 2106 drm_printf(m, "\tRING_IMR: 0x%08x\n", 2107 ENGINE_READ(engine, RING_IMR)); 2108 drm_printf(m, "\tRING_ESR: 0x%08x\n", 2109 ENGINE_READ(engine, RING_ESR)); 2110 drm_printf(m, "\tRING_EMR: 0x%08x\n", 2111 ENGINE_READ(engine, RING_EMR)); 2112 drm_printf(m, "\tRING_EIR: 0x%08x\n", 2113 ENGINE_READ(engine, RING_EIR)); 2114 } 2115 2116 addr = intel_engine_get_active_head(engine); 2117 drm_printf(m, "\tACTHD: 0x%08x_%08x\n", 2118 upper_32_bits(addr), lower_32_bits(addr)); 2119 addr = intel_engine_get_last_batch_head(engine); 2120 drm_printf(m, "\tBBADDR: 0x%08x_%08x\n", 2121 upper_32_bits(addr), lower_32_bits(addr)); 2122 if (GRAPHICS_VER(i915) >= 8) 2123 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW); 2124 else if (GRAPHICS_VER(i915) >= 4) 2125 addr = ENGINE_READ(engine, RING_DMA_FADD); 2126 else 2127 addr = ENGINE_READ(engine, DMA_FADD_I8XX); 2128 drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n", 2129 upper_32_bits(addr), lower_32_bits(addr)); 2130 if (GRAPHICS_VER(i915) >= 4) { 2131 drm_printf(m, "\tIPEIR: 0x%08x\n", 2132 ENGINE_READ(engine, RING_IPEIR)); 2133 drm_printf(m, "\tIPEHR: 0x%08x\n", 2134 ENGINE_READ(engine, RING_IPEHR)); 2135 } else { 2136 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR)); 2137 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR)); 2138 } 2139 2140 if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) { 2141 struct i915_request * const *port, *rq; 2142 const u32 *hws = 2143 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX]; 2144 const u8 num_entries = execlists->csb_size; 2145 unsigned int idx; 2146 u8 read, write; 2147 2148 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n", 2149 str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)), 2150 str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)), 2151 repr_timer(&engine->execlists.preempt), 2152 repr_timer(&engine->execlists.timer)); 2153 2154 read = execlists->csb_head; 2155 write = READ_ONCE(*execlists->csb_write); 2156 2157 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n", 2158 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO), 2159 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI), 2160 read, write, num_entries); 2161 2162 if (read >= num_entries) 2163 read = 0; 2164 if (write >= num_entries) 2165 write = 0; 2166 if (read > write) 2167 write += num_entries; 2168 while (read < write) { 2169 idx = ++read % num_entries; 2170 drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n", 2171 idx, hws[idx * 2], hws[idx * 2 + 1]); 2172 } 2173 2174 i915_sched_engine_active_lock_bh(engine->sched_engine); 2175 rcu_read_lock(); 2176 for (port = execlists->active; (rq = *port); port++) { 2177 char hdr[160]; 2178 int len; 2179 2180 len = scnprintf(hdr, sizeof(hdr), 2181 "\t\tActive[%d]: ccid:%08x%s%s, ", 2182 (int)(port - execlists->active), 2183 rq->context->lrc.ccid, 2184 intel_context_is_closed(rq->context) ? "!" : "", 2185 intel_context_is_banned(rq->context) ? "*" : ""); 2186 len += print_ring(hdr + len, sizeof(hdr) - len, rq); 2187 scnprintf(hdr + len, sizeof(hdr) - len, "rq: "); 2188 i915_request_show(m, rq, hdr, 0); 2189 } 2190 for (port = execlists->pending; (rq = *port); port++) { 2191 char hdr[160]; 2192 int len; 2193 2194 len = scnprintf(hdr, sizeof(hdr), 2195 "\t\tPending[%d]: ccid:%08x%s%s, ", 2196 (int)(port - execlists->pending), 2197 rq->context->lrc.ccid, 2198 intel_context_is_closed(rq->context) ? "!" : "", 2199 intel_context_is_banned(rq->context) ? "*" : ""); 2200 len += print_ring(hdr + len, sizeof(hdr) - len, rq); 2201 scnprintf(hdr + len, sizeof(hdr) - len, "rq: "); 2202 i915_request_show(m, rq, hdr, 0); 2203 } 2204 rcu_read_unlock(); 2205 i915_sched_engine_active_unlock_bh(engine->sched_engine); 2206 } else if (GRAPHICS_VER(i915) > 6) { 2207 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n", 2208 ENGINE_READ(engine, RING_PP_DIR_BASE)); 2209 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n", 2210 ENGINE_READ(engine, RING_PP_DIR_BASE_READ)); 2211 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n", 2212 ENGINE_READ(engine, RING_PP_DIR_DCLV)); 2213 } 2214 } 2215 2216 static void print_request_ring(struct drm_printer *m, struct i915_request *rq) 2217 { 2218 struct i915_vma_resource *vma_res = rq->batch_res; 2219 void *ring; 2220 int size; 2221 2222 drm_printf(m, 2223 "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n", 2224 rq->head, rq->postfix, rq->tail, 2225 vma_res ? upper_32_bits(vma_res->start) : ~0u, 2226 vma_res ? lower_32_bits(vma_res->start) : ~0u); 2227 2228 size = rq->tail - rq->head; 2229 if (rq->tail < rq->head) 2230 size += rq->ring->size; 2231 2232 ring = kmalloc(size, GFP_ATOMIC); 2233 if (ring) { 2234 const void *vaddr = rq->ring->vaddr; 2235 unsigned int head = rq->head; 2236 unsigned int len = 0; 2237 2238 if (rq->tail < head) { 2239 len = rq->ring->size - head; 2240 memcpy(ring, vaddr + head, len); 2241 head = 0; 2242 } 2243 memcpy(ring + len, vaddr + head, size - len); 2244 2245 hexdump(m, ring, size); 2246 kfree(ring); 2247 } 2248 } 2249 2250 static unsigned long read_ul(void *p, size_t x) 2251 { 2252 return *(unsigned long *)(p + x); 2253 } 2254 2255 static void print_properties(struct intel_engine_cs *engine, 2256 struct drm_printer *m) 2257 { 2258 static const struct pmap { 2259 size_t offset; 2260 const char *name; 2261 } props[] = { 2262 #define P(x) { \ 2263 .offset = offsetof(typeof(engine->props), x), \ 2264 .name = #x \ 2265 } 2266 P(heartbeat_interval_ms), 2267 P(max_busywait_duration_ns), 2268 P(preempt_timeout_ms), 2269 P(stop_timeout_ms), 2270 P(timeslice_duration_ms), 2271 2272 {}, 2273 #undef P 2274 }; 2275 const struct pmap *p; 2276 2277 drm_printf(m, "\tProperties:\n"); 2278 for (p = props; p->name; p++) 2279 drm_printf(m, "\t\t%s: %lu [default %lu]\n", 2280 p->name, 2281 read_ul(&engine->props, p->offset), 2282 read_ul(&engine->defaults, p->offset)); 2283 } 2284 2285 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg) 2286 { 2287 struct intel_timeline *tl = get_timeline(rq); 2288 2289 i915_request_show(m, rq, msg, 0); 2290 2291 drm_printf(m, "\t\tring->start: 0x%08x\n", 2292 i915_ggtt_offset(rq->ring->vma)); 2293 drm_printf(m, "\t\tring->head: 0x%08x\n", 2294 rq->ring->head); 2295 drm_printf(m, "\t\tring->tail: 0x%08x\n", 2296 rq->ring->tail); 2297 drm_printf(m, "\t\tring->emit: 0x%08x\n", 2298 rq->ring->emit); 2299 drm_printf(m, "\t\tring->space: 0x%08x\n", 2300 rq->ring->space); 2301 2302 if (tl) { 2303 drm_printf(m, "\t\tring->hwsp: 0x%08x\n", 2304 tl->hwsp_offset); 2305 intel_timeline_put(tl); 2306 } 2307 2308 print_request_ring(m, rq); 2309 2310 if (rq->context->lrc_reg_state) { 2311 drm_printf(m, "Logical Ring Context:\n"); 2312 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE); 2313 } 2314 } 2315 2316 void intel_engine_dump_active_requests(struct list_head *requests, 2317 struct i915_request *hung_rq, 2318 struct drm_printer *m) 2319 { 2320 struct i915_request *rq; 2321 const char *msg; 2322 enum i915_request_state state; 2323 2324 list_for_each_entry(rq, requests, sched.link) { 2325 if (rq == hung_rq) 2326 continue; 2327 2328 state = i915_test_request_state(rq); 2329 if (state < I915_REQUEST_QUEUED) 2330 continue; 2331 2332 if (state == I915_REQUEST_ACTIVE) 2333 msg = "\t\tactive on engine"; 2334 else 2335 msg = "\t\tactive in queue"; 2336 2337 engine_dump_request(rq, m, msg); 2338 } 2339 } 2340 2341 static void engine_dump_active_requests(struct intel_engine_cs *engine, 2342 struct drm_printer *m) 2343 { 2344 struct intel_context *hung_ce = NULL; 2345 struct i915_request *hung_rq = NULL; 2346 2347 /* 2348 * No need for an engine->irq_seqno_barrier() before the seqno reads. 2349 * The GPU is still running so requests are still executing and any 2350 * hardware reads will be out of date by the time they are reported. 2351 * But the intention here is just to report an instantaneous snapshot 2352 * so that's fine. 2353 */ 2354 intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq); 2355 2356 drm_printf(m, "\tRequests:\n"); 2357 2358 if (hung_rq) 2359 engine_dump_request(hung_rq, m, "\t\thung"); 2360 else if (hung_ce) 2361 drm_printf(m, "\t\tGot hung ce but no hung rq!\n"); 2362 2363 if (intel_uc_uses_guc_submission(&engine->gt->uc)) 2364 intel_guc_dump_active_requests(engine, hung_rq, m); 2365 else 2366 intel_execlists_dump_active_requests(engine, hung_rq, m); 2367 2368 if (hung_rq) 2369 i915_request_put(hung_rq); 2370 } 2371 2372 void intel_engine_dump(struct intel_engine_cs *engine, 2373 struct drm_printer *m, 2374 const char *header, ...) 2375 { 2376 struct i915_gpu_error * const error = &engine->i915->gpu_error; 2377 struct i915_request *rq; 2378 intel_wakeref_t wakeref; 2379 ktime_t dummy; 2380 2381 if (header) { 2382 va_list ap; 2383 2384 va_start(ap, header); 2385 drm_vprintf(m, header, &ap); 2386 va_end(ap); 2387 } 2388 2389 if (intel_gt_is_wedged(engine->gt)) 2390 drm_printf(m, "*** WEDGED ***\n"); 2391 2392 drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count)); 2393 drm_printf(m, "\tBarriers?: %s\n", 2394 str_yes_no(!llist_empty(&engine->barrier_tasks))); 2395 drm_printf(m, "\tLatency: %luus\n", 2396 ewma__engine_latency_read(&engine->latency)); 2397 if (intel_engine_supports_stats(engine)) 2398 drm_printf(m, "\tRuntime: %llums\n", 2399 ktime_to_ms(intel_engine_get_busy_time(engine, 2400 &dummy))); 2401 drm_printf(m, "\tForcewake: %x domains, %d active\n", 2402 engine->fw_domain, READ_ONCE(engine->fw_active)); 2403 2404 rcu_read_lock(); 2405 rq = READ_ONCE(engine->heartbeat.systole); 2406 if (rq) 2407 drm_printf(m, "\tHeartbeat: %d ms ago\n", 2408 jiffies_to_msecs(jiffies - rq->emitted_jiffies)); 2409 rcu_read_unlock(); 2410 drm_printf(m, "\tReset count: %d (global %d)\n", 2411 i915_reset_engine_count(error, engine), 2412 i915_reset_count(error)); 2413 print_properties(engine, m); 2414 2415 engine_dump_active_requests(engine, m); 2416 2417 drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base); 2418 wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm); 2419 if (wakeref) { 2420 intel_engine_print_registers(engine, m); 2421 intel_runtime_pm_put(engine->uncore->rpm, wakeref); 2422 } else { 2423 drm_printf(m, "\tDevice is asleep; skipping register dump\n"); 2424 } 2425 2426 intel_execlists_show_requests(engine, m, i915_request_show, 8); 2427 2428 drm_printf(m, "HWSP:\n"); 2429 hexdump(m, engine->status_page.addr, PAGE_SIZE); 2430 2431 drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine))); 2432 2433 intel_engine_print_breadcrumbs(engine, m); 2434 } 2435 2436 /** 2437 * intel_engine_get_busy_time() - Return current accumulated engine busyness 2438 * @engine: engine to report on 2439 * @now: monotonic timestamp of sampling 2440 * 2441 * Returns accumulated time @engine was busy since engine stats were enabled. 2442 */ 2443 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now) 2444 { 2445 return engine->busyness(engine, now); 2446 } 2447 2448 struct intel_context * 2449 intel_engine_create_virtual(struct intel_engine_cs **siblings, 2450 unsigned int count, unsigned long flags) 2451 { 2452 if (count == 0) 2453 return ERR_PTR(-EINVAL); 2454 2455 if (count == 1 && !(flags & FORCE_VIRTUAL)) 2456 return intel_context_create(siblings[0]); 2457 2458 GEM_BUG_ON(!siblings[0]->cops->create_virtual); 2459 return siblings[0]->cops->create_virtual(siblings, count, flags); 2460 } 2461 2462 static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine) 2463 { 2464 struct i915_request *request, *active = NULL; 2465 2466 /* 2467 * This search does not work in GuC submission mode. However, the GuC 2468 * will report the hanging context directly to the driver itself. So 2469 * the driver should never get here when in GuC mode. 2470 */ 2471 GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc)); 2472 2473 /* 2474 * We are called by the error capture, reset and to dump engine 2475 * state at random points in time. In particular, note that neither is 2476 * crucially ordered with an interrupt. After a hang, the GPU is dead 2477 * and we assume that no more writes can happen (we waited long enough 2478 * for all writes that were in transaction to be flushed) - adding an 2479 * extra delay for a recent interrupt is pointless. Hence, we do 2480 * not need an engine->irq_seqno_barrier() before the seqno reads. 2481 * At all other times, we must assume the GPU is still running, but 2482 * we only care about the snapshot of this moment. 2483 */ 2484 lockdep_assert_held(&engine->sched_engine->lock); 2485 2486 rcu_read_lock(); 2487 request = execlists_active(&engine->execlists); 2488 if (request) { 2489 struct intel_timeline *tl = request->context->timeline; 2490 2491 list_for_each_entry_from_reverse(request, &tl->requests, link) { 2492 if (__i915_request_is_complete(request)) 2493 break; 2494 2495 active = request; 2496 } 2497 } 2498 rcu_read_unlock(); 2499 if (active) 2500 return active; 2501 2502 list_for_each_entry(request, &engine->sched_engine->requests, 2503 sched.link) { 2504 if (i915_test_request_state(request) != I915_REQUEST_ACTIVE) 2505 continue; 2506 2507 active = request; 2508 break; 2509 } 2510 2511 return active; 2512 } 2513 2514 void intel_engine_get_hung_entity(struct intel_engine_cs *engine, 2515 struct intel_context **ce, struct i915_request **rq) 2516 { 2517 unsigned long flags; 2518 2519 *ce = intel_engine_get_hung_context(engine); 2520 if (*ce) { 2521 intel_engine_clear_hung_context(engine); 2522 2523 *rq = intel_context_get_active_request(*ce); 2524 return; 2525 } 2526 2527 /* 2528 * Getting here with GuC enabled means it is a forced error capture 2529 * with no actual hang. So, no need to attempt the execlist search. 2530 */ 2531 if (intel_uc_uses_guc_submission(&engine->gt->uc)) 2532 return; 2533 2534 spin_lock_irqsave(&engine->sched_engine->lock, flags); 2535 *rq = engine_execlist_find_hung_request(engine); 2536 if (*rq) 2537 *rq = i915_request_get_rcu(*rq); 2538 spin_unlock_irqrestore(&engine->sched_engine->lock, flags); 2539 } 2540 2541 void xehp_enable_ccs_engines(struct intel_engine_cs *engine) 2542 { 2543 /* 2544 * If there are any non-fused-off CCS engines, we need to enable CCS 2545 * support in the RCU_MODE register. This only needs to be done once, 2546 * so for simplicity we'll take care of this in the RCS engine's 2547 * resume handler; since the RCS and all CCS engines belong to the 2548 * same reset domain and are reset together, this will also take care 2549 * of re-applying the setting after i915-triggered resets. 2550 */ 2551 if (!CCS_MASK(engine->gt)) 2552 return; 2553 2554 intel_uncore_write(engine->uncore, GEN12_RCU_MODE, 2555 _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE)); 2556 } 2557 2558 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 2559 #include "mock_engine.c" 2560 #include "selftest_engine.c" 2561 #include "selftest_engine_cs.c" 2562 #endif 2563