xref: /linux/drivers/gpu/drm/i915/gt/intel_engine_cs.c (revision 404bec4c8f6c38ae5fa208344f1086d38026e93d)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include <drm/drm_print.h>
9 
10 #include "gem/i915_gem_context.h"
11 #include "gem/i915_gem_internal.h"
12 #include "gt/intel_gt_regs.h"
13 
14 #include "i915_cmd_parser.h"
15 #include "i915_drv.h"
16 #include "intel_breadcrumbs.h"
17 #include "intel_context.h"
18 #include "intel_engine.h"
19 #include "intel_engine_pm.h"
20 #include "intel_engine_regs.h"
21 #include "intel_engine_user.h"
22 #include "intel_execlists_submission.h"
23 #include "intel_gt.h"
24 #include "intel_gt_mcr.h"
25 #include "intel_gt_pm.h"
26 #include "intel_gt_requests.h"
27 #include "intel_lrc.h"
28 #include "intel_lrc_reg.h"
29 #include "intel_reset.h"
30 #include "intel_ring.h"
31 #include "uc/intel_guc_submission.h"
32 
33 /* Haswell does have the CXT_SIZE register however it does not appear to be
34  * valid. Now, docs explain in dwords what is in the context object. The full
35  * size is 70720 bytes, however, the power context and execlist context will
36  * never be saved (power context is stored elsewhere, and execlists don't work
37  * on HSW) - so the final size, including the extra state required for the
38  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
39  */
40 #define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)
41 
42 #define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
43 #define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
44 #define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
45 #define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
46 
47 #define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)
48 
49 #define MAX_MMIO_BASES 3
50 struct engine_info {
51 	u8 class;
52 	u8 instance;
53 	/* mmio bases table *must* be sorted in reverse graphics_ver order */
54 	struct engine_mmio_base {
55 		u32 graphics_ver : 8;
56 		u32 base : 24;
57 	} mmio_bases[MAX_MMIO_BASES];
58 };
59 
60 static const struct engine_info intel_engines[] = {
61 	[RCS0] = {
62 		.class = RENDER_CLASS,
63 		.instance = 0,
64 		.mmio_bases = {
65 			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
66 		},
67 	},
68 	[BCS0] = {
69 		.class = COPY_ENGINE_CLASS,
70 		.instance = 0,
71 		.mmio_bases = {
72 			{ .graphics_ver = 6, .base = BLT_RING_BASE }
73 		},
74 	},
75 	[BCS1] = {
76 		.class = COPY_ENGINE_CLASS,
77 		.instance = 1,
78 		.mmio_bases = {
79 			{ .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
80 		},
81 	},
82 	[BCS2] = {
83 		.class = COPY_ENGINE_CLASS,
84 		.instance = 2,
85 		.mmio_bases = {
86 			{ .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
87 		},
88 	},
89 	[BCS3] = {
90 		.class = COPY_ENGINE_CLASS,
91 		.instance = 3,
92 		.mmio_bases = {
93 			{ .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
94 		},
95 	},
96 	[BCS4] = {
97 		.class = COPY_ENGINE_CLASS,
98 		.instance = 4,
99 		.mmio_bases = {
100 			{ .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
101 		},
102 	},
103 	[BCS5] = {
104 		.class = COPY_ENGINE_CLASS,
105 		.instance = 5,
106 		.mmio_bases = {
107 			{ .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
108 		},
109 	},
110 	[BCS6] = {
111 		.class = COPY_ENGINE_CLASS,
112 		.instance = 6,
113 		.mmio_bases = {
114 			{ .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
115 		},
116 	},
117 	[BCS7] = {
118 		.class = COPY_ENGINE_CLASS,
119 		.instance = 7,
120 		.mmio_bases = {
121 			{ .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
122 		},
123 	},
124 	[BCS8] = {
125 		.class = COPY_ENGINE_CLASS,
126 		.instance = 8,
127 		.mmio_bases = {
128 			{ .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
129 		},
130 	},
131 	[VCS0] = {
132 		.class = VIDEO_DECODE_CLASS,
133 		.instance = 0,
134 		.mmio_bases = {
135 			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
136 			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
137 			{ .graphics_ver = 4, .base = BSD_RING_BASE }
138 		},
139 	},
140 	[VCS1] = {
141 		.class = VIDEO_DECODE_CLASS,
142 		.instance = 1,
143 		.mmio_bases = {
144 			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
145 			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
146 		},
147 	},
148 	[VCS2] = {
149 		.class = VIDEO_DECODE_CLASS,
150 		.instance = 2,
151 		.mmio_bases = {
152 			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
153 		},
154 	},
155 	[VCS3] = {
156 		.class = VIDEO_DECODE_CLASS,
157 		.instance = 3,
158 		.mmio_bases = {
159 			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
160 		},
161 	},
162 	[VCS4] = {
163 		.class = VIDEO_DECODE_CLASS,
164 		.instance = 4,
165 		.mmio_bases = {
166 			{ .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
167 		},
168 	},
169 	[VCS5] = {
170 		.class = VIDEO_DECODE_CLASS,
171 		.instance = 5,
172 		.mmio_bases = {
173 			{ .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
174 		},
175 	},
176 	[VCS6] = {
177 		.class = VIDEO_DECODE_CLASS,
178 		.instance = 6,
179 		.mmio_bases = {
180 			{ .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
181 		},
182 	},
183 	[VCS7] = {
184 		.class = VIDEO_DECODE_CLASS,
185 		.instance = 7,
186 		.mmio_bases = {
187 			{ .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
188 		},
189 	},
190 	[VECS0] = {
191 		.class = VIDEO_ENHANCEMENT_CLASS,
192 		.instance = 0,
193 		.mmio_bases = {
194 			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
195 			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
196 		},
197 	},
198 	[VECS1] = {
199 		.class = VIDEO_ENHANCEMENT_CLASS,
200 		.instance = 1,
201 		.mmio_bases = {
202 			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
203 		},
204 	},
205 	[VECS2] = {
206 		.class = VIDEO_ENHANCEMENT_CLASS,
207 		.instance = 2,
208 		.mmio_bases = {
209 			{ .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
210 		},
211 	},
212 	[VECS3] = {
213 		.class = VIDEO_ENHANCEMENT_CLASS,
214 		.instance = 3,
215 		.mmio_bases = {
216 			{ .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
217 		},
218 	},
219 	[CCS0] = {
220 		.class = COMPUTE_CLASS,
221 		.instance = 0,
222 		.mmio_bases = {
223 			{ .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
224 		}
225 	},
226 	[CCS1] = {
227 		.class = COMPUTE_CLASS,
228 		.instance = 1,
229 		.mmio_bases = {
230 			{ .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
231 		}
232 	},
233 	[CCS2] = {
234 		.class = COMPUTE_CLASS,
235 		.instance = 2,
236 		.mmio_bases = {
237 			{ .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
238 		}
239 	},
240 	[CCS3] = {
241 		.class = COMPUTE_CLASS,
242 		.instance = 3,
243 		.mmio_bases = {
244 			{ .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
245 		}
246 	},
247 };
248 
249 /**
250  * intel_engine_context_size() - return the size of the context for an engine
251  * @gt: the gt
252  * @class: engine class
253  *
254  * Each engine class may require a different amount of space for a context
255  * image.
256  *
257  * Return: size (in bytes) of an engine class specific context image
258  *
259  * Note: this size includes the HWSP, which is part of the context image
260  * in LRC mode, but does not include the "shared data page" used with
261  * GuC submission. The caller should account for this if using the GuC.
262  */
263 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
264 {
265 	struct intel_uncore *uncore = gt->uncore;
266 	u32 cxt_size;
267 
268 	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
269 
270 	switch (class) {
271 	case COMPUTE_CLASS:
272 		fallthrough;
273 	case RENDER_CLASS:
274 		switch (GRAPHICS_VER(gt->i915)) {
275 		default:
276 			MISSING_CASE(GRAPHICS_VER(gt->i915));
277 			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
278 		case 12:
279 		case 11:
280 			return GEN11_LR_CONTEXT_RENDER_SIZE;
281 		case 9:
282 			return GEN9_LR_CONTEXT_RENDER_SIZE;
283 		case 8:
284 			return GEN8_LR_CONTEXT_RENDER_SIZE;
285 		case 7:
286 			if (IS_HASWELL(gt->i915))
287 				return HSW_CXT_TOTAL_SIZE;
288 
289 			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
290 			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
291 					PAGE_SIZE);
292 		case 6:
293 			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
294 			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
295 					PAGE_SIZE);
296 		case 5:
297 		case 4:
298 			/*
299 			 * There is a discrepancy here between the size reported
300 			 * by the register and the size of the context layout
301 			 * in the docs. Both are described as authorative!
302 			 *
303 			 * The discrepancy is on the order of a few cachelines,
304 			 * but the total is under one page (4k), which is our
305 			 * minimum allocation anyway so it should all come
306 			 * out in the wash.
307 			 */
308 			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
309 			drm_dbg(&gt->i915->drm,
310 				"graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
311 				GRAPHICS_VER(gt->i915), cxt_size * 64,
312 				cxt_size - 1);
313 			return round_up(cxt_size * 64, PAGE_SIZE);
314 		case 3:
315 		case 2:
316 		/* For the special day when i810 gets merged. */
317 		case 1:
318 			return 0;
319 		}
320 		break;
321 	default:
322 		MISSING_CASE(class);
323 		fallthrough;
324 	case VIDEO_DECODE_CLASS:
325 	case VIDEO_ENHANCEMENT_CLASS:
326 	case COPY_ENGINE_CLASS:
327 		if (GRAPHICS_VER(gt->i915) < 8)
328 			return 0;
329 		return GEN8_LR_CONTEXT_OTHER_SIZE;
330 	}
331 }
332 
333 static u32 __engine_mmio_base(struct drm_i915_private *i915,
334 			      const struct engine_mmio_base *bases)
335 {
336 	int i;
337 
338 	for (i = 0; i < MAX_MMIO_BASES; i++)
339 		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
340 			break;
341 
342 	GEM_BUG_ON(i == MAX_MMIO_BASES);
343 	GEM_BUG_ON(!bases[i].base);
344 
345 	return bases[i].base;
346 }
347 
348 static void __sprint_engine_name(struct intel_engine_cs *engine)
349 {
350 	/*
351 	 * Before we know what the uABI name for this engine will be,
352 	 * we still would like to keep track of this engine in the debug logs.
353 	 * We throw in a ' here as a reminder that this isn't its final name.
354 	 */
355 	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
356 			     intel_engine_class_repr(engine->class),
357 			     engine->instance) >= sizeof(engine->name));
358 }
359 
360 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
361 {
362 	/*
363 	 * Though they added more rings on g4x/ilk, they did not add
364 	 * per-engine HWSTAM until gen6.
365 	 */
366 	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
367 		return;
368 
369 	if (GRAPHICS_VER(engine->i915) >= 3)
370 		ENGINE_WRITE(engine, RING_HWSTAM, mask);
371 	else
372 		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
373 }
374 
375 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
376 {
377 	/* Mask off all writes into the unknown HWSP */
378 	intel_engine_set_hwsp_writemask(engine, ~0u);
379 }
380 
381 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
382 {
383 	GEM_DEBUG_WARN_ON(iir);
384 }
385 
386 static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
387 {
388 	u32 reset_domain;
389 
390 	if (ver >= 11) {
391 		static const u32 engine_reset_domains[] = {
392 			[RCS0]  = GEN11_GRDOM_RENDER,
393 			[BCS0]  = GEN11_GRDOM_BLT,
394 			[BCS1]  = XEHPC_GRDOM_BLT1,
395 			[BCS2]  = XEHPC_GRDOM_BLT2,
396 			[BCS3]  = XEHPC_GRDOM_BLT3,
397 			[BCS4]  = XEHPC_GRDOM_BLT4,
398 			[BCS5]  = XEHPC_GRDOM_BLT5,
399 			[BCS6]  = XEHPC_GRDOM_BLT6,
400 			[BCS7]  = XEHPC_GRDOM_BLT7,
401 			[BCS8]  = XEHPC_GRDOM_BLT8,
402 			[VCS0]  = GEN11_GRDOM_MEDIA,
403 			[VCS1]  = GEN11_GRDOM_MEDIA2,
404 			[VCS2]  = GEN11_GRDOM_MEDIA3,
405 			[VCS3]  = GEN11_GRDOM_MEDIA4,
406 			[VCS4]  = GEN11_GRDOM_MEDIA5,
407 			[VCS5]  = GEN11_GRDOM_MEDIA6,
408 			[VCS6]  = GEN11_GRDOM_MEDIA7,
409 			[VCS7]  = GEN11_GRDOM_MEDIA8,
410 			[VECS0] = GEN11_GRDOM_VECS,
411 			[VECS1] = GEN11_GRDOM_VECS2,
412 			[VECS2] = GEN11_GRDOM_VECS3,
413 			[VECS3] = GEN11_GRDOM_VECS4,
414 			[CCS0]  = GEN11_GRDOM_RENDER,
415 			[CCS1]  = GEN11_GRDOM_RENDER,
416 			[CCS2]  = GEN11_GRDOM_RENDER,
417 			[CCS3]  = GEN11_GRDOM_RENDER,
418 		};
419 		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
420 			   !engine_reset_domains[id]);
421 		reset_domain = engine_reset_domains[id];
422 	} else {
423 		static const u32 engine_reset_domains[] = {
424 			[RCS0]  = GEN6_GRDOM_RENDER,
425 			[BCS0]  = GEN6_GRDOM_BLT,
426 			[VCS0]  = GEN6_GRDOM_MEDIA,
427 			[VCS1]  = GEN8_GRDOM_MEDIA2,
428 			[VECS0] = GEN6_GRDOM_VECS,
429 		};
430 		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
431 			   !engine_reset_domains[id]);
432 		reset_domain = engine_reset_domains[id];
433 	}
434 
435 	return reset_domain;
436 }
437 
438 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
439 			      u8 logical_instance)
440 {
441 	const struct engine_info *info = &intel_engines[id];
442 	struct drm_i915_private *i915 = gt->i915;
443 	struct intel_engine_cs *engine;
444 	u8 guc_class;
445 
446 	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
447 	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
448 	BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
449 	BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
450 
451 	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
452 		return -EINVAL;
453 
454 	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
455 		return -EINVAL;
456 
457 	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
458 		return -EINVAL;
459 
460 	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
461 		return -EINVAL;
462 
463 	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
464 	if (!engine)
465 		return -ENOMEM;
466 
467 	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
468 
469 	INIT_LIST_HEAD(&engine->pinned_contexts_list);
470 	engine->id = id;
471 	engine->legacy_idx = INVALID_ENGINE;
472 	engine->mask = BIT(id);
473 	engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
474 						id);
475 	engine->i915 = i915;
476 	engine->gt = gt;
477 	engine->uncore = gt->uncore;
478 	guc_class = engine_class_to_guc_class(info->class);
479 	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
480 	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
481 
482 	engine->irq_handler = nop_irq_handler;
483 
484 	engine->class = info->class;
485 	engine->instance = info->instance;
486 	engine->logical_mask = BIT(logical_instance);
487 	__sprint_engine_name(engine);
488 
489 	engine->props.heartbeat_interval_ms =
490 		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
491 	engine->props.max_busywait_duration_ns =
492 		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
493 	engine->props.preempt_timeout_ms =
494 		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
495 	engine->props.stop_timeout_ms =
496 		CONFIG_DRM_I915_STOP_TIMEOUT;
497 	engine->props.timeslice_duration_ms =
498 		CONFIG_DRM_I915_TIMESLICE_DURATION;
499 
500 	/* Override to uninterruptible for OpenCL workloads. */
501 	if (GRAPHICS_VER(i915) == 12 && engine->class == RENDER_CLASS)
502 		engine->props.preempt_timeout_ms = 0;
503 
504 	if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) &&
505 	     __ffs(CCS_MASK(engine->gt)) == engine->instance) ||
506 	     engine->class == RENDER_CLASS)
507 		engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
508 
509 	/* features common between engines sharing EUs */
510 	if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
511 		engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
512 		engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
513 	}
514 
515 	engine->defaults = engine->props; /* never to change again */
516 
517 	engine->context_size = intel_engine_context_size(gt, engine->class);
518 	if (WARN_ON(engine->context_size > BIT(20)))
519 		engine->context_size = 0;
520 	if (engine->context_size)
521 		DRIVER_CAPS(i915)->has_logical_contexts = true;
522 
523 	ewma__engine_latency_init(&engine->latency);
524 	seqcount_init(&engine->stats.execlists.lock);
525 
526 	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
527 
528 	/* Scrub mmio state on takeover */
529 	intel_engine_sanitize_mmio(engine);
530 
531 	gt->engine_class[info->class][info->instance] = engine;
532 	gt->engine[id] = engine;
533 
534 	return 0;
535 }
536 
537 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
538 {
539 	struct drm_i915_private *i915 = engine->i915;
540 
541 	if (engine->class == VIDEO_DECODE_CLASS) {
542 		/*
543 		 * HEVC support is present on first engine instance
544 		 * before Gen11 and on all instances afterwards.
545 		 */
546 		if (GRAPHICS_VER(i915) >= 11 ||
547 		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
548 			engine->uabi_capabilities |=
549 				I915_VIDEO_CLASS_CAPABILITY_HEVC;
550 
551 		/*
552 		 * SFC block is present only on even logical engine
553 		 * instances.
554 		 */
555 		if ((GRAPHICS_VER(i915) >= 11 &&
556 		     (engine->gt->info.vdbox_sfc_access &
557 		      BIT(engine->instance))) ||
558 		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
559 			engine->uabi_capabilities |=
560 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
561 	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
562 		if (GRAPHICS_VER(i915) >= 9 &&
563 		    engine->gt->info.sfc_mask & BIT(engine->instance))
564 			engine->uabi_capabilities |=
565 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
566 	}
567 }
568 
569 static void intel_setup_engine_capabilities(struct intel_gt *gt)
570 {
571 	struct intel_engine_cs *engine;
572 	enum intel_engine_id id;
573 
574 	for_each_engine(engine, gt, id)
575 		__setup_engine_capabilities(engine);
576 }
577 
578 /**
579  * intel_engines_release() - free the resources allocated for Command Streamers
580  * @gt: pointer to struct intel_gt
581  */
582 void intel_engines_release(struct intel_gt *gt)
583 {
584 	struct intel_engine_cs *engine;
585 	enum intel_engine_id id;
586 
587 	/*
588 	 * Before we release the resources held by engine, we must be certain
589 	 * that the HW is no longer accessing them -- having the GPU scribble
590 	 * to or read from a page being used for something else causes no end
591 	 * of fun.
592 	 *
593 	 * The GPU should be reset by this point, but assume the worst just
594 	 * in case we aborted before completely initialising the engines.
595 	 */
596 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
597 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
598 		__intel_gt_reset(gt, ALL_ENGINES);
599 
600 	/* Decouple the backend; but keep the layout for late GPU resets */
601 	for_each_engine(engine, gt, id) {
602 		if (!engine->release)
603 			continue;
604 
605 		intel_wakeref_wait_for_idle(&engine->wakeref);
606 		GEM_BUG_ON(intel_engine_pm_is_awake(engine));
607 
608 		engine->release(engine);
609 		engine->release = NULL;
610 
611 		memset(&engine->reset, 0, sizeof(engine->reset));
612 	}
613 }
614 
615 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
616 {
617 	if (!engine->request_pool)
618 		return;
619 
620 	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
621 }
622 
623 void intel_engines_free(struct intel_gt *gt)
624 {
625 	struct intel_engine_cs *engine;
626 	enum intel_engine_id id;
627 
628 	/* Free the requests! dma-resv keeps fences around for an eternity */
629 	rcu_barrier();
630 
631 	for_each_engine(engine, gt, id) {
632 		intel_engine_free_request_pool(engine);
633 		kfree(engine);
634 		gt->engine[id] = NULL;
635 	}
636 }
637 
638 static
639 bool gen11_vdbox_has_sfc(struct intel_gt *gt,
640 			 unsigned int physical_vdbox,
641 			 unsigned int logical_vdbox, u16 vdbox_mask)
642 {
643 	struct drm_i915_private *i915 = gt->i915;
644 
645 	/*
646 	 * In Gen11, only even numbered logical VDBOXes are hooked
647 	 * up to an SFC (Scaler & Format Converter) unit.
648 	 * In Gen12, Even numbered physical instance always are connected
649 	 * to an SFC. Odd numbered physical instances have SFC only if
650 	 * previous even instance is fused off.
651 	 *
652 	 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
653 	 * in the fuse register that tells us whether a specific SFC is present.
654 	 */
655 	if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
656 		return false;
657 	else if (GRAPHICS_VER(i915) == 12)
658 		return (physical_vdbox % 2 == 0) ||
659 			!(BIT(physical_vdbox - 1) & vdbox_mask);
660 	else if (GRAPHICS_VER(i915) == 11)
661 		return logical_vdbox % 2 == 0;
662 
663 	MISSING_CASE(GRAPHICS_VER(i915));
664 	return false;
665 }
666 
667 static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
668 {
669 	struct drm_i915_private *i915 = gt->i915;
670 	struct intel_gt_info *info = &gt->info;
671 	int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
672 	unsigned long ccs_mask;
673 	unsigned int i;
674 
675 	if (GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
676 		return;
677 
678 	ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
679 						     ss_per_ccs);
680 	/*
681 	 * If all DSS in a quadrant are fused off, the corresponding CCS
682 	 * engine is not available for use.
683 	 */
684 	for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
685 		info->engine_mask &= ~BIT(_CCS(i));
686 		drm_dbg(&i915->drm, "ccs%u fused off\n", i);
687 	}
688 }
689 
690 static void engine_mask_apply_copy_fuses(struct intel_gt *gt)
691 {
692 	struct drm_i915_private *i915 = gt->i915;
693 	struct intel_gt_info *info = &gt->info;
694 	unsigned long meml3_mask;
695 	unsigned long quad;
696 
697 	meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3);
698 	meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask);
699 
700 	/*
701 	 * Link Copy engines may be fused off according to meml3_mask. Each
702 	 * bit is a quad that houses 2 Link Copy and two Sub Copy engines.
703 	 */
704 	for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) {
705 		unsigned int instance = quad * 2 + 1;
706 		intel_engine_mask_t mask = GENMASK(_BCS(instance + 1),
707 						   _BCS(instance));
708 
709 		if (mask & info->engine_mask) {
710 			drm_dbg(&i915->drm, "bcs%u fused off\n", instance);
711 			drm_dbg(&i915->drm, "bcs%u fused off\n", instance + 1);
712 
713 			info->engine_mask &= ~mask;
714 		}
715 	}
716 }
717 
718 /*
719  * Determine which engines are fused off in our particular hardware.
720  * Note that we have a catch-22 situation where we need to be able to access
721  * the blitter forcewake domain to read the engine fuses, but at the same time
722  * we need to know which engines are available on the system to know which
723  * forcewake domains are present. We solve this by intializing the forcewake
724  * domains based on the full engine mask in the platform capabilities before
725  * calling this function and pruning the domains for fused-off engines
726  * afterwards.
727  */
728 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
729 {
730 	struct drm_i915_private *i915 = gt->i915;
731 	struct intel_gt_info *info = &gt->info;
732 	struct intel_uncore *uncore = gt->uncore;
733 	unsigned int logical_vdbox = 0;
734 	unsigned int i;
735 	u32 media_fuse, fuse1;
736 	u16 vdbox_mask;
737 	u16 vebox_mask;
738 
739 	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;
740 
741 	if (GRAPHICS_VER(i915) < 11)
742 		return info->engine_mask;
743 
744 	/*
745 	 * On newer platforms the fusing register is called 'enable' and has
746 	 * enable semantics, while on older platforms it is called 'disable'
747 	 * and bits have disable semantices.
748 	 */
749 	media_fuse = intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
750 	if (GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
751 		media_fuse = ~media_fuse;
752 
753 	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
754 	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
755 		      GEN11_GT_VEBOX_DISABLE_SHIFT;
756 
757 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
758 		fuse1 = intel_uncore_read(uncore, HSW_PAVP_FUSE1);
759 		gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
760 	} else {
761 		gt->info.sfc_mask = ~0;
762 	}
763 
764 	for (i = 0; i < I915_MAX_VCS; i++) {
765 		if (!HAS_ENGINE(gt, _VCS(i))) {
766 			vdbox_mask &= ~BIT(i);
767 			continue;
768 		}
769 
770 		if (!(BIT(i) & vdbox_mask)) {
771 			info->engine_mask &= ~BIT(_VCS(i));
772 			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
773 			continue;
774 		}
775 
776 		if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
777 			gt->info.vdbox_sfc_access |= BIT(i);
778 		logical_vdbox++;
779 	}
780 	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
781 		vdbox_mask, VDBOX_MASK(gt));
782 	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
783 
784 	for (i = 0; i < I915_MAX_VECS; i++) {
785 		if (!HAS_ENGINE(gt, _VECS(i))) {
786 			vebox_mask &= ~BIT(i);
787 			continue;
788 		}
789 
790 		if (!(BIT(i) & vebox_mask)) {
791 			info->engine_mask &= ~BIT(_VECS(i));
792 			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
793 		}
794 	}
795 	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
796 		vebox_mask, VEBOX_MASK(gt));
797 	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
798 
799 	engine_mask_apply_compute_fuses(gt);
800 	engine_mask_apply_copy_fuses(gt);
801 
802 	return info->engine_mask;
803 }
804 
805 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
806 				 u8 class, const u8 *map, u8 num_instances)
807 {
808 	int i, j;
809 	u8 current_logical_id = 0;
810 
811 	for (j = 0; j < num_instances; ++j) {
812 		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
813 			if (!HAS_ENGINE(gt, i) ||
814 			    intel_engines[i].class != class)
815 				continue;
816 
817 			if (intel_engines[i].instance == map[j]) {
818 				logical_ids[intel_engines[i].instance] =
819 					current_logical_id++;
820 				break;
821 			}
822 		}
823 	}
824 }
825 
826 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
827 {
828 	/*
829 	 * Logical to physical mapping is needed for proper support
830 	 * to split-frame feature.
831 	 */
832 	if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
833 		const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
834 
835 		populate_logical_ids(gt, logical_ids, class,
836 				     map, ARRAY_SIZE(map));
837 	} else {
838 		int i;
839 		u8 map[MAX_ENGINE_INSTANCE + 1];
840 
841 		for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
842 			map[i] = i;
843 		populate_logical_ids(gt, logical_ids, class,
844 				     map, ARRAY_SIZE(map));
845 	}
846 }
847 
848 /**
849  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
850  * @gt: pointer to struct intel_gt
851  *
852  * Return: non-zero if the initialization failed.
853  */
854 int intel_engines_init_mmio(struct intel_gt *gt)
855 {
856 	struct drm_i915_private *i915 = gt->i915;
857 	const unsigned int engine_mask = init_engine_mask(gt);
858 	unsigned int mask = 0;
859 	unsigned int i, class;
860 	u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
861 	int err;
862 
863 	drm_WARN_ON(&i915->drm, engine_mask == 0);
864 	drm_WARN_ON(&i915->drm, engine_mask &
865 		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
866 
867 	if (i915_inject_probe_failure(i915))
868 		return -ENODEV;
869 
870 	for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
871 		setup_logical_ids(gt, logical_ids, class);
872 
873 		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
874 			u8 instance = intel_engines[i].instance;
875 
876 			if (intel_engines[i].class != class ||
877 			    !HAS_ENGINE(gt, i))
878 				continue;
879 
880 			err = intel_engine_setup(gt, i,
881 						 logical_ids[instance]);
882 			if (err)
883 				goto cleanup;
884 
885 			mask |= BIT(i);
886 		}
887 	}
888 
889 	/*
890 	 * Catch failures to update intel_engines table when the new engines
891 	 * are added to the driver by a warning and disabling the forgotten
892 	 * engines.
893 	 */
894 	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
895 		gt->info.engine_mask = mask;
896 
897 	gt->info.num_engines = hweight32(mask);
898 
899 	intel_gt_check_and_clear_faults(gt);
900 
901 	intel_setup_engine_capabilities(gt);
902 
903 	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
904 
905 	return 0;
906 
907 cleanup:
908 	intel_engines_free(gt);
909 	return err;
910 }
911 
912 void intel_engine_init_execlists(struct intel_engine_cs *engine)
913 {
914 	struct intel_engine_execlists * const execlists = &engine->execlists;
915 
916 	execlists->port_mask = 1;
917 	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
918 	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
919 
920 	memset(execlists->pending, 0, sizeof(execlists->pending));
921 	execlists->active =
922 		memset(execlists->inflight, 0, sizeof(execlists->inflight));
923 }
924 
925 static void cleanup_status_page(struct intel_engine_cs *engine)
926 {
927 	struct i915_vma *vma;
928 
929 	/* Prevent writes into HWSP after returning the page to the system */
930 	intel_engine_set_hwsp_writemask(engine, ~0u);
931 
932 	vma = fetch_and_zero(&engine->status_page.vma);
933 	if (!vma)
934 		return;
935 
936 	if (!HWS_NEEDS_PHYSICAL(engine->i915))
937 		i915_vma_unpin(vma);
938 
939 	i915_gem_object_unpin_map(vma->obj);
940 	i915_gem_object_put(vma->obj);
941 }
942 
943 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
944 				struct i915_gem_ww_ctx *ww,
945 				struct i915_vma *vma)
946 {
947 	unsigned int flags;
948 
949 	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
950 		/*
951 		 * On g33, we cannot place HWS above 256MiB, so
952 		 * restrict its pinning to the low mappable arena.
953 		 * Though this restriction is not documented for
954 		 * gen4, gen5, or byt, they also behave similarly
955 		 * and hang if the HWS is placed at the top of the
956 		 * GTT. To generalise, it appears that all !llc
957 		 * platforms have issues with us placing the HWS
958 		 * above the mappable region (even though we never
959 		 * actually map it).
960 		 */
961 		flags = PIN_MAPPABLE;
962 	else
963 		flags = PIN_HIGH;
964 
965 	return i915_ggtt_pin(vma, ww, 0, flags);
966 }
967 
968 static int init_status_page(struct intel_engine_cs *engine)
969 {
970 	struct drm_i915_gem_object *obj;
971 	struct i915_gem_ww_ctx ww;
972 	struct i915_vma *vma;
973 	void *vaddr;
974 	int ret;
975 
976 	INIT_LIST_HEAD(&engine->status_page.timelines);
977 
978 	/*
979 	 * Though the HWS register does support 36bit addresses, historically
980 	 * we have had hangs and corruption reported due to wild writes if
981 	 * the HWS is placed above 4G. We only allow objects to be allocated
982 	 * in GFP_DMA32 for i965, and no earlier physical address users had
983 	 * access to more than 4G.
984 	 */
985 	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
986 	if (IS_ERR(obj)) {
987 		drm_err(&engine->i915->drm,
988 			"Failed to allocate status page\n");
989 		return PTR_ERR(obj);
990 	}
991 
992 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
993 
994 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
995 	if (IS_ERR(vma)) {
996 		ret = PTR_ERR(vma);
997 		goto err_put;
998 	}
999 
1000 	i915_gem_ww_ctx_init(&ww, true);
1001 retry:
1002 	ret = i915_gem_object_lock(obj, &ww);
1003 	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1004 		ret = pin_ggtt_status_page(engine, &ww, vma);
1005 	if (ret)
1006 		goto err;
1007 
1008 	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1009 	if (IS_ERR(vaddr)) {
1010 		ret = PTR_ERR(vaddr);
1011 		goto err_unpin;
1012 	}
1013 
1014 	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1015 	engine->status_page.vma = vma;
1016 
1017 err_unpin:
1018 	if (ret)
1019 		i915_vma_unpin(vma);
1020 err:
1021 	if (ret == -EDEADLK) {
1022 		ret = i915_gem_ww_ctx_backoff(&ww);
1023 		if (!ret)
1024 			goto retry;
1025 	}
1026 	i915_gem_ww_ctx_fini(&ww);
1027 err_put:
1028 	if (ret)
1029 		i915_gem_object_put(obj);
1030 	return ret;
1031 }
1032 
1033 static int engine_setup_common(struct intel_engine_cs *engine)
1034 {
1035 	int err;
1036 
1037 	init_llist_head(&engine->barrier_tasks);
1038 
1039 	err = init_status_page(engine);
1040 	if (err)
1041 		return err;
1042 
1043 	engine->breadcrumbs = intel_breadcrumbs_create(engine);
1044 	if (!engine->breadcrumbs) {
1045 		err = -ENOMEM;
1046 		goto err_status;
1047 	}
1048 
1049 	engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1050 	if (!engine->sched_engine) {
1051 		err = -ENOMEM;
1052 		goto err_sched_engine;
1053 	}
1054 	engine->sched_engine->private_data = engine;
1055 
1056 	err = intel_engine_init_cmd_parser(engine);
1057 	if (err)
1058 		goto err_cmd_parser;
1059 
1060 	intel_engine_init_execlists(engine);
1061 	intel_engine_init__pm(engine);
1062 	intel_engine_init_retire(engine);
1063 
1064 	/* Use the whole device by default */
1065 	engine->sseu =
1066 		intel_sseu_from_device_info(&engine->gt->info.sseu);
1067 
1068 	intel_engine_init_workarounds(engine);
1069 	intel_engine_init_whitelist(engine);
1070 	intel_engine_init_ctx_wa(engine);
1071 
1072 	if (GRAPHICS_VER(engine->i915) >= 12)
1073 		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1074 
1075 	return 0;
1076 
1077 err_cmd_parser:
1078 	i915_sched_engine_put(engine->sched_engine);
1079 err_sched_engine:
1080 	intel_breadcrumbs_put(engine->breadcrumbs);
1081 err_status:
1082 	cleanup_status_page(engine);
1083 	return err;
1084 }
1085 
1086 struct measure_breadcrumb {
1087 	struct i915_request rq;
1088 	struct intel_ring ring;
1089 	u32 cs[2048];
1090 };
1091 
1092 static int measure_breadcrumb_dw(struct intel_context *ce)
1093 {
1094 	struct intel_engine_cs *engine = ce->engine;
1095 	struct measure_breadcrumb *frame;
1096 	int dw;
1097 
1098 	GEM_BUG_ON(!engine->gt->scratch);
1099 
1100 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1101 	if (!frame)
1102 		return -ENOMEM;
1103 
1104 	frame->rq.engine = engine;
1105 	frame->rq.context = ce;
1106 	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1107 	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1108 
1109 	frame->ring.vaddr = frame->cs;
1110 	frame->ring.size = sizeof(frame->cs);
1111 	frame->ring.wrap =
1112 		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1113 	frame->ring.effective_size = frame->ring.size;
1114 	intel_ring_update_space(&frame->ring);
1115 	frame->rq.ring = &frame->ring;
1116 
1117 	mutex_lock(&ce->timeline->mutex);
1118 	spin_lock_irq(&engine->sched_engine->lock);
1119 
1120 	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1121 
1122 	spin_unlock_irq(&engine->sched_engine->lock);
1123 	mutex_unlock(&ce->timeline->mutex);
1124 
1125 	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1126 
1127 	kfree(frame);
1128 	return dw;
1129 }
1130 
1131 struct intel_context *
1132 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1133 				   struct i915_address_space *vm,
1134 				   unsigned int ring_size,
1135 				   unsigned int hwsp,
1136 				   struct lock_class_key *key,
1137 				   const char *name)
1138 {
1139 	struct intel_context *ce;
1140 	int err;
1141 
1142 	ce = intel_context_create(engine);
1143 	if (IS_ERR(ce))
1144 		return ce;
1145 
1146 	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1147 	ce->timeline = page_pack_bits(NULL, hwsp);
1148 	ce->ring = NULL;
1149 	ce->ring_size = ring_size;
1150 
1151 	i915_vm_put(ce->vm);
1152 	ce->vm = i915_vm_get(vm);
1153 
1154 	err = intel_context_pin(ce); /* perma-pin so it is always available */
1155 	if (err) {
1156 		intel_context_put(ce);
1157 		return ERR_PTR(err);
1158 	}
1159 
1160 	list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1161 
1162 	/*
1163 	 * Give our perma-pinned kernel timelines a separate lockdep class,
1164 	 * so that we can use them from within the normal user timelines
1165 	 * should we need to inject GPU operations during their request
1166 	 * construction.
1167 	 */
1168 	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1169 
1170 	return ce;
1171 }
1172 
1173 void intel_engine_destroy_pinned_context(struct intel_context *ce)
1174 {
1175 	struct intel_engine_cs *engine = ce->engine;
1176 	struct i915_vma *hwsp = engine->status_page.vma;
1177 
1178 	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1179 
1180 	mutex_lock(&hwsp->vm->mutex);
1181 	list_del(&ce->timeline->engine_link);
1182 	mutex_unlock(&hwsp->vm->mutex);
1183 
1184 	list_del(&ce->pinned_contexts_link);
1185 	intel_context_unpin(ce);
1186 	intel_context_put(ce);
1187 }
1188 
1189 static struct intel_context *
1190 create_kernel_context(struct intel_engine_cs *engine)
1191 {
1192 	static struct lock_class_key kernel;
1193 
1194 	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1195 						  I915_GEM_HWS_SEQNO_ADDR,
1196 						  &kernel, "kernel_context");
1197 }
1198 
1199 /**
1200  * intel_engines_init_common - initialize cengine state which might require hw access
1201  * @engine: Engine to initialize.
1202  *
1203  * Initializes @engine@ structure members shared between legacy and execlists
1204  * submission modes which do require hardware access.
1205  *
1206  * Typcally done at later stages of submission mode specific engine setup.
1207  *
1208  * Returns zero on success or an error code on failure.
1209  */
1210 static int engine_init_common(struct intel_engine_cs *engine)
1211 {
1212 	struct intel_context *ce;
1213 	int ret;
1214 
1215 	engine->set_default_submission(engine);
1216 
1217 	/*
1218 	 * We may need to do things with the shrinker which
1219 	 * require us to immediately switch back to the default
1220 	 * context. This can cause a problem as pinning the
1221 	 * default context also requires GTT space which may not
1222 	 * be available. To avoid this we always pin the default
1223 	 * context.
1224 	 */
1225 	ce = create_kernel_context(engine);
1226 	if (IS_ERR(ce))
1227 		return PTR_ERR(ce);
1228 
1229 	ret = measure_breadcrumb_dw(ce);
1230 	if (ret < 0)
1231 		goto err_context;
1232 
1233 	engine->emit_fini_breadcrumb_dw = ret;
1234 	engine->kernel_context = ce;
1235 
1236 	return 0;
1237 
1238 err_context:
1239 	intel_engine_destroy_pinned_context(ce);
1240 	return ret;
1241 }
1242 
1243 int intel_engines_init(struct intel_gt *gt)
1244 {
1245 	int (*setup)(struct intel_engine_cs *engine);
1246 	struct intel_engine_cs *engine;
1247 	enum intel_engine_id id;
1248 	int err;
1249 
1250 	if (intel_uc_uses_guc_submission(&gt->uc)) {
1251 		gt->submission_method = INTEL_SUBMISSION_GUC;
1252 		setup = intel_guc_submission_setup;
1253 	} else if (HAS_EXECLISTS(gt->i915)) {
1254 		gt->submission_method = INTEL_SUBMISSION_ELSP;
1255 		setup = intel_execlists_submission_setup;
1256 	} else {
1257 		gt->submission_method = INTEL_SUBMISSION_RING;
1258 		setup = intel_ring_submission_setup;
1259 	}
1260 
1261 	for_each_engine(engine, gt, id) {
1262 		err = engine_setup_common(engine);
1263 		if (err)
1264 			return err;
1265 
1266 		err = setup(engine);
1267 		if (err)
1268 			return err;
1269 
1270 		err = engine_init_common(engine);
1271 		if (err)
1272 			return err;
1273 
1274 		intel_engine_add_user(engine);
1275 	}
1276 
1277 	return 0;
1278 }
1279 
1280 /**
1281  * intel_engines_cleanup_common - cleans up the engine state created by
1282  *                                the common initiailizers.
1283  * @engine: Engine to cleanup.
1284  *
1285  * This cleans up everything created by the common helpers.
1286  */
1287 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1288 {
1289 	GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1290 
1291 	i915_sched_engine_put(engine->sched_engine);
1292 	intel_breadcrumbs_put(engine->breadcrumbs);
1293 
1294 	intel_engine_fini_retire(engine);
1295 	intel_engine_cleanup_cmd_parser(engine);
1296 
1297 	if (engine->default_state)
1298 		fput(engine->default_state);
1299 
1300 	if (engine->kernel_context)
1301 		intel_engine_destroy_pinned_context(engine->kernel_context);
1302 
1303 	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1304 	cleanup_status_page(engine);
1305 
1306 	intel_wa_list_free(&engine->ctx_wa_list);
1307 	intel_wa_list_free(&engine->wa_list);
1308 	intel_wa_list_free(&engine->whitelist);
1309 }
1310 
1311 /**
1312  * intel_engine_resume - re-initializes the HW state of the engine
1313  * @engine: Engine to resume.
1314  *
1315  * Returns zero on success or an error code on failure.
1316  */
1317 int intel_engine_resume(struct intel_engine_cs *engine)
1318 {
1319 	intel_engine_apply_workarounds(engine);
1320 	intel_engine_apply_whitelist(engine);
1321 
1322 	return engine->resume(engine);
1323 }
1324 
1325 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1326 {
1327 	struct drm_i915_private *i915 = engine->i915;
1328 
1329 	u64 acthd;
1330 
1331 	if (GRAPHICS_VER(i915) >= 8)
1332 		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1333 	else if (GRAPHICS_VER(i915) >= 4)
1334 		acthd = ENGINE_READ(engine, RING_ACTHD);
1335 	else
1336 		acthd = ENGINE_READ(engine, ACTHD);
1337 
1338 	return acthd;
1339 }
1340 
1341 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1342 {
1343 	u64 bbaddr;
1344 
1345 	if (GRAPHICS_VER(engine->i915) >= 8)
1346 		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1347 	else
1348 		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1349 
1350 	return bbaddr;
1351 }
1352 
1353 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1354 {
1355 	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1356 		return 0;
1357 
1358 	/*
1359 	 * If we are doing a normal GPU reset, we can take our time and allow
1360 	 * the engine to quiesce. We've stopped submission to the engine, and
1361 	 * if we wait long enough an innocent context should complete and
1362 	 * leave the engine idle. So they should not be caught unaware by
1363 	 * the forthcoming GPU reset (which usually follows the stop_cs)!
1364 	 */
1365 	return READ_ONCE(engine->props.stop_timeout_ms);
1366 }
1367 
1368 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1369 				  int fast_timeout_us,
1370 				  int slow_timeout_ms)
1371 {
1372 	struct intel_uncore *uncore = engine->uncore;
1373 	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1374 	int err;
1375 
1376 	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1377 
1378 	/*
1379 	 * Wa_22011802037 : gen11, gen12, Prior to doing a reset, ensure CS is
1380 	 * stopped, set ring stop bit and prefetch disable bit to halt CS
1381 	 */
1382 	if (IS_GRAPHICS_VER(engine->i915, 11, 12))
1383 		intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1384 				      _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1385 
1386 	err = __intel_wait_for_register_fw(engine->uncore, mode,
1387 					   MODE_IDLE, MODE_IDLE,
1388 					   fast_timeout_us,
1389 					   slow_timeout_ms,
1390 					   NULL);
1391 
1392 	/* A final mmio read to let GPU writes be hopefully flushed to memory */
1393 	intel_uncore_posting_read_fw(uncore, mode);
1394 	return err;
1395 }
1396 
1397 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1398 {
1399 	int err = 0;
1400 
1401 	if (GRAPHICS_VER(engine->i915) < 3)
1402 		return -ENODEV;
1403 
1404 	ENGINE_TRACE(engine, "\n");
1405 	/*
1406 	 * TODO: Find out why occasionally stopping the CS times out. Seen
1407 	 * especially with gem_eio tests.
1408 	 *
1409 	 * Occasionally trying to stop the cs times out, but does not adversely
1410 	 * affect functionality. The timeout is set as a config parameter that
1411 	 * defaults to 100ms. In most cases the follow up operation is to wait
1412 	 * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1413 	 * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1414 	 * caused, the caller must check and handle the return from this
1415 	 * function.
1416 	 */
1417 	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1418 		ENGINE_TRACE(engine,
1419 			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1420 			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1421 			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1422 
1423 		/*
1424 		 * Sometimes we observe that the idle flag is not
1425 		 * set even though the ring is empty. So double
1426 		 * check before giving up.
1427 		 */
1428 		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1429 		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1430 			err = -ETIMEDOUT;
1431 	}
1432 
1433 	return err;
1434 }
1435 
1436 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1437 {
1438 	ENGINE_TRACE(engine, "\n");
1439 
1440 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1441 }
1442 
1443 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1444 {
1445 	static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1446 		[RCS0] = MSG_IDLE_CS,
1447 		[BCS0] = MSG_IDLE_BCS,
1448 		[VCS0] = MSG_IDLE_VCS0,
1449 		[VCS1] = MSG_IDLE_VCS1,
1450 		[VCS2] = MSG_IDLE_VCS2,
1451 		[VCS3] = MSG_IDLE_VCS3,
1452 		[VCS4] = MSG_IDLE_VCS4,
1453 		[VCS5] = MSG_IDLE_VCS5,
1454 		[VCS6] = MSG_IDLE_VCS6,
1455 		[VCS7] = MSG_IDLE_VCS7,
1456 		[VECS0] = MSG_IDLE_VECS0,
1457 		[VECS1] = MSG_IDLE_VECS1,
1458 		[VECS2] = MSG_IDLE_VECS2,
1459 		[VECS3] = MSG_IDLE_VECS3,
1460 		[CCS0] = MSG_IDLE_CS,
1461 		[CCS1] = MSG_IDLE_CS,
1462 		[CCS2] = MSG_IDLE_CS,
1463 		[CCS3] = MSG_IDLE_CS,
1464 	};
1465 	u32 val;
1466 
1467 	if (!_reg[engine->id].reg) {
1468 		drm_err(&engine->i915->drm,
1469 			"MSG IDLE undefined for engine id %u\n", engine->id);
1470 		return 0;
1471 	}
1472 
1473 	val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1474 
1475 	/* bits[29:25] & bits[13:9] >> shift */
1476 	return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1477 }
1478 
1479 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1480 {
1481 	int ret;
1482 
1483 	/* Ensure GPM receives fw up/down after CS is stopped */
1484 	udelay(1);
1485 
1486 	/* Wait for forcewake request to complete in GPM */
1487 	ret =  __intel_wait_for_register_fw(gt->uncore,
1488 					    GEN9_PWRGT_DOMAIN_STATUS,
1489 					    fw_mask, fw_mask, 5000, 0, NULL);
1490 
1491 	/* Ensure CS receives fw ack from GPM */
1492 	udelay(1);
1493 
1494 	if (ret)
1495 		GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1496 }
1497 
1498 /*
1499  * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1500  * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1501  * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1502  * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1503  * are concerned only with the gt reset here, we use a logical OR of pending
1504  * forcewakeups from all reset domains and then wait for them to complete by
1505  * querying PWRGT_DOMAIN_STATUS.
1506  */
1507 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1508 {
1509 	u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1510 
1511 	if (fw_pending)
1512 		__gpm_wait_for_fw_complete(engine->gt, fw_pending);
1513 }
1514 
1515 /* NB: please notice the memset */
1516 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1517 			       struct intel_instdone *instdone)
1518 {
1519 	struct drm_i915_private *i915 = engine->i915;
1520 	struct intel_uncore *uncore = engine->uncore;
1521 	u32 mmio_base = engine->mmio_base;
1522 	int slice;
1523 	int subslice;
1524 	int iter;
1525 
1526 	memset(instdone, 0, sizeof(*instdone));
1527 
1528 	if (GRAPHICS_VER(i915) >= 8) {
1529 		instdone->instdone =
1530 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1531 
1532 		if (engine->id != RCS0)
1533 			return;
1534 
1535 		instdone->slice_common =
1536 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1537 		if (GRAPHICS_VER(i915) >= 12) {
1538 			instdone->slice_common_extra[0] =
1539 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1540 			instdone->slice_common_extra[1] =
1541 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1542 		}
1543 
1544 		for_each_ss_steering(iter, engine->gt, slice, subslice) {
1545 			instdone->sampler[slice][subslice] =
1546 				intel_gt_mcr_read(engine->gt,
1547 						  GEN7_SAMPLER_INSTDONE,
1548 						  slice, subslice);
1549 			instdone->row[slice][subslice] =
1550 				intel_gt_mcr_read(engine->gt,
1551 						  GEN7_ROW_INSTDONE,
1552 						  slice, subslice);
1553 		}
1554 
1555 		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1556 			for_each_ss_steering(iter, engine->gt, slice, subslice)
1557 				instdone->geom_svg[slice][subslice] =
1558 					intel_gt_mcr_read(engine->gt,
1559 							  XEHPG_INSTDONE_GEOM_SVG,
1560 							  slice, subslice);
1561 		}
1562 	} else if (GRAPHICS_VER(i915) >= 7) {
1563 		instdone->instdone =
1564 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1565 
1566 		if (engine->id != RCS0)
1567 			return;
1568 
1569 		instdone->slice_common =
1570 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1571 		instdone->sampler[0][0] =
1572 			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1573 		instdone->row[0][0] =
1574 			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1575 	} else if (GRAPHICS_VER(i915) >= 4) {
1576 		instdone->instdone =
1577 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1578 		if (engine->id == RCS0)
1579 			/* HACK: Using the wrong struct member */
1580 			instdone->slice_common =
1581 				intel_uncore_read(uncore, GEN4_INSTDONE1);
1582 	} else {
1583 		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1584 	}
1585 }
1586 
1587 static bool ring_is_idle(struct intel_engine_cs *engine)
1588 {
1589 	bool idle = true;
1590 
1591 	if (I915_SELFTEST_ONLY(!engine->mmio_base))
1592 		return true;
1593 
1594 	if (!intel_engine_pm_get_if_awake(engine))
1595 		return true;
1596 
1597 	/* First check that no commands are left in the ring */
1598 	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1599 	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1600 		idle = false;
1601 
1602 	/* No bit for gen2, so assume the CS parser is idle */
1603 	if (GRAPHICS_VER(engine->i915) > 2 &&
1604 	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1605 		idle = false;
1606 
1607 	intel_engine_pm_put(engine);
1608 
1609 	return idle;
1610 }
1611 
1612 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1613 {
1614 	struct tasklet_struct *t = &engine->sched_engine->tasklet;
1615 
1616 	if (!t->callback)
1617 		return;
1618 
1619 	local_bh_disable();
1620 	if (tasklet_trylock(t)) {
1621 		/* Must wait for any GPU reset in progress. */
1622 		if (__tasklet_is_enabled(t))
1623 			t->callback(t);
1624 		tasklet_unlock(t);
1625 	}
1626 	local_bh_enable();
1627 
1628 	/* Synchronise and wait for the tasklet on another CPU */
1629 	if (sync)
1630 		tasklet_unlock_wait(t);
1631 }
1632 
1633 /**
1634  * intel_engine_is_idle() - Report if the engine has finished process all work
1635  * @engine: the intel_engine_cs
1636  *
1637  * Return true if there are no requests pending, nothing left to be submitted
1638  * to hardware, and that the engine is idle.
1639  */
1640 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1641 {
1642 	/* More white lies, if wedged, hw state is inconsistent */
1643 	if (intel_gt_is_wedged(engine->gt))
1644 		return true;
1645 
1646 	if (!intel_engine_pm_is_awake(engine))
1647 		return true;
1648 
1649 	/* Waiting to drain ELSP? */
1650 	intel_synchronize_hardirq(engine->i915);
1651 	intel_engine_flush_submission(engine);
1652 
1653 	/* ELSP is empty, but there are ready requests? E.g. after reset */
1654 	if (!i915_sched_engine_is_empty(engine->sched_engine))
1655 		return false;
1656 
1657 	/* Ring stopped? */
1658 	return ring_is_idle(engine);
1659 }
1660 
1661 bool intel_engines_are_idle(struct intel_gt *gt)
1662 {
1663 	struct intel_engine_cs *engine;
1664 	enum intel_engine_id id;
1665 
1666 	/*
1667 	 * If the driver is wedged, HW state may be very inconsistent and
1668 	 * report that it is still busy, even though we have stopped using it.
1669 	 */
1670 	if (intel_gt_is_wedged(gt))
1671 		return true;
1672 
1673 	/* Already parked (and passed an idleness test); must still be idle */
1674 	if (!READ_ONCE(gt->awake))
1675 		return true;
1676 
1677 	for_each_engine(engine, gt, id) {
1678 		if (!intel_engine_is_idle(engine))
1679 			return false;
1680 	}
1681 
1682 	return true;
1683 }
1684 
1685 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1686 {
1687 	if (!engine->irq_enable)
1688 		return false;
1689 
1690 	/* Caller disables interrupts */
1691 	spin_lock(&engine->gt->irq_lock);
1692 	engine->irq_enable(engine);
1693 	spin_unlock(&engine->gt->irq_lock);
1694 
1695 	return true;
1696 }
1697 
1698 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1699 {
1700 	if (!engine->irq_disable)
1701 		return;
1702 
1703 	/* Caller disables interrupts */
1704 	spin_lock(&engine->gt->irq_lock);
1705 	engine->irq_disable(engine);
1706 	spin_unlock(&engine->gt->irq_lock);
1707 }
1708 
1709 void intel_engines_reset_default_submission(struct intel_gt *gt)
1710 {
1711 	struct intel_engine_cs *engine;
1712 	enum intel_engine_id id;
1713 
1714 	for_each_engine(engine, gt, id) {
1715 		if (engine->sanitize)
1716 			engine->sanitize(engine);
1717 
1718 		engine->set_default_submission(engine);
1719 	}
1720 }
1721 
1722 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1723 {
1724 	switch (GRAPHICS_VER(engine->i915)) {
1725 	case 2:
1726 		return false; /* uses physical not virtual addresses */
1727 	case 3:
1728 		/* maybe only uses physical not virtual addresses */
1729 		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1730 	case 4:
1731 		return !IS_I965G(engine->i915); /* who knows! */
1732 	case 6:
1733 		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1734 	default:
1735 		return true;
1736 	}
1737 }
1738 
1739 static struct intel_timeline *get_timeline(struct i915_request *rq)
1740 {
1741 	struct intel_timeline *tl;
1742 
1743 	/*
1744 	 * Even though we are holding the engine->sched_engine->lock here, there
1745 	 * is no control over the submission queue per-se and we are
1746 	 * inspecting the active state at a random point in time, with an
1747 	 * unknown queue. Play safe and make sure the timeline remains valid.
1748 	 * (Only being used for pretty printing, one extra kref shouldn't
1749 	 * cause a camel stampede!)
1750 	 */
1751 	rcu_read_lock();
1752 	tl = rcu_dereference(rq->timeline);
1753 	if (!kref_get_unless_zero(&tl->kref))
1754 		tl = NULL;
1755 	rcu_read_unlock();
1756 
1757 	return tl;
1758 }
1759 
1760 static int print_ring(char *buf, int sz, struct i915_request *rq)
1761 {
1762 	int len = 0;
1763 
1764 	if (!i915_request_signaled(rq)) {
1765 		struct intel_timeline *tl = get_timeline(rq);
1766 
1767 		len = scnprintf(buf, sz,
1768 				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1769 				i915_ggtt_offset(rq->ring->vma),
1770 				tl ? tl->hwsp_offset : 0,
1771 				hwsp_seqno(rq),
1772 				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1773 						      1000 * 1000));
1774 
1775 		if (tl)
1776 			intel_timeline_put(tl);
1777 	}
1778 
1779 	return len;
1780 }
1781 
1782 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1783 {
1784 	const size_t rowsize = 8 * sizeof(u32);
1785 	const void *prev = NULL;
1786 	bool skip = false;
1787 	size_t pos;
1788 
1789 	for (pos = 0; pos < len; pos += rowsize) {
1790 		char line[128];
1791 
1792 		if (prev && !memcmp(prev, buf + pos, rowsize)) {
1793 			if (!skip) {
1794 				drm_printf(m, "*\n");
1795 				skip = true;
1796 			}
1797 			continue;
1798 		}
1799 
1800 		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1801 						rowsize, sizeof(u32),
1802 						line, sizeof(line),
1803 						false) >= sizeof(line));
1804 		drm_printf(m, "[%04zx] %s\n", pos, line);
1805 
1806 		prev = buf + pos;
1807 		skip = false;
1808 	}
1809 }
1810 
1811 static const char *repr_timer(const struct timer_list *t)
1812 {
1813 	if (!READ_ONCE(t->expires))
1814 		return "inactive";
1815 
1816 	if (timer_pending(t))
1817 		return "active";
1818 
1819 	return "expired";
1820 }
1821 
1822 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1823 					 struct drm_printer *m)
1824 {
1825 	struct drm_i915_private *dev_priv = engine->i915;
1826 	struct intel_engine_execlists * const execlists = &engine->execlists;
1827 	u64 addr;
1828 
1829 	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
1830 		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1831 	if (HAS_EXECLISTS(dev_priv)) {
1832 		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
1833 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
1834 		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
1835 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
1836 	}
1837 	drm_printf(m, "\tRING_START: 0x%08x\n",
1838 		   ENGINE_READ(engine, RING_START));
1839 	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1840 		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1841 	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1842 		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1843 	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1844 		   ENGINE_READ(engine, RING_CTL),
1845 		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1846 	if (GRAPHICS_VER(engine->i915) > 2) {
1847 		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1848 			   ENGINE_READ(engine, RING_MI_MODE),
1849 			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1850 	}
1851 
1852 	if (GRAPHICS_VER(dev_priv) >= 6) {
1853 		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1854 			   ENGINE_READ(engine, RING_IMR));
1855 		drm_printf(m, "\tRING_ESR:   0x%08x\n",
1856 			   ENGINE_READ(engine, RING_ESR));
1857 		drm_printf(m, "\tRING_EMR:   0x%08x\n",
1858 			   ENGINE_READ(engine, RING_EMR));
1859 		drm_printf(m, "\tRING_EIR:   0x%08x\n",
1860 			   ENGINE_READ(engine, RING_EIR));
1861 	}
1862 
1863 	addr = intel_engine_get_active_head(engine);
1864 	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
1865 		   upper_32_bits(addr), lower_32_bits(addr));
1866 	addr = intel_engine_get_last_batch_head(engine);
1867 	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1868 		   upper_32_bits(addr), lower_32_bits(addr));
1869 	if (GRAPHICS_VER(dev_priv) >= 8)
1870 		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1871 	else if (GRAPHICS_VER(dev_priv) >= 4)
1872 		addr = ENGINE_READ(engine, RING_DMA_FADD);
1873 	else
1874 		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1875 	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1876 		   upper_32_bits(addr), lower_32_bits(addr));
1877 	if (GRAPHICS_VER(dev_priv) >= 4) {
1878 		drm_printf(m, "\tIPEIR: 0x%08x\n",
1879 			   ENGINE_READ(engine, RING_IPEIR));
1880 		drm_printf(m, "\tIPEHR: 0x%08x\n",
1881 			   ENGINE_READ(engine, RING_IPEHR));
1882 	} else {
1883 		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1884 		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1885 	}
1886 
1887 	if (HAS_EXECLISTS(dev_priv) && !intel_engine_uses_guc(engine)) {
1888 		struct i915_request * const *port, *rq;
1889 		const u32 *hws =
1890 			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1891 		const u8 num_entries = execlists->csb_size;
1892 		unsigned int idx;
1893 		u8 read, write;
1894 
1895 		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1896 			   str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
1897 			   str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
1898 			   repr_timer(&engine->execlists.preempt),
1899 			   repr_timer(&engine->execlists.timer));
1900 
1901 		read = execlists->csb_head;
1902 		write = READ_ONCE(*execlists->csb_write);
1903 
1904 		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1905 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1906 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1907 			   read, write, num_entries);
1908 
1909 		if (read >= num_entries)
1910 			read = 0;
1911 		if (write >= num_entries)
1912 			write = 0;
1913 		if (read > write)
1914 			write += num_entries;
1915 		while (read < write) {
1916 			idx = ++read % num_entries;
1917 			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
1918 				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1919 		}
1920 
1921 		i915_sched_engine_active_lock_bh(engine->sched_engine);
1922 		rcu_read_lock();
1923 		for (port = execlists->active; (rq = *port); port++) {
1924 			char hdr[160];
1925 			int len;
1926 
1927 			len = scnprintf(hdr, sizeof(hdr),
1928 					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1929 					(int)(port - execlists->active),
1930 					rq->context->lrc.ccid,
1931 					intel_context_is_closed(rq->context) ? "!" : "",
1932 					intel_context_is_banned(rq->context) ? "*" : "");
1933 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1934 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1935 			i915_request_show(m, rq, hdr, 0);
1936 		}
1937 		for (port = execlists->pending; (rq = *port); port++) {
1938 			char hdr[160];
1939 			int len;
1940 
1941 			len = scnprintf(hdr, sizeof(hdr),
1942 					"\t\tPending[%d]: ccid:%08x%s%s, ",
1943 					(int)(port - execlists->pending),
1944 					rq->context->lrc.ccid,
1945 					intel_context_is_closed(rq->context) ? "!" : "",
1946 					intel_context_is_banned(rq->context) ? "*" : "");
1947 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1948 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1949 			i915_request_show(m, rq, hdr, 0);
1950 		}
1951 		rcu_read_unlock();
1952 		i915_sched_engine_active_unlock_bh(engine->sched_engine);
1953 	} else if (GRAPHICS_VER(dev_priv) > 6) {
1954 		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1955 			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1956 		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1957 			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1958 		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1959 			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1960 	}
1961 }
1962 
1963 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
1964 {
1965 	struct i915_vma_resource *vma_res = rq->batch_res;
1966 	void *ring;
1967 	int size;
1968 
1969 	drm_printf(m,
1970 		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
1971 		   rq->head, rq->postfix, rq->tail,
1972 		   vma_res ? upper_32_bits(vma_res->start) : ~0u,
1973 		   vma_res ? lower_32_bits(vma_res->start) : ~0u);
1974 
1975 	size = rq->tail - rq->head;
1976 	if (rq->tail < rq->head)
1977 		size += rq->ring->size;
1978 
1979 	ring = kmalloc(size, GFP_ATOMIC);
1980 	if (ring) {
1981 		const void *vaddr = rq->ring->vaddr;
1982 		unsigned int head = rq->head;
1983 		unsigned int len = 0;
1984 
1985 		if (rq->tail < head) {
1986 			len = rq->ring->size - head;
1987 			memcpy(ring, vaddr + head, len);
1988 			head = 0;
1989 		}
1990 		memcpy(ring + len, vaddr + head, size - len);
1991 
1992 		hexdump(m, ring, size);
1993 		kfree(ring);
1994 	}
1995 }
1996 
1997 static unsigned long list_count(struct list_head *list)
1998 {
1999 	struct list_head *pos;
2000 	unsigned long count = 0;
2001 
2002 	list_for_each(pos, list)
2003 		count++;
2004 
2005 	return count;
2006 }
2007 
2008 static unsigned long read_ul(void *p, size_t x)
2009 {
2010 	return *(unsigned long *)(p + x);
2011 }
2012 
2013 static void print_properties(struct intel_engine_cs *engine,
2014 			     struct drm_printer *m)
2015 {
2016 	static const struct pmap {
2017 		size_t offset;
2018 		const char *name;
2019 	} props[] = {
2020 #define P(x) { \
2021 	.offset = offsetof(typeof(engine->props), x), \
2022 	.name = #x \
2023 }
2024 		P(heartbeat_interval_ms),
2025 		P(max_busywait_duration_ns),
2026 		P(preempt_timeout_ms),
2027 		P(stop_timeout_ms),
2028 		P(timeslice_duration_ms),
2029 
2030 		{},
2031 #undef P
2032 	};
2033 	const struct pmap *p;
2034 
2035 	drm_printf(m, "\tProperties:\n");
2036 	for (p = props; p->name; p++)
2037 		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2038 			   p->name,
2039 			   read_ul(&engine->props, p->offset),
2040 			   read_ul(&engine->defaults, p->offset));
2041 }
2042 
2043 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2044 {
2045 	struct intel_timeline *tl = get_timeline(rq);
2046 
2047 	i915_request_show(m, rq, msg, 0);
2048 
2049 	drm_printf(m, "\t\tring->start:  0x%08x\n",
2050 		   i915_ggtt_offset(rq->ring->vma));
2051 	drm_printf(m, "\t\tring->head:   0x%08x\n",
2052 		   rq->ring->head);
2053 	drm_printf(m, "\t\tring->tail:   0x%08x\n",
2054 		   rq->ring->tail);
2055 	drm_printf(m, "\t\tring->emit:   0x%08x\n",
2056 		   rq->ring->emit);
2057 	drm_printf(m, "\t\tring->space:  0x%08x\n",
2058 		   rq->ring->space);
2059 
2060 	if (tl) {
2061 		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
2062 			   tl->hwsp_offset);
2063 		intel_timeline_put(tl);
2064 	}
2065 
2066 	print_request_ring(m, rq);
2067 
2068 	if (rq->context->lrc_reg_state) {
2069 		drm_printf(m, "Logical Ring Context:\n");
2070 		hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2071 	}
2072 }
2073 
2074 void intel_engine_dump_active_requests(struct list_head *requests,
2075 				       struct i915_request *hung_rq,
2076 				       struct drm_printer *m)
2077 {
2078 	struct i915_request *rq;
2079 	const char *msg;
2080 	enum i915_request_state state;
2081 
2082 	list_for_each_entry(rq, requests, sched.link) {
2083 		if (rq == hung_rq)
2084 			continue;
2085 
2086 		state = i915_test_request_state(rq);
2087 		if (state < I915_REQUEST_QUEUED)
2088 			continue;
2089 
2090 		if (state == I915_REQUEST_ACTIVE)
2091 			msg = "\t\tactive on engine";
2092 		else
2093 			msg = "\t\tactive in queue";
2094 
2095 		engine_dump_request(rq, m, msg);
2096 	}
2097 }
2098 
2099 static void engine_dump_active_requests(struct intel_engine_cs *engine, struct drm_printer *m)
2100 {
2101 	struct i915_request *hung_rq = NULL;
2102 	struct intel_context *ce;
2103 	bool guc;
2104 
2105 	/*
2106 	 * No need for an engine->irq_seqno_barrier() before the seqno reads.
2107 	 * The GPU is still running so requests are still executing and any
2108 	 * hardware reads will be out of date by the time they are reported.
2109 	 * But the intention here is just to report an instantaneous snapshot
2110 	 * so that's fine.
2111 	 */
2112 	lockdep_assert_held(&engine->sched_engine->lock);
2113 
2114 	drm_printf(m, "\tRequests:\n");
2115 
2116 	guc = intel_uc_uses_guc_submission(&engine->gt->uc);
2117 	if (guc) {
2118 		ce = intel_engine_get_hung_context(engine);
2119 		if (ce)
2120 			hung_rq = intel_context_find_active_request(ce);
2121 	} else {
2122 		hung_rq = intel_engine_execlist_find_hung_request(engine);
2123 	}
2124 
2125 	if (hung_rq)
2126 		engine_dump_request(hung_rq, m, "\t\thung");
2127 
2128 	if (guc)
2129 		intel_guc_dump_active_requests(engine, hung_rq, m);
2130 	else
2131 		intel_engine_dump_active_requests(&engine->sched_engine->requests,
2132 						  hung_rq, m);
2133 }
2134 
2135 void intel_engine_dump(struct intel_engine_cs *engine,
2136 		       struct drm_printer *m,
2137 		       const char *header, ...)
2138 {
2139 	struct i915_gpu_error * const error = &engine->i915->gpu_error;
2140 	struct i915_request *rq;
2141 	intel_wakeref_t wakeref;
2142 	unsigned long flags;
2143 	ktime_t dummy;
2144 
2145 	if (header) {
2146 		va_list ap;
2147 
2148 		va_start(ap, header);
2149 		drm_vprintf(m, header, &ap);
2150 		va_end(ap);
2151 	}
2152 
2153 	if (intel_gt_is_wedged(engine->gt))
2154 		drm_printf(m, "*** WEDGED ***\n");
2155 
2156 	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2157 	drm_printf(m, "\tBarriers?: %s\n",
2158 		   str_yes_no(!llist_empty(&engine->barrier_tasks)));
2159 	drm_printf(m, "\tLatency: %luus\n",
2160 		   ewma__engine_latency_read(&engine->latency));
2161 	if (intel_engine_supports_stats(engine))
2162 		drm_printf(m, "\tRuntime: %llums\n",
2163 			   ktime_to_ms(intel_engine_get_busy_time(engine,
2164 								  &dummy)));
2165 	drm_printf(m, "\tForcewake: %x domains, %d active\n",
2166 		   engine->fw_domain, READ_ONCE(engine->fw_active));
2167 
2168 	rcu_read_lock();
2169 	rq = READ_ONCE(engine->heartbeat.systole);
2170 	if (rq)
2171 		drm_printf(m, "\tHeartbeat: %d ms ago\n",
2172 			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2173 	rcu_read_unlock();
2174 	drm_printf(m, "\tReset count: %d (global %d)\n",
2175 		   i915_reset_engine_count(error, engine),
2176 		   i915_reset_count(error));
2177 	print_properties(engine, m);
2178 
2179 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
2180 	engine_dump_active_requests(engine, m);
2181 
2182 	drm_printf(m, "\tOn hold?: %lu\n",
2183 		   list_count(&engine->sched_engine->hold));
2184 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2185 
2186 	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
2187 	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2188 	if (wakeref) {
2189 		intel_engine_print_registers(engine, m);
2190 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2191 	} else {
2192 		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2193 	}
2194 
2195 	intel_execlists_show_requests(engine, m, i915_request_show, 8);
2196 
2197 	drm_printf(m, "HWSP:\n");
2198 	hexdump(m, engine->status_page.addr, PAGE_SIZE);
2199 
2200 	drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2201 
2202 	intel_engine_print_breadcrumbs(engine, m);
2203 }
2204 
2205 /**
2206  * intel_engine_get_busy_time() - Return current accumulated engine busyness
2207  * @engine: engine to report on
2208  * @now: monotonic timestamp of sampling
2209  *
2210  * Returns accumulated time @engine was busy since engine stats were enabled.
2211  */
2212 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2213 {
2214 	return engine->busyness(engine, now);
2215 }
2216 
2217 struct intel_context *
2218 intel_engine_create_virtual(struct intel_engine_cs **siblings,
2219 			    unsigned int count, unsigned long flags)
2220 {
2221 	if (count == 0)
2222 		return ERR_PTR(-EINVAL);
2223 
2224 	if (count == 1 && !(flags & FORCE_VIRTUAL))
2225 		return intel_context_create(siblings[0]);
2226 
2227 	GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2228 	return siblings[0]->cops->create_virtual(siblings, count, flags);
2229 }
2230 
2231 struct i915_request *
2232 intel_engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2233 {
2234 	struct i915_request *request, *active = NULL;
2235 
2236 	/*
2237 	 * This search does not work in GuC submission mode. However, the GuC
2238 	 * will report the hanging context directly to the driver itself. So
2239 	 * the driver should never get here when in GuC mode.
2240 	 */
2241 	GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2242 
2243 	/*
2244 	 * We are called by the error capture, reset and to dump engine
2245 	 * state at random points in time. In particular, note that neither is
2246 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
2247 	 * and we assume that no more writes can happen (we waited long enough
2248 	 * for all writes that were in transaction to be flushed) - adding an
2249 	 * extra delay for a recent interrupt is pointless. Hence, we do
2250 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2251 	 * At all other times, we must assume the GPU is still running, but
2252 	 * we only care about the snapshot of this moment.
2253 	 */
2254 	lockdep_assert_held(&engine->sched_engine->lock);
2255 
2256 	rcu_read_lock();
2257 	request = execlists_active(&engine->execlists);
2258 	if (request) {
2259 		struct intel_timeline *tl = request->context->timeline;
2260 
2261 		list_for_each_entry_from_reverse(request, &tl->requests, link) {
2262 			if (__i915_request_is_complete(request))
2263 				break;
2264 
2265 			active = request;
2266 		}
2267 	}
2268 	rcu_read_unlock();
2269 	if (active)
2270 		return active;
2271 
2272 	list_for_each_entry(request, &engine->sched_engine->requests,
2273 			    sched.link) {
2274 		if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2275 			continue;
2276 
2277 		active = request;
2278 		break;
2279 	}
2280 
2281 	return active;
2282 }
2283 
2284 void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2285 {
2286 	/*
2287 	 * If there are any non-fused-off CCS engines, we need to enable CCS
2288 	 * support in the RCU_MODE register.  This only needs to be done once,
2289 	 * so for simplicity we'll take care of this in the RCS engine's
2290 	 * resume handler; since the RCS and all CCS engines belong to the
2291 	 * same reset domain and are reset together, this will also take care
2292 	 * of re-applying the setting after i915-triggered resets.
2293 	 */
2294 	if (!CCS_MASK(engine->gt))
2295 		return;
2296 
2297 	intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2298 			   _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2299 }
2300 
2301 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2302 #include "mock_engine.c"
2303 #include "selftest_engine.c"
2304 #include "selftest_engine_cs.c"
2305 #endif
2306