xref: /linux/drivers/gpu/drm/i915/gt/intel_engine_cs.c (revision 3a38ef2b3cb6b63c105247b5ea4a9cf600e673f0)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include <drm/drm_print.h>
9 
10 #include "gem/i915_gem_context.h"
11 #include "gem/i915_gem_internal.h"
12 #include "gt/intel_gt_regs.h"
13 
14 #include "i915_cmd_parser.h"
15 #include "i915_drv.h"
16 #include "intel_breadcrumbs.h"
17 #include "intel_context.h"
18 #include "intel_engine.h"
19 #include "intel_engine_pm.h"
20 #include "intel_engine_regs.h"
21 #include "intel_engine_user.h"
22 #include "intel_execlists_submission.h"
23 #include "intel_gt.h"
24 #include "intel_gt_mcr.h"
25 #include "intel_gt_pm.h"
26 #include "intel_gt_requests.h"
27 #include "intel_lrc.h"
28 #include "intel_lrc_reg.h"
29 #include "intel_reset.h"
30 #include "intel_ring.h"
31 #include "uc/intel_guc_submission.h"
32 
33 /* Haswell does have the CXT_SIZE register however it does not appear to be
34  * valid. Now, docs explain in dwords what is in the context object. The full
35  * size is 70720 bytes, however, the power context and execlist context will
36  * never be saved (power context is stored elsewhere, and execlists don't work
37  * on HSW) - so the final size, including the extra state required for the
38  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
39  */
40 #define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)
41 
42 #define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
43 #define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
44 #define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
45 #define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
46 
47 #define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)
48 
49 #define MAX_MMIO_BASES 3
50 struct engine_info {
51 	u8 class;
52 	u8 instance;
53 	/* mmio bases table *must* be sorted in reverse graphics_ver order */
54 	struct engine_mmio_base {
55 		u32 graphics_ver : 8;
56 		u32 base : 24;
57 	} mmio_bases[MAX_MMIO_BASES];
58 };
59 
60 static const struct engine_info intel_engines[] = {
61 	[RCS0] = {
62 		.class = RENDER_CLASS,
63 		.instance = 0,
64 		.mmio_bases = {
65 			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
66 		},
67 	},
68 	[BCS0] = {
69 		.class = COPY_ENGINE_CLASS,
70 		.instance = 0,
71 		.mmio_bases = {
72 			{ .graphics_ver = 6, .base = BLT_RING_BASE }
73 		},
74 	},
75 	[BCS1] = {
76 		.class = COPY_ENGINE_CLASS,
77 		.instance = 1,
78 		.mmio_bases = {
79 			{ .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
80 		},
81 	},
82 	[BCS2] = {
83 		.class = COPY_ENGINE_CLASS,
84 		.instance = 2,
85 		.mmio_bases = {
86 			{ .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
87 		},
88 	},
89 	[BCS3] = {
90 		.class = COPY_ENGINE_CLASS,
91 		.instance = 3,
92 		.mmio_bases = {
93 			{ .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
94 		},
95 	},
96 	[BCS4] = {
97 		.class = COPY_ENGINE_CLASS,
98 		.instance = 4,
99 		.mmio_bases = {
100 			{ .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
101 		},
102 	},
103 	[BCS5] = {
104 		.class = COPY_ENGINE_CLASS,
105 		.instance = 5,
106 		.mmio_bases = {
107 			{ .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
108 		},
109 	},
110 	[BCS6] = {
111 		.class = COPY_ENGINE_CLASS,
112 		.instance = 6,
113 		.mmio_bases = {
114 			{ .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
115 		},
116 	},
117 	[BCS7] = {
118 		.class = COPY_ENGINE_CLASS,
119 		.instance = 7,
120 		.mmio_bases = {
121 			{ .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
122 		},
123 	},
124 	[BCS8] = {
125 		.class = COPY_ENGINE_CLASS,
126 		.instance = 8,
127 		.mmio_bases = {
128 			{ .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
129 		},
130 	},
131 	[VCS0] = {
132 		.class = VIDEO_DECODE_CLASS,
133 		.instance = 0,
134 		.mmio_bases = {
135 			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
136 			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
137 			{ .graphics_ver = 4, .base = BSD_RING_BASE }
138 		},
139 	},
140 	[VCS1] = {
141 		.class = VIDEO_DECODE_CLASS,
142 		.instance = 1,
143 		.mmio_bases = {
144 			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
145 			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
146 		},
147 	},
148 	[VCS2] = {
149 		.class = VIDEO_DECODE_CLASS,
150 		.instance = 2,
151 		.mmio_bases = {
152 			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
153 		},
154 	},
155 	[VCS3] = {
156 		.class = VIDEO_DECODE_CLASS,
157 		.instance = 3,
158 		.mmio_bases = {
159 			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
160 		},
161 	},
162 	[VCS4] = {
163 		.class = VIDEO_DECODE_CLASS,
164 		.instance = 4,
165 		.mmio_bases = {
166 			{ .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
167 		},
168 	},
169 	[VCS5] = {
170 		.class = VIDEO_DECODE_CLASS,
171 		.instance = 5,
172 		.mmio_bases = {
173 			{ .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
174 		},
175 	},
176 	[VCS6] = {
177 		.class = VIDEO_DECODE_CLASS,
178 		.instance = 6,
179 		.mmio_bases = {
180 			{ .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
181 		},
182 	},
183 	[VCS7] = {
184 		.class = VIDEO_DECODE_CLASS,
185 		.instance = 7,
186 		.mmio_bases = {
187 			{ .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
188 		},
189 	},
190 	[VECS0] = {
191 		.class = VIDEO_ENHANCEMENT_CLASS,
192 		.instance = 0,
193 		.mmio_bases = {
194 			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
195 			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
196 		},
197 	},
198 	[VECS1] = {
199 		.class = VIDEO_ENHANCEMENT_CLASS,
200 		.instance = 1,
201 		.mmio_bases = {
202 			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
203 		},
204 	},
205 	[VECS2] = {
206 		.class = VIDEO_ENHANCEMENT_CLASS,
207 		.instance = 2,
208 		.mmio_bases = {
209 			{ .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
210 		},
211 	},
212 	[VECS3] = {
213 		.class = VIDEO_ENHANCEMENT_CLASS,
214 		.instance = 3,
215 		.mmio_bases = {
216 			{ .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
217 		},
218 	},
219 	[CCS0] = {
220 		.class = COMPUTE_CLASS,
221 		.instance = 0,
222 		.mmio_bases = {
223 			{ .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
224 		}
225 	},
226 	[CCS1] = {
227 		.class = COMPUTE_CLASS,
228 		.instance = 1,
229 		.mmio_bases = {
230 			{ .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
231 		}
232 	},
233 	[CCS2] = {
234 		.class = COMPUTE_CLASS,
235 		.instance = 2,
236 		.mmio_bases = {
237 			{ .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
238 		}
239 	},
240 	[CCS3] = {
241 		.class = COMPUTE_CLASS,
242 		.instance = 3,
243 		.mmio_bases = {
244 			{ .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
245 		}
246 	},
247 };
248 
249 /**
250  * intel_engine_context_size() - return the size of the context for an engine
251  * @gt: the gt
252  * @class: engine class
253  *
254  * Each engine class may require a different amount of space for a context
255  * image.
256  *
257  * Return: size (in bytes) of an engine class specific context image
258  *
259  * Note: this size includes the HWSP, which is part of the context image
260  * in LRC mode, but does not include the "shared data page" used with
261  * GuC submission. The caller should account for this if using the GuC.
262  */
263 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
264 {
265 	struct intel_uncore *uncore = gt->uncore;
266 	u32 cxt_size;
267 
268 	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
269 
270 	switch (class) {
271 	case COMPUTE_CLASS:
272 		fallthrough;
273 	case RENDER_CLASS:
274 		switch (GRAPHICS_VER(gt->i915)) {
275 		default:
276 			MISSING_CASE(GRAPHICS_VER(gt->i915));
277 			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
278 		case 12:
279 		case 11:
280 			return GEN11_LR_CONTEXT_RENDER_SIZE;
281 		case 9:
282 			return GEN9_LR_CONTEXT_RENDER_SIZE;
283 		case 8:
284 			return GEN8_LR_CONTEXT_RENDER_SIZE;
285 		case 7:
286 			if (IS_HASWELL(gt->i915))
287 				return HSW_CXT_TOTAL_SIZE;
288 
289 			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
290 			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
291 					PAGE_SIZE);
292 		case 6:
293 			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
294 			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
295 					PAGE_SIZE);
296 		case 5:
297 		case 4:
298 			/*
299 			 * There is a discrepancy here between the size reported
300 			 * by the register and the size of the context layout
301 			 * in the docs. Both are described as authorative!
302 			 *
303 			 * The discrepancy is on the order of a few cachelines,
304 			 * but the total is under one page (4k), which is our
305 			 * minimum allocation anyway so it should all come
306 			 * out in the wash.
307 			 */
308 			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
309 			drm_dbg(&gt->i915->drm,
310 				"graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
311 				GRAPHICS_VER(gt->i915), cxt_size * 64,
312 				cxt_size - 1);
313 			return round_up(cxt_size * 64, PAGE_SIZE);
314 		case 3:
315 		case 2:
316 		/* For the special day when i810 gets merged. */
317 		case 1:
318 			return 0;
319 		}
320 		break;
321 	default:
322 		MISSING_CASE(class);
323 		fallthrough;
324 	case VIDEO_DECODE_CLASS:
325 	case VIDEO_ENHANCEMENT_CLASS:
326 	case COPY_ENGINE_CLASS:
327 		if (GRAPHICS_VER(gt->i915) < 8)
328 			return 0;
329 		return GEN8_LR_CONTEXT_OTHER_SIZE;
330 	}
331 }
332 
333 static u32 __engine_mmio_base(struct drm_i915_private *i915,
334 			      const struct engine_mmio_base *bases)
335 {
336 	int i;
337 
338 	for (i = 0; i < MAX_MMIO_BASES; i++)
339 		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
340 			break;
341 
342 	GEM_BUG_ON(i == MAX_MMIO_BASES);
343 	GEM_BUG_ON(!bases[i].base);
344 
345 	return bases[i].base;
346 }
347 
348 static void __sprint_engine_name(struct intel_engine_cs *engine)
349 {
350 	/*
351 	 * Before we know what the uABI name for this engine will be,
352 	 * we still would like to keep track of this engine in the debug logs.
353 	 * We throw in a ' here as a reminder that this isn't its final name.
354 	 */
355 	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
356 			     intel_engine_class_repr(engine->class),
357 			     engine->instance) >= sizeof(engine->name));
358 }
359 
360 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
361 {
362 	/*
363 	 * Though they added more rings on g4x/ilk, they did not add
364 	 * per-engine HWSTAM until gen6.
365 	 */
366 	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
367 		return;
368 
369 	if (GRAPHICS_VER(engine->i915) >= 3)
370 		ENGINE_WRITE(engine, RING_HWSTAM, mask);
371 	else
372 		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
373 }
374 
375 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
376 {
377 	/* Mask off all writes into the unknown HWSP */
378 	intel_engine_set_hwsp_writemask(engine, ~0u);
379 }
380 
381 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
382 {
383 	GEM_DEBUG_WARN_ON(iir);
384 }
385 
386 static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
387 {
388 	u32 reset_domain;
389 
390 	if (ver >= 11) {
391 		static const u32 engine_reset_domains[] = {
392 			[RCS0]  = GEN11_GRDOM_RENDER,
393 			[BCS0]  = GEN11_GRDOM_BLT,
394 			[BCS1]  = XEHPC_GRDOM_BLT1,
395 			[BCS2]  = XEHPC_GRDOM_BLT2,
396 			[BCS3]  = XEHPC_GRDOM_BLT3,
397 			[BCS4]  = XEHPC_GRDOM_BLT4,
398 			[BCS5]  = XEHPC_GRDOM_BLT5,
399 			[BCS6]  = XEHPC_GRDOM_BLT6,
400 			[BCS7]  = XEHPC_GRDOM_BLT7,
401 			[BCS8]  = XEHPC_GRDOM_BLT8,
402 			[VCS0]  = GEN11_GRDOM_MEDIA,
403 			[VCS1]  = GEN11_GRDOM_MEDIA2,
404 			[VCS2]  = GEN11_GRDOM_MEDIA3,
405 			[VCS3]  = GEN11_GRDOM_MEDIA4,
406 			[VCS4]  = GEN11_GRDOM_MEDIA5,
407 			[VCS5]  = GEN11_GRDOM_MEDIA6,
408 			[VCS6]  = GEN11_GRDOM_MEDIA7,
409 			[VCS7]  = GEN11_GRDOM_MEDIA8,
410 			[VECS0] = GEN11_GRDOM_VECS,
411 			[VECS1] = GEN11_GRDOM_VECS2,
412 			[VECS2] = GEN11_GRDOM_VECS3,
413 			[VECS3] = GEN11_GRDOM_VECS4,
414 			[CCS0]  = GEN11_GRDOM_RENDER,
415 			[CCS1]  = GEN11_GRDOM_RENDER,
416 			[CCS2]  = GEN11_GRDOM_RENDER,
417 			[CCS3]  = GEN11_GRDOM_RENDER,
418 		};
419 		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
420 			   !engine_reset_domains[id]);
421 		reset_domain = engine_reset_domains[id];
422 	} else {
423 		static const u32 engine_reset_domains[] = {
424 			[RCS0]  = GEN6_GRDOM_RENDER,
425 			[BCS0]  = GEN6_GRDOM_BLT,
426 			[VCS0]  = GEN6_GRDOM_MEDIA,
427 			[VCS1]  = GEN8_GRDOM_MEDIA2,
428 			[VECS0] = GEN6_GRDOM_VECS,
429 		};
430 		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
431 			   !engine_reset_domains[id]);
432 		reset_domain = engine_reset_domains[id];
433 	}
434 
435 	return reset_domain;
436 }
437 
438 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
439 			      u8 logical_instance)
440 {
441 	const struct engine_info *info = &intel_engines[id];
442 	struct drm_i915_private *i915 = gt->i915;
443 	struct intel_engine_cs *engine;
444 	u8 guc_class;
445 
446 	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
447 	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
448 	BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
449 	BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
450 
451 	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
452 		return -EINVAL;
453 
454 	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
455 		return -EINVAL;
456 
457 	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
458 		return -EINVAL;
459 
460 	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
461 		return -EINVAL;
462 
463 	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
464 	if (!engine)
465 		return -ENOMEM;
466 
467 	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
468 
469 	INIT_LIST_HEAD(&engine->pinned_contexts_list);
470 	engine->id = id;
471 	engine->legacy_idx = INVALID_ENGINE;
472 	engine->mask = BIT(id);
473 	engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
474 						id);
475 	engine->i915 = i915;
476 	engine->gt = gt;
477 	engine->uncore = gt->uncore;
478 	guc_class = engine_class_to_guc_class(info->class);
479 	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
480 	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
481 
482 	engine->irq_handler = nop_irq_handler;
483 
484 	engine->class = info->class;
485 	engine->instance = info->instance;
486 	engine->logical_mask = BIT(logical_instance);
487 	__sprint_engine_name(engine);
488 
489 	engine->props.heartbeat_interval_ms =
490 		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
491 	engine->props.max_busywait_duration_ns =
492 		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
493 	engine->props.preempt_timeout_ms =
494 		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
495 	engine->props.stop_timeout_ms =
496 		CONFIG_DRM_I915_STOP_TIMEOUT;
497 	engine->props.timeslice_duration_ms =
498 		CONFIG_DRM_I915_TIMESLICE_DURATION;
499 
500 	/* Override to uninterruptible for OpenCL workloads. */
501 	if (GRAPHICS_VER(i915) == 12 && engine->class == RENDER_CLASS)
502 		engine->props.preempt_timeout_ms = 0;
503 
504 	if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) &&
505 	     __ffs(CCS_MASK(engine->gt)) == engine->instance) ||
506 	     engine->class == RENDER_CLASS)
507 		engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
508 
509 	/* features common between engines sharing EUs */
510 	if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
511 		engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
512 		engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
513 	}
514 
515 	engine->defaults = engine->props; /* never to change again */
516 
517 	engine->context_size = intel_engine_context_size(gt, engine->class);
518 	if (WARN_ON(engine->context_size > BIT(20)))
519 		engine->context_size = 0;
520 	if (engine->context_size)
521 		DRIVER_CAPS(i915)->has_logical_contexts = true;
522 
523 	ewma__engine_latency_init(&engine->latency);
524 	seqcount_init(&engine->stats.execlists.lock);
525 
526 	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
527 
528 	/* Scrub mmio state on takeover */
529 	intel_engine_sanitize_mmio(engine);
530 
531 	gt->engine_class[info->class][info->instance] = engine;
532 	gt->engine[id] = engine;
533 
534 	return 0;
535 }
536 
537 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
538 {
539 	struct drm_i915_private *i915 = engine->i915;
540 
541 	if (engine->class == VIDEO_DECODE_CLASS) {
542 		/*
543 		 * HEVC support is present on first engine instance
544 		 * before Gen11 and on all instances afterwards.
545 		 */
546 		if (GRAPHICS_VER(i915) >= 11 ||
547 		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
548 			engine->uabi_capabilities |=
549 				I915_VIDEO_CLASS_CAPABILITY_HEVC;
550 
551 		/*
552 		 * SFC block is present only on even logical engine
553 		 * instances.
554 		 */
555 		if ((GRAPHICS_VER(i915) >= 11 &&
556 		     (engine->gt->info.vdbox_sfc_access &
557 		      BIT(engine->instance))) ||
558 		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
559 			engine->uabi_capabilities |=
560 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
561 	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
562 		if (GRAPHICS_VER(i915) >= 9 &&
563 		    engine->gt->info.sfc_mask & BIT(engine->instance))
564 			engine->uabi_capabilities |=
565 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
566 	}
567 }
568 
569 static void intel_setup_engine_capabilities(struct intel_gt *gt)
570 {
571 	struct intel_engine_cs *engine;
572 	enum intel_engine_id id;
573 
574 	for_each_engine(engine, gt, id)
575 		__setup_engine_capabilities(engine);
576 }
577 
578 /**
579  * intel_engines_release() - free the resources allocated for Command Streamers
580  * @gt: pointer to struct intel_gt
581  */
582 void intel_engines_release(struct intel_gt *gt)
583 {
584 	struct intel_engine_cs *engine;
585 	enum intel_engine_id id;
586 
587 	/*
588 	 * Before we release the resources held by engine, we must be certain
589 	 * that the HW is no longer accessing them -- having the GPU scribble
590 	 * to or read from a page being used for something else causes no end
591 	 * of fun.
592 	 *
593 	 * The GPU should be reset by this point, but assume the worst just
594 	 * in case we aborted before completely initialising the engines.
595 	 */
596 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
597 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
598 		__intel_gt_reset(gt, ALL_ENGINES);
599 
600 	/* Decouple the backend; but keep the layout for late GPU resets */
601 	for_each_engine(engine, gt, id) {
602 		if (!engine->release)
603 			continue;
604 
605 		intel_wakeref_wait_for_idle(&engine->wakeref);
606 		GEM_BUG_ON(intel_engine_pm_is_awake(engine));
607 
608 		engine->release(engine);
609 		engine->release = NULL;
610 
611 		memset(&engine->reset, 0, sizeof(engine->reset));
612 	}
613 }
614 
615 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
616 {
617 	if (!engine->request_pool)
618 		return;
619 
620 	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
621 }
622 
623 void intel_engines_free(struct intel_gt *gt)
624 {
625 	struct intel_engine_cs *engine;
626 	enum intel_engine_id id;
627 
628 	/* Free the requests! dma-resv keeps fences around for an eternity */
629 	rcu_barrier();
630 
631 	for_each_engine(engine, gt, id) {
632 		intel_engine_free_request_pool(engine);
633 		kfree(engine);
634 		gt->engine[id] = NULL;
635 	}
636 }
637 
638 static
639 bool gen11_vdbox_has_sfc(struct intel_gt *gt,
640 			 unsigned int physical_vdbox,
641 			 unsigned int logical_vdbox, u16 vdbox_mask)
642 {
643 	struct drm_i915_private *i915 = gt->i915;
644 
645 	/*
646 	 * In Gen11, only even numbered logical VDBOXes are hooked
647 	 * up to an SFC (Scaler & Format Converter) unit.
648 	 * In Gen12, Even numbered physical instance always are connected
649 	 * to an SFC. Odd numbered physical instances have SFC only if
650 	 * previous even instance is fused off.
651 	 *
652 	 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
653 	 * in the fuse register that tells us whether a specific SFC is present.
654 	 */
655 	if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
656 		return false;
657 	else if (MEDIA_VER(i915) >= 12)
658 		return (physical_vdbox % 2 == 0) ||
659 			!(BIT(physical_vdbox - 1) & vdbox_mask);
660 	else if (MEDIA_VER(i915) == 11)
661 		return logical_vdbox % 2 == 0;
662 
663 	return false;
664 }
665 
666 static void engine_mask_apply_media_fuses(struct intel_gt *gt)
667 {
668 	struct drm_i915_private *i915 = gt->i915;
669 	unsigned int logical_vdbox = 0;
670 	unsigned int i;
671 	u32 media_fuse, fuse1;
672 	u16 vdbox_mask;
673 	u16 vebox_mask;
674 
675 	if (MEDIA_VER(gt->i915) < 11)
676 		return;
677 
678 	/*
679 	 * On newer platforms the fusing register is called 'enable' and has
680 	 * enable semantics, while on older platforms it is called 'disable'
681 	 * and bits have disable semantices.
682 	 */
683 	media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
684 	if (MEDIA_VER_FULL(i915) < IP_VER(12, 50))
685 		media_fuse = ~media_fuse;
686 
687 	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
688 	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
689 		      GEN11_GT_VEBOX_DISABLE_SHIFT;
690 
691 	if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) {
692 		fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
693 		gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
694 	} else {
695 		gt->info.sfc_mask = ~0;
696 	}
697 
698 	for (i = 0; i < I915_MAX_VCS; i++) {
699 		if (!HAS_ENGINE(gt, _VCS(i))) {
700 			vdbox_mask &= ~BIT(i);
701 			continue;
702 		}
703 
704 		if (!(BIT(i) & vdbox_mask)) {
705 			gt->info.engine_mask &= ~BIT(_VCS(i));
706 			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
707 			continue;
708 		}
709 
710 		if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
711 			gt->info.vdbox_sfc_access |= BIT(i);
712 		logical_vdbox++;
713 	}
714 	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
715 		vdbox_mask, VDBOX_MASK(gt));
716 	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
717 
718 	for (i = 0; i < I915_MAX_VECS; i++) {
719 		if (!HAS_ENGINE(gt, _VECS(i))) {
720 			vebox_mask &= ~BIT(i);
721 			continue;
722 		}
723 
724 		if (!(BIT(i) & vebox_mask)) {
725 			gt->info.engine_mask &= ~BIT(_VECS(i));
726 			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
727 		}
728 	}
729 	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
730 		vebox_mask, VEBOX_MASK(gt));
731 	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
732 }
733 
734 static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
735 {
736 	struct drm_i915_private *i915 = gt->i915;
737 	struct intel_gt_info *info = &gt->info;
738 	int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
739 	unsigned long ccs_mask;
740 	unsigned int i;
741 
742 	if (GRAPHICS_VER(i915) < 11)
743 		return;
744 
745 	if (hweight32(CCS_MASK(gt)) <= 1)
746 		return;
747 
748 	ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
749 						     ss_per_ccs);
750 	/*
751 	 * If all DSS in a quadrant are fused off, the corresponding CCS
752 	 * engine is not available for use.
753 	 */
754 	for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
755 		info->engine_mask &= ~BIT(_CCS(i));
756 		drm_dbg(&i915->drm, "ccs%u fused off\n", i);
757 	}
758 }
759 
760 static void engine_mask_apply_copy_fuses(struct intel_gt *gt)
761 {
762 	struct drm_i915_private *i915 = gt->i915;
763 	struct intel_gt_info *info = &gt->info;
764 	unsigned long meml3_mask;
765 	unsigned long quad;
766 
767 	if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) &&
768 	      GRAPHICS_VER_FULL(i915) < IP_VER(12, 70)))
769 		return;
770 
771 	meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3);
772 	meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask);
773 
774 	/*
775 	 * Link Copy engines may be fused off according to meml3_mask. Each
776 	 * bit is a quad that houses 2 Link Copy and two Sub Copy engines.
777 	 */
778 	for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) {
779 		unsigned int instance = quad * 2 + 1;
780 		intel_engine_mask_t mask = GENMASK(_BCS(instance + 1),
781 						   _BCS(instance));
782 
783 		if (mask & info->engine_mask) {
784 			drm_dbg(&i915->drm, "bcs%u fused off\n", instance);
785 			drm_dbg(&i915->drm, "bcs%u fused off\n", instance + 1);
786 
787 			info->engine_mask &= ~mask;
788 		}
789 	}
790 }
791 
792 /*
793  * Determine which engines are fused off in our particular hardware.
794  * Note that we have a catch-22 situation where we need to be able to access
795  * the blitter forcewake domain to read the engine fuses, but at the same time
796  * we need to know which engines are available on the system to know which
797  * forcewake domains are present. We solve this by intializing the forcewake
798  * domains based on the full engine mask in the platform capabilities before
799  * calling this function and pruning the domains for fused-off engines
800  * afterwards.
801  */
802 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
803 {
804 	struct intel_gt_info *info = &gt->info;
805 
806 	GEM_BUG_ON(!info->engine_mask);
807 
808 	engine_mask_apply_media_fuses(gt);
809 	engine_mask_apply_compute_fuses(gt);
810 	engine_mask_apply_copy_fuses(gt);
811 
812 	return info->engine_mask;
813 }
814 
815 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
816 				 u8 class, const u8 *map, u8 num_instances)
817 {
818 	int i, j;
819 	u8 current_logical_id = 0;
820 
821 	for (j = 0; j < num_instances; ++j) {
822 		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
823 			if (!HAS_ENGINE(gt, i) ||
824 			    intel_engines[i].class != class)
825 				continue;
826 
827 			if (intel_engines[i].instance == map[j]) {
828 				logical_ids[intel_engines[i].instance] =
829 					current_logical_id++;
830 				break;
831 			}
832 		}
833 	}
834 }
835 
836 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
837 {
838 	/*
839 	 * Logical to physical mapping is needed for proper support
840 	 * to split-frame feature.
841 	 */
842 	if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
843 		const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
844 
845 		populate_logical_ids(gt, logical_ids, class,
846 				     map, ARRAY_SIZE(map));
847 	} else {
848 		int i;
849 		u8 map[MAX_ENGINE_INSTANCE + 1];
850 
851 		for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
852 			map[i] = i;
853 		populate_logical_ids(gt, logical_ids, class,
854 				     map, ARRAY_SIZE(map));
855 	}
856 }
857 
858 /**
859  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
860  * @gt: pointer to struct intel_gt
861  *
862  * Return: non-zero if the initialization failed.
863  */
864 int intel_engines_init_mmio(struct intel_gt *gt)
865 {
866 	struct drm_i915_private *i915 = gt->i915;
867 	const unsigned int engine_mask = init_engine_mask(gt);
868 	unsigned int mask = 0;
869 	unsigned int i, class;
870 	u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
871 	int err;
872 
873 	drm_WARN_ON(&i915->drm, engine_mask == 0);
874 	drm_WARN_ON(&i915->drm, engine_mask &
875 		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
876 
877 	if (i915_inject_probe_failure(i915))
878 		return -ENODEV;
879 
880 	for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
881 		setup_logical_ids(gt, logical_ids, class);
882 
883 		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
884 			u8 instance = intel_engines[i].instance;
885 
886 			if (intel_engines[i].class != class ||
887 			    !HAS_ENGINE(gt, i))
888 				continue;
889 
890 			err = intel_engine_setup(gt, i,
891 						 logical_ids[instance]);
892 			if (err)
893 				goto cleanup;
894 
895 			mask |= BIT(i);
896 		}
897 	}
898 
899 	/*
900 	 * Catch failures to update intel_engines table when the new engines
901 	 * are added to the driver by a warning and disabling the forgotten
902 	 * engines.
903 	 */
904 	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
905 		gt->info.engine_mask = mask;
906 
907 	gt->info.num_engines = hweight32(mask);
908 
909 	intel_gt_check_and_clear_faults(gt);
910 
911 	intel_setup_engine_capabilities(gt);
912 
913 	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
914 
915 	return 0;
916 
917 cleanup:
918 	intel_engines_free(gt);
919 	return err;
920 }
921 
922 void intel_engine_init_execlists(struct intel_engine_cs *engine)
923 {
924 	struct intel_engine_execlists * const execlists = &engine->execlists;
925 
926 	execlists->port_mask = 1;
927 	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
928 	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
929 
930 	memset(execlists->pending, 0, sizeof(execlists->pending));
931 	execlists->active =
932 		memset(execlists->inflight, 0, sizeof(execlists->inflight));
933 }
934 
935 static void cleanup_status_page(struct intel_engine_cs *engine)
936 {
937 	struct i915_vma *vma;
938 
939 	/* Prevent writes into HWSP after returning the page to the system */
940 	intel_engine_set_hwsp_writemask(engine, ~0u);
941 
942 	vma = fetch_and_zero(&engine->status_page.vma);
943 	if (!vma)
944 		return;
945 
946 	if (!HWS_NEEDS_PHYSICAL(engine->i915))
947 		i915_vma_unpin(vma);
948 
949 	i915_gem_object_unpin_map(vma->obj);
950 	i915_gem_object_put(vma->obj);
951 }
952 
953 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
954 				struct i915_gem_ww_ctx *ww,
955 				struct i915_vma *vma)
956 {
957 	unsigned int flags;
958 
959 	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
960 		/*
961 		 * On g33, we cannot place HWS above 256MiB, so
962 		 * restrict its pinning to the low mappable arena.
963 		 * Though this restriction is not documented for
964 		 * gen4, gen5, or byt, they also behave similarly
965 		 * and hang if the HWS is placed at the top of the
966 		 * GTT. To generalise, it appears that all !llc
967 		 * platforms have issues with us placing the HWS
968 		 * above the mappable region (even though we never
969 		 * actually map it).
970 		 */
971 		flags = PIN_MAPPABLE;
972 	else
973 		flags = PIN_HIGH;
974 
975 	return i915_ggtt_pin(vma, ww, 0, flags);
976 }
977 
978 static int init_status_page(struct intel_engine_cs *engine)
979 {
980 	struct drm_i915_gem_object *obj;
981 	struct i915_gem_ww_ctx ww;
982 	struct i915_vma *vma;
983 	void *vaddr;
984 	int ret;
985 
986 	INIT_LIST_HEAD(&engine->status_page.timelines);
987 
988 	/*
989 	 * Though the HWS register does support 36bit addresses, historically
990 	 * we have had hangs and corruption reported due to wild writes if
991 	 * the HWS is placed above 4G. We only allow objects to be allocated
992 	 * in GFP_DMA32 for i965, and no earlier physical address users had
993 	 * access to more than 4G.
994 	 */
995 	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
996 	if (IS_ERR(obj)) {
997 		drm_err(&engine->i915->drm,
998 			"Failed to allocate status page\n");
999 		return PTR_ERR(obj);
1000 	}
1001 
1002 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
1003 
1004 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1005 	if (IS_ERR(vma)) {
1006 		ret = PTR_ERR(vma);
1007 		goto err_put;
1008 	}
1009 
1010 	i915_gem_ww_ctx_init(&ww, true);
1011 retry:
1012 	ret = i915_gem_object_lock(obj, &ww);
1013 	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1014 		ret = pin_ggtt_status_page(engine, &ww, vma);
1015 	if (ret)
1016 		goto err;
1017 
1018 	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1019 	if (IS_ERR(vaddr)) {
1020 		ret = PTR_ERR(vaddr);
1021 		goto err_unpin;
1022 	}
1023 
1024 	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1025 	engine->status_page.vma = vma;
1026 
1027 err_unpin:
1028 	if (ret)
1029 		i915_vma_unpin(vma);
1030 err:
1031 	if (ret == -EDEADLK) {
1032 		ret = i915_gem_ww_ctx_backoff(&ww);
1033 		if (!ret)
1034 			goto retry;
1035 	}
1036 	i915_gem_ww_ctx_fini(&ww);
1037 err_put:
1038 	if (ret)
1039 		i915_gem_object_put(obj);
1040 	return ret;
1041 }
1042 
1043 static int engine_setup_common(struct intel_engine_cs *engine)
1044 {
1045 	int err;
1046 
1047 	init_llist_head(&engine->barrier_tasks);
1048 
1049 	err = init_status_page(engine);
1050 	if (err)
1051 		return err;
1052 
1053 	engine->breadcrumbs = intel_breadcrumbs_create(engine);
1054 	if (!engine->breadcrumbs) {
1055 		err = -ENOMEM;
1056 		goto err_status;
1057 	}
1058 
1059 	engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1060 	if (!engine->sched_engine) {
1061 		err = -ENOMEM;
1062 		goto err_sched_engine;
1063 	}
1064 	engine->sched_engine->private_data = engine;
1065 
1066 	err = intel_engine_init_cmd_parser(engine);
1067 	if (err)
1068 		goto err_cmd_parser;
1069 
1070 	intel_engine_init_execlists(engine);
1071 	intel_engine_init__pm(engine);
1072 	intel_engine_init_retire(engine);
1073 
1074 	/* Use the whole device by default */
1075 	engine->sseu =
1076 		intel_sseu_from_device_info(&engine->gt->info.sseu);
1077 
1078 	intel_engine_init_workarounds(engine);
1079 	intel_engine_init_whitelist(engine);
1080 	intel_engine_init_ctx_wa(engine);
1081 
1082 	if (GRAPHICS_VER(engine->i915) >= 12)
1083 		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1084 
1085 	return 0;
1086 
1087 err_cmd_parser:
1088 	i915_sched_engine_put(engine->sched_engine);
1089 err_sched_engine:
1090 	intel_breadcrumbs_put(engine->breadcrumbs);
1091 err_status:
1092 	cleanup_status_page(engine);
1093 	return err;
1094 }
1095 
1096 struct measure_breadcrumb {
1097 	struct i915_request rq;
1098 	struct intel_ring ring;
1099 	u32 cs[2048];
1100 };
1101 
1102 static int measure_breadcrumb_dw(struct intel_context *ce)
1103 {
1104 	struct intel_engine_cs *engine = ce->engine;
1105 	struct measure_breadcrumb *frame;
1106 	int dw;
1107 
1108 	GEM_BUG_ON(!engine->gt->scratch);
1109 
1110 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1111 	if (!frame)
1112 		return -ENOMEM;
1113 
1114 	frame->rq.engine = engine;
1115 	frame->rq.context = ce;
1116 	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1117 	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1118 
1119 	frame->ring.vaddr = frame->cs;
1120 	frame->ring.size = sizeof(frame->cs);
1121 	frame->ring.wrap =
1122 		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1123 	frame->ring.effective_size = frame->ring.size;
1124 	intel_ring_update_space(&frame->ring);
1125 	frame->rq.ring = &frame->ring;
1126 
1127 	mutex_lock(&ce->timeline->mutex);
1128 	spin_lock_irq(&engine->sched_engine->lock);
1129 
1130 	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1131 
1132 	spin_unlock_irq(&engine->sched_engine->lock);
1133 	mutex_unlock(&ce->timeline->mutex);
1134 
1135 	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1136 
1137 	kfree(frame);
1138 	return dw;
1139 }
1140 
1141 struct intel_context *
1142 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1143 				   struct i915_address_space *vm,
1144 				   unsigned int ring_size,
1145 				   unsigned int hwsp,
1146 				   struct lock_class_key *key,
1147 				   const char *name)
1148 {
1149 	struct intel_context *ce;
1150 	int err;
1151 
1152 	ce = intel_context_create(engine);
1153 	if (IS_ERR(ce))
1154 		return ce;
1155 
1156 	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1157 	ce->timeline = page_pack_bits(NULL, hwsp);
1158 	ce->ring = NULL;
1159 	ce->ring_size = ring_size;
1160 
1161 	i915_vm_put(ce->vm);
1162 	ce->vm = i915_vm_get(vm);
1163 
1164 	err = intel_context_pin(ce); /* perma-pin so it is always available */
1165 	if (err) {
1166 		intel_context_put(ce);
1167 		return ERR_PTR(err);
1168 	}
1169 
1170 	list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1171 
1172 	/*
1173 	 * Give our perma-pinned kernel timelines a separate lockdep class,
1174 	 * so that we can use them from within the normal user timelines
1175 	 * should we need to inject GPU operations during their request
1176 	 * construction.
1177 	 */
1178 	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1179 
1180 	return ce;
1181 }
1182 
1183 void intel_engine_destroy_pinned_context(struct intel_context *ce)
1184 {
1185 	struct intel_engine_cs *engine = ce->engine;
1186 	struct i915_vma *hwsp = engine->status_page.vma;
1187 
1188 	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1189 
1190 	mutex_lock(&hwsp->vm->mutex);
1191 	list_del(&ce->timeline->engine_link);
1192 	mutex_unlock(&hwsp->vm->mutex);
1193 
1194 	list_del(&ce->pinned_contexts_link);
1195 	intel_context_unpin(ce);
1196 	intel_context_put(ce);
1197 }
1198 
1199 static struct intel_context *
1200 create_kernel_context(struct intel_engine_cs *engine)
1201 {
1202 	static struct lock_class_key kernel;
1203 
1204 	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1205 						  I915_GEM_HWS_SEQNO_ADDR,
1206 						  &kernel, "kernel_context");
1207 }
1208 
1209 /**
1210  * intel_engines_init_common - initialize cengine state which might require hw access
1211  * @engine: Engine to initialize.
1212  *
1213  * Initializes @engine@ structure members shared between legacy and execlists
1214  * submission modes which do require hardware access.
1215  *
1216  * Typcally done at later stages of submission mode specific engine setup.
1217  *
1218  * Returns zero on success or an error code on failure.
1219  */
1220 static int engine_init_common(struct intel_engine_cs *engine)
1221 {
1222 	struct intel_context *ce;
1223 	int ret;
1224 
1225 	engine->set_default_submission(engine);
1226 
1227 	/*
1228 	 * We may need to do things with the shrinker which
1229 	 * require us to immediately switch back to the default
1230 	 * context. This can cause a problem as pinning the
1231 	 * default context also requires GTT space which may not
1232 	 * be available. To avoid this we always pin the default
1233 	 * context.
1234 	 */
1235 	ce = create_kernel_context(engine);
1236 	if (IS_ERR(ce))
1237 		return PTR_ERR(ce);
1238 
1239 	ret = measure_breadcrumb_dw(ce);
1240 	if (ret < 0)
1241 		goto err_context;
1242 
1243 	engine->emit_fini_breadcrumb_dw = ret;
1244 	engine->kernel_context = ce;
1245 
1246 	return 0;
1247 
1248 err_context:
1249 	intel_engine_destroy_pinned_context(ce);
1250 	return ret;
1251 }
1252 
1253 int intel_engines_init(struct intel_gt *gt)
1254 {
1255 	int (*setup)(struct intel_engine_cs *engine);
1256 	struct intel_engine_cs *engine;
1257 	enum intel_engine_id id;
1258 	int err;
1259 
1260 	if (intel_uc_uses_guc_submission(&gt->uc)) {
1261 		gt->submission_method = INTEL_SUBMISSION_GUC;
1262 		setup = intel_guc_submission_setup;
1263 	} else if (HAS_EXECLISTS(gt->i915)) {
1264 		gt->submission_method = INTEL_SUBMISSION_ELSP;
1265 		setup = intel_execlists_submission_setup;
1266 	} else {
1267 		gt->submission_method = INTEL_SUBMISSION_RING;
1268 		setup = intel_ring_submission_setup;
1269 	}
1270 
1271 	for_each_engine(engine, gt, id) {
1272 		err = engine_setup_common(engine);
1273 		if (err)
1274 			return err;
1275 
1276 		err = setup(engine);
1277 		if (err)
1278 			return err;
1279 
1280 		err = engine_init_common(engine);
1281 		if (err)
1282 			return err;
1283 
1284 		intel_engine_add_user(engine);
1285 	}
1286 
1287 	return 0;
1288 }
1289 
1290 /**
1291  * intel_engines_cleanup_common - cleans up the engine state created by
1292  *                                the common initiailizers.
1293  * @engine: Engine to cleanup.
1294  *
1295  * This cleans up everything created by the common helpers.
1296  */
1297 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1298 {
1299 	GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1300 
1301 	i915_sched_engine_put(engine->sched_engine);
1302 	intel_breadcrumbs_put(engine->breadcrumbs);
1303 
1304 	intel_engine_fini_retire(engine);
1305 	intel_engine_cleanup_cmd_parser(engine);
1306 
1307 	if (engine->default_state)
1308 		fput(engine->default_state);
1309 
1310 	if (engine->kernel_context)
1311 		intel_engine_destroy_pinned_context(engine->kernel_context);
1312 
1313 	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1314 	cleanup_status_page(engine);
1315 
1316 	intel_wa_list_free(&engine->ctx_wa_list);
1317 	intel_wa_list_free(&engine->wa_list);
1318 	intel_wa_list_free(&engine->whitelist);
1319 }
1320 
1321 /**
1322  * intel_engine_resume - re-initializes the HW state of the engine
1323  * @engine: Engine to resume.
1324  *
1325  * Returns zero on success or an error code on failure.
1326  */
1327 int intel_engine_resume(struct intel_engine_cs *engine)
1328 {
1329 	intel_engine_apply_workarounds(engine);
1330 	intel_engine_apply_whitelist(engine);
1331 
1332 	return engine->resume(engine);
1333 }
1334 
1335 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1336 {
1337 	struct drm_i915_private *i915 = engine->i915;
1338 
1339 	u64 acthd;
1340 
1341 	if (GRAPHICS_VER(i915) >= 8)
1342 		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1343 	else if (GRAPHICS_VER(i915) >= 4)
1344 		acthd = ENGINE_READ(engine, RING_ACTHD);
1345 	else
1346 		acthd = ENGINE_READ(engine, ACTHD);
1347 
1348 	return acthd;
1349 }
1350 
1351 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1352 {
1353 	u64 bbaddr;
1354 
1355 	if (GRAPHICS_VER(engine->i915) >= 8)
1356 		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1357 	else
1358 		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1359 
1360 	return bbaddr;
1361 }
1362 
1363 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1364 {
1365 	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1366 		return 0;
1367 
1368 	/*
1369 	 * If we are doing a normal GPU reset, we can take our time and allow
1370 	 * the engine to quiesce. We've stopped submission to the engine, and
1371 	 * if we wait long enough an innocent context should complete and
1372 	 * leave the engine idle. So they should not be caught unaware by
1373 	 * the forthcoming GPU reset (which usually follows the stop_cs)!
1374 	 */
1375 	return READ_ONCE(engine->props.stop_timeout_ms);
1376 }
1377 
1378 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1379 				  int fast_timeout_us,
1380 				  int slow_timeout_ms)
1381 {
1382 	struct intel_uncore *uncore = engine->uncore;
1383 	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1384 	int err;
1385 
1386 	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1387 
1388 	/*
1389 	 * Wa_22011802037 : gen11, gen12, Prior to doing a reset, ensure CS is
1390 	 * stopped, set ring stop bit and prefetch disable bit to halt CS
1391 	 */
1392 	if (IS_GRAPHICS_VER(engine->i915, 11, 12))
1393 		intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1394 				      _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1395 
1396 	err = __intel_wait_for_register_fw(engine->uncore, mode,
1397 					   MODE_IDLE, MODE_IDLE,
1398 					   fast_timeout_us,
1399 					   slow_timeout_ms,
1400 					   NULL);
1401 
1402 	/* A final mmio read to let GPU writes be hopefully flushed to memory */
1403 	intel_uncore_posting_read_fw(uncore, mode);
1404 	return err;
1405 }
1406 
1407 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1408 {
1409 	int err = 0;
1410 
1411 	if (GRAPHICS_VER(engine->i915) < 3)
1412 		return -ENODEV;
1413 
1414 	ENGINE_TRACE(engine, "\n");
1415 	/*
1416 	 * TODO: Find out why occasionally stopping the CS times out. Seen
1417 	 * especially with gem_eio tests.
1418 	 *
1419 	 * Occasionally trying to stop the cs times out, but does not adversely
1420 	 * affect functionality. The timeout is set as a config parameter that
1421 	 * defaults to 100ms. In most cases the follow up operation is to wait
1422 	 * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1423 	 * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1424 	 * caused, the caller must check and handle the return from this
1425 	 * function.
1426 	 */
1427 	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1428 		ENGINE_TRACE(engine,
1429 			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1430 			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1431 			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1432 
1433 		/*
1434 		 * Sometimes we observe that the idle flag is not
1435 		 * set even though the ring is empty. So double
1436 		 * check before giving up.
1437 		 */
1438 		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1439 		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1440 			err = -ETIMEDOUT;
1441 	}
1442 
1443 	return err;
1444 }
1445 
1446 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1447 {
1448 	ENGINE_TRACE(engine, "\n");
1449 
1450 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1451 }
1452 
1453 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1454 {
1455 	static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1456 		[RCS0] = MSG_IDLE_CS,
1457 		[BCS0] = MSG_IDLE_BCS,
1458 		[VCS0] = MSG_IDLE_VCS0,
1459 		[VCS1] = MSG_IDLE_VCS1,
1460 		[VCS2] = MSG_IDLE_VCS2,
1461 		[VCS3] = MSG_IDLE_VCS3,
1462 		[VCS4] = MSG_IDLE_VCS4,
1463 		[VCS5] = MSG_IDLE_VCS5,
1464 		[VCS6] = MSG_IDLE_VCS6,
1465 		[VCS7] = MSG_IDLE_VCS7,
1466 		[VECS0] = MSG_IDLE_VECS0,
1467 		[VECS1] = MSG_IDLE_VECS1,
1468 		[VECS2] = MSG_IDLE_VECS2,
1469 		[VECS3] = MSG_IDLE_VECS3,
1470 		[CCS0] = MSG_IDLE_CS,
1471 		[CCS1] = MSG_IDLE_CS,
1472 		[CCS2] = MSG_IDLE_CS,
1473 		[CCS3] = MSG_IDLE_CS,
1474 	};
1475 	u32 val;
1476 
1477 	if (!_reg[engine->id].reg) {
1478 		drm_err(&engine->i915->drm,
1479 			"MSG IDLE undefined for engine id %u\n", engine->id);
1480 		return 0;
1481 	}
1482 
1483 	val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1484 
1485 	/* bits[29:25] & bits[13:9] >> shift */
1486 	return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1487 }
1488 
1489 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1490 {
1491 	int ret;
1492 
1493 	/* Ensure GPM receives fw up/down after CS is stopped */
1494 	udelay(1);
1495 
1496 	/* Wait for forcewake request to complete in GPM */
1497 	ret =  __intel_wait_for_register_fw(gt->uncore,
1498 					    GEN9_PWRGT_DOMAIN_STATUS,
1499 					    fw_mask, fw_mask, 5000, 0, NULL);
1500 
1501 	/* Ensure CS receives fw ack from GPM */
1502 	udelay(1);
1503 
1504 	if (ret)
1505 		GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1506 }
1507 
1508 /*
1509  * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1510  * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1511  * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1512  * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1513  * are concerned only with the gt reset here, we use a logical OR of pending
1514  * forcewakeups from all reset domains and then wait for them to complete by
1515  * querying PWRGT_DOMAIN_STATUS.
1516  */
1517 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1518 {
1519 	u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1520 
1521 	if (fw_pending)
1522 		__gpm_wait_for_fw_complete(engine->gt, fw_pending);
1523 }
1524 
1525 /* NB: please notice the memset */
1526 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1527 			       struct intel_instdone *instdone)
1528 {
1529 	struct drm_i915_private *i915 = engine->i915;
1530 	struct intel_uncore *uncore = engine->uncore;
1531 	u32 mmio_base = engine->mmio_base;
1532 	int slice;
1533 	int subslice;
1534 	int iter;
1535 
1536 	memset(instdone, 0, sizeof(*instdone));
1537 
1538 	if (GRAPHICS_VER(i915) >= 8) {
1539 		instdone->instdone =
1540 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1541 
1542 		if (engine->id != RCS0)
1543 			return;
1544 
1545 		instdone->slice_common =
1546 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1547 		if (GRAPHICS_VER(i915) >= 12) {
1548 			instdone->slice_common_extra[0] =
1549 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1550 			instdone->slice_common_extra[1] =
1551 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1552 		}
1553 
1554 		for_each_ss_steering(iter, engine->gt, slice, subslice) {
1555 			instdone->sampler[slice][subslice] =
1556 				intel_gt_mcr_read(engine->gt,
1557 						  GEN7_SAMPLER_INSTDONE,
1558 						  slice, subslice);
1559 			instdone->row[slice][subslice] =
1560 				intel_gt_mcr_read(engine->gt,
1561 						  GEN7_ROW_INSTDONE,
1562 						  slice, subslice);
1563 		}
1564 
1565 		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1566 			for_each_ss_steering(iter, engine->gt, slice, subslice)
1567 				instdone->geom_svg[slice][subslice] =
1568 					intel_gt_mcr_read(engine->gt,
1569 							  XEHPG_INSTDONE_GEOM_SVG,
1570 							  slice, subslice);
1571 		}
1572 	} else if (GRAPHICS_VER(i915) >= 7) {
1573 		instdone->instdone =
1574 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1575 
1576 		if (engine->id != RCS0)
1577 			return;
1578 
1579 		instdone->slice_common =
1580 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1581 		instdone->sampler[0][0] =
1582 			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1583 		instdone->row[0][0] =
1584 			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1585 	} else if (GRAPHICS_VER(i915) >= 4) {
1586 		instdone->instdone =
1587 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1588 		if (engine->id == RCS0)
1589 			/* HACK: Using the wrong struct member */
1590 			instdone->slice_common =
1591 				intel_uncore_read(uncore, GEN4_INSTDONE1);
1592 	} else {
1593 		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1594 	}
1595 }
1596 
1597 static bool ring_is_idle(struct intel_engine_cs *engine)
1598 {
1599 	bool idle = true;
1600 
1601 	if (I915_SELFTEST_ONLY(!engine->mmio_base))
1602 		return true;
1603 
1604 	if (!intel_engine_pm_get_if_awake(engine))
1605 		return true;
1606 
1607 	/* First check that no commands are left in the ring */
1608 	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1609 	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1610 		idle = false;
1611 
1612 	/* No bit for gen2, so assume the CS parser is idle */
1613 	if (GRAPHICS_VER(engine->i915) > 2 &&
1614 	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1615 		idle = false;
1616 
1617 	intel_engine_pm_put(engine);
1618 
1619 	return idle;
1620 }
1621 
1622 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1623 {
1624 	struct tasklet_struct *t = &engine->sched_engine->tasklet;
1625 
1626 	if (!t->callback)
1627 		return;
1628 
1629 	local_bh_disable();
1630 	if (tasklet_trylock(t)) {
1631 		/* Must wait for any GPU reset in progress. */
1632 		if (__tasklet_is_enabled(t))
1633 			t->callback(t);
1634 		tasklet_unlock(t);
1635 	}
1636 	local_bh_enable();
1637 
1638 	/* Synchronise and wait for the tasklet on another CPU */
1639 	if (sync)
1640 		tasklet_unlock_wait(t);
1641 }
1642 
1643 /**
1644  * intel_engine_is_idle() - Report if the engine has finished process all work
1645  * @engine: the intel_engine_cs
1646  *
1647  * Return true if there are no requests pending, nothing left to be submitted
1648  * to hardware, and that the engine is idle.
1649  */
1650 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1651 {
1652 	/* More white lies, if wedged, hw state is inconsistent */
1653 	if (intel_gt_is_wedged(engine->gt))
1654 		return true;
1655 
1656 	if (!intel_engine_pm_is_awake(engine))
1657 		return true;
1658 
1659 	/* Waiting to drain ELSP? */
1660 	intel_synchronize_hardirq(engine->i915);
1661 	intel_engine_flush_submission(engine);
1662 
1663 	/* ELSP is empty, but there are ready requests? E.g. after reset */
1664 	if (!i915_sched_engine_is_empty(engine->sched_engine))
1665 		return false;
1666 
1667 	/* Ring stopped? */
1668 	return ring_is_idle(engine);
1669 }
1670 
1671 bool intel_engines_are_idle(struct intel_gt *gt)
1672 {
1673 	struct intel_engine_cs *engine;
1674 	enum intel_engine_id id;
1675 
1676 	/*
1677 	 * If the driver is wedged, HW state may be very inconsistent and
1678 	 * report that it is still busy, even though we have stopped using it.
1679 	 */
1680 	if (intel_gt_is_wedged(gt))
1681 		return true;
1682 
1683 	/* Already parked (and passed an idleness test); must still be idle */
1684 	if (!READ_ONCE(gt->awake))
1685 		return true;
1686 
1687 	for_each_engine(engine, gt, id) {
1688 		if (!intel_engine_is_idle(engine))
1689 			return false;
1690 	}
1691 
1692 	return true;
1693 }
1694 
1695 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1696 {
1697 	if (!engine->irq_enable)
1698 		return false;
1699 
1700 	/* Caller disables interrupts */
1701 	spin_lock(engine->gt->irq_lock);
1702 	engine->irq_enable(engine);
1703 	spin_unlock(engine->gt->irq_lock);
1704 
1705 	return true;
1706 }
1707 
1708 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1709 {
1710 	if (!engine->irq_disable)
1711 		return;
1712 
1713 	/* Caller disables interrupts */
1714 	spin_lock(engine->gt->irq_lock);
1715 	engine->irq_disable(engine);
1716 	spin_unlock(engine->gt->irq_lock);
1717 }
1718 
1719 void intel_engines_reset_default_submission(struct intel_gt *gt)
1720 {
1721 	struct intel_engine_cs *engine;
1722 	enum intel_engine_id id;
1723 
1724 	for_each_engine(engine, gt, id) {
1725 		if (engine->sanitize)
1726 			engine->sanitize(engine);
1727 
1728 		engine->set_default_submission(engine);
1729 	}
1730 }
1731 
1732 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1733 {
1734 	switch (GRAPHICS_VER(engine->i915)) {
1735 	case 2:
1736 		return false; /* uses physical not virtual addresses */
1737 	case 3:
1738 		/* maybe only uses physical not virtual addresses */
1739 		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1740 	case 4:
1741 		return !IS_I965G(engine->i915); /* who knows! */
1742 	case 6:
1743 		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1744 	default:
1745 		return true;
1746 	}
1747 }
1748 
1749 static struct intel_timeline *get_timeline(struct i915_request *rq)
1750 {
1751 	struct intel_timeline *tl;
1752 
1753 	/*
1754 	 * Even though we are holding the engine->sched_engine->lock here, there
1755 	 * is no control over the submission queue per-se and we are
1756 	 * inspecting the active state at a random point in time, with an
1757 	 * unknown queue. Play safe and make sure the timeline remains valid.
1758 	 * (Only being used for pretty printing, one extra kref shouldn't
1759 	 * cause a camel stampede!)
1760 	 */
1761 	rcu_read_lock();
1762 	tl = rcu_dereference(rq->timeline);
1763 	if (!kref_get_unless_zero(&tl->kref))
1764 		tl = NULL;
1765 	rcu_read_unlock();
1766 
1767 	return tl;
1768 }
1769 
1770 static int print_ring(char *buf, int sz, struct i915_request *rq)
1771 {
1772 	int len = 0;
1773 
1774 	if (!i915_request_signaled(rq)) {
1775 		struct intel_timeline *tl = get_timeline(rq);
1776 
1777 		len = scnprintf(buf, sz,
1778 				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1779 				i915_ggtt_offset(rq->ring->vma),
1780 				tl ? tl->hwsp_offset : 0,
1781 				hwsp_seqno(rq),
1782 				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1783 						      1000 * 1000));
1784 
1785 		if (tl)
1786 			intel_timeline_put(tl);
1787 	}
1788 
1789 	return len;
1790 }
1791 
1792 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1793 {
1794 	const size_t rowsize = 8 * sizeof(u32);
1795 	const void *prev = NULL;
1796 	bool skip = false;
1797 	size_t pos;
1798 
1799 	for (pos = 0; pos < len; pos += rowsize) {
1800 		char line[128];
1801 
1802 		if (prev && !memcmp(prev, buf + pos, rowsize)) {
1803 			if (!skip) {
1804 				drm_printf(m, "*\n");
1805 				skip = true;
1806 			}
1807 			continue;
1808 		}
1809 
1810 		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1811 						rowsize, sizeof(u32),
1812 						line, sizeof(line),
1813 						false) >= sizeof(line));
1814 		drm_printf(m, "[%04zx] %s\n", pos, line);
1815 
1816 		prev = buf + pos;
1817 		skip = false;
1818 	}
1819 }
1820 
1821 static const char *repr_timer(const struct timer_list *t)
1822 {
1823 	if (!READ_ONCE(t->expires))
1824 		return "inactive";
1825 
1826 	if (timer_pending(t))
1827 		return "active";
1828 
1829 	return "expired";
1830 }
1831 
1832 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1833 					 struct drm_printer *m)
1834 {
1835 	struct drm_i915_private *dev_priv = engine->i915;
1836 	struct intel_engine_execlists * const execlists = &engine->execlists;
1837 	u64 addr;
1838 
1839 	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
1840 		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1841 	if (HAS_EXECLISTS(dev_priv)) {
1842 		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
1843 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
1844 		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
1845 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
1846 	}
1847 	drm_printf(m, "\tRING_START: 0x%08x\n",
1848 		   ENGINE_READ(engine, RING_START));
1849 	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1850 		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1851 	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1852 		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1853 	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1854 		   ENGINE_READ(engine, RING_CTL),
1855 		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1856 	if (GRAPHICS_VER(engine->i915) > 2) {
1857 		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1858 			   ENGINE_READ(engine, RING_MI_MODE),
1859 			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1860 	}
1861 
1862 	if (GRAPHICS_VER(dev_priv) >= 6) {
1863 		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1864 			   ENGINE_READ(engine, RING_IMR));
1865 		drm_printf(m, "\tRING_ESR:   0x%08x\n",
1866 			   ENGINE_READ(engine, RING_ESR));
1867 		drm_printf(m, "\tRING_EMR:   0x%08x\n",
1868 			   ENGINE_READ(engine, RING_EMR));
1869 		drm_printf(m, "\tRING_EIR:   0x%08x\n",
1870 			   ENGINE_READ(engine, RING_EIR));
1871 	}
1872 
1873 	addr = intel_engine_get_active_head(engine);
1874 	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
1875 		   upper_32_bits(addr), lower_32_bits(addr));
1876 	addr = intel_engine_get_last_batch_head(engine);
1877 	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1878 		   upper_32_bits(addr), lower_32_bits(addr));
1879 	if (GRAPHICS_VER(dev_priv) >= 8)
1880 		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1881 	else if (GRAPHICS_VER(dev_priv) >= 4)
1882 		addr = ENGINE_READ(engine, RING_DMA_FADD);
1883 	else
1884 		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1885 	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1886 		   upper_32_bits(addr), lower_32_bits(addr));
1887 	if (GRAPHICS_VER(dev_priv) >= 4) {
1888 		drm_printf(m, "\tIPEIR: 0x%08x\n",
1889 			   ENGINE_READ(engine, RING_IPEIR));
1890 		drm_printf(m, "\tIPEHR: 0x%08x\n",
1891 			   ENGINE_READ(engine, RING_IPEHR));
1892 	} else {
1893 		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1894 		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1895 	}
1896 
1897 	if (HAS_EXECLISTS(dev_priv) && !intel_engine_uses_guc(engine)) {
1898 		struct i915_request * const *port, *rq;
1899 		const u32 *hws =
1900 			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1901 		const u8 num_entries = execlists->csb_size;
1902 		unsigned int idx;
1903 		u8 read, write;
1904 
1905 		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1906 			   str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
1907 			   str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
1908 			   repr_timer(&engine->execlists.preempt),
1909 			   repr_timer(&engine->execlists.timer));
1910 
1911 		read = execlists->csb_head;
1912 		write = READ_ONCE(*execlists->csb_write);
1913 
1914 		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1915 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1916 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1917 			   read, write, num_entries);
1918 
1919 		if (read >= num_entries)
1920 			read = 0;
1921 		if (write >= num_entries)
1922 			write = 0;
1923 		if (read > write)
1924 			write += num_entries;
1925 		while (read < write) {
1926 			idx = ++read % num_entries;
1927 			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
1928 				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1929 		}
1930 
1931 		i915_sched_engine_active_lock_bh(engine->sched_engine);
1932 		rcu_read_lock();
1933 		for (port = execlists->active; (rq = *port); port++) {
1934 			char hdr[160];
1935 			int len;
1936 
1937 			len = scnprintf(hdr, sizeof(hdr),
1938 					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1939 					(int)(port - execlists->active),
1940 					rq->context->lrc.ccid,
1941 					intel_context_is_closed(rq->context) ? "!" : "",
1942 					intel_context_is_banned(rq->context) ? "*" : "");
1943 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1944 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1945 			i915_request_show(m, rq, hdr, 0);
1946 		}
1947 		for (port = execlists->pending; (rq = *port); port++) {
1948 			char hdr[160];
1949 			int len;
1950 
1951 			len = scnprintf(hdr, sizeof(hdr),
1952 					"\t\tPending[%d]: ccid:%08x%s%s, ",
1953 					(int)(port - execlists->pending),
1954 					rq->context->lrc.ccid,
1955 					intel_context_is_closed(rq->context) ? "!" : "",
1956 					intel_context_is_banned(rq->context) ? "*" : "");
1957 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1958 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1959 			i915_request_show(m, rq, hdr, 0);
1960 		}
1961 		rcu_read_unlock();
1962 		i915_sched_engine_active_unlock_bh(engine->sched_engine);
1963 	} else if (GRAPHICS_VER(dev_priv) > 6) {
1964 		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1965 			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1966 		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1967 			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1968 		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1969 			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1970 	}
1971 }
1972 
1973 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
1974 {
1975 	struct i915_vma_resource *vma_res = rq->batch_res;
1976 	void *ring;
1977 	int size;
1978 
1979 	drm_printf(m,
1980 		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
1981 		   rq->head, rq->postfix, rq->tail,
1982 		   vma_res ? upper_32_bits(vma_res->start) : ~0u,
1983 		   vma_res ? lower_32_bits(vma_res->start) : ~0u);
1984 
1985 	size = rq->tail - rq->head;
1986 	if (rq->tail < rq->head)
1987 		size += rq->ring->size;
1988 
1989 	ring = kmalloc(size, GFP_ATOMIC);
1990 	if (ring) {
1991 		const void *vaddr = rq->ring->vaddr;
1992 		unsigned int head = rq->head;
1993 		unsigned int len = 0;
1994 
1995 		if (rq->tail < head) {
1996 			len = rq->ring->size - head;
1997 			memcpy(ring, vaddr + head, len);
1998 			head = 0;
1999 		}
2000 		memcpy(ring + len, vaddr + head, size - len);
2001 
2002 		hexdump(m, ring, size);
2003 		kfree(ring);
2004 	}
2005 }
2006 
2007 static unsigned long list_count(struct list_head *list)
2008 {
2009 	struct list_head *pos;
2010 	unsigned long count = 0;
2011 
2012 	list_for_each(pos, list)
2013 		count++;
2014 
2015 	return count;
2016 }
2017 
2018 static unsigned long read_ul(void *p, size_t x)
2019 {
2020 	return *(unsigned long *)(p + x);
2021 }
2022 
2023 static void print_properties(struct intel_engine_cs *engine,
2024 			     struct drm_printer *m)
2025 {
2026 	static const struct pmap {
2027 		size_t offset;
2028 		const char *name;
2029 	} props[] = {
2030 #define P(x) { \
2031 	.offset = offsetof(typeof(engine->props), x), \
2032 	.name = #x \
2033 }
2034 		P(heartbeat_interval_ms),
2035 		P(max_busywait_duration_ns),
2036 		P(preempt_timeout_ms),
2037 		P(stop_timeout_ms),
2038 		P(timeslice_duration_ms),
2039 
2040 		{},
2041 #undef P
2042 	};
2043 	const struct pmap *p;
2044 
2045 	drm_printf(m, "\tProperties:\n");
2046 	for (p = props; p->name; p++)
2047 		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2048 			   p->name,
2049 			   read_ul(&engine->props, p->offset),
2050 			   read_ul(&engine->defaults, p->offset));
2051 }
2052 
2053 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2054 {
2055 	struct intel_timeline *tl = get_timeline(rq);
2056 
2057 	i915_request_show(m, rq, msg, 0);
2058 
2059 	drm_printf(m, "\t\tring->start:  0x%08x\n",
2060 		   i915_ggtt_offset(rq->ring->vma));
2061 	drm_printf(m, "\t\tring->head:   0x%08x\n",
2062 		   rq->ring->head);
2063 	drm_printf(m, "\t\tring->tail:   0x%08x\n",
2064 		   rq->ring->tail);
2065 	drm_printf(m, "\t\tring->emit:   0x%08x\n",
2066 		   rq->ring->emit);
2067 	drm_printf(m, "\t\tring->space:  0x%08x\n",
2068 		   rq->ring->space);
2069 
2070 	if (tl) {
2071 		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
2072 			   tl->hwsp_offset);
2073 		intel_timeline_put(tl);
2074 	}
2075 
2076 	print_request_ring(m, rq);
2077 
2078 	if (rq->context->lrc_reg_state) {
2079 		drm_printf(m, "Logical Ring Context:\n");
2080 		hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2081 	}
2082 }
2083 
2084 void intel_engine_dump_active_requests(struct list_head *requests,
2085 				       struct i915_request *hung_rq,
2086 				       struct drm_printer *m)
2087 {
2088 	struct i915_request *rq;
2089 	const char *msg;
2090 	enum i915_request_state state;
2091 
2092 	list_for_each_entry(rq, requests, sched.link) {
2093 		if (rq == hung_rq)
2094 			continue;
2095 
2096 		state = i915_test_request_state(rq);
2097 		if (state < I915_REQUEST_QUEUED)
2098 			continue;
2099 
2100 		if (state == I915_REQUEST_ACTIVE)
2101 			msg = "\t\tactive on engine";
2102 		else
2103 			msg = "\t\tactive in queue";
2104 
2105 		engine_dump_request(rq, m, msg);
2106 	}
2107 }
2108 
2109 static void engine_dump_active_requests(struct intel_engine_cs *engine, struct drm_printer *m)
2110 {
2111 	struct i915_request *hung_rq = NULL;
2112 	struct intel_context *ce;
2113 	bool guc;
2114 
2115 	/*
2116 	 * No need for an engine->irq_seqno_barrier() before the seqno reads.
2117 	 * The GPU is still running so requests are still executing and any
2118 	 * hardware reads will be out of date by the time they are reported.
2119 	 * But the intention here is just to report an instantaneous snapshot
2120 	 * so that's fine.
2121 	 */
2122 	lockdep_assert_held(&engine->sched_engine->lock);
2123 
2124 	drm_printf(m, "\tRequests:\n");
2125 
2126 	guc = intel_uc_uses_guc_submission(&engine->gt->uc);
2127 	if (guc) {
2128 		ce = intel_engine_get_hung_context(engine);
2129 		if (ce)
2130 			hung_rq = intel_context_find_active_request(ce);
2131 	} else {
2132 		hung_rq = intel_engine_execlist_find_hung_request(engine);
2133 	}
2134 
2135 	if (hung_rq)
2136 		engine_dump_request(hung_rq, m, "\t\thung");
2137 
2138 	if (guc)
2139 		intel_guc_dump_active_requests(engine, hung_rq, m);
2140 	else
2141 		intel_engine_dump_active_requests(&engine->sched_engine->requests,
2142 						  hung_rq, m);
2143 }
2144 
2145 void intel_engine_dump(struct intel_engine_cs *engine,
2146 		       struct drm_printer *m,
2147 		       const char *header, ...)
2148 {
2149 	struct i915_gpu_error * const error = &engine->i915->gpu_error;
2150 	struct i915_request *rq;
2151 	intel_wakeref_t wakeref;
2152 	unsigned long flags;
2153 	ktime_t dummy;
2154 
2155 	if (header) {
2156 		va_list ap;
2157 
2158 		va_start(ap, header);
2159 		drm_vprintf(m, header, &ap);
2160 		va_end(ap);
2161 	}
2162 
2163 	if (intel_gt_is_wedged(engine->gt))
2164 		drm_printf(m, "*** WEDGED ***\n");
2165 
2166 	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2167 	drm_printf(m, "\tBarriers?: %s\n",
2168 		   str_yes_no(!llist_empty(&engine->barrier_tasks)));
2169 	drm_printf(m, "\tLatency: %luus\n",
2170 		   ewma__engine_latency_read(&engine->latency));
2171 	if (intel_engine_supports_stats(engine))
2172 		drm_printf(m, "\tRuntime: %llums\n",
2173 			   ktime_to_ms(intel_engine_get_busy_time(engine,
2174 								  &dummy)));
2175 	drm_printf(m, "\tForcewake: %x domains, %d active\n",
2176 		   engine->fw_domain, READ_ONCE(engine->fw_active));
2177 
2178 	rcu_read_lock();
2179 	rq = READ_ONCE(engine->heartbeat.systole);
2180 	if (rq)
2181 		drm_printf(m, "\tHeartbeat: %d ms ago\n",
2182 			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2183 	rcu_read_unlock();
2184 	drm_printf(m, "\tReset count: %d (global %d)\n",
2185 		   i915_reset_engine_count(error, engine),
2186 		   i915_reset_count(error));
2187 	print_properties(engine, m);
2188 
2189 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
2190 	engine_dump_active_requests(engine, m);
2191 
2192 	drm_printf(m, "\tOn hold?: %lu\n",
2193 		   list_count(&engine->sched_engine->hold));
2194 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2195 
2196 	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
2197 	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2198 	if (wakeref) {
2199 		intel_engine_print_registers(engine, m);
2200 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2201 	} else {
2202 		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2203 	}
2204 
2205 	intel_execlists_show_requests(engine, m, i915_request_show, 8);
2206 
2207 	drm_printf(m, "HWSP:\n");
2208 	hexdump(m, engine->status_page.addr, PAGE_SIZE);
2209 
2210 	drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2211 
2212 	intel_engine_print_breadcrumbs(engine, m);
2213 }
2214 
2215 /**
2216  * intel_engine_get_busy_time() - Return current accumulated engine busyness
2217  * @engine: engine to report on
2218  * @now: monotonic timestamp of sampling
2219  *
2220  * Returns accumulated time @engine was busy since engine stats were enabled.
2221  */
2222 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2223 {
2224 	return engine->busyness(engine, now);
2225 }
2226 
2227 struct intel_context *
2228 intel_engine_create_virtual(struct intel_engine_cs **siblings,
2229 			    unsigned int count, unsigned long flags)
2230 {
2231 	if (count == 0)
2232 		return ERR_PTR(-EINVAL);
2233 
2234 	if (count == 1 && !(flags & FORCE_VIRTUAL))
2235 		return intel_context_create(siblings[0]);
2236 
2237 	GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2238 	return siblings[0]->cops->create_virtual(siblings, count, flags);
2239 }
2240 
2241 struct i915_request *
2242 intel_engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2243 {
2244 	struct i915_request *request, *active = NULL;
2245 
2246 	/*
2247 	 * This search does not work in GuC submission mode. However, the GuC
2248 	 * will report the hanging context directly to the driver itself. So
2249 	 * the driver should never get here when in GuC mode.
2250 	 */
2251 	GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2252 
2253 	/*
2254 	 * We are called by the error capture, reset and to dump engine
2255 	 * state at random points in time. In particular, note that neither is
2256 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
2257 	 * and we assume that no more writes can happen (we waited long enough
2258 	 * for all writes that were in transaction to be flushed) - adding an
2259 	 * extra delay for a recent interrupt is pointless. Hence, we do
2260 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2261 	 * At all other times, we must assume the GPU is still running, but
2262 	 * we only care about the snapshot of this moment.
2263 	 */
2264 	lockdep_assert_held(&engine->sched_engine->lock);
2265 
2266 	rcu_read_lock();
2267 	request = execlists_active(&engine->execlists);
2268 	if (request) {
2269 		struct intel_timeline *tl = request->context->timeline;
2270 
2271 		list_for_each_entry_from_reverse(request, &tl->requests, link) {
2272 			if (__i915_request_is_complete(request))
2273 				break;
2274 
2275 			active = request;
2276 		}
2277 	}
2278 	rcu_read_unlock();
2279 	if (active)
2280 		return active;
2281 
2282 	list_for_each_entry(request, &engine->sched_engine->requests,
2283 			    sched.link) {
2284 		if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2285 			continue;
2286 
2287 		active = request;
2288 		break;
2289 	}
2290 
2291 	return active;
2292 }
2293 
2294 void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2295 {
2296 	/*
2297 	 * If there are any non-fused-off CCS engines, we need to enable CCS
2298 	 * support in the RCU_MODE register.  This only needs to be done once,
2299 	 * so for simplicity we'll take care of this in the RCS engine's
2300 	 * resume handler; since the RCS and all CCS engines belong to the
2301 	 * same reset domain and are reset together, this will also take care
2302 	 * of re-applying the setting after i915-triggered resets.
2303 	 */
2304 	if (!CCS_MASK(engine->gt))
2305 		return;
2306 
2307 	intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2308 			   _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2309 }
2310 
2311 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2312 #include "mock_engine.c"
2313 #include "selftest_engine.c"
2314 #include "selftest_engine_cs.c"
2315 #endif
2316