xref: /linux/drivers/gpu/drm/i915/gt/intel_engine_cs.c (revision 335bbdf01d25517ae832ac1807fd8323c1f4f3b9)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include <drm/drm_print.h>
9 
10 #include "gem/i915_gem_context.h"
11 #include "gem/i915_gem_internal.h"
12 #include "gt/intel_gt_print.h"
13 #include "gt/intel_gt_regs.h"
14 
15 #include "i915_cmd_parser.h"
16 #include "i915_drv.h"
17 #include "i915_irq.h"
18 #include "i915_reg.h"
19 #include "intel_breadcrumbs.h"
20 #include "intel_context.h"
21 #include "intel_engine.h"
22 #include "intel_engine_pm.h"
23 #include "intel_engine_regs.h"
24 #include "intel_engine_user.h"
25 #include "intel_execlists_submission.h"
26 #include "intel_gt.h"
27 #include "intel_gt_mcr.h"
28 #include "intel_gt_pm.h"
29 #include "intel_gt_requests.h"
30 #include "intel_lrc.h"
31 #include "intel_lrc_reg.h"
32 #include "intel_reset.h"
33 #include "intel_ring.h"
34 #include "uc/intel_guc_submission.h"
35 
36 /* Haswell does have the CXT_SIZE register however it does not appear to be
37  * valid. Now, docs explain in dwords what is in the context object. The full
38  * size is 70720 bytes, however, the power context and execlist context will
39  * never be saved (power context is stored elsewhere, and execlists don't work
40  * on HSW) - so the final size, including the extra state required for the
41  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
42  */
43 #define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)
44 
45 #define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
46 #define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
47 #define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
48 #define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
49 
50 #define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)
51 
52 #define MAX_MMIO_BASES 3
53 struct engine_info {
54 	u8 class;
55 	u8 instance;
56 	/* mmio bases table *must* be sorted in reverse graphics_ver order */
57 	struct engine_mmio_base {
58 		u32 graphics_ver : 8;
59 		u32 base : 24;
60 	} mmio_bases[MAX_MMIO_BASES];
61 };
62 
63 static const struct engine_info intel_engines[] = {
64 	[RCS0] = {
65 		.class = RENDER_CLASS,
66 		.instance = 0,
67 		.mmio_bases = {
68 			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
69 		},
70 	},
71 	[BCS0] = {
72 		.class = COPY_ENGINE_CLASS,
73 		.instance = 0,
74 		.mmio_bases = {
75 			{ .graphics_ver = 6, .base = BLT_RING_BASE }
76 		},
77 	},
78 	[BCS1] = {
79 		.class = COPY_ENGINE_CLASS,
80 		.instance = 1,
81 		.mmio_bases = {
82 			{ .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
83 		},
84 	},
85 	[BCS2] = {
86 		.class = COPY_ENGINE_CLASS,
87 		.instance = 2,
88 		.mmio_bases = {
89 			{ .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
90 		},
91 	},
92 	[BCS3] = {
93 		.class = COPY_ENGINE_CLASS,
94 		.instance = 3,
95 		.mmio_bases = {
96 			{ .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
97 		},
98 	},
99 	[BCS4] = {
100 		.class = COPY_ENGINE_CLASS,
101 		.instance = 4,
102 		.mmio_bases = {
103 			{ .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
104 		},
105 	},
106 	[BCS5] = {
107 		.class = COPY_ENGINE_CLASS,
108 		.instance = 5,
109 		.mmio_bases = {
110 			{ .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
111 		},
112 	},
113 	[BCS6] = {
114 		.class = COPY_ENGINE_CLASS,
115 		.instance = 6,
116 		.mmio_bases = {
117 			{ .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
118 		},
119 	},
120 	[BCS7] = {
121 		.class = COPY_ENGINE_CLASS,
122 		.instance = 7,
123 		.mmio_bases = {
124 			{ .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
125 		},
126 	},
127 	[BCS8] = {
128 		.class = COPY_ENGINE_CLASS,
129 		.instance = 8,
130 		.mmio_bases = {
131 			{ .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
132 		},
133 	},
134 	[VCS0] = {
135 		.class = VIDEO_DECODE_CLASS,
136 		.instance = 0,
137 		.mmio_bases = {
138 			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
139 			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
140 			{ .graphics_ver = 4, .base = BSD_RING_BASE }
141 		},
142 	},
143 	[VCS1] = {
144 		.class = VIDEO_DECODE_CLASS,
145 		.instance = 1,
146 		.mmio_bases = {
147 			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
148 			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
149 		},
150 	},
151 	[VCS2] = {
152 		.class = VIDEO_DECODE_CLASS,
153 		.instance = 2,
154 		.mmio_bases = {
155 			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
156 		},
157 	},
158 	[VCS3] = {
159 		.class = VIDEO_DECODE_CLASS,
160 		.instance = 3,
161 		.mmio_bases = {
162 			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
163 		},
164 	},
165 	[VCS4] = {
166 		.class = VIDEO_DECODE_CLASS,
167 		.instance = 4,
168 		.mmio_bases = {
169 			{ .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
170 		},
171 	},
172 	[VCS5] = {
173 		.class = VIDEO_DECODE_CLASS,
174 		.instance = 5,
175 		.mmio_bases = {
176 			{ .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
177 		},
178 	},
179 	[VCS6] = {
180 		.class = VIDEO_DECODE_CLASS,
181 		.instance = 6,
182 		.mmio_bases = {
183 			{ .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
184 		},
185 	},
186 	[VCS7] = {
187 		.class = VIDEO_DECODE_CLASS,
188 		.instance = 7,
189 		.mmio_bases = {
190 			{ .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
191 		},
192 	},
193 	[VECS0] = {
194 		.class = VIDEO_ENHANCEMENT_CLASS,
195 		.instance = 0,
196 		.mmio_bases = {
197 			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
198 			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
199 		},
200 	},
201 	[VECS1] = {
202 		.class = VIDEO_ENHANCEMENT_CLASS,
203 		.instance = 1,
204 		.mmio_bases = {
205 			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
206 		},
207 	},
208 	[VECS2] = {
209 		.class = VIDEO_ENHANCEMENT_CLASS,
210 		.instance = 2,
211 		.mmio_bases = {
212 			{ .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
213 		},
214 	},
215 	[VECS3] = {
216 		.class = VIDEO_ENHANCEMENT_CLASS,
217 		.instance = 3,
218 		.mmio_bases = {
219 			{ .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
220 		},
221 	},
222 	[CCS0] = {
223 		.class = COMPUTE_CLASS,
224 		.instance = 0,
225 		.mmio_bases = {
226 			{ .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
227 		}
228 	},
229 	[CCS1] = {
230 		.class = COMPUTE_CLASS,
231 		.instance = 1,
232 		.mmio_bases = {
233 			{ .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
234 		}
235 	},
236 	[CCS2] = {
237 		.class = COMPUTE_CLASS,
238 		.instance = 2,
239 		.mmio_bases = {
240 			{ .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
241 		}
242 	},
243 	[CCS3] = {
244 		.class = COMPUTE_CLASS,
245 		.instance = 3,
246 		.mmio_bases = {
247 			{ .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
248 		}
249 	},
250 	[GSC0] = {
251 		.class = OTHER_CLASS,
252 		.instance = OTHER_GSC_INSTANCE,
253 		.mmio_bases = {
254 			{ .graphics_ver = 12, .base = MTL_GSC_RING_BASE }
255 		}
256 	},
257 };
258 
259 /**
260  * intel_engine_context_size() - return the size of the context for an engine
261  * @gt: the gt
262  * @class: engine class
263  *
264  * Each engine class may require a different amount of space for a context
265  * image.
266  *
267  * Return: size (in bytes) of an engine class specific context image
268  *
269  * Note: this size includes the HWSP, which is part of the context image
270  * in LRC mode, but does not include the "shared data page" used with
271  * GuC submission. The caller should account for this if using the GuC.
272  */
273 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
274 {
275 	struct intel_uncore *uncore = gt->uncore;
276 	u32 cxt_size;
277 
278 	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
279 
280 	switch (class) {
281 	case COMPUTE_CLASS:
282 		fallthrough;
283 	case RENDER_CLASS:
284 		switch (GRAPHICS_VER(gt->i915)) {
285 		default:
286 			MISSING_CASE(GRAPHICS_VER(gt->i915));
287 			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
288 		case 12:
289 		case 11:
290 			return GEN11_LR_CONTEXT_RENDER_SIZE;
291 		case 9:
292 			return GEN9_LR_CONTEXT_RENDER_SIZE;
293 		case 8:
294 			return GEN8_LR_CONTEXT_RENDER_SIZE;
295 		case 7:
296 			if (IS_HASWELL(gt->i915))
297 				return HSW_CXT_TOTAL_SIZE;
298 
299 			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
300 			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
301 					PAGE_SIZE);
302 		case 6:
303 			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
304 			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
305 					PAGE_SIZE);
306 		case 5:
307 		case 4:
308 			/*
309 			 * There is a discrepancy here between the size reported
310 			 * by the register and the size of the context layout
311 			 * in the docs. Both are described as authorative!
312 			 *
313 			 * The discrepancy is on the order of a few cachelines,
314 			 * but the total is under one page (4k), which is our
315 			 * minimum allocation anyway so it should all come
316 			 * out in the wash.
317 			 */
318 			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
319 			gt_dbg(gt, "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
320 			       GRAPHICS_VER(gt->i915), cxt_size * 64,
321 			       cxt_size - 1);
322 			return round_up(cxt_size * 64, PAGE_SIZE);
323 		case 3:
324 		case 2:
325 		/* For the special day when i810 gets merged. */
326 		case 1:
327 			return 0;
328 		}
329 		break;
330 	default:
331 		MISSING_CASE(class);
332 		fallthrough;
333 	case VIDEO_DECODE_CLASS:
334 	case VIDEO_ENHANCEMENT_CLASS:
335 	case COPY_ENGINE_CLASS:
336 	case OTHER_CLASS:
337 		if (GRAPHICS_VER(gt->i915) < 8)
338 			return 0;
339 		return GEN8_LR_CONTEXT_OTHER_SIZE;
340 	}
341 }
342 
343 static u32 __engine_mmio_base(struct drm_i915_private *i915,
344 			      const struct engine_mmio_base *bases)
345 {
346 	int i;
347 
348 	for (i = 0; i < MAX_MMIO_BASES; i++)
349 		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
350 			break;
351 
352 	GEM_BUG_ON(i == MAX_MMIO_BASES);
353 	GEM_BUG_ON(!bases[i].base);
354 
355 	return bases[i].base;
356 }
357 
358 static void __sprint_engine_name(struct intel_engine_cs *engine)
359 {
360 	/*
361 	 * Before we know what the uABI name for this engine will be,
362 	 * we still would like to keep track of this engine in the debug logs.
363 	 * We throw in a ' here as a reminder that this isn't its final name.
364 	 */
365 	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
366 			     intel_engine_class_repr(engine->class),
367 			     engine->instance) >= sizeof(engine->name));
368 }
369 
370 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
371 {
372 	/*
373 	 * Though they added more rings on g4x/ilk, they did not add
374 	 * per-engine HWSTAM until gen6.
375 	 */
376 	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
377 		return;
378 
379 	if (GRAPHICS_VER(engine->i915) >= 3)
380 		ENGINE_WRITE(engine, RING_HWSTAM, mask);
381 	else
382 		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
383 }
384 
385 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
386 {
387 	/* Mask off all writes into the unknown HWSP */
388 	intel_engine_set_hwsp_writemask(engine, ~0u);
389 }
390 
391 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
392 {
393 	GEM_DEBUG_WARN_ON(iir);
394 }
395 
396 static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
397 {
398 	u32 reset_domain;
399 
400 	if (ver >= 11) {
401 		static const u32 engine_reset_domains[] = {
402 			[RCS0]  = GEN11_GRDOM_RENDER,
403 			[BCS0]  = GEN11_GRDOM_BLT,
404 			[BCS1]  = XEHPC_GRDOM_BLT1,
405 			[BCS2]  = XEHPC_GRDOM_BLT2,
406 			[BCS3]  = XEHPC_GRDOM_BLT3,
407 			[BCS4]  = XEHPC_GRDOM_BLT4,
408 			[BCS5]  = XEHPC_GRDOM_BLT5,
409 			[BCS6]  = XEHPC_GRDOM_BLT6,
410 			[BCS7]  = XEHPC_GRDOM_BLT7,
411 			[BCS8]  = XEHPC_GRDOM_BLT8,
412 			[VCS0]  = GEN11_GRDOM_MEDIA,
413 			[VCS1]  = GEN11_GRDOM_MEDIA2,
414 			[VCS2]  = GEN11_GRDOM_MEDIA3,
415 			[VCS3]  = GEN11_GRDOM_MEDIA4,
416 			[VCS4]  = GEN11_GRDOM_MEDIA5,
417 			[VCS5]  = GEN11_GRDOM_MEDIA6,
418 			[VCS6]  = GEN11_GRDOM_MEDIA7,
419 			[VCS7]  = GEN11_GRDOM_MEDIA8,
420 			[VECS0] = GEN11_GRDOM_VECS,
421 			[VECS1] = GEN11_GRDOM_VECS2,
422 			[VECS2] = GEN11_GRDOM_VECS3,
423 			[VECS3] = GEN11_GRDOM_VECS4,
424 			[CCS0]  = GEN11_GRDOM_RENDER,
425 			[CCS1]  = GEN11_GRDOM_RENDER,
426 			[CCS2]  = GEN11_GRDOM_RENDER,
427 			[CCS3]  = GEN11_GRDOM_RENDER,
428 			[GSC0]  = GEN12_GRDOM_GSC,
429 		};
430 		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
431 			   !engine_reset_domains[id]);
432 		reset_domain = engine_reset_domains[id];
433 	} else {
434 		static const u32 engine_reset_domains[] = {
435 			[RCS0]  = GEN6_GRDOM_RENDER,
436 			[BCS0]  = GEN6_GRDOM_BLT,
437 			[VCS0]  = GEN6_GRDOM_MEDIA,
438 			[VCS1]  = GEN8_GRDOM_MEDIA2,
439 			[VECS0] = GEN6_GRDOM_VECS,
440 		};
441 		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
442 			   !engine_reset_domains[id]);
443 		reset_domain = engine_reset_domains[id];
444 	}
445 
446 	return reset_domain;
447 }
448 
449 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
450 			      u8 logical_instance)
451 {
452 	const struct engine_info *info = &intel_engines[id];
453 	struct drm_i915_private *i915 = gt->i915;
454 	struct intel_engine_cs *engine;
455 	u8 guc_class;
456 
457 	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
458 	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
459 	BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
460 	BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
461 
462 	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
463 		return -EINVAL;
464 
465 	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
466 		return -EINVAL;
467 
468 	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
469 		return -EINVAL;
470 
471 	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
472 		return -EINVAL;
473 
474 	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
475 	if (!engine)
476 		return -ENOMEM;
477 
478 	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
479 
480 	INIT_LIST_HEAD(&engine->pinned_contexts_list);
481 	engine->id = id;
482 	engine->legacy_idx = INVALID_ENGINE;
483 	engine->mask = BIT(id);
484 	engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
485 						id);
486 	engine->i915 = i915;
487 	engine->gt = gt;
488 	engine->uncore = gt->uncore;
489 	guc_class = engine_class_to_guc_class(info->class);
490 	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
491 	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
492 
493 	engine->irq_handler = nop_irq_handler;
494 
495 	engine->class = info->class;
496 	engine->instance = info->instance;
497 	engine->logical_mask = BIT(logical_instance);
498 	__sprint_engine_name(engine);
499 
500 	if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) &&
501 	     __ffs(CCS_MASK(engine->gt)) == engine->instance) ||
502 	     engine->class == RENDER_CLASS)
503 		engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
504 
505 	/* features common between engines sharing EUs */
506 	if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
507 		engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
508 		engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
509 	}
510 
511 	engine->props.heartbeat_interval_ms =
512 		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
513 	engine->props.max_busywait_duration_ns =
514 		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
515 	engine->props.preempt_timeout_ms =
516 		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
517 	engine->props.stop_timeout_ms =
518 		CONFIG_DRM_I915_STOP_TIMEOUT;
519 	engine->props.timeslice_duration_ms =
520 		CONFIG_DRM_I915_TIMESLICE_DURATION;
521 
522 	/*
523 	 * Mid-thread pre-emption is not available in Gen12. Unfortunately,
524 	 * some compute workloads run quite long threads. That means they get
525 	 * reset due to not pre-empting in a timely manner. So, bump the
526 	 * pre-emption timeout value to be much higher for compute engines.
527 	 */
528 	if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
529 		engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE;
530 
531 	/* Cap properties according to any system limits */
532 #define CLAMP_PROP(field) \
533 	do { \
534 		u64 clamp = intel_clamp_##field(engine, engine->props.field); \
535 		if (clamp != engine->props.field) { \
536 			drm_notice(&engine->i915->drm, \
537 				   "Warning, clamping %s to %lld to prevent overflow\n", \
538 				   #field, clamp); \
539 			engine->props.field = clamp; \
540 		} \
541 	} while (0)
542 
543 	CLAMP_PROP(heartbeat_interval_ms);
544 	CLAMP_PROP(max_busywait_duration_ns);
545 	CLAMP_PROP(preempt_timeout_ms);
546 	CLAMP_PROP(stop_timeout_ms);
547 	CLAMP_PROP(timeslice_duration_ms);
548 
549 #undef CLAMP_PROP
550 
551 	engine->defaults = engine->props; /* never to change again */
552 
553 	engine->context_size = intel_engine_context_size(gt, engine->class);
554 	if (WARN_ON(engine->context_size > BIT(20)))
555 		engine->context_size = 0;
556 	if (engine->context_size)
557 		DRIVER_CAPS(i915)->has_logical_contexts = true;
558 
559 	ewma__engine_latency_init(&engine->latency);
560 
561 	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
562 
563 	/* Scrub mmio state on takeover */
564 	intel_engine_sanitize_mmio(engine);
565 
566 	gt->engine_class[info->class][info->instance] = engine;
567 	gt->engine[id] = engine;
568 
569 	return 0;
570 }
571 
572 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
573 {
574 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
575 
576 	return value;
577 }
578 
579 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
580 {
581 	value = min(value, jiffies_to_nsecs(2));
582 
583 	return value;
584 }
585 
586 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
587 {
588 	/*
589 	 * NB: The GuC API only supports 32bit values. However, the limit is further
590 	 * reduced due to internal calculations which would otherwise overflow.
591 	 */
592 	if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
593 		value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
594 
595 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
596 
597 	return value;
598 }
599 
600 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
601 {
602 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
603 
604 	return value;
605 }
606 
607 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
608 {
609 	/*
610 	 * NB: The GuC API only supports 32bit values. However, the limit is further
611 	 * reduced due to internal calculations which would otherwise overflow.
612 	 */
613 	if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
614 		value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
615 
616 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
617 
618 	return value;
619 }
620 
621 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
622 {
623 	struct drm_i915_private *i915 = engine->i915;
624 
625 	if (engine->class == VIDEO_DECODE_CLASS) {
626 		/*
627 		 * HEVC support is present on first engine instance
628 		 * before Gen11 and on all instances afterwards.
629 		 */
630 		if (GRAPHICS_VER(i915) >= 11 ||
631 		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
632 			engine->uabi_capabilities |=
633 				I915_VIDEO_CLASS_CAPABILITY_HEVC;
634 
635 		/*
636 		 * SFC block is present only on even logical engine
637 		 * instances.
638 		 */
639 		if ((GRAPHICS_VER(i915) >= 11 &&
640 		     (engine->gt->info.vdbox_sfc_access &
641 		      BIT(engine->instance))) ||
642 		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
643 			engine->uabi_capabilities |=
644 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
645 	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
646 		if (GRAPHICS_VER(i915) >= 9 &&
647 		    engine->gt->info.sfc_mask & BIT(engine->instance))
648 			engine->uabi_capabilities |=
649 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
650 	}
651 }
652 
653 static void intel_setup_engine_capabilities(struct intel_gt *gt)
654 {
655 	struct intel_engine_cs *engine;
656 	enum intel_engine_id id;
657 
658 	for_each_engine(engine, gt, id)
659 		__setup_engine_capabilities(engine);
660 }
661 
662 /**
663  * intel_engines_release() - free the resources allocated for Command Streamers
664  * @gt: pointer to struct intel_gt
665  */
666 void intel_engines_release(struct intel_gt *gt)
667 {
668 	struct intel_engine_cs *engine;
669 	enum intel_engine_id id;
670 
671 	/*
672 	 * Before we release the resources held by engine, we must be certain
673 	 * that the HW is no longer accessing them -- having the GPU scribble
674 	 * to or read from a page being used for something else causes no end
675 	 * of fun.
676 	 *
677 	 * The GPU should be reset by this point, but assume the worst just
678 	 * in case we aborted before completely initialising the engines.
679 	 */
680 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
681 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
682 		__intel_gt_reset(gt, ALL_ENGINES);
683 
684 	/* Decouple the backend; but keep the layout for late GPU resets */
685 	for_each_engine(engine, gt, id) {
686 		if (!engine->release)
687 			continue;
688 
689 		intel_wakeref_wait_for_idle(&engine->wakeref);
690 		GEM_BUG_ON(intel_engine_pm_is_awake(engine));
691 
692 		engine->release(engine);
693 		engine->release = NULL;
694 
695 		memset(&engine->reset, 0, sizeof(engine->reset));
696 	}
697 }
698 
699 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
700 {
701 	if (!engine->request_pool)
702 		return;
703 
704 	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
705 }
706 
707 void intel_engines_free(struct intel_gt *gt)
708 {
709 	struct intel_engine_cs *engine;
710 	enum intel_engine_id id;
711 
712 	/* Free the requests! dma-resv keeps fences around for an eternity */
713 	rcu_barrier();
714 
715 	for_each_engine(engine, gt, id) {
716 		intel_engine_free_request_pool(engine);
717 		kfree(engine);
718 		gt->engine[id] = NULL;
719 	}
720 }
721 
722 static
723 bool gen11_vdbox_has_sfc(struct intel_gt *gt,
724 			 unsigned int physical_vdbox,
725 			 unsigned int logical_vdbox, u16 vdbox_mask)
726 {
727 	struct drm_i915_private *i915 = gt->i915;
728 
729 	/*
730 	 * In Gen11, only even numbered logical VDBOXes are hooked
731 	 * up to an SFC (Scaler & Format Converter) unit.
732 	 * In Gen12, Even numbered physical instance always are connected
733 	 * to an SFC. Odd numbered physical instances have SFC only if
734 	 * previous even instance is fused off.
735 	 *
736 	 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
737 	 * in the fuse register that tells us whether a specific SFC is present.
738 	 */
739 	if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
740 		return false;
741 	else if (MEDIA_VER(i915) >= 12)
742 		return (physical_vdbox % 2 == 0) ||
743 			!(BIT(physical_vdbox - 1) & vdbox_mask);
744 	else if (MEDIA_VER(i915) == 11)
745 		return logical_vdbox % 2 == 0;
746 
747 	return false;
748 }
749 
750 static void engine_mask_apply_media_fuses(struct intel_gt *gt)
751 {
752 	struct drm_i915_private *i915 = gt->i915;
753 	unsigned int logical_vdbox = 0;
754 	unsigned int i;
755 	u32 media_fuse, fuse1;
756 	u16 vdbox_mask;
757 	u16 vebox_mask;
758 
759 	if (MEDIA_VER(gt->i915) < 11)
760 		return;
761 
762 	/*
763 	 * On newer platforms the fusing register is called 'enable' and has
764 	 * enable semantics, while on older platforms it is called 'disable'
765 	 * and bits have disable semantices.
766 	 */
767 	media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
768 	if (MEDIA_VER_FULL(i915) < IP_VER(12, 50))
769 		media_fuse = ~media_fuse;
770 
771 	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
772 	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
773 		      GEN11_GT_VEBOX_DISABLE_SHIFT;
774 
775 	if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) {
776 		fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
777 		gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
778 	} else {
779 		gt->info.sfc_mask = ~0;
780 	}
781 
782 	for (i = 0; i < I915_MAX_VCS; i++) {
783 		if (!HAS_ENGINE(gt, _VCS(i))) {
784 			vdbox_mask &= ~BIT(i);
785 			continue;
786 		}
787 
788 		if (!(BIT(i) & vdbox_mask)) {
789 			gt->info.engine_mask &= ~BIT(_VCS(i));
790 			gt_dbg(gt, "vcs%u fused off\n", i);
791 			continue;
792 		}
793 
794 		if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
795 			gt->info.vdbox_sfc_access |= BIT(i);
796 		logical_vdbox++;
797 	}
798 	gt_dbg(gt, "vdbox enable: %04x, instances: %04lx\n", vdbox_mask, VDBOX_MASK(gt));
799 	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
800 
801 	for (i = 0; i < I915_MAX_VECS; i++) {
802 		if (!HAS_ENGINE(gt, _VECS(i))) {
803 			vebox_mask &= ~BIT(i);
804 			continue;
805 		}
806 
807 		if (!(BIT(i) & vebox_mask)) {
808 			gt->info.engine_mask &= ~BIT(_VECS(i));
809 			gt_dbg(gt, "vecs%u fused off\n", i);
810 		}
811 	}
812 	gt_dbg(gt, "vebox enable: %04x, instances: %04lx\n", vebox_mask, VEBOX_MASK(gt));
813 	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
814 }
815 
816 static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
817 {
818 	struct drm_i915_private *i915 = gt->i915;
819 	struct intel_gt_info *info = &gt->info;
820 	int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
821 	unsigned long ccs_mask;
822 	unsigned int i;
823 
824 	if (GRAPHICS_VER(i915) < 11)
825 		return;
826 
827 	if (hweight32(CCS_MASK(gt)) <= 1)
828 		return;
829 
830 	ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
831 						     ss_per_ccs);
832 	/*
833 	 * If all DSS in a quadrant are fused off, the corresponding CCS
834 	 * engine is not available for use.
835 	 */
836 	for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
837 		info->engine_mask &= ~BIT(_CCS(i));
838 		gt_dbg(gt, "ccs%u fused off\n", i);
839 	}
840 }
841 
842 static void engine_mask_apply_copy_fuses(struct intel_gt *gt)
843 {
844 	struct drm_i915_private *i915 = gt->i915;
845 	struct intel_gt_info *info = &gt->info;
846 	unsigned long meml3_mask;
847 	unsigned long quad;
848 
849 	if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) &&
850 	      GRAPHICS_VER_FULL(i915) < IP_VER(12, 70)))
851 		return;
852 
853 	meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3);
854 	meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask);
855 
856 	/*
857 	 * Link Copy engines may be fused off according to meml3_mask. Each
858 	 * bit is a quad that houses 2 Link Copy and two Sub Copy engines.
859 	 */
860 	for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) {
861 		unsigned int instance = quad * 2 + 1;
862 		intel_engine_mask_t mask = GENMASK(_BCS(instance + 1),
863 						   _BCS(instance));
864 
865 		if (mask & info->engine_mask) {
866 			gt_dbg(gt, "bcs%u fused off\n", instance);
867 			gt_dbg(gt, "bcs%u fused off\n", instance + 1);
868 
869 			info->engine_mask &= ~mask;
870 		}
871 	}
872 }
873 
874 /*
875  * Determine which engines are fused off in our particular hardware.
876  * Note that we have a catch-22 situation where we need to be able to access
877  * the blitter forcewake domain to read the engine fuses, but at the same time
878  * we need to know which engines are available on the system to know which
879  * forcewake domains are present. We solve this by intializing the forcewake
880  * domains based on the full engine mask in the platform capabilities before
881  * calling this function and pruning the domains for fused-off engines
882  * afterwards.
883  */
884 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
885 {
886 	struct intel_gt_info *info = &gt->info;
887 
888 	GEM_BUG_ON(!info->engine_mask);
889 
890 	engine_mask_apply_media_fuses(gt);
891 	engine_mask_apply_compute_fuses(gt);
892 	engine_mask_apply_copy_fuses(gt);
893 
894 	/*
895 	 * The only use of the GSC CS is to load and communicate with the GSC
896 	 * FW, so we have no use for it if we don't have the FW.
897 	 *
898 	 * IMPORTANT: in cases where we don't have the GSC FW, we have a
899 	 * catch-22 situation that breaks media C6 due to 2 requirements:
900 	 * 1) once turned on, the GSC power well will not go to sleep unless the
901 	 *    GSC FW is loaded.
902 	 * 2) to enable idling (which is required for media C6) we need to
903 	 *    initialize the IDLE_MSG register for the GSC CS and do at least 1
904 	 *    submission, which will wake up the GSC power well.
905 	 */
906 	if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(&gt->uc)) {
907 		gt_notice(gt, "No GSC FW selected, disabling GSC CS and media C6\n");
908 		info->engine_mask &= ~BIT(GSC0);
909 	}
910 
911 	return info->engine_mask;
912 }
913 
914 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
915 				 u8 class, const u8 *map, u8 num_instances)
916 {
917 	int i, j;
918 	u8 current_logical_id = 0;
919 
920 	for (j = 0; j < num_instances; ++j) {
921 		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
922 			if (!HAS_ENGINE(gt, i) ||
923 			    intel_engines[i].class != class)
924 				continue;
925 
926 			if (intel_engines[i].instance == map[j]) {
927 				logical_ids[intel_engines[i].instance] =
928 					current_logical_id++;
929 				break;
930 			}
931 		}
932 	}
933 }
934 
935 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
936 {
937 	/*
938 	 * Logical to physical mapping is needed for proper support
939 	 * to split-frame feature.
940 	 */
941 	if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
942 		const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
943 
944 		populate_logical_ids(gt, logical_ids, class,
945 				     map, ARRAY_SIZE(map));
946 	} else {
947 		int i;
948 		u8 map[MAX_ENGINE_INSTANCE + 1];
949 
950 		for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
951 			map[i] = i;
952 		populate_logical_ids(gt, logical_ids, class,
953 				     map, ARRAY_SIZE(map));
954 	}
955 }
956 
957 /**
958  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
959  * @gt: pointer to struct intel_gt
960  *
961  * Return: non-zero if the initialization failed.
962  */
963 int intel_engines_init_mmio(struct intel_gt *gt)
964 {
965 	struct drm_i915_private *i915 = gt->i915;
966 	const unsigned int engine_mask = init_engine_mask(gt);
967 	unsigned int mask = 0;
968 	unsigned int i, class;
969 	u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
970 	int err;
971 
972 	drm_WARN_ON(&i915->drm, engine_mask == 0);
973 	drm_WARN_ON(&i915->drm, engine_mask &
974 		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
975 
976 	if (i915_inject_probe_failure(i915))
977 		return -ENODEV;
978 
979 	for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
980 		setup_logical_ids(gt, logical_ids, class);
981 
982 		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
983 			u8 instance = intel_engines[i].instance;
984 
985 			if (intel_engines[i].class != class ||
986 			    !HAS_ENGINE(gt, i))
987 				continue;
988 
989 			err = intel_engine_setup(gt, i,
990 						 logical_ids[instance]);
991 			if (err)
992 				goto cleanup;
993 
994 			mask |= BIT(i);
995 		}
996 	}
997 
998 	/*
999 	 * Catch failures to update intel_engines table when the new engines
1000 	 * are added to the driver by a warning and disabling the forgotten
1001 	 * engines.
1002 	 */
1003 	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
1004 		gt->info.engine_mask = mask;
1005 
1006 	gt->info.num_engines = hweight32(mask);
1007 
1008 	intel_gt_check_and_clear_faults(gt);
1009 
1010 	intel_setup_engine_capabilities(gt);
1011 
1012 	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
1013 
1014 	return 0;
1015 
1016 cleanup:
1017 	intel_engines_free(gt);
1018 	return err;
1019 }
1020 
1021 void intel_engine_init_execlists(struct intel_engine_cs *engine)
1022 {
1023 	struct intel_engine_execlists * const execlists = &engine->execlists;
1024 
1025 	execlists->port_mask = 1;
1026 	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
1027 	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
1028 
1029 	memset(execlists->pending, 0, sizeof(execlists->pending));
1030 	execlists->active =
1031 		memset(execlists->inflight, 0, sizeof(execlists->inflight));
1032 }
1033 
1034 static void cleanup_status_page(struct intel_engine_cs *engine)
1035 {
1036 	struct i915_vma *vma;
1037 
1038 	/* Prevent writes into HWSP after returning the page to the system */
1039 	intel_engine_set_hwsp_writemask(engine, ~0u);
1040 
1041 	vma = fetch_and_zero(&engine->status_page.vma);
1042 	if (!vma)
1043 		return;
1044 
1045 	if (!HWS_NEEDS_PHYSICAL(engine->i915))
1046 		i915_vma_unpin(vma);
1047 
1048 	i915_gem_object_unpin_map(vma->obj);
1049 	i915_gem_object_put(vma->obj);
1050 }
1051 
1052 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
1053 				struct i915_gem_ww_ctx *ww,
1054 				struct i915_vma *vma)
1055 {
1056 	unsigned int flags;
1057 
1058 	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
1059 		/*
1060 		 * On g33, we cannot place HWS above 256MiB, so
1061 		 * restrict its pinning to the low mappable arena.
1062 		 * Though this restriction is not documented for
1063 		 * gen4, gen5, or byt, they also behave similarly
1064 		 * and hang if the HWS is placed at the top of the
1065 		 * GTT. To generalise, it appears that all !llc
1066 		 * platforms have issues with us placing the HWS
1067 		 * above the mappable region (even though we never
1068 		 * actually map it).
1069 		 */
1070 		flags = PIN_MAPPABLE;
1071 	else
1072 		flags = PIN_HIGH;
1073 
1074 	return i915_ggtt_pin(vma, ww, 0, flags);
1075 }
1076 
1077 static int init_status_page(struct intel_engine_cs *engine)
1078 {
1079 	struct drm_i915_gem_object *obj;
1080 	struct i915_gem_ww_ctx ww;
1081 	struct i915_vma *vma;
1082 	void *vaddr;
1083 	int ret;
1084 
1085 	INIT_LIST_HEAD(&engine->status_page.timelines);
1086 
1087 	/*
1088 	 * Though the HWS register does support 36bit addresses, historically
1089 	 * we have had hangs and corruption reported due to wild writes if
1090 	 * the HWS is placed above 4G. We only allow objects to be allocated
1091 	 * in GFP_DMA32 for i965, and no earlier physical address users had
1092 	 * access to more than 4G.
1093 	 */
1094 	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1095 	if (IS_ERR(obj)) {
1096 		gt_err(engine->gt, "Failed to allocate status page\n");
1097 		return PTR_ERR(obj);
1098 	}
1099 
1100 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
1101 
1102 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1103 	if (IS_ERR(vma)) {
1104 		ret = PTR_ERR(vma);
1105 		goto err_put;
1106 	}
1107 
1108 	i915_gem_ww_ctx_init(&ww, true);
1109 retry:
1110 	ret = i915_gem_object_lock(obj, &ww);
1111 	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1112 		ret = pin_ggtt_status_page(engine, &ww, vma);
1113 	if (ret)
1114 		goto err;
1115 
1116 	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1117 	if (IS_ERR(vaddr)) {
1118 		ret = PTR_ERR(vaddr);
1119 		goto err_unpin;
1120 	}
1121 
1122 	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1123 	engine->status_page.vma = vma;
1124 
1125 err_unpin:
1126 	if (ret)
1127 		i915_vma_unpin(vma);
1128 err:
1129 	if (ret == -EDEADLK) {
1130 		ret = i915_gem_ww_ctx_backoff(&ww);
1131 		if (!ret)
1132 			goto retry;
1133 	}
1134 	i915_gem_ww_ctx_fini(&ww);
1135 err_put:
1136 	if (ret)
1137 		i915_gem_object_put(obj);
1138 	return ret;
1139 }
1140 
1141 static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine)
1142 {
1143 	static const union intel_engine_tlb_inv_reg gen8_regs[] = {
1144 		[RENDER_CLASS].reg		= GEN8_RTCR,
1145 		[VIDEO_DECODE_CLASS].reg	= GEN8_M1TCR, /* , GEN8_M2TCR */
1146 		[VIDEO_ENHANCEMENT_CLASS].reg	= GEN8_VTCR,
1147 		[COPY_ENGINE_CLASS].reg		= GEN8_BTCR,
1148 	};
1149 	static const union intel_engine_tlb_inv_reg gen12_regs[] = {
1150 		[RENDER_CLASS].reg		= GEN12_GFX_TLB_INV_CR,
1151 		[VIDEO_DECODE_CLASS].reg	= GEN12_VD_TLB_INV_CR,
1152 		[VIDEO_ENHANCEMENT_CLASS].reg	= GEN12_VE_TLB_INV_CR,
1153 		[COPY_ENGINE_CLASS].reg		= GEN12_BLT_TLB_INV_CR,
1154 		[COMPUTE_CLASS].reg		= GEN12_COMPCTX_TLB_INV_CR,
1155 	};
1156 	static const union intel_engine_tlb_inv_reg xehp_regs[] = {
1157 		[RENDER_CLASS].mcr_reg		  = XEHP_GFX_TLB_INV_CR,
1158 		[VIDEO_DECODE_CLASS].mcr_reg	  = XEHP_VD_TLB_INV_CR,
1159 		[VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR,
1160 		[COPY_ENGINE_CLASS].mcr_reg	  = XEHP_BLT_TLB_INV_CR,
1161 		[COMPUTE_CLASS].mcr_reg		  = XEHP_COMPCTX_TLB_INV_CR,
1162 	};
1163 	static const union intel_engine_tlb_inv_reg xelpmp_regs[] = {
1164 		[VIDEO_DECODE_CLASS].reg	  = GEN12_VD_TLB_INV_CR,
1165 		[VIDEO_ENHANCEMENT_CLASS].reg     = GEN12_VE_TLB_INV_CR,
1166 		[OTHER_CLASS].reg		  = XELPMP_GSC_TLB_INV_CR,
1167 	};
1168 	struct drm_i915_private *i915 = engine->i915;
1169 	const unsigned int instance = engine->instance;
1170 	const unsigned int class = engine->class;
1171 	const union intel_engine_tlb_inv_reg *regs;
1172 	union intel_engine_tlb_inv_reg reg;
1173 	unsigned int num = 0;
1174 	u32 val;
1175 
1176 	/*
1177 	 * New platforms should not be added with catch-all-newer (>=)
1178 	 * condition so that any later platform added triggers the below warning
1179 	 * and in turn mandates a human cross-check of whether the invalidation
1180 	 * flows have compatible semantics.
1181 	 *
1182 	 * For instance with the 11.00 -> 12.00 transition three out of five
1183 	 * respective engine registers were moved to masked type. Then after the
1184 	 * 12.00 -> 12.50 transition multi cast handling is required too.
1185 	 */
1186 
1187 	if (engine->gt->type == GT_MEDIA) {
1188 		if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) {
1189 			regs = xelpmp_regs;
1190 			num = ARRAY_SIZE(xelpmp_regs);
1191 		}
1192 	} else {
1193 		if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) ||
1194 		    GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) ||
1195 		    GRAPHICS_VER_FULL(i915) == IP_VER(12, 50) ||
1196 		    GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) {
1197 			regs = xehp_regs;
1198 			num = ARRAY_SIZE(xehp_regs);
1199 		} else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) ||
1200 			   GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) {
1201 			regs = gen12_regs;
1202 			num = ARRAY_SIZE(gen12_regs);
1203 		} else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
1204 			regs = gen8_regs;
1205 			num = ARRAY_SIZE(gen8_regs);
1206 		} else if (GRAPHICS_VER(i915) < 8) {
1207 			return 0;
1208 		}
1209 	}
1210 
1211 	if (gt_WARN_ONCE(engine->gt, !num,
1212 			 "Platform does not implement TLB invalidation!"))
1213 		return -ENODEV;
1214 
1215 	if (gt_WARN_ON_ONCE(engine->gt,
1216 			    class >= num ||
1217 			    (!regs[class].reg.reg &&
1218 			     !regs[class].mcr_reg.reg)))
1219 		return -ERANGE;
1220 
1221 	reg = regs[class];
1222 
1223 	if (regs == xelpmp_regs && class == OTHER_CLASS) {
1224 		/*
1225 		 * There's only a single GSC instance, but it uses register bit
1226 		 * 1 instead of either 0 or OTHER_GSC_INSTANCE.
1227 		 */
1228 		GEM_WARN_ON(instance != OTHER_GSC_INSTANCE);
1229 		val = 1;
1230 	} else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) {
1231 		reg.reg = GEN8_M2TCR;
1232 		val = 0;
1233 	} else {
1234 		val = instance;
1235 	}
1236 
1237 	val = BIT(val);
1238 
1239 	engine->tlb_inv.mcr = regs == xehp_regs;
1240 	engine->tlb_inv.reg = reg;
1241 	engine->tlb_inv.done = val;
1242 
1243 	if (GRAPHICS_VER(i915) >= 12 &&
1244 	    (engine->class == VIDEO_DECODE_CLASS ||
1245 	     engine->class == VIDEO_ENHANCEMENT_CLASS ||
1246 	     engine->class == COMPUTE_CLASS ||
1247 	     engine->class == OTHER_CLASS))
1248 		engine->tlb_inv.request = _MASKED_BIT_ENABLE(val);
1249 	else
1250 		engine->tlb_inv.request = val;
1251 
1252 	return 0;
1253 }
1254 
1255 static int engine_setup_common(struct intel_engine_cs *engine)
1256 {
1257 	int err;
1258 
1259 	init_llist_head(&engine->barrier_tasks);
1260 
1261 	err = intel_engine_init_tlb_invalidation(engine);
1262 	if (err)
1263 		return err;
1264 
1265 	err = init_status_page(engine);
1266 	if (err)
1267 		return err;
1268 
1269 	engine->breadcrumbs = intel_breadcrumbs_create(engine);
1270 	if (!engine->breadcrumbs) {
1271 		err = -ENOMEM;
1272 		goto err_status;
1273 	}
1274 
1275 	engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1276 	if (!engine->sched_engine) {
1277 		err = -ENOMEM;
1278 		goto err_sched_engine;
1279 	}
1280 	engine->sched_engine->private_data = engine;
1281 
1282 	err = intel_engine_init_cmd_parser(engine);
1283 	if (err)
1284 		goto err_cmd_parser;
1285 
1286 	intel_engine_init_execlists(engine);
1287 	intel_engine_init__pm(engine);
1288 	intel_engine_init_retire(engine);
1289 
1290 	/* Use the whole device by default */
1291 	engine->sseu =
1292 		intel_sseu_from_device_info(&engine->gt->info.sseu);
1293 
1294 	intel_engine_init_workarounds(engine);
1295 	intel_engine_init_whitelist(engine);
1296 	intel_engine_init_ctx_wa(engine);
1297 
1298 	if (GRAPHICS_VER(engine->i915) >= 12)
1299 		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1300 
1301 	return 0;
1302 
1303 err_cmd_parser:
1304 	i915_sched_engine_put(engine->sched_engine);
1305 err_sched_engine:
1306 	intel_breadcrumbs_put(engine->breadcrumbs);
1307 err_status:
1308 	cleanup_status_page(engine);
1309 	return err;
1310 }
1311 
1312 struct measure_breadcrumb {
1313 	struct i915_request rq;
1314 	struct intel_ring ring;
1315 	u32 cs[2048];
1316 };
1317 
1318 static int measure_breadcrumb_dw(struct intel_context *ce)
1319 {
1320 	struct intel_engine_cs *engine = ce->engine;
1321 	struct measure_breadcrumb *frame;
1322 	int dw;
1323 
1324 	GEM_BUG_ON(!engine->gt->scratch);
1325 
1326 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1327 	if (!frame)
1328 		return -ENOMEM;
1329 
1330 	frame->rq.i915 = engine->i915;
1331 	frame->rq.engine = engine;
1332 	frame->rq.context = ce;
1333 	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1334 	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1335 
1336 	frame->ring.vaddr = frame->cs;
1337 	frame->ring.size = sizeof(frame->cs);
1338 	frame->ring.wrap =
1339 		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1340 	frame->ring.effective_size = frame->ring.size;
1341 	intel_ring_update_space(&frame->ring);
1342 	frame->rq.ring = &frame->ring;
1343 
1344 	mutex_lock(&ce->timeline->mutex);
1345 	spin_lock_irq(&engine->sched_engine->lock);
1346 
1347 	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1348 
1349 	spin_unlock_irq(&engine->sched_engine->lock);
1350 	mutex_unlock(&ce->timeline->mutex);
1351 
1352 	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1353 
1354 	kfree(frame);
1355 	return dw;
1356 }
1357 
1358 struct intel_context *
1359 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1360 				   struct i915_address_space *vm,
1361 				   unsigned int ring_size,
1362 				   unsigned int hwsp,
1363 				   struct lock_class_key *key,
1364 				   const char *name)
1365 {
1366 	struct intel_context *ce;
1367 	int err;
1368 
1369 	ce = intel_context_create(engine);
1370 	if (IS_ERR(ce))
1371 		return ce;
1372 
1373 	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1374 	ce->timeline = page_pack_bits(NULL, hwsp);
1375 	ce->ring = NULL;
1376 	ce->ring_size = ring_size;
1377 
1378 	i915_vm_put(ce->vm);
1379 	ce->vm = i915_vm_get(vm);
1380 
1381 	err = intel_context_pin(ce); /* perma-pin so it is always available */
1382 	if (err) {
1383 		intel_context_put(ce);
1384 		return ERR_PTR(err);
1385 	}
1386 
1387 	list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1388 
1389 	/*
1390 	 * Give our perma-pinned kernel timelines a separate lockdep class,
1391 	 * so that we can use them from within the normal user timelines
1392 	 * should we need to inject GPU operations during their request
1393 	 * construction.
1394 	 */
1395 	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1396 
1397 	return ce;
1398 }
1399 
1400 void intel_engine_destroy_pinned_context(struct intel_context *ce)
1401 {
1402 	struct intel_engine_cs *engine = ce->engine;
1403 	struct i915_vma *hwsp = engine->status_page.vma;
1404 
1405 	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1406 
1407 	mutex_lock(&hwsp->vm->mutex);
1408 	list_del(&ce->timeline->engine_link);
1409 	mutex_unlock(&hwsp->vm->mutex);
1410 
1411 	list_del(&ce->pinned_contexts_link);
1412 	intel_context_unpin(ce);
1413 	intel_context_put(ce);
1414 }
1415 
1416 static struct intel_context *
1417 create_ggtt_bind_context(struct intel_engine_cs *engine)
1418 {
1419 	static struct lock_class_key kernel;
1420 
1421 	/*
1422 	 * MI_UPDATE_GTT can insert up to 511 PTE entries and there could be multiple
1423 	 * bind requets at a time so get a bigger ring.
1424 	 */
1425 	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_512K,
1426 						  I915_GEM_HWS_GGTT_BIND_ADDR,
1427 						  &kernel, "ggtt_bind_context");
1428 }
1429 
1430 static struct intel_context *
1431 create_kernel_context(struct intel_engine_cs *engine)
1432 {
1433 	static struct lock_class_key kernel;
1434 
1435 	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1436 						  I915_GEM_HWS_SEQNO_ADDR,
1437 						  &kernel, "kernel_context");
1438 }
1439 
1440 /*
1441  * engine_init_common - initialize engine state which might require hw access
1442  * @engine: Engine to initialize.
1443  *
1444  * Initializes @engine@ structure members shared between legacy and execlists
1445  * submission modes which do require hardware access.
1446  *
1447  * Typcally done at later stages of submission mode specific engine setup.
1448  *
1449  * Returns zero on success or an error code on failure.
1450  */
1451 static int engine_init_common(struct intel_engine_cs *engine)
1452 {
1453 	struct intel_context *ce, *bce = NULL;
1454 	int ret;
1455 
1456 	engine->set_default_submission(engine);
1457 
1458 	/*
1459 	 * We may need to do things with the shrinker which
1460 	 * require us to immediately switch back to the default
1461 	 * context. This can cause a problem as pinning the
1462 	 * default context also requires GTT space which may not
1463 	 * be available. To avoid this we always pin the default
1464 	 * context.
1465 	 */
1466 	ce = create_kernel_context(engine);
1467 	if (IS_ERR(ce))
1468 		return PTR_ERR(ce);
1469 	/*
1470 	 * Create a separate pinned context for GGTT update with blitter engine
1471 	 * if a platform require such service. MI_UPDATE_GTT works on other
1472 	 * engines as well but BCS should be less busy engine so pick that for
1473 	 * GGTT updates.
1474 	 */
1475 	if (i915_ggtt_require_binder(engine->i915) && engine->id == BCS0) {
1476 		bce = create_ggtt_bind_context(engine);
1477 		if (IS_ERR(bce)) {
1478 			ret = PTR_ERR(bce);
1479 			goto err_ce_context;
1480 		}
1481 	}
1482 
1483 	ret = measure_breadcrumb_dw(ce);
1484 	if (ret < 0)
1485 		goto err_bce_context;
1486 
1487 	engine->emit_fini_breadcrumb_dw = ret;
1488 	engine->kernel_context = ce;
1489 	engine->bind_context = bce;
1490 
1491 	return 0;
1492 
1493 err_bce_context:
1494 	if (bce)
1495 		intel_engine_destroy_pinned_context(bce);
1496 err_ce_context:
1497 	intel_engine_destroy_pinned_context(ce);
1498 	return ret;
1499 }
1500 
1501 int intel_engines_init(struct intel_gt *gt)
1502 {
1503 	int (*setup)(struct intel_engine_cs *engine);
1504 	struct intel_engine_cs *engine;
1505 	enum intel_engine_id id;
1506 	int err;
1507 
1508 	if (intel_uc_uses_guc_submission(&gt->uc)) {
1509 		gt->submission_method = INTEL_SUBMISSION_GUC;
1510 		setup = intel_guc_submission_setup;
1511 	} else if (HAS_EXECLISTS(gt->i915)) {
1512 		gt->submission_method = INTEL_SUBMISSION_ELSP;
1513 		setup = intel_execlists_submission_setup;
1514 	} else {
1515 		gt->submission_method = INTEL_SUBMISSION_RING;
1516 		setup = intel_ring_submission_setup;
1517 	}
1518 
1519 	for_each_engine(engine, gt, id) {
1520 		err = engine_setup_common(engine);
1521 		if (err)
1522 			return err;
1523 
1524 		err = setup(engine);
1525 		if (err) {
1526 			intel_engine_cleanup_common(engine);
1527 			return err;
1528 		}
1529 
1530 		/* The backend should now be responsible for cleanup */
1531 		GEM_BUG_ON(engine->release == NULL);
1532 
1533 		err = engine_init_common(engine);
1534 		if (err)
1535 			return err;
1536 
1537 		intel_engine_add_user(engine);
1538 	}
1539 
1540 	return 0;
1541 }
1542 
1543 /**
1544  * intel_engine_cleanup_common - cleans up the engine state created by
1545  *                                the common initiailizers.
1546  * @engine: Engine to cleanup.
1547  *
1548  * This cleans up everything created by the common helpers.
1549  */
1550 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1551 {
1552 	GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1553 
1554 	i915_sched_engine_put(engine->sched_engine);
1555 	intel_breadcrumbs_put(engine->breadcrumbs);
1556 
1557 	intel_engine_fini_retire(engine);
1558 	intel_engine_cleanup_cmd_parser(engine);
1559 
1560 	if (engine->default_state)
1561 		fput(engine->default_state);
1562 
1563 	if (engine->kernel_context)
1564 		intel_engine_destroy_pinned_context(engine->kernel_context);
1565 
1566 	if (engine->bind_context)
1567 		intel_engine_destroy_pinned_context(engine->bind_context);
1568 
1569 
1570 	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1571 	cleanup_status_page(engine);
1572 
1573 	intel_wa_list_free(&engine->ctx_wa_list);
1574 	intel_wa_list_free(&engine->wa_list);
1575 	intel_wa_list_free(&engine->whitelist);
1576 }
1577 
1578 /**
1579  * intel_engine_resume - re-initializes the HW state of the engine
1580  * @engine: Engine to resume.
1581  *
1582  * Returns zero on success or an error code on failure.
1583  */
1584 int intel_engine_resume(struct intel_engine_cs *engine)
1585 {
1586 	intel_engine_apply_workarounds(engine);
1587 	intel_engine_apply_whitelist(engine);
1588 
1589 	return engine->resume(engine);
1590 }
1591 
1592 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1593 {
1594 	struct drm_i915_private *i915 = engine->i915;
1595 
1596 	u64 acthd;
1597 
1598 	if (GRAPHICS_VER(i915) >= 8)
1599 		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1600 	else if (GRAPHICS_VER(i915) >= 4)
1601 		acthd = ENGINE_READ(engine, RING_ACTHD);
1602 	else
1603 		acthd = ENGINE_READ(engine, ACTHD);
1604 
1605 	return acthd;
1606 }
1607 
1608 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1609 {
1610 	u64 bbaddr;
1611 
1612 	if (GRAPHICS_VER(engine->i915) >= 8)
1613 		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1614 	else
1615 		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1616 
1617 	return bbaddr;
1618 }
1619 
1620 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1621 {
1622 	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1623 		return 0;
1624 
1625 	/*
1626 	 * If we are doing a normal GPU reset, we can take our time and allow
1627 	 * the engine to quiesce. We've stopped submission to the engine, and
1628 	 * if we wait long enough an innocent context should complete and
1629 	 * leave the engine idle. So they should not be caught unaware by
1630 	 * the forthcoming GPU reset (which usually follows the stop_cs)!
1631 	 */
1632 	return READ_ONCE(engine->props.stop_timeout_ms);
1633 }
1634 
1635 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1636 				  int fast_timeout_us,
1637 				  int slow_timeout_ms)
1638 {
1639 	struct intel_uncore *uncore = engine->uncore;
1640 	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1641 	int err;
1642 
1643 	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1644 
1645 	/*
1646 	 * Wa_22011802037: Prior to doing a reset, ensure CS is
1647 	 * stopped, set ring stop bit and prefetch disable bit to halt CS
1648 	 */
1649 	if (intel_engine_reset_needs_wa_22011802037(engine->gt))
1650 		intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1651 				      _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1652 
1653 	err = __intel_wait_for_register_fw(engine->uncore, mode,
1654 					   MODE_IDLE, MODE_IDLE,
1655 					   fast_timeout_us,
1656 					   slow_timeout_ms,
1657 					   NULL);
1658 
1659 	/* A final mmio read to let GPU writes be hopefully flushed to memory */
1660 	intel_uncore_posting_read_fw(uncore, mode);
1661 	return err;
1662 }
1663 
1664 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1665 {
1666 	int err = 0;
1667 
1668 	if (GRAPHICS_VER(engine->i915) < 3)
1669 		return -ENODEV;
1670 
1671 	ENGINE_TRACE(engine, "\n");
1672 	/*
1673 	 * TODO: Find out why occasionally stopping the CS times out. Seen
1674 	 * especially with gem_eio tests.
1675 	 *
1676 	 * Occasionally trying to stop the cs times out, but does not adversely
1677 	 * affect functionality. The timeout is set as a config parameter that
1678 	 * defaults to 100ms. In most cases the follow up operation is to wait
1679 	 * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1680 	 * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1681 	 * caused, the caller must check and handle the return from this
1682 	 * function.
1683 	 */
1684 	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1685 		ENGINE_TRACE(engine,
1686 			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1687 			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1688 			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1689 
1690 		/*
1691 		 * Sometimes we observe that the idle flag is not
1692 		 * set even though the ring is empty. So double
1693 		 * check before giving up.
1694 		 */
1695 		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1696 		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1697 			err = -ETIMEDOUT;
1698 	}
1699 
1700 	return err;
1701 }
1702 
1703 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1704 {
1705 	ENGINE_TRACE(engine, "\n");
1706 
1707 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1708 }
1709 
1710 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1711 {
1712 	static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1713 		[RCS0] = MSG_IDLE_CS,
1714 		[BCS0] = MSG_IDLE_BCS,
1715 		[VCS0] = MSG_IDLE_VCS0,
1716 		[VCS1] = MSG_IDLE_VCS1,
1717 		[VCS2] = MSG_IDLE_VCS2,
1718 		[VCS3] = MSG_IDLE_VCS3,
1719 		[VCS4] = MSG_IDLE_VCS4,
1720 		[VCS5] = MSG_IDLE_VCS5,
1721 		[VCS6] = MSG_IDLE_VCS6,
1722 		[VCS7] = MSG_IDLE_VCS7,
1723 		[VECS0] = MSG_IDLE_VECS0,
1724 		[VECS1] = MSG_IDLE_VECS1,
1725 		[VECS2] = MSG_IDLE_VECS2,
1726 		[VECS3] = MSG_IDLE_VECS3,
1727 		[CCS0] = MSG_IDLE_CS,
1728 		[CCS1] = MSG_IDLE_CS,
1729 		[CCS2] = MSG_IDLE_CS,
1730 		[CCS3] = MSG_IDLE_CS,
1731 	};
1732 	u32 val;
1733 
1734 	if (!_reg[engine->id].reg)
1735 		return 0;
1736 
1737 	val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1738 
1739 	/* bits[29:25] & bits[13:9] >> shift */
1740 	return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1741 }
1742 
1743 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1744 {
1745 	int ret;
1746 
1747 	/* Ensure GPM receives fw up/down after CS is stopped */
1748 	udelay(1);
1749 
1750 	/* Wait for forcewake request to complete in GPM */
1751 	ret =  __intel_wait_for_register_fw(gt->uncore,
1752 					    GEN9_PWRGT_DOMAIN_STATUS,
1753 					    fw_mask, fw_mask, 5000, 0, NULL);
1754 
1755 	/* Ensure CS receives fw ack from GPM */
1756 	udelay(1);
1757 
1758 	if (ret)
1759 		GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1760 }
1761 
1762 /*
1763  * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1764  * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1765  * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1766  * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1767  * are concerned only with the gt reset here, we use a logical OR of pending
1768  * forcewakeups from all reset domains and then wait for them to complete by
1769  * querying PWRGT_DOMAIN_STATUS.
1770  */
1771 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1772 {
1773 	u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1774 
1775 	if (fw_pending)
1776 		__gpm_wait_for_fw_complete(engine->gt, fw_pending);
1777 }
1778 
1779 /* NB: please notice the memset */
1780 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1781 			       struct intel_instdone *instdone)
1782 {
1783 	struct drm_i915_private *i915 = engine->i915;
1784 	struct intel_uncore *uncore = engine->uncore;
1785 	u32 mmio_base = engine->mmio_base;
1786 	int slice;
1787 	int subslice;
1788 	int iter;
1789 
1790 	memset(instdone, 0, sizeof(*instdone));
1791 
1792 	if (GRAPHICS_VER(i915) >= 8) {
1793 		instdone->instdone =
1794 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1795 
1796 		if (engine->id != RCS0)
1797 			return;
1798 
1799 		instdone->slice_common =
1800 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1801 		if (GRAPHICS_VER(i915) >= 12) {
1802 			instdone->slice_common_extra[0] =
1803 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1804 			instdone->slice_common_extra[1] =
1805 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1806 		}
1807 
1808 		for_each_ss_steering(iter, engine->gt, slice, subslice) {
1809 			instdone->sampler[slice][subslice] =
1810 				intel_gt_mcr_read(engine->gt,
1811 						  GEN8_SAMPLER_INSTDONE,
1812 						  slice, subslice);
1813 			instdone->row[slice][subslice] =
1814 				intel_gt_mcr_read(engine->gt,
1815 						  GEN8_ROW_INSTDONE,
1816 						  slice, subslice);
1817 		}
1818 
1819 		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1820 			for_each_ss_steering(iter, engine->gt, slice, subslice)
1821 				instdone->geom_svg[slice][subslice] =
1822 					intel_gt_mcr_read(engine->gt,
1823 							  XEHPG_INSTDONE_GEOM_SVG,
1824 							  slice, subslice);
1825 		}
1826 	} else if (GRAPHICS_VER(i915) >= 7) {
1827 		instdone->instdone =
1828 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1829 
1830 		if (engine->id != RCS0)
1831 			return;
1832 
1833 		instdone->slice_common =
1834 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1835 		instdone->sampler[0][0] =
1836 			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1837 		instdone->row[0][0] =
1838 			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1839 	} else if (GRAPHICS_VER(i915) >= 4) {
1840 		instdone->instdone =
1841 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1842 		if (engine->id == RCS0)
1843 			/* HACK: Using the wrong struct member */
1844 			instdone->slice_common =
1845 				intel_uncore_read(uncore, GEN4_INSTDONE1);
1846 	} else {
1847 		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1848 	}
1849 }
1850 
1851 static bool ring_is_idle(struct intel_engine_cs *engine)
1852 {
1853 	bool idle = true;
1854 
1855 	if (I915_SELFTEST_ONLY(!engine->mmio_base))
1856 		return true;
1857 
1858 	if (!intel_engine_pm_get_if_awake(engine))
1859 		return true;
1860 
1861 	/* First check that no commands are left in the ring */
1862 	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1863 	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1864 		idle = false;
1865 
1866 	/* No bit for gen2, so assume the CS parser is idle */
1867 	if (GRAPHICS_VER(engine->i915) > 2 &&
1868 	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1869 		idle = false;
1870 
1871 	intel_engine_pm_put(engine);
1872 
1873 	return idle;
1874 }
1875 
1876 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1877 {
1878 	struct tasklet_struct *t = &engine->sched_engine->tasklet;
1879 
1880 	if (!t->callback)
1881 		return;
1882 
1883 	local_bh_disable();
1884 	if (tasklet_trylock(t)) {
1885 		/* Must wait for any GPU reset in progress. */
1886 		if (__tasklet_is_enabled(t))
1887 			t->callback(t);
1888 		tasklet_unlock(t);
1889 	}
1890 	local_bh_enable();
1891 
1892 	/* Synchronise and wait for the tasklet on another CPU */
1893 	if (sync)
1894 		tasklet_unlock_wait(t);
1895 }
1896 
1897 /**
1898  * intel_engine_is_idle() - Report if the engine has finished process all work
1899  * @engine: the intel_engine_cs
1900  *
1901  * Return true if there are no requests pending, nothing left to be submitted
1902  * to hardware, and that the engine is idle.
1903  */
1904 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1905 {
1906 	/* More white lies, if wedged, hw state is inconsistent */
1907 	if (intel_gt_is_wedged(engine->gt))
1908 		return true;
1909 
1910 	if (!intel_engine_pm_is_awake(engine))
1911 		return true;
1912 
1913 	/* Waiting to drain ELSP? */
1914 	intel_synchronize_hardirq(engine->i915);
1915 	intel_engine_flush_submission(engine);
1916 
1917 	/* ELSP is empty, but there are ready requests? E.g. after reset */
1918 	if (!i915_sched_engine_is_empty(engine->sched_engine))
1919 		return false;
1920 
1921 	/* Ring stopped? */
1922 	return ring_is_idle(engine);
1923 }
1924 
1925 bool intel_engines_are_idle(struct intel_gt *gt)
1926 {
1927 	struct intel_engine_cs *engine;
1928 	enum intel_engine_id id;
1929 
1930 	/*
1931 	 * If the driver is wedged, HW state may be very inconsistent and
1932 	 * report that it is still busy, even though we have stopped using it.
1933 	 */
1934 	if (intel_gt_is_wedged(gt))
1935 		return true;
1936 
1937 	/* Already parked (and passed an idleness test); must still be idle */
1938 	if (!READ_ONCE(gt->awake))
1939 		return true;
1940 
1941 	for_each_engine(engine, gt, id) {
1942 		if (!intel_engine_is_idle(engine))
1943 			return false;
1944 	}
1945 
1946 	return true;
1947 }
1948 
1949 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1950 {
1951 	if (!engine->irq_enable)
1952 		return false;
1953 
1954 	/* Caller disables interrupts */
1955 	spin_lock(engine->gt->irq_lock);
1956 	engine->irq_enable(engine);
1957 	spin_unlock(engine->gt->irq_lock);
1958 
1959 	return true;
1960 }
1961 
1962 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1963 {
1964 	if (!engine->irq_disable)
1965 		return;
1966 
1967 	/* Caller disables interrupts */
1968 	spin_lock(engine->gt->irq_lock);
1969 	engine->irq_disable(engine);
1970 	spin_unlock(engine->gt->irq_lock);
1971 }
1972 
1973 void intel_engines_reset_default_submission(struct intel_gt *gt)
1974 {
1975 	struct intel_engine_cs *engine;
1976 	enum intel_engine_id id;
1977 
1978 	for_each_engine(engine, gt, id) {
1979 		if (engine->sanitize)
1980 			engine->sanitize(engine);
1981 
1982 		engine->set_default_submission(engine);
1983 	}
1984 }
1985 
1986 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1987 {
1988 	switch (GRAPHICS_VER(engine->i915)) {
1989 	case 2:
1990 		return false; /* uses physical not virtual addresses */
1991 	case 3:
1992 		/* maybe only uses physical not virtual addresses */
1993 		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1994 	case 4:
1995 		return !IS_I965G(engine->i915); /* who knows! */
1996 	case 6:
1997 		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1998 	default:
1999 		return true;
2000 	}
2001 }
2002 
2003 static struct intel_timeline *get_timeline(struct i915_request *rq)
2004 {
2005 	struct intel_timeline *tl;
2006 
2007 	/*
2008 	 * Even though we are holding the engine->sched_engine->lock here, there
2009 	 * is no control over the submission queue per-se and we are
2010 	 * inspecting the active state at a random point in time, with an
2011 	 * unknown queue. Play safe and make sure the timeline remains valid.
2012 	 * (Only being used for pretty printing, one extra kref shouldn't
2013 	 * cause a camel stampede!)
2014 	 */
2015 	rcu_read_lock();
2016 	tl = rcu_dereference(rq->timeline);
2017 	if (!kref_get_unless_zero(&tl->kref))
2018 		tl = NULL;
2019 	rcu_read_unlock();
2020 
2021 	return tl;
2022 }
2023 
2024 static int print_ring(char *buf, int sz, struct i915_request *rq)
2025 {
2026 	int len = 0;
2027 
2028 	if (!i915_request_signaled(rq)) {
2029 		struct intel_timeline *tl = get_timeline(rq);
2030 
2031 		len = scnprintf(buf, sz,
2032 				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
2033 				i915_ggtt_offset(rq->ring->vma),
2034 				tl ? tl->hwsp_offset : 0,
2035 				hwsp_seqno(rq),
2036 				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
2037 						      1000 * 1000));
2038 
2039 		if (tl)
2040 			intel_timeline_put(tl);
2041 	}
2042 
2043 	return len;
2044 }
2045 
2046 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
2047 {
2048 	const size_t rowsize = 8 * sizeof(u32);
2049 	const void *prev = NULL;
2050 	bool skip = false;
2051 	size_t pos;
2052 
2053 	for (pos = 0; pos < len; pos += rowsize) {
2054 		char line[128];
2055 
2056 		if (prev && !memcmp(prev, buf + pos, rowsize)) {
2057 			if (!skip) {
2058 				drm_printf(m, "*\n");
2059 				skip = true;
2060 			}
2061 			continue;
2062 		}
2063 
2064 		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
2065 						rowsize, sizeof(u32),
2066 						line, sizeof(line),
2067 						false) >= sizeof(line));
2068 		drm_printf(m, "[%04zx] %s\n", pos, line);
2069 
2070 		prev = buf + pos;
2071 		skip = false;
2072 	}
2073 }
2074 
2075 static const char *repr_timer(const struct timer_list *t)
2076 {
2077 	if (!READ_ONCE(t->expires))
2078 		return "inactive";
2079 
2080 	if (timer_pending(t))
2081 		return "active";
2082 
2083 	return "expired";
2084 }
2085 
2086 static void intel_engine_print_registers(struct intel_engine_cs *engine,
2087 					 struct drm_printer *m)
2088 {
2089 	struct drm_i915_private *i915 = engine->i915;
2090 	struct intel_engine_execlists * const execlists = &engine->execlists;
2091 	u64 addr;
2092 
2093 	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7))
2094 		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
2095 	if (HAS_EXECLISTS(i915)) {
2096 		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
2097 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
2098 		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
2099 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
2100 	}
2101 	drm_printf(m, "\tRING_START: 0x%08x\n",
2102 		   ENGINE_READ(engine, RING_START));
2103 	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
2104 		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
2105 	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
2106 		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
2107 	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
2108 		   ENGINE_READ(engine, RING_CTL),
2109 		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
2110 	if (GRAPHICS_VER(engine->i915) > 2) {
2111 		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
2112 			   ENGINE_READ(engine, RING_MI_MODE),
2113 			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
2114 	}
2115 
2116 	if (GRAPHICS_VER(i915) >= 6) {
2117 		drm_printf(m, "\tRING_IMR:   0x%08x\n",
2118 			   ENGINE_READ(engine, RING_IMR));
2119 		drm_printf(m, "\tRING_ESR:   0x%08x\n",
2120 			   ENGINE_READ(engine, RING_ESR));
2121 		drm_printf(m, "\tRING_EMR:   0x%08x\n",
2122 			   ENGINE_READ(engine, RING_EMR));
2123 		drm_printf(m, "\tRING_EIR:   0x%08x\n",
2124 			   ENGINE_READ(engine, RING_EIR));
2125 	}
2126 
2127 	addr = intel_engine_get_active_head(engine);
2128 	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
2129 		   upper_32_bits(addr), lower_32_bits(addr));
2130 	addr = intel_engine_get_last_batch_head(engine);
2131 	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
2132 		   upper_32_bits(addr), lower_32_bits(addr));
2133 	if (GRAPHICS_VER(i915) >= 8)
2134 		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
2135 	else if (GRAPHICS_VER(i915) >= 4)
2136 		addr = ENGINE_READ(engine, RING_DMA_FADD);
2137 	else
2138 		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
2139 	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
2140 		   upper_32_bits(addr), lower_32_bits(addr));
2141 	if (GRAPHICS_VER(i915) >= 4) {
2142 		drm_printf(m, "\tIPEIR: 0x%08x\n",
2143 			   ENGINE_READ(engine, RING_IPEIR));
2144 		drm_printf(m, "\tIPEHR: 0x%08x\n",
2145 			   ENGINE_READ(engine, RING_IPEHR));
2146 	} else {
2147 		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
2148 		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
2149 	}
2150 
2151 	if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) {
2152 		struct i915_request * const *port, *rq;
2153 		const u32 *hws =
2154 			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2155 		const u8 num_entries = execlists->csb_size;
2156 		unsigned int idx;
2157 		u8 read, write;
2158 
2159 		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
2160 			   str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
2161 			   str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
2162 			   repr_timer(&engine->execlists.preempt),
2163 			   repr_timer(&engine->execlists.timer));
2164 
2165 		read = execlists->csb_head;
2166 		write = READ_ONCE(*execlists->csb_write);
2167 
2168 		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
2169 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
2170 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
2171 			   read, write, num_entries);
2172 
2173 		if (read >= num_entries)
2174 			read = 0;
2175 		if (write >= num_entries)
2176 			write = 0;
2177 		if (read > write)
2178 			write += num_entries;
2179 		while (read < write) {
2180 			idx = ++read % num_entries;
2181 			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
2182 				   idx, hws[idx * 2], hws[idx * 2 + 1]);
2183 		}
2184 
2185 		i915_sched_engine_active_lock_bh(engine->sched_engine);
2186 		rcu_read_lock();
2187 		for (port = execlists->active; (rq = *port); port++) {
2188 			char hdr[160];
2189 			int len;
2190 
2191 			len = scnprintf(hdr, sizeof(hdr),
2192 					"\t\tActive[%d]:  ccid:%08x%s%s, ",
2193 					(int)(port - execlists->active),
2194 					rq->context->lrc.ccid,
2195 					intel_context_is_closed(rq->context) ? "!" : "",
2196 					intel_context_is_banned(rq->context) ? "*" : "");
2197 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2198 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2199 			i915_request_show(m, rq, hdr, 0);
2200 		}
2201 		for (port = execlists->pending; (rq = *port); port++) {
2202 			char hdr[160];
2203 			int len;
2204 
2205 			len = scnprintf(hdr, sizeof(hdr),
2206 					"\t\tPending[%d]: ccid:%08x%s%s, ",
2207 					(int)(port - execlists->pending),
2208 					rq->context->lrc.ccid,
2209 					intel_context_is_closed(rq->context) ? "!" : "",
2210 					intel_context_is_banned(rq->context) ? "*" : "");
2211 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2212 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2213 			i915_request_show(m, rq, hdr, 0);
2214 		}
2215 		rcu_read_unlock();
2216 		i915_sched_engine_active_unlock_bh(engine->sched_engine);
2217 	} else if (GRAPHICS_VER(i915) > 6) {
2218 		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
2219 			   ENGINE_READ(engine, RING_PP_DIR_BASE));
2220 		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
2221 			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
2222 		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
2223 			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
2224 	}
2225 }
2226 
2227 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
2228 {
2229 	struct i915_vma_resource *vma_res = rq->batch_res;
2230 	void *ring;
2231 	int size;
2232 
2233 	drm_printf(m,
2234 		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
2235 		   rq->head, rq->postfix, rq->tail,
2236 		   vma_res ? upper_32_bits(vma_res->start) : ~0u,
2237 		   vma_res ? lower_32_bits(vma_res->start) : ~0u);
2238 
2239 	size = rq->tail - rq->head;
2240 	if (rq->tail < rq->head)
2241 		size += rq->ring->size;
2242 
2243 	ring = kmalloc(size, GFP_ATOMIC);
2244 	if (ring) {
2245 		const void *vaddr = rq->ring->vaddr;
2246 		unsigned int head = rq->head;
2247 		unsigned int len = 0;
2248 
2249 		if (rq->tail < head) {
2250 			len = rq->ring->size - head;
2251 			memcpy(ring, vaddr + head, len);
2252 			head = 0;
2253 		}
2254 		memcpy(ring + len, vaddr + head, size - len);
2255 
2256 		hexdump(m, ring, size);
2257 		kfree(ring);
2258 	}
2259 }
2260 
2261 static unsigned long read_ul(void *p, size_t x)
2262 {
2263 	return *(unsigned long *)(p + x);
2264 }
2265 
2266 static void print_properties(struct intel_engine_cs *engine,
2267 			     struct drm_printer *m)
2268 {
2269 	static const struct pmap {
2270 		size_t offset;
2271 		const char *name;
2272 	} props[] = {
2273 #define P(x) { \
2274 	.offset = offsetof(typeof(engine->props), x), \
2275 	.name = #x \
2276 }
2277 		P(heartbeat_interval_ms),
2278 		P(max_busywait_duration_ns),
2279 		P(preempt_timeout_ms),
2280 		P(stop_timeout_ms),
2281 		P(timeslice_duration_ms),
2282 
2283 		{},
2284 #undef P
2285 	};
2286 	const struct pmap *p;
2287 
2288 	drm_printf(m, "\tProperties:\n");
2289 	for (p = props; p->name; p++)
2290 		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2291 			   p->name,
2292 			   read_ul(&engine->props, p->offset),
2293 			   read_ul(&engine->defaults, p->offset));
2294 }
2295 
2296 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2297 {
2298 	struct intel_timeline *tl = get_timeline(rq);
2299 
2300 	i915_request_show(m, rq, msg, 0);
2301 
2302 	drm_printf(m, "\t\tring->start:  0x%08x\n",
2303 		   i915_ggtt_offset(rq->ring->vma));
2304 	drm_printf(m, "\t\tring->head:   0x%08x\n",
2305 		   rq->ring->head);
2306 	drm_printf(m, "\t\tring->tail:   0x%08x\n",
2307 		   rq->ring->tail);
2308 	drm_printf(m, "\t\tring->emit:   0x%08x\n",
2309 		   rq->ring->emit);
2310 	drm_printf(m, "\t\tring->space:  0x%08x\n",
2311 		   rq->ring->space);
2312 
2313 	if (tl) {
2314 		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
2315 			   tl->hwsp_offset);
2316 		intel_timeline_put(tl);
2317 	}
2318 
2319 	print_request_ring(m, rq);
2320 
2321 	if (rq->context->lrc_reg_state) {
2322 		drm_printf(m, "Logical Ring Context:\n");
2323 		hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2324 	}
2325 }
2326 
2327 void intel_engine_dump_active_requests(struct list_head *requests,
2328 				       struct i915_request *hung_rq,
2329 				       struct drm_printer *m)
2330 {
2331 	struct i915_request *rq;
2332 	const char *msg;
2333 	enum i915_request_state state;
2334 
2335 	list_for_each_entry(rq, requests, sched.link) {
2336 		if (rq == hung_rq)
2337 			continue;
2338 
2339 		state = i915_test_request_state(rq);
2340 		if (state < I915_REQUEST_QUEUED)
2341 			continue;
2342 
2343 		if (state == I915_REQUEST_ACTIVE)
2344 			msg = "\t\tactive on engine";
2345 		else
2346 			msg = "\t\tactive in queue";
2347 
2348 		engine_dump_request(rq, m, msg);
2349 	}
2350 }
2351 
2352 static void engine_dump_active_requests(struct intel_engine_cs *engine,
2353 					struct drm_printer *m)
2354 {
2355 	struct intel_context *hung_ce = NULL;
2356 	struct i915_request *hung_rq = NULL;
2357 
2358 	/*
2359 	 * No need for an engine->irq_seqno_barrier() before the seqno reads.
2360 	 * The GPU is still running so requests are still executing and any
2361 	 * hardware reads will be out of date by the time they are reported.
2362 	 * But the intention here is just to report an instantaneous snapshot
2363 	 * so that's fine.
2364 	 */
2365 	intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq);
2366 
2367 	drm_printf(m, "\tRequests:\n");
2368 
2369 	if (hung_rq)
2370 		engine_dump_request(hung_rq, m, "\t\thung");
2371 	else if (hung_ce)
2372 		drm_printf(m, "\t\tGot hung ce but no hung rq!\n");
2373 
2374 	if (intel_uc_uses_guc_submission(&engine->gt->uc))
2375 		intel_guc_dump_active_requests(engine, hung_rq, m);
2376 	else
2377 		intel_execlists_dump_active_requests(engine, hung_rq, m);
2378 
2379 	if (hung_rq)
2380 		i915_request_put(hung_rq);
2381 }
2382 
2383 void intel_engine_dump(struct intel_engine_cs *engine,
2384 		       struct drm_printer *m,
2385 		       const char *header, ...)
2386 {
2387 	struct i915_gpu_error * const error = &engine->i915->gpu_error;
2388 	struct i915_request *rq;
2389 	intel_wakeref_t wakeref;
2390 	ktime_t dummy;
2391 
2392 	if (header) {
2393 		va_list ap;
2394 
2395 		va_start(ap, header);
2396 		drm_vprintf(m, header, &ap);
2397 		va_end(ap);
2398 	}
2399 
2400 	if (intel_gt_is_wedged(engine->gt))
2401 		drm_printf(m, "*** WEDGED ***\n");
2402 
2403 	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2404 	drm_printf(m, "\tBarriers?: %s\n",
2405 		   str_yes_no(!llist_empty(&engine->barrier_tasks)));
2406 	drm_printf(m, "\tLatency: %luus\n",
2407 		   ewma__engine_latency_read(&engine->latency));
2408 	if (intel_engine_supports_stats(engine))
2409 		drm_printf(m, "\tRuntime: %llums\n",
2410 			   ktime_to_ms(intel_engine_get_busy_time(engine,
2411 								  &dummy)));
2412 	drm_printf(m, "\tForcewake: %x domains, %d active\n",
2413 		   engine->fw_domain, READ_ONCE(engine->fw_active));
2414 
2415 	rcu_read_lock();
2416 	rq = READ_ONCE(engine->heartbeat.systole);
2417 	if (rq)
2418 		drm_printf(m, "\tHeartbeat: %d ms ago\n",
2419 			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2420 	rcu_read_unlock();
2421 	drm_printf(m, "\tReset count: %d (global %d)\n",
2422 		   i915_reset_engine_count(error, engine),
2423 		   i915_reset_count(error));
2424 	print_properties(engine, m);
2425 
2426 	engine_dump_active_requests(engine, m);
2427 
2428 	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
2429 	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2430 	if (wakeref) {
2431 		intel_engine_print_registers(engine, m);
2432 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2433 	} else {
2434 		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2435 	}
2436 
2437 	intel_execlists_show_requests(engine, m, i915_request_show, 8);
2438 
2439 	drm_printf(m, "HWSP:\n");
2440 	hexdump(m, engine->status_page.addr, PAGE_SIZE);
2441 
2442 	drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2443 
2444 	intel_engine_print_breadcrumbs(engine, m);
2445 }
2446 
2447 /**
2448  * intel_engine_get_busy_time() - Return current accumulated engine busyness
2449  * @engine: engine to report on
2450  * @now: monotonic timestamp of sampling
2451  *
2452  * Returns accumulated time @engine was busy since engine stats were enabled.
2453  */
2454 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2455 {
2456 	return engine->busyness(engine, now);
2457 }
2458 
2459 struct intel_context *
2460 intel_engine_create_virtual(struct intel_engine_cs **siblings,
2461 			    unsigned int count, unsigned long flags)
2462 {
2463 	if (count == 0)
2464 		return ERR_PTR(-EINVAL);
2465 
2466 	if (count == 1 && !(flags & FORCE_VIRTUAL))
2467 		return intel_context_create(siblings[0]);
2468 
2469 	GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2470 	return siblings[0]->cops->create_virtual(siblings, count, flags);
2471 }
2472 
2473 static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2474 {
2475 	struct i915_request *request, *active = NULL;
2476 
2477 	/*
2478 	 * This search does not work in GuC submission mode. However, the GuC
2479 	 * will report the hanging context directly to the driver itself. So
2480 	 * the driver should never get here when in GuC mode.
2481 	 */
2482 	GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2483 
2484 	/*
2485 	 * We are called by the error capture, reset and to dump engine
2486 	 * state at random points in time. In particular, note that neither is
2487 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
2488 	 * and we assume that no more writes can happen (we waited long enough
2489 	 * for all writes that were in transaction to be flushed) - adding an
2490 	 * extra delay for a recent interrupt is pointless. Hence, we do
2491 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2492 	 * At all other times, we must assume the GPU is still running, but
2493 	 * we only care about the snapshot of this moment.
2494 	 */
2495 	lockdep_assert_held(&engine->sched_engine->lock);
2496 
2497 	rcu_read_lock();
2498 	request = execlists_active(&engine->execlists);
2499 	if (request) {
2500 		struct intel_timeline *tl = request->context->timeline;
2501 
2502 		list_for_each_entry_from_reverse(request, &tl->requests, link) {
2503 			if (__i915_request_is_complete(request))
2504 				break;
2505 
2506 			active = request;
2507 		}
2508 	}
2509 	rcu_read_unlock();
2510 	if (active)
2511 		return active;
2512 
2513 	list_for_each_entry(request, &engine->sched_engine->requests,
2514 			    sched.link) {
2515 		if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2516 			continue;
2517 
2518 		active = request;
2519 		break;
2520 	}
2521 
2522 	return active;
2523 }
2524 
2525 void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
2526 				  struct intel_context **ce, struct i915_request **rq)
2527 {
2528 	unsigned long flags;
2529 
2530 	*ce = intel_engine_get_hung_context(engine);
2531 	if (*ce) {
2532 		intel_engine_clear_hung_context(engine);
2533 
2534 		*rq = intel_context_get_active_request(*ce);
2535 		return;
2536 	}
2537 
2538 	/*
2539 	 * Getting here with GuC enabled means it is a forced error capture
2540 	 * with no actual hang. So, no need to attempt the execlist search.
2541 	 */
2542 	if (intel_uc_uses_guc_submission(&engine->gt->uc))
2543 		return;
2544 
2545 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
2546 	*rq = engine_execlist_find_hung_request(engine);
2547 	if (*rq)
2548 		*rq = i915_request_get_rcu(*rq);
2549 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2550 }
2551 
2552 void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2553 {
2554 	/*
2555 	 * If there are any non-fused-off CCS engines, we need to enable CCS
2556 	 * support in the RCU_MODE register.  This only needs to be done once,
2557 	 * so for simplicity we'll take care of this in the RCS engine's
2558 	 * resume handler; since the RCS and all CCS engines belong to the
2559 	 * same reset domain and are reset together, this will also take care
2560 	 * of re-applying the setting after i915-triggered resets.
2561 	 */
2562 	if (!CCS_MASK(engine->gt))
2563 		return;
2564 
2565 	intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2566 			   _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2567 }
2568 
2569 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2570 #include "mock_engine.c"
2571 #include "selftest_engine.c"
2572 #include "selftest_engine_cs.c"
2573 #endif
2574