1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2016 Intel Corporation 4 */ 5 6 #include <linux/string_helpers.h> 7 8 #include <drm/drm_print.h> 9 10 #include "gem/i915_gem_context.h" 11 #include "gem/i915_gem_internal.h" 12 #include "gt/intel_gt_print.h" 13 #include "gt/intel_gt_regs.h" 14 15 #include "i915_cmd_parser.h" 16 #include "i915_drv.h" 17 #include "i915_irq.h" 18 #include "i915_reg.h" 19 #include "intel_breadcrumbs.h" 20 #include "intel_context.h" 21 #include "intel_engine.h" 22 #include "intel_engine_pm.h" 23 #include "intel_engine_regs.h" 24 #include "intel_engine_user.h" 25 #include "intel_execlists_submission.h" 26 #include "intel_gt.h" 27 #include "intel_gt_mcr.h" 28 #include "intel_gt_pm.h" 29 #include "intel_gt_requests.h" 30 #include "intel_lrc.h" 31 #include "intel_lrc_reg.h" 32 #include "intel_reset.h" 33 #include "intel_ring.h" 34 #include "uc/intel_guc_submission.h" 35 36 /* Haswell does have the CXT_SIZE register however it does not appear to be 37 * valid. Now, docs explain in dwords what is in the context object. The full 38 * size is 70720 bytes, however, the power context and execlist context will 39 * never be saved (power context is stored elsewhere, and execlists don't work 40 * on HSW) - so the final size, including the extra state required for the 41 * Resource Streamer, is 66944 bytes, which rounds to 17 pages. 42 */ 43 #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE) 44 45 #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) 46 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE) 47 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) 48 #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE) 49 50 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE) 51 52 #define MAX_MMIO_BASES 3 53 struct engine_info { 54 u8 class; 55 u8 instance; 56 /* mmio bases table *must* be sorted in reverse graphics_ver order */ 57 struct engine_mmio_base { 58 u32 graphics_ver : 8; 59 u32 base : 24; 60 } mmio_bases[MAX_MMIO_BASES]; 61 }; 62 63 static const struct engine_info intel_engines[] = { 64 [RCS0] = { 65 .class = RENDER_CLASS, 66 .instance = 0, 67 .mmio_bases = { 68 { .graphics_ver = 1, .base = RENDER_RING_BASE } 69 }, 70 }, 71 [BCS0] = { 72 .class = COPY_ENGINE_CLASS, 73 .instance = 0, 74 .mmio_bases = { 75 { .graphics_ver = 6, .base = BLT_RING_BASE } 76 }, 77 }, 78 [BCS1] = { 79 .class = COPY_ENGINE_CLASS, 80 .instance = 1, 81 .mmio_bases = { 82 { .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE } 83 }, 84 }, 85 [BCS2] = { 86 .class = COPY_ENGINE_CLASS, 87 .instance = 2, 88 .mmio_bases = { 89 { .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE } 90 }, 91 }, 92 [BCS3] = { 93 .class = COPY_ENGINE_CLASS, 94 .instance = 3, 95 .mmio_bases = { 96 { .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE } 97 }, 98 }, 99 [BCS4] = { 100 .class = COPY_ENGINE_CLASS, 101 .instance = 4, 102 .mmio_bases = { 103 { .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE } 104 }, 105 }, 106 [BCS5] = { 107 .class = COPY_ENGINE_CLASS, 108 .instance = 5, 109 .mmio_bases = { 110 { .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE } 111 }, 112 }, 113 [BCS6] = { 114 .class = COPY_ENGINE_CLASS, 115 .instance = 6, 116 .mmio_bases = { 117 { .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE } 118 }, 119 }, 120 [BCS7] = { 121 .class = COPY_ENGINE_CLASS, 122 .instance = 7, 123 .mmio_bases = { 124 { .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE } 125 }, 126 }, 127 [BCS8] = { 128 .class = COPY_ENGINE_CLASS, 129 .instance = 8, 130 .mmio_bases = { 131 { .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE } 132 }, 133 }, 134 [VCS0] = { 135 .class = VIDEO_DECODE_CLASS, 136 .instance = 0, 137 .mmio_bases = { 138 { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE }, 139 { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE }, 140 { .graphics_ver = 4, .base = BSD_RING_BASE } 141 }, 142 }, 143 [VCS1] = { 144 .class = VIDEO_DECODE_CLASS, 145 .instance = 1, 146 .mmio_bases = { 147 { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE }, 148 { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE } 149 }, 150 }, 151 [VCS2] = { 152 .class = VIDEO_DECODE_CLASS, 153 .instance = 2, 154 .mmio_bases = { 155 { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE } 156 }, 157 }, 158 [VCS3] = { 159 .class = VIDEO_DECODE_CLASS, 160 .instance = 3, 161 .mmio_bases = { 162 { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE } 163 }, 164 }, 165 [VCS4] = { 166 .class = VIDEO_DECODE_CLASS, 167 .instance = 4, 168 .mmio_bases = { 169 { .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE } 170 }, 171 }, 172 [VCS5] = { 173 .class = VIDEO_DECODE_CLASS, 174 .instance = 5, 175 .mmio_bases = { 176 { .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE } 177 }, 178 }, 179 [VCS6] = { 180 .class = VIDEO_DECODE_CLASS, 181 .instance = 6, 182 .mmio_bases = { 183 { .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE } 184 }, 185 }, 186 [VCS7] = { 187 .class = VIDEO_DECODE_CLASS, 188 .instance = 7, 189 .mmio_bases = { 190 { .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE } 191 }, 192 }, 193 [VECS0] = { 194 .class = VIDEO_ENHANCEMENT_CLASS, 195 .instance = 0, 196 .mmio_bases = { 197 { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE }, 198 { .graphics_ver = 7, .base = VEBOX_RING_BASE } 199 }, 200 }, 201 [VECS1] = { 202 .class = VIDEO_ENHANCEMENT_CLASS, 203 .instance = 1, 204 .mmio_bases = { 205 { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE } 206 }, 207 }, 208 [VECS2] = { 209 .class = VIDEO_ENHANCEMENT_CLASS, 210 .instance = 2, 211 .mmio_bases = { 212 { .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE } 213 }, 214 }, 215 [VECS3] = { 216 .class = VIDEO_ENHANCEMENT_CLASS, 217 .instance = 3, 218 .mmio_bases = { 219 { .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE } 220 }, 221 }, 222 [CCS0] = { 223 .class = COMPUTE_CLASS, 224 .instance = 0, 225 .mmio_bases = { 226 { .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE } 227 } 228 }, 229 [CCS1] = { 230 .class = COMPUTE_CLASS, 231 .instance = 1, 232 .mmio_bases = { 233 { .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE } 234 } 235 }, 236 [CCS2] = { 237 .class = COMPUTE_CLASS, 238 .instance = 2, 239 .mmio_bases = { 240 { .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE } 241 } 242 }, 243 [CCS3] = { 244 .class = COMPUTE_CLASS, 245 .instance = 3, 246 .mmio_bases = { 247 { .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE } 248 } 249 }, 250 [GSC0] = { 251 .class = OTHER_CLASS, 252 .instance = OTHER_GSC_INSTANCE, 253 .mmio_bases = { 254 { .graphics_ver = 12, .base = MTL_GSC_RING_BASE } 255 } 256 }, 257 }; 258 259 /** 260 * intel_engine_context_size() - return the size of the context for an engine 261 * @gt: the gt 262 * @class: engine class 263 * 264 * Each engine class may require a different amount of space for a context 265 * image. 266 * 267 * Return: size (in bytes) of an engine class specific context image 268 * 269 * Note: this size includes the HWSP, which is part of the context image 270 * in LRC mode, but does not include the "shared data page" used with 271 * GuC submission. The caller should account for this if using the GuC. 272 */ 273 u32 intel_engine_context_size(struct intel_gt *gt, u8 class) 274 { 275 struct intel_uncore *uncore = gt->uncore; 276 u32 cxt_size; 277 278 BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE); 279 280 switch (class) { 281 case COMPUTE_CLASS: 282 fallthrough; 283 case RENDER_CLASS: 284 switch (GRAPHICS_VER(gt->i915)) { 285 default: 286 MISSING_CASE(GRAPHICS_VER(gt->i915)); 287 return DEFAULT_LR_CONTEXT_RENDER_SIZE; 288 case 12: 289 case 11: 290 return GEN11_LR_CONTEXT_RENDER_SIZE; 291 case 9: 292 return GEN9_LR_CONTEXT_RENDER_SIZE; 293 case 8: 294 return GEN8_LR_CONTEXT_RENDER_SIZE; 295 case 7: 296 if (IS_HASWELL(gt->i915)) 297 return HSW_CXT_TOTAL_SIZE; 298 299 cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE); 300 return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64, 301 PAGE_SIZE); 302 case 6: 303 cxt_size = intel_uncore_read(uncore, CXT_SIZE); 304 return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64, 305 PAGE_SIZE); 306 case 5: 307 case 4: 308 /* 309 * There is a discrepancy here between the size reported 310 * by the register and the size of the context layout 311 * in the docs. Both are described as authorative! 312 * 313 * The discrepancy is on the order of a few cachelines, 314 * but the total is under one page (4k), which is our 315 * minimum allocation anyway so it should all come 316 * out in the wash. 317 */ 318 cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1; 319 gt_dbg(gt, "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n", 320 GRAPHICS_VER(gt->i915), cxt_size * 64, 321 cxt_size - 1); 322 return round_up(cxt_size * 64, PAGE_SIZE); 323 case 3: 324 case 2: 325 /* For the special day when i810 gets merged. */ 326 case 1: 327 return 0; 328 } 329 break; 330 default: 331 MISSING_CASE(class); 332 fallthrough; 333 case VIDEO_DECODE_CLASS: 334 case VIDEO_ENHANCEMENT_CLASS: 335 case COPY_ENGINE_CLASS: 336 case OTHER_CLASS: 337 if (GRAPHICS_VER(gt->i915) < 8) 338 return 0; 339 return GEN8_LR_CONTEXT_OTHER_SIZE; 340 } 341 } 342 343 static u32 __engine_mmio_base(struct drm_i915_private *i915, 344 const struct engine_mmio_base *bases) 345 { 346 int i; 347 348 for (i = 0; i < MAX_MMIO_BASES; i++) 349 if (GRAPHICS_VER(i915) >= bases[i].graphics_ver) 350 break; 351 352 GEM_BUG_ON(i == MAX_MMIO_BASES); 353 GEM_BUG_ON(!bases[i].base); 354 355 return bases[i].base; 356 } 357 358 static void __sprint_engine_name(struct intel_engine_cs *engine) 359 { 360 /* 361 * Before we know what the uABI name for this engine will be, 362 * we still would like to keep track of this engine in the debug logs. 363 * We throw in a ' here as a reminder that this isn't its final name. 364 */ 365 GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u", 366 intel_engine_class_repr(engine->class), 367 engine->instance) >= sizeof(engine->name)); 368 } 369 370 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask) 371 { 372 /* 373 * Though they added more rings on g4x/ilk, they did not add 374 * per-engine HWSTAM until gen6. 375 */ 376 if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS) 377 return; 378 379 if (GRAPHICS_VER(engine->i915) >= 3) 380 ENGINE_WRITE(engine, RING_HWSTAM, mask); 381 else 382 ENGINE_WRITE16(engine, RING_HWSTAM, mask); 383 } 384 385 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine) 386 { 387 /* Mask off all writes into the unknown HWSP */ 388 intel_engine_set_hwsp_writemask(engine, ~0u); 389 } 390 391 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir) 392 { 393 GEM_DEBUG_WARN_ON(iir); 394 } 395 396 static u32 get_reset_domain(u8 ver, enum intel_engine_id id) 397 { 398 u32 reset_domain; 399 400 if (ver >= 11) { 401 static const u32 engine_reset_domains[] = { 402 [RCS0] = GEN11_GRDOM_RENDER, 403 [BCS0] = GEN11_GRDOM_BLT, 404 [BCS1] = XEHPC_GRDOM_BLT1, 405 [BCS2] = XEHPC_GRDOM_BLT2, 406 [BCS3] = XEHPC_GRDOM_BLT3, 407 [BCS4] = XEHPC_GRDOM_BLT4, 408 [BCS5] = XEHPC_GRDOM_BLT5, 409 [BCS6] = XEHPC_GRDOM_BLT6, 410 [BCS7] = XEHPC_GRDOM_BLT7, 411 [BCS8] = XEHPC_GRDOM_BLT8, 412 [VCS0] = GEN11_GRDOM_MEDIA, 413 [VCS1] = GEN11_GRDOM_MEDIA2, 414 [VCS2] = GEN11_GRDOM_MEDIA3, 415 [VCS3] = GEN11_GRDOM_MEDIA4, 416 [VCS4] = GEN11_GRDOM_MEDIA5, 417 [VCS5] = GEN11_GRDOM_MEDIA6, 418 [VCS6] = GEN11_GRDOM_MEDIA7, 419 [VCS7] = GEN11_GRDOM_MEDIA8, 420 [VECS0] = GEN11_GRDOM_VECS, 421 [VECS1] = GEN11_GRDOM_VECS2, 422 [VECS2] = GEN11_GRDOM_VECS3, 423 [VECS3] = GEN11_GRDOM_VECS4, 424 [CCS0] = GEN11_GRDOM_RENDER, 425 [CCS1] = GEN11_GRDOM_RENDER, 426 [CCS2] = GEN11_GRDOM_RENDER, 427 [CCS3] = GEN11_GRDOM_RENDER, 428 [GSC0] = GEN12_GRDOM_GSC, 429 }; 430 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) || 431 !engine_reset_domains[id]); 432 reset_domain = engine_reset_domains[id]; 433 } else { 434 static const u32 engine_reset_domains[] = { 435 [RCS0] = GEN6_GRDOM_RENDER, 436 [BCS0] = GEN6_GRDOM_BLT, 437 [VCS0] = GEN6_GRDOM_MEDIA, 438 [VCS1] = GEN8_GRDOM_MEDIA2, 439 [VECS0] = GEN6_GRDOM_VECS, 440 }; 441 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) || 442 !engine_reset_domains[id]); 443 reset_domain = engine_reset_domains[id]; 444 } 445 446 return reset_domain; 447 } 448 449 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id, 450 u8 logical_instance) 451 { 452 const struct engine_info *info = &intel_engines[id]; 453 struct drm_i915_private *i915 = gt->i915; 454 struct intel_engine_cs *engine; 455 u8 guc_class; 456 457 BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH)); 458 BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH)); 459 BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1)); 460 BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1)); 461 462 if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine))) 463 return -EINVAL; 464 465 if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS)) 466 return -EINVAL; 467 468 if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE)) 469 return -EINVAL; 470 471 if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance])) 472 return -EINVAL; 473 474 engine = kzalloc(sizeof(*engine), GFP_KERNEL); 475 if (!engine) 476 return -ENOMEM; 477 478 BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES); 479 480 INIT_LIST_HEAD(&engine->pinned_contexts_list); 481 engine->id = id; 482 engine->legacy_idx = INVALID_ENGINE; 483 engine->mask = BIT(id); 484 engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915), 485 id); 486 engine->i915 = i915; 487 engine->gt = gt; 488 engine->uncore = gt->uncore; 489 guc_class = engine_class_to_guc_class(info->class); 490 engine->guc_id = MAKE_GUC_ID(guc_class, info->instance); 491 engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases); 492 493 engine->irq_handler = nop_irq_handler; 494 495 engine->class = info->class; 496 engine->instance = info->instance; 497 engine->logical_mask = BIT(logical_instance); 498 __sprint_engine_name(engine); 499 500 if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) && 501 __ffs(CCS_MASK(engine->gt)) == engine->instance) || 502 engine->class == RENDER_CLASS) 503 engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE; 504 505 /* features common between engines sharing EUs */ 506 if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) { 507 engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE; 508 engine->flags |= I915_ENGINE_HAS_EU_PRIORITY; 509 } 510 511 engine->props.heartbeat_interval_ms = 512 CONFIG_DRM_I915_HEARTBEAT_INTERVAL; 513 engine->props.max_busywait_duration_ns = 514 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT; 515 engine->props.preempt_timeout_ms = 516 CONFIG_DRM_I915_PREEMPT_TIMEOUT; 517 engine->props.stop_timeout_ms = 518 CONFIG_DRM_I915_STOP_TIMEOUT; 519 engine->props.timeslice_duration_ms = 520 CONFIG_DRM_I915_TIMESLICE_DURATION; 521 522 /* 523 * Mid-thread pre-emption is not available in Gen12. Unfortunately, 524 * some compute workloads run quite long threads. That means they get 525 * reset due to not pre-empting in a timely manner. So, bump the 526 * pre-emption timeout value to be much higher for compute engines. 527 */ 528 if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)) 529 engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE; 530 531 /* Cap properties according to any system limits */ 532 #define CLAMP_PROP(field) \ 533 do { \ 534 u64 clamp = intel_clamp_##field(engine, engine->props.field); \ 535 if (clamp != engine->props.field) { \ 536 drm_notice(&engine->i915->drm, \ 537 "Warning, clamping %s to %lld to prevent overflow\n", \ 538 #field, clamp); \ 539 engine->props.field = clamp; \ 540 } \ 541 } while (0) 542 543 CLAMP_PROP(heartbeat_interval_ms); 544 CLAMP_PROP(max_busywait_duration_ns); 545 CLAMP_PROP(preempt_timeout_ms); 546 CLAMP_PROP(stop_timeout_ms); 547 CLAMP_PROP(timeslice_duration_ms); 548 549 #undef CLAMP_PROP 550 551 engine->defaults = engine->props; /* never to change again */ 552 553 engine->context_size = intel_engine_context_size(gt, engine->class); 554 if (WARN_ON(engine->context_size > BIT(20))) 555 engine->context_size = 0; 556 if (engine->context_size) 557 DRIVER_CAPS(i915)->has_logical_contexts = true; 558 559 ewma__engine_latency_init(&engine->latency); 560 561 ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier); 562 563 /* Scrub mmio state on takeover */ 564 intel_engine_sanitize_mmio(engine); 565 566 gt->engine_class[info->class][info->instance] = engine; 567 gt->engine[id] = engine; 568 569 return 0; 570 } 571 572 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value) 573 { 574 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); 575 576 return value; 577 } 578 579 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value) 580 { 581 value = min(value, jiffies_to_nsecs(2)); 582 583 return value; 584 } 585 586 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value) 587 { 588 /* 589 * NB: The GuC API only supports 32bit values. However, the limit is further 590 * reduced due to internal calculations which would otherwise overflow. 591 */ 592 if (intel_guc_submission_is_wanted(&engine->gt->uc.guc)) 593 value = min_t(u64, value, guc_policy_max_preempt_timeout_ms()); 594 595 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); 596 597 return value; 598 } 599 600 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value) 601 { 602 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); 603 604 return value; 605 } 606 607 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value) 608 { 609 /* 610 * NB: The GuC API only supports 32bit values. However, the limit is further 611 * reduced due to internal calculations which would otherwise overflow. 612 */ 613 if (intel_guc_submission_is_wanted(&engine->gt->uc.guc)) 614 value = min_t(u64, value, guc_policy_max_exec_quantum_ms()); 615 616 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); 617 618 return value; 619 } 620 621 static void __setup_engine_capabilities(struct intel_engine_cs *engine) 622 { 623 struct drm_i915_private *i915 = engine->i915; 624 625 if (engine->class == VIDEO_DECODE_CLASS) { 626 /* 627 * HEVC support is present on first engine instance 628 * before Gen11 and on all instances afterwards. 629 */ 630 if (GRAPHICS_VER(i915) >= 11 || 631 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0)) 632 engine->uabi_capabilities |= 633 I915_VIDEO_CLASS_CAPABILITY_HEVC; 634 635 /* 636 * SFC block is present only on even logical engine 637 * instances. 638 */ 639 if ((GRAPHICS_VER(i915) >= 11 && 640 (engine->gt->info.vdbox_sfc_access & 641 BIT(engine->instance))) || 642 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0)) 643 engine->uabi_capabilities |= 644 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; 645 } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) { 646 if (GRAPHICS_VER(i915) >= 9 && 647 engine->gt->info.sfc_mask & BIT(engine->instance)) 648 engine->uabi_capabilities |= 649 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; 650 } 651 } 652 653 static void intel_setup_engine_capabilities(struct intel_gt *gt) 654 { 655 struct intel_engine_cs *engine; 656 enum intel_engine_id id; 657 658 for_each_engine(engine, gt, id) 659 __setup_engine_capabilities(engine); 660 } 661 662 /** 663 * intel_engines_release() - free the resources allocated for Command Streamers 664 * @gt: pointer to struct intel_gt 665 */ 666 void intel_engines_release(struct intel_gt *gt) 667 { 668 struct intel_engine_cs *engine; 669 enum intel_engine_id id; 670 671 /* 672 * Before we release the resources held by engine, we must be certain 673 * that the HW is no longer accessing them -- having the GPU scribble 674 * to or read from a page being used for something else causes no end 675 * of fun. 676 * 677 * The GPU should be reset by this point, but assume the worst just 678 * in case we aborted before completely initialising the engines. 679 */ 680 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 681 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 682 __intel_gt_reset(gt, ALL_ENGINES); 683 684 /* Decouple the backend; but keep the layout for late GPU resets */ 685 for_each_engine(engine, gt, id) { 686 if (!engine->release) 687 continue; 688 689 intel_wakeref_wait_for_idle(&engine->wakeref); 690 GEM_BUG_ON(intel_engine_pm_is_awake(engine)); 691 692 engine->release(engine); 693 engine->release = NULL; 694 695 memset(&engine->reset, 0, sizeof(engine->reset)); 696 } 697 } 698 699 void intel_engine_free_request_pool(struct intel_engine_cs *engine) 700 { 701 if (!engine->request_pool) 702 return; 703 704 kmem_cache_free(i915_request_slab_cache(), engine->request_pool); 705 } 706 707 void intel_engines_free(struct intel_gt *gt) 708 { 709 struct intel_engine_cs *engine; 710 enum intel_engine_id id; 711 712 /* Free the requests! dma-resv keeps fences around for an eternity */ 713 rcu_barrier(); 714 715 for_each_engine(engine, gt, id) { 716 intel_engine_free_request_pool(engine); 717 kfree(engine); 718 gt->engine[id] = NULL; 719 } 720 } 721 722 static 723 bool gen11_vdbox_has_sfc(struct intel_gt *gt, 724 unsigned int physical_vdbox, 725 unsigned int logical_vdbox, u16 vdbox_mask) 726 { 727 struct drm_i915_private *i915 = gt->i915; 728 729 /* 730 * In Gen11, only even numbered logical VDBOXes are hooked 731 * up to an SFC (Scaler & Format Converter) unit. 732 * In Gen12, Even numbered physical instance always are connected 733 * to an SFC. Odd numbered physical instances have SFC only if 734 * previous even instance is fused off. 735 * 736 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field 737 * in the fuse register that tells us whether a specific SFC is present. 738 */ 739 if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0) 740 return false; 741 else if (MEDIA_VER(i915) >= 12) 742 return (physical_vdbox % 2 == 0) || 743 !(BIT(physical_vdbox - 1) & vdbox_mask); 744 else if (MEDIA_VER(i915) == 11) 745 return logical_vdbox % 2 == 0; 746 747 return false; 748 } 749 750 static void engine_mask_apply_media_fuses(struct intel_gt *gt) 751 { 752 struct drm_i915_private *i915 = gt->i915; 753 unsigned int logical_vdbox = 0; 754 unsigned int i; 755 u32 media_fuse, fuse1; 756 u16 vdbox_mask; 757 u16 vebox_mask; 758 759 if (MEDIA_VER(gt->i915) < 11) 760 return; 761 762 /* 763 * On newer platforms the fusing register is called 'enable' and has 764 * enable semantics, while on older platforms it is called 'disable' 765 * and bits have disable semantices. 766 */ 767 media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE); 768 if (MEDIA_VER_FULL(i915) < IP_VER(12, 50)) 769 media_fuse = ~media_fuse; 770 771 vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK; 772 vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >> 773 GEN11_GT_VEBOX_DISABLE_SHIFT; 774 775 if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) { 776 fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1); 777 gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1); 778 } else { 779 gt->info.sfc_mask = ~0; 780 } 781 782 for (i = 0; i < I915_MAX_VCS; i++) { 783 if (!HAS_ENGINE(gt, _VCS(i))) { 784 vdbox_mask &= ~BIT(i); 785 continue; 786 } 787 788 if (!(BIT(i) & vdbox_mask)) { 789 gt->info.engine_mask &= ~BIT(_VCS(i)); 790 gt_dbg(gt, "vcs%u fused off\n", i); 791 continue; 792 } 793 794 if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask)) 795 gt->info.vdbox_sfc_access |= BIT(i); 796 logical_vdbox++; 797 } 798 gt_dbg(gt, "vdbox enable: %04x, instances: %04lx\n", vdbox_mask, VDBOX_MASK(gt)); 799 GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt)); 800 801 for (i = 0; i < I915_MAX_VECS; i++) { 802 if (!HAS_ENGINE(gt, _VECS(i))) { 803 vebox_mask &= ~BIT(i); 804 continue; 805 } 806 807 if (!(BIT(i) & vebox_mask)) { 808 gt->info.engine_mask &= ~BIT(_VECS(i)); 809 gt_dbg(gt, "vecs%u fused off\n", i); 810 } 811 } 812 gt_dbg(gt, "vebox enable: %04x, instances: %04lx\n", vebox_mask, VEBOX_MASK(gt)); 813 GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt)); 814 } 815 816 static void engine_mask_apply_compute_fuses(struct intel_gt *gt) 817 { 818 struct drm_i915_private *i915 = gt->i915; 819 struct intel_gt_info *info = >->info; 820 int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS; 821 unsigned long ccs_mask; 822 unsigned int i; 823 824 if (GRAPHICS_VER(i915) < 11) 825 return; 826 827 if (hweight32(CCS_MASK(gt)) <= 1) 828 return; 829 830 ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask, 831 ss_per_ccs); 832 /* 833 * If all DSS in a quadrant are fused off, the corresponding CCS 834 * engine is not available for use. 835 */ 836 for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) { 837 info->engine_mask &= ~BIT(_CCS(i)); 838 gt_dbg(gt, "ccs%u fused off\n", i); 839 } 840 } 841 842 static void engine_mask_apply_copy_fuses(struct intel_gt *gt) 843 { 844 struct drm_i915_private *i915 = gt->i915; 845 struct intel_gt_info *info = >->info; 846 unsigned long meml3_mask; 847 unsigned long quad; 848 849 if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) && 850 GRAPHICS_VER_FULL(i915) < IP_VER(12, 70))) 851 return; 852 853 meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3); 854 meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask); 855 856 /* 857 * Link Copy engines may be fused off according to meml3_mask. Each 858 * bit is a quad that houses 2 Link Copy and two Sub Copy engines. 859 */ 860 for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) { 861 unsigned int instance = quad * 2 + 1; 862 intel_engine_mask_t mask = GENMASK(_BCS(instance + 1), 863 _BCS(instance)); 864 865 if (mask & info->engine_mask) { 866 gt_dbg(gt, "bcs%u fused off\n", instance); 867 gt_dbg(gt, "bcs%u fused off\n", instance + 1); 868 869 info->engine_mask &= ~mask; 870 } 871 } 872 } 873 874 /* 875 * Determine which engines are fused off in our particular hardware. 876 * Note that we have a catch-22 situation where we need to be able to access 877 * the blitter forcewake domain to read the engine fuses, but at the same time 878 * we need to know which engines are available on the system to know which 879 * forcewake domains are present. We solve this by intializing the forcewake 880 * domains based on the full engine mask in the platform capabilities before 881 * calling this function and pruning the domains for fused-off engines 882 * afterwards. 883 */ 884 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt) 885 { 886 struct intel_gt_info *info = >->info; 887 888 GEM_BUG_ON(!info->engine_mask); 889 890 engine_mask_apply_media_fuses(gt); 891 engine_mask_apply_compute_fuses(gt); 892 engine_mask_apply_copy_fuses(gt); 893 894 /* 895 * The only use of the GSC CS is to load and communicate with the GSC 896 * FW, so we have no use for it if we don't have the FW. 897 * 898 * IMPORTANT: in cases where we don't have the GSC FW, we have a 899 * catch-22 situation that breaks media C6 due to 2 requirements: 900 * 1) once turned on, the GSC power well will not go to sleep unless the 901 * GSC FW is loaded. 902 * 2) to enable idling (which is required for media C6) we need to 903 * initialize the IDLE_MSG register for the GSC CS and do at least 1 904 * submission, which will wake up the GSC power well. 905 */ 906 if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(>->uc)) { 907 gt_notice(gt, "No GSC FW selected, disabling GSC CS and media C6\n"); 908 info->engine_mask &= ~BIT(GSC0); 909 } 910 911 /* 912 * Do not create the command streamer for CCS slices beyond the first. 913 * All the workload submitted to the first engine will be shared among 914 * all the slices. 915 * 916 * Once the user will be allowed to customize the CCS mode, then this 917 * check needs to be removed. 918 */ 919 if (IS_DG2(gt->i915)) { 920 u8 first_ccs = __ffs(CCS_MASK(gt)); 921 922 /* Mask off all the CCS engine */ 923 info->engine_mask &= ~GENMASK(CCS3, CCS0); 924 /* Put back in the first CCS engine */ 925 info->engine_mask |= BIT(_CCS(first_ccs)); 926 } 927 928 return info->engine_mask; 929 } 930 931 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids, 932 u8 class, const u8 *map, u8 num_instances) 933 { 934 int i, j; 935 u8 current_logical_id = 0; 936 937 for (j = 0; j < num_instances; ++j) { 938 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) { 939 if (!HAS_ENGINE(gt, i) || 940 intel_engines[i].class != class) 941 continue; 942 943 if (intel_engines[i].instance == map[j]) { 944 logical_ids[intel_engines[i].instance] = 945 current_logical_id++; 946 break; 947 } 948 } 949 } 950 } 951 952 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class) 953 { 954 /* 955 * Logical to physical mapping is needed for proper support 956 * to split-frame feature. 957 */ 958 if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) { 959 const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 }; 960 961 populate_logical_ids(gt, logical_ids, class, 962 map, ARRAY_SIZE(map)); 963 } else { 964 int i; 965 u8 map[MAX_ENGINE_INSTANCE + 1]; 966 967 for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i) 968 map[i] = i; 969 populate_logical_ids(gt, logical_ids, class, 970 map, ARRAY_SIZE(map)); 971 } 972 } 973 974 /** 975 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers 976 * @gt: pointer to struct intel_gt 977 * 978 * Return: non-zero if the initialization failed. 979 */ 980 int intel_engines_init_mmio(struct intel_gt *gt) 981 { 982 struct drm_i915_private *i915 = gt->i915; 983 const unsigned int engine_mask = init_engine_mask(gt); 984 unsigned int mask = 0; 985 unsigned int i, class; 986 u8 logical_ids[MAX_ENGINE_INSTANCE + 1]; 987 int err; 988 989 drm_WARN_ON(&i915->drm, engine_mask == 0); 990 drm_WARN_ON(&i915->drm, engine_mask & 991 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES)); 992 993 if (i915_inject_probe_failure(i915)) 994 return -ENODEV; 995 996 for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) { 997 setup_logical_ids(gt, logical_ids, class); 998 999 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) { 1000 u8 instance = intel_engines[i].instance; 1001 1002 if (intel_engines[i].class != class || 1003 !HAS_ENGINE(gt, i)) 1004 continue; 1005 1006 err = intel_engine_setup(gt, i, 1007 logical_ids[instance]); 1008 if (err) 1009 goto cleanup; 1010 1011 mask |= BIT(i); 1012 } 1013 } 1014 1015 /* 1016 * Catch failures to update intel_engines table when the new engines 1017 * are added to the driver by a warning and disabling the forgotten 1018 * engines. 1019 */ 1020 if (drm_WARN_ON(&i915->drm, mask != engine_mask)) 1021 gt->info.engine_mask = mask; 1022 1023 gt->info.num_engines = hweight32(mask); 1024 1025 intel_gt_check_and_clear_faults(gt); 1026 1027 intel_setup_engine_capabilities(gt); 1028 1029 intel_uncore_prune_engine_fw_domains(gt->uncore, gt); 1030 1031 return 0; 1032 1033 cleanup: 1034 intel_engines_free(gt); 1035 return err; 1036 } 1037 1038 void intel_engine_init_execlists(struct intel_engine_cs *engine) 1039 { 1040 struct intel_engine_execlists * const execlists = &engine->execlists; 1041 1042 execlists->port_mask = 1; 1043 GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists))); 1044 GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS); 1045 1046 memset(execlists->pending, 0, sizeof(execlists->pending)); 1047 execlists->active = 1048 memset(execlists->inflight, 0, sizeof(execlists->inflight)); 1049 } 1050 1051 static void cleanup_status_page(struct intel_engine_cs *engine) 1052 { 1053 struct i915_vma *vma; 1054 1055 /* Prevent writes into HWSP after returning the page to the system */ 1056 intel_engine_set_hwsp_writemask(engine, ~0u); 1057 1058 vma = fetch_and_zero(&engine->status_page.vma); 1059 if (!vma) 1060 return; 1061 1062 if (!HWS_NEEDS_PHYSICAL(engine->i915)) 1063 i915_vma_unpin(vma); 1064 1065 i915_gem_object_unpin_map(vma->obj); 1066 i915_gem_object_put(vma->obj); 1067 } 1068 1069 static int pin_ggtt_status_page(struct intel_engine_cs *engine, 1070 struct i915_gem_ww_ctx *ww, 1071 struct i915_vma *vma) 1072 { 1073 unsigned int flags; 1074 1075 if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt)) 1076 /* 1077 * On g33, we cannot place HWS above 256MiB, so 1078 * restrict its pinning to the low mappable arena. 1079 * Though this restriction is not documented for 1080 * gen4, gen5, or byt, they also behave similarly 1081 * and hang if the HWS is placed at the top of the 1082 * GTT. To generalise, it appears that all !llc 1083 * platforms have issues with us placing the HWS 1084 * above the mappable region (even though we never 1085 * actually map it). 1086 */ 1087 flags = PIN_MAPPABLE; 1088 else 1089 flags = PIN_HIGH; 1090 1091 return i915_ggtt_pin(vma, ww, 0, flags); 1092 } 1093 1094 static int init_status_page(struct intel_engine_cs *engine) 1095 { 1096 struct drm_i915_gem_object *obj; 1097 struct i915_gem_ww_ctx ww; 1098 struct i915_vma *vma; 1099 void *vaddr; 1100 int ret; 1101 1102 INIT_LIST_HEAD(&engine->status_page.timelines); 1103 1104 /* 1105 * Though the HWS register does support 36bit addresses, historically 1106 * we have had hangs and corruption reported due to wild writes if 1107 * the HWS is placed above 4G. We only allow objects to be allocated 1108 * in GFP_DMA32 for i965, and no earlier physical address users had 1109 * access to more than 4G. 1110 */ 1111 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE); 1112 if (IS_ERR(obj)) { 1113 gt_err(engine->gt, "Failed to allocate status page\n"); 1114 return PTR_ERR(obj); 1115 } 1116 1117 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC); 1118 1119 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); 1120 if (IS_ERR(vma)) { 1121 ret = PTR_ERR(vma); 1122 goto err_put; 1123 } 1124 1125 i915_gem_ww_ctx_init(&ww, true); 1126 retry: 1127 ret = i915_gem_object_lock(obj, &ww); 1128 if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915)) 1129 ret = pin_ggtt_status_page(engine, &ww, vma); 1130 if (ret) 1131 goto err; 1132 1133 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB); 1134 if (IS_ERR(vaddr)) { 1135 ret = PTR_ERR(vaddr); 1136 goto err_unpin; 1137 } 1138 1139 engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE); 1140 engine->status_page.vma = vma; 1141 1142 err_unpin: 1143 if (ret) 1144 i915_vma_unpin(vma); 1145 err: 1146 if (ret == -EDEADLK) { 1147 ret = i915_gem_ww_ctx_backoff(&ww); 1148 if (!ret) 1149 goto retry; 1150 } 1151 i915_gem_ww_ctx_fini(&ww); 1152 err_put: 1153 if (ret) 1154 i915_gem_object_put(obj); 1155 return ret; 1156 } 1157 1158 static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine) 1159 { 1160 static const union intel_engine_tlb_inv_reg gen8_regs[] = { 1161 [RENDER_CLASS].reg = GEN8_RTCR, 1162 [VIDEO_DECODE_CLASS].reg = GEN8_M1TCR, /* , GEN8_M2TCR */ 1163 [VIDEO_ENHANCEMENT_CLASS].reg = GEN8_VTCR, 1164 [COPY_ENGINE_CLASS].reg = GEN8_BTCR, 1165 }; 1166 static const union intel_engine_tlb_inv_reg gen12_regs[] = { 1167 [RENDER_CLASS].reg = GEN12_GFX_TLB_INV_CR, 1168 [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR, 1169 [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR, 1170 [COPY_ENGINE_CLASS].reg = GEN12_BLT_TLB_INV_CR, 1171 [COMPUTE_CLASS].reg = GEN12_COMPCTX_TLB_INV_CR, 1172 }; 1173 static const union intel_engine_tlb_inv_reg xehp_regs[] = { 1174 [RENDER_CLASS].mcr_reg = XEHP_GFX_TLB_INV_CR, 1175 [VIDEO_DECODE_CLASS].mcr_reg = XEHP_VD_TLB_INV_CR, 1176 [VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR, 1177 [COPY_ENGINE_CLASS].mcr_reg = XEHP_BLT_TLB_INV_CR, 1178 [COMPUTE_CLASS].mcr_reg = XEHP_COMPCTX_TLB_INV_CR, 1179 }; 1180 static const union intel_engine_tlb_inv_reg xelpmp_regs[] = { 1181 [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR, 1182 [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR, 1183 [OTHER_CLASS].reg = XELPMP_GSC_TLB_INV_CR, 1184 }; 1185 struct drm_i915_private *i915 = engine->i915; 1186 const unsigned int instance = engine->instance; 1187 const unsigned int class = engine->class; 1188 const union intel_engine_tlb_inv_reg *regs; 1189 union intel_engine_tlb_inv_reg reg; 1190 unsigned int num = 0; 1191 u32 val; 1192 1193 /* 1194 * New platforms should not be added with catch-all-newer (>=) 1195 * condition so that any later platform added triggers the below warning 1196 * and in turn mandates a human cross-check of whether the invalidation 1197 * flows have compatible semantics. 1198 * 1199 * For instance with the 11.00 -> 12.00 transition three out of five 1200 * respective engine registers were moved to masked type. Then after the 1201 * 12.00 -> 12.50 transition multi cast handling is required too. 1202 */ 1203 1204 if (engine->gt->type == GT_MEDIA) { 1205 if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) { 1206 regs = xelpmp_regs; 1207 num = ARRAY_SIZE(xelpmp_regs); 1208 } 1209 } else { 1210 if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 74) || 1211 GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) || 1212 GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) || 1213 GRAPHICS_VER_FULL(i915) == IP_VER(12, 50) || 1214 GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) { 1215 regs = xehp_regs; 1216 num = ARRAY_SIZE(xehp_regs); 1217 } else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) || 1218 GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) { 1219 regs = gen12_regs; 1220 num = ARRAY_SIZE(gen12_regs); 1221 } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) { 1222 regs = gen8_regs; 1223 num = ARRAY_SIZE(gen8_regs); 1224 } else if (GRAPHICS_VER(i915) < 8) { 1225 return 0; 1226 } 1227 } 1228 1229 if (gt_WARN_ONCE(engine->gt, !num, 1230 "Platform does not implement TLB invalidation!")) 1231 return -ENODEV; 1232 1233 if (gt_WARN_ON_ONCE(engine->gt, 1234 class >= num || 1235 (!regs[class].reg.reg && 1236 !regs[class].mcr_reg.reg))) 1237 return -ERANGE; 1238 1239 reg = regs[class]; 1240 1241 if (regs == xelpmp_regs && class == OTHER_CLASS) { 1242 /* 1243 * There's only a single GSC instance, but it uses register bit 1244 * 1 instead of either 0 or OTHER_GSC_INSTANCE. 1245 */ 1246 GEM_WARN_ON(instance != OTHER_GSC_INSTANCE); 1247 val = 1; 1248 } else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) { 1249 reg.reg = GEN8_M2TCR; 1250 val = 0; 1251 } else { 1252 val = instance; 1253 } 1254 1255 val = BIT(val); 1256 1257 engine->tlb_inv.mcr = regs == xehp_regs; 1258 engine->tlb_inv.reg = reg; 1259 engine->tlb_inv.done = val; 1260 1261 if (GRAPHICS_VER(i915) >= 12 && 1262 (engine->class == VIDEO_DECODE_CLASS || 1263 engine->class == VIDEO_ENHANCEMENT_CLASS || 1264 engine->class == COMPUTE_CLASS || 1265 engine->class == OTHER_CLASS)) 1266 engine->tlb_inv.request = _MASKED_BIT_ENABLE(val); 1267 else 1268 engine->tlb_inv.request = val; 1269 1270 return 0; 1271 } 1272 1273 static int engine_setup_common(struct intel_engine_cs *engine) 1274 { 1275 int err; 1276 1277 init_llist_head(&engine->barrier_tasks); 1278 1279 err = intel_engine_init_tlb_invalidation(engine); 1280 if (err) 1281 return err; 1282 1283 err = init_status_page(engine); 1284 if (err) 1285 return err; 1286 1287 engine->breadcrumbs = intel_breadcrumbs_create(engine); 1288 if (!engine->breadcrumbs) { 1289 err = -ENOMEM; 1290 goto err_status; 1291 } 1292 1293 engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL); 1294 if (!engine->sched_engine) { 1295 err = -ENOMEM; 1296 goto err_sched_engine; 1297 } 1298 engine->sched_engine->private_data = engine; 1299 1300 err = intel_engine_init_cmd_parser(engine); 1301 if (err) 1302 goto err_cmd_parser; 1303 1304 intel_engine_init_execlists(engine); 1305 intel_engine_init__pm(engine); 1306 intel_engine_init_retire(engine); 1307 1308 /* Use the whole device by default */ 1309 engine->sseu = 1310 intel_sseu_from_device_info(&engine->gt->info.sseu); 1311 1312 intel_engine_init_workarounds(engine); 1313 intel_engine_init_whitelist(engine); 1314 intel_engine_init_ctx_wa(engine); 1315 1316 if (GRAPHICS_VER(engine->i915) >= 12) 1317 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO; 1318 1319 return 0; 1320 1321 err_cmd_parser: 1322 i915_sched_engine_put(engine->sched_engine); 1323 err_sched_engine: 1324 intel_breadcrumbs_put(engine->breadcrumbs); 1325 err_status: 1326 cleanup_status_page(engine); 1327 return err; 1328 } 1329 1330 struct measure_breadcrumb { 1331 struct i915_request rq; 1332 struct intel_ring ring; 1333 u32 cs[2048]; 1334 }; 1335 1336 static int measure_breadcrumb_dw(struct intel_context *ce) 1337 { 1338 struct intel_engine_cs *engine = ce->engine; 1339 struct measure_breadcrumb *frame; 1340 int dw; 1341 1342 GEM_BUG_ON(!engine->gt->scratch); 1343 1344 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1345 if (!frame) 1346 return -ENOMEM; 1347 1348 frame->rq.i915 = engine->i915; 1349 frame->rq.engine = engine; 1350 frame->rq.context = ce; 1351 rcu_assign_pointer(frame->rq.timeline, ce->timeline); 1352 frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno; 1353 1354 frame->ring.vaddr = frame->cs; 1355 frame->ring.size = sizeof(frame->cs); 1356 frame->ring.wrap = 1357 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size); 1358 frame->ring.effective_size = frame->ring.size; 1359 intel_ring_update_space(&frame->ring); 1360 frame->rq.ring = &frame->ring; 1361 1362 mutex_lock(&ce->timeline->mutex); 1363 spin_lock_irq(&engine->sched_engine->lock); 1364 1365 dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs; 1366 1367 spin_unlock_irq(&engine->sched_engine->lock); 1368 mutex_unlock(&ce->timeline->mutex); 1369 1370 GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */ 1371 1372 kfree(frame); 1373 return dw; 1374 } 1375 1376 struct intel_context * 1377 intel_engine_create_pinned_context(struct intel_engine_cs *engine, 1378 struct i915_address_space *vm, 1379 unsigned int ring_size, 1380 unsigned int hwsp, 1381 struct lock_class_key *key, 1382 const char *name) 1383 { 1384 struct intel_context *ce; 1385 int err; 1386 1387 ce = intel_context_create(engine); 1388 if (IS_ERR(ce)) 1389 return ce; 1390 1391 __set_bit(CONTEXT_BARRIER_BIT, &ce->flags); 1392 ce->timeline = page_pack_bits(NULL, hwsp); 1393 ce->ring = NULL; 1394 ce->ring_size = ring_size; 1395 1396 i915_vm_put(ce->vm); 1397 ce->vm = i915_vm_get(vm); 1398 1399 err = intel_context_pin(ce); /* perma-pin so it is always available */ 1400 if (err) { 1401 intel_context_put(ce); 1402 return ERR_PTR(err); 1403 } 1404 1405 list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list); 1406 1407 /* 1408 * Give our perma-pinned kernel timelines a separate lockdep class, 1409 * so that we can use them from within the normal user timelines 1410 * should we need to inject GPU operations during their request 1411 * construction. 1412 */ 1413 lockdep_set_class_and_name(&ce->timeline->mutex, key, name); 1414 1415 return ce; 1416 } 1417 1418 void intel_engine_destroy_pinned_context(struct intel_context *ce) 1419 { 1420 struct intel_engine_cs *engine = ce->engine; 1421 struct i915_vma *hwsp = engine->status_page.vma; 1422 1423 GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp); 1424 1425 mutex_lock(&hwsp->vm->mutex); 1426 list_del(&ce->timeline->engine_link); 1427 mutex_unlock(&hwsp->vm->mutex); 1428 1429 list_del(&ce->pinned_contexts_link); 1430 intel_context_unpin(ce); 1431 intel_context_put(ce); 1432 } 1433 1434 static struct intel_context * 1435 create_ggtt_bind_context(struct intel_engine_cs *engine) 1436 { 1437 static struct lock_class_key kernel; 1438 1439 /* 1440 * MI_UPDATE_GTT can insert up to 511 PTE entries and there could be multiple 1441 * bind requets at a time so get a bigger ring. 1442 */ 1443 return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_512K, 1444 I915_GEM_HWS_GGTT_BIND_ADDR, 1445 &kernel, "ggtt_bind_context"); 1446 } 1447 1448 static struct intel_context * 1449 create_kernel_context(struct intel_engine_cs *engine) 1450 { 1451 static struct lock_class_key kernel; 1452 1453 return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K, 1454 I915_GEM_HWS_SEQNO_ADDR, 1455 &kernel, "kernel_context"); 1456 } 1457 1458 /* 1459 * engine_init_common - initialize engine state which might require hw access 1460 * @engine: Engine to initialize. 1461 * 1462 * Initializes @engine@ structure members shared between legacy and execlists 1463 * submission modes which do require hardware access. 1464 * 1465 * Typcally done at later stages of submission mode specific engine setup. 1466 * 1467 * Returns zero on success or an error code on failure. 1468 */ 1469 static int engine_init_common(struct intel_engine_cs *engine) 1470 { 1471 struct intel_context *ce, *bce = NULL; 1472 int ret; 1473 1474 engine->set_default_submission(engine); 1475 1476 /* 1477 * We may need to do things with the shrinker which 1478 * require us to immediately switch back to the default 1479 * context. This can cause a problem as pinning the 1480 * default context also requires GTT space which may not 1481 * be available. To avoid this we always pin the default 1482 * context. 1483 */ 1484 ce = create_kernel_context(engine); 1485 if (IS_ERR(ce)) 1486 return PTR_ERR(ce); 1487 /* 1488 * Create a separate pinned context for GGTT update with blitter engine 1489 * if a platform require such service. MI_UPDATE_GTT works on other 1490 * engines as well but BCS should be less busy engine so pick that for 1491 * GGTT updates. 1492 */ 1493 if (i915_ggtt_require_binder(engine->i915) && engine->id == BCS0) { 1494 bce = create_ggtt_bind_context(engine); 1495 if (IS_ERR(bce)) { 1496 ret = PTR_ERR(bce); 1497 goto err_ce_context; 1498 } 1499 } 1500 1501 ret = measure_breadcrumb_dw(ce); 1502 if (ret < 0) 1503 goto err_bce_context; 1504 1505 engine->emit_fini_breadcrumb_dw = ret; 1506 engine->kernel_context = ce; 1507 engine->bind_context = bce; 1508 1509 return 0; 1510 1511 err_bce_context: 1512 if (bce) 1513 intel_engine_destroy_pinned_context(bce); 1514 err_ce_context: 1515 intel_engine_destroy_pinned_context(ce); 1516 return ret; 1517 } 1518 1519 int intel_engines_init(struct intel_gt *gt) 1520 { 1521 int (*setup)(struct intel_engine_cs *engine); 1522 struct intel_engine_cs *engine; 1523 enum intel_engine_id id; 1524 int err; 1525 1526 if (intel_uc_uses_guc_submission(>->uc)) { 1527 gt->submission_method = INTEL_SUBMISSION_GUC; 1528 setup = intel_guc_submission_setup; 1529 } else if (HAS_EXECLISTS(gt->i915)) { 1530 gt->submission_method = INTEL_SUBMISSION_ELSP; 1531 setup = intel_execlists_submission_setup; 1532 } else { 1533 gt->submission_method = INTEL_SUBMISSION_RING; 1534 setup = intel_ring_submission_setup; 1535 } 1536 1537 for_each_engine(engine, gt, id) { 1538 err = engine_setup_common(engine); 1539 if (err) 1540 return err; 1541 1542 err = setup(engine); 1543 if (err) { 1544 intel_engine_cleanup_common(engine); 1545 return err; 1546 } 1547 1548 /* The backend should now be responsible for cleanup */ 1549 GEM_BUG_ON(engine->release == NULL); 1550 1551 err = engine_init_common(engine); 1552 if (err) 1553 return err; 1554 1555 intel_engine_add_user(engine); 1556 } 1557 1558 return 0; 1559 } 1560 1561 /** 1562 * intel_engine_cleanup_common - cleans up the engine state created by 1563 * the common initiailizers. 1564 * @engine: Engine to cleanup. 1565 * 1566 * This cleans up everything created by the common helpers. 1567 */ 1568 void intel_engine_cleanup_common(struct intel_engine_cs *engine) 1569 { 1570 GEM_BUG_ON(!list_empty(&engine->sched_engine->requests)); 1571 1572 i915_sched_engine_put(engine->sched_engine); 1573 intel_breadcrumbs_put(engine->breadcrumbs); 1574 1575 intel_engine_fini_retire(engine); 1576 intel_engine_cleanup_cmd_parser(engine); 1577 1578 if (engine->default_state) 1579 fput(engine->default_state); 1580 1581 if (engine->kernel_context) 1582 intel_engine_destroy_pinned_context(engine->kernel_context); 1583 1584 if (engine->bind_context) 1585 intel_engine_destroy_pinned_context(engine->bind_context); 1586 1587 1588 GEM_BUG_ON(!llist_empty(&engine->barrier_tasks)); 1589 cleanup_status_page(engine); 1590 1591 intel_wa_list_free(&engine->ctx_wa_list); 1592 intel_wa_list_free(&engine->wa_list); 1593 intel_wa_list_free(&engine->whitelist); 1594 } 1595 1596 /** 1597 * intel_engine_resume - re-initializes the HW state of the engine 1598 * @engine: Engine to resume. 1599 * 1600 * Returns zero on success or an error code on failure. 1601 */ 1602 int intel_engine_resume(struct intel_engine_cs *engine) 1603 { 1604 intel_engine_apply_workarounds(engine); 1605 intel_engine_apply_whitelist(engine); 1606 1607 return engine->resume(engine); 1608 } 1609 1610 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine) 1611 { 1612 struct drm_i915_private *i915 = engine->i915; 1613 1614 u64 acthd; 1615 1616 if (GRAPHICS_VER(i915) >= 8) 1617 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW); 1618 else if (GRAPHICS_VER(i915) >= 4) 1619 acthd = ENGINE_READ(engine, RING_ACTHD); 1620 else 1621 acthd = ENGINE_READ(engine, ACTHD); 1622 1623 return acthd; 1624 } 1625 1626 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine) 1627 { 1628 u64 bbaddr; 1629 1630 if (GRAPHICS_VER(engine->i915) >= 8) 1631 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW); 1632 else 1633 bbaddr = ENGINE_READ(engine, RING_BBADDR); 1634 1635 return bbaddr; 1636 } 1637 1638 static unsigned long stop_timeout(const struct intel_engine_cs *engine) 1639 { 1640 if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */ 1641 return 0; 1642 1643 /* 1644 * If we are doing a normal GPU reset, we can take our time and allow 1645 * the engine to quiesce. We've stopped submission to the engine, and 1646 * if we wait long enough an innocent context should complete and 1647 * leave the engine idle. So they should not be caught unaware by 1648 * the forthcoming GPU reset (which usually follows the stop_cs)! 1649 */ 1650 return READ_ONCE(engine->props.stop_timeout_ms); 1651 } 1652 1653 static int __intel_engine_stop_cs(struct intel_engine_cs *engine, 1654 int fast_timeout_us, 1655 int slow_timeout_ms) 1656 { 1657 struct intel_uncore *uncore = engine->uncore; 1658 const i915_reg_t mode = RING_MI_MODE(engine->mmio_base); 1659 int err; 1660 1661 intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING)); 1662 1663 /* 1664 * Wa_22011802037: Prior to doing a reset, ensure CS is 1665 * stopped, set ring stop bit and prefetch disable bit to halt CS 1666 */ 1667 if (intel_engine_reset_needs_wa_22011802037(engine->gt)) 1668 intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base), 1669 _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE)); 1670 1671 err = __intel_wait_for_register_fw(engine->uncore, mode, 1672 MODE_IDLE, MODE_IDLE, 1673 fast_timeout_us, 1674 slow_timeout_ms, 1675 NULL); 1676 1677 /* A final mmio read to let GPU writes be hopefully flushed to memory */ 1678 intel_uncore_posting_read_fw(uncore, mode); 1679 return err; 1680 } 1681 1682 int intel_engine_stop_cs(struct intel_engine_cs *engine) 1683 { 1684 int err = 0; 1685 1686 if (GRAPHICS_VER(engine->i915) < 3) 1687 return -ENODEV; 1688 1689 ENGINE_TRACE(engine, "\n"); 1690 /* 1691 * TODO: Find out why occasionally stopping the CS times out. Seen 1692 * especially with gem_eio tests. 1693 * 1694 * Occasionally trying to stop the cs times out, but does not adversely 1695 * affect functionality. The timeout is set as a config parameter that 1696 * defaults to 100ms. In most cases the follow up operation is to wait 1697 * for pending MI_FORCE_WAKES. The assumption is that this timeout is 1698 * sufficient for any pending MI_FORCEWAKEs to complete. Once root 1699 * caused, the caller must check and handle the return from this 1700 * function. 1701 */ 1702 if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) { 1703 ENGINE_TRACE(engine, 1704 "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n", 1705 ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR, 1706 ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR); 1707 1708 /* 1709 * Sometimes we observe that the idle flag is not 1710 * set even though the ring is empty. So double 1711 * check before giving up. 1712 */ 1713 if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) != 1714 (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR)) 1715 err = -ETIMEDOUT; 1716 } 1717 1718 return err; 1719 } 1720 1721 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine) 1722 { 1723 ENGINE_TRACE(engine, "\n"); 1724 1725 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); 1726 } 1727 1728 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine) 1729 { 1730 static const i915_reg_t _reg[I915_NUM_ENGINES] = { 1731 [RCS0] = MSG_IDLE_CS, 1732 [BCS0] = MSG_IDLE_BCS, 1733 [VCS0] = MSG_IDLE_VCS0, 1734 [VCS1] = MSG_IDLE_VCS1, 1735 [VCS2] = MSG_IDLE_VCS2, 1736 [VCS3] = MSG_IDLE_VCS3, 1737 [VCS4] = MSG_IDLE_VCS4, 1738 [VCS5] = MSG_IDLE_VCS5, 1739 [VCS6] = MSG_IDLE_VCS6, 1740 [VCS7] = MSG_IDLE_VCS7, 1741 [VECS0] = MSG_IDLE_VECS0, 1742 [VECS1] = MSG_IDLE_VECS1, 1743 [VECS2] = MSG_IDLE_VECS2, 1744 [VECS3] = MSG_IDLE_VECS3, 1745 [CCS0] = MSG_IDLE_CS, 1746 [CCS1] = MSG_IDLE_CS, 1747 [CCS2] = MSG_IDLE_CS, 1748 [CCS3] = MSG_IDLE_CS, 1749 }; 1750 u32 val; 1751 1752 if (!_reg[engine->id].reg) 1753 return 0; 1754 1755 val = intel_uncore_read(engine->uncore, _reg[engine->id]); 1756 1757 /* bits[29:25] & bits[13:9] >> shift */ 1758 return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT; 1759 } 1760 1761 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask) 1762 { 1763 int ret; 1764 1765 /* Ensure GPM receives fw up/down after CS is stopped */ 1766 udelay(1); 1767 1768 /* Wait for forcewake request to complete in GPM */ 1769 ret = __intel_wait_for_register_fw(gt->uncore, 1770 GEN9_PWRGT_DOMAIN_STATUS, 1771 fw_mask, fw_mask, 5000, 0, NULL); 1772 1773 /* Ensure CS receives fw ack from GPM */ 1774 udelay(1); 1775 1776 if (ret) 1777 GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret); 1778 } 1779 1780 /* 1781 * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any 1782 * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The 1783 * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the 1784 * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we 1785 * are concerned only with the gt reset here, we use a logical OR of pending 1786 * forcewakeups from all reset domains and then wait for them to complete by 1787 * querying PWRGT_DOMAIN_STATUS. 1788 */ 1789 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine) 1790 { 1791 u32 fw_pending = __cs_pending_mi_force_wakes(engine); 1792 1793 if (fw_pending) 1794 __gpm_wait_for_fw_complete(engine->gt, fw_pending); 1795 } 1796 1797 /* NB: please notice the memset */ 1798 void intel_engine_get_instdone(const struct intel_engine_cs *engine, 1799 struct intel_instdone *instdone) 1800 { 1801 struct drm_i915_private *i915 = engine->i915; 1802 struct intel_uncore *uncore = engine->uncore; 1803 u32 mmio_base = engine->mmio_base; 1804 int slice; 1805 int subslice; 1806 int iter; 1807 1808 memset(instdone, 0, sizeof(*instdone)); 1809 1810 if (GRAPHICS_VER(i915) >= 8) { 1811 instdone->instdone = 1812 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1813 1814 if (engine->id != RCS0) 1815 return; 1816 1817 instdone->slice_common = 1818 intel_uncore_read(uncore, GEN7_SC_INSTDONE); 1819 if (GRAPHICS_VER(i915) >= 12) { 1820 instdone->slice_common_extra[0] = 1821 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA); 1822 instdone->slice_common_extra[1] = 1823 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2); 1824 } 1825 1826 for_each_ss_steering(iter, engine->gt, slice, subslice) { 1827 instdone->sampler[slice][subslice] = 1828 intel_gt_mcr_read(engine->gt, 1829 GEN8_SAMPLER_INSTDONE, 1830 slice, subslice); 1831 instdone->row[slice][subslice] = 1832 intel_gt_mcr_read(engine->gt, 1833 GEN8_ROW_INSTDONE, 1834 slice, subslice); 1835 } 1836 1837 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) { 1838 for_each_ss_steering(iter, engine->gt, slice, subslice) 1839 instdone->geom_svg[slice][subslice] = 1840 intel_gt_mcr_read(engine->gt, 1841 XEHPG_INSTDONE_GEOM_SVG, 1842 slice, subslice); 1843 } 1844 } else if (GRAPHICS_VER(i915) >= 7) { 1845 instdone->instdone = 1846 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1847 1848 if (engine->id != RCS0) 1849 return; 1850 1851 instdone->slice_common = 1852 intel_uncore_read(uncore, GEN7_SC_INSTDONE); 1853 instdone->sampler[0][0] = 1854 intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE); 1855 instdone->row[0][0] = 1856 intel_uncore_read(uncore, GEN7_ROW_INSTDONE); 1857 } else if (GRAPHICS_VER(i915) >= 4) { 1858 instdone->instdone = 1859 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1860 if (engine->id == RCS0) 1861 /* HACK: Using the wrong struct member */ 1862 instdone->slice_common = 1863 intel_uncore_read(uncore, GEN4_INSTDONE1); 1864 } else { 1865 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE); 1866 } 1867 } 1868 1869 static bool ring_is_idle(struct intel_engine_cs *engine) 1870 { 1871 bool idle = true; 1872 1873 if (I915_SELFTEST_ONLY(!engine->mmio_base)) 1874 return true; 1875 1876 if (!intel_engine_pm_get_if_awake(engine)) 1877 return true; 1878 1879 /* First check that no commands are left in the ring */ 1880 if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) != 1881 (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR)) 1882 idle = false; 1883 1884 /* No bit for gen2, so assume the CS parser is idle */ 1885 if (GRAPHICS_VER(engine->i915) > 2 && 1886 !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE)) 1887 idle = false; 1888 1889 intel_engine_pm_put(engine); 1890 1891 return idle; 1892 } 1893 1894 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync) 1895 { 1896 struct tasklet_struct *t = &engine->sched_engine->tasklet; 1897 1898 if (!t->callback) 1899 return; 1900 1901 local_bh_disable(); 1902 if (tasklet_trylock(t)) { 1903 /* Must wait for any GPU reset in progress. */ 1904 if (__tasklet_is_enabled(t)) 1905 t->callback(t); 1906 tasklet_unlock(t); 1907 } 1908 local_bh_enable(); 1909 1910 /* Synchronise and wait for the tasklet on another CPU */ 1911 if (sync) 1912 tasklet_unlock_wait(t); 1913 } 1914 1915 /** 1916 * intel_engine_is_idle() - Report if the engine has finished process all work 1917 * @engine: the intel_engine_cs 1918 * 1919 * Return true if there are no requests pending, nothing left to be submitted 1920 * to hardware, and that the engine is idle. 1921 */ 1922 bool intel_engine_is_idle(struct intel_engine_cs *engine) 1923 { 1924 /* More white lies, if wedged, hw state is inconsistent */ 1925 if (intel_gt_is_wedged(engine->gt)) 1926 return true; 1927 1928 if (!intel_engine_pm_is_awake(engine)) 1929 return true; 1930 1931 /* Waiting to drain ELSP? */ 1932 intel_synchronize_hardirq(engine->i915); 1933 intel_engine_flush_submission(engine); 1934 1935 /* ELSP is empty, but there are ready requests? E.g. after reset */ 1936 if (!i915_sched_engine_is_empty(engine->sched_engine)) 1937 return false; 1938 1939 /* Ring stopped? */ 1940 return ring_is_idle(engine); 1941 } 1942 1943 bool intel_engines_are_idle(struct intel_gt *gt) 1944 { 1945 struct intel_engine_cs *engine; 1946 enum intel_engine_id id; 1947 1948 /* 1949 * If the driver is wedged, HW state may be very inconsistent and 1950 * report that it is still busy, even though we have stopped using it. 1951 */ 1952 if (intel_gt_is_wedged(gt)) 1953 return true; 1954 1955 /* Already parked (and passed an idleness test); must still be idle */ 1956 if (!READ_ONCE(gt->awake)) 1957 return true; 1958 1959 for_each_engine(engine, gt, id) { 1960 if (!intel_engine_is_idle(engine)) 1961 return false; 1962 } 1963 1964 return true; 1965 } 1966 1967 bool intel_engine_irq_enable(struct intel_engine_cs *engine) 1968 { 1969 if (!engine->irq_enable) 1970 return false; 1971 1972 /* Caller disables interrupts */ 1973 spin_lock(engine->gt->irq_lock); 1974 engine->irq_enable(engine); 1975 spin_unlock(engine->gt->irq_lock); 1976 1977 return true; 1978 } 1979 1980 void intel_engine_irq_disable(struct intel_engine_cs *engine) 1981 { 1982 if (!engine->irq_disable) 1983 return; 1984 1985 /* Caller disables interrupts */ 1986 spin_lock(engine->gt->irq_lock); 1987 engine->irq_disable(engine); 1988 spin_unlock(engine->gt->irq_lock); 1989 } 1990 1991 void intel_engines_reset_default_submission(struct intel_gt *gt) 1992 { 1993 struct intel_engine_cs *engine; 1994 enum intel_engine_id id; 1995 1996 for_each_engine(engine, gt, id) { 1997 if (engine->sanitize) 1998 engine->sanitize(engine); 1999 2000 engine->set_default_submission(engine); 2001 } 2002 } 2003 2004 bool intel_engine_can_store_dword(struct intel_engine_cs *engine) 2005 { 2006 switch (GRAPHICS_VER(engine->i915)) { 2007 case 2: 2008 return false; /* uses physical not virtual addresses */ 2009 case 3: 2010 /* maybe only uses physical not virtual addresses */ 2011 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915)); 2012 case 4: 2013 return !IS_I965G(engine->i915); /* who knows! */ 2014 case 6: 2015 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */ 2016 default: 2017 return true; 2018 } 2019 } 2020 2021 static struct intel_timeline *get_timeline(struct i915_request *rq) 2022 { 2023 struct intel_timeline *tl; 2024 2025 /* 2026 * Even though we are holding the engine->sched_engine->lock here, there 2027 * is no control over the submission queue per-se and we are 2028 * inspecting the active state at a random point in time, with an 2029 * unknown queue. Play safe and make sure the timeline remains valid. 2030 * (Only being used for pretty printing, one extra kref shouldn't 2031 * cause a camel stampede!) 2032 */ 2033 rcu_read_lock(); 2034 tl = rcu_dereference(rq->timeline); 2035 if (!kref_get_unless_zero(&tl->kref)) 2036 tl = NULL; 2037 rcu_read_unlock(); 2038 2039 return tl; 2040 } 2041 2042 static int print_ring(char *buf, int sz, struct i915_request *rq) 2043 { 2044 int len = 0; 2045 2046 if (!i915_request_signaled(rq)) { 2047 struct intel_timeline *tl = get_timeline(rq); 2048 2049 len = scnprintf(buf, sz, 2050 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ", 2051 i915_ggtt_offset(rq->ring->vma), 2052 tl ? tl->hwsp_offset : 0, 2053 hwsp_seqno(rq), 2054 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context), 2055 1000 * 1000)); 2056 2057 if (tl) 2058 intel_timeline_put(tl); 2059 } 2060 2061 return len; 2062 } 2063 2064 static void hexdump(struct drm_printer *m, const void *buf, size_t len) 2065 { 2066 const size_t rowsize = 8 * sizeof(u32); 2067 const void *prev = NULL; 2068 bool skip = false; 2069 size_t pos; 2070 2071 for (pos = 0; pos < len; pos += rowsize) { 2072 char line[128]; 2073 2074 if (prev && !memcmp(prev, buf + pos, rowsize)) { 2075 if (!skip) { 2076 drm_printf(m, "*\n"); 2077 skip = true; 2078 } 2079 continue; 2080 } 2081 2082 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos, 2083 rowsize, sizeof(u32), 2084 line, sizeof(line), 2085 false) >= sizeof(line)); 2086 drm_printf(m, "[%04zx] %s\n", pos, line); 2087 2088 prev = buf + pos; 2089 skip = false; 2090 } 2091 } 2092 2093 static const char *repr_timer(const struct timer_list *t) 2094 { 2095 if (!READ_ONCE(t->expires)) 2096 return "inactive"; 2097 2098 if (timer_pending(t)) 2099 return "active"; 2100 2101 return "expired"; 2102 } 2103 2104 static void intel_engine_print_registers(struct intel_engine_cs *engine, 2105 struct drm_printer *m) 2106 { 2107 struct drm_i915_private *i915 = engine->i915; 2108 struct intel_engine_execlists * const execlists = &engine->execlists; 2109 u64 addr; 2110 2111 if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7)) 2112 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID)); 2113 if (HAS_EXECLISTS(i915)) { 2114 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n", 2115 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI)); 2116 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n", 2117 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO)); 2118 } 2119 drm_printf(m, "\tRING_START: 0x%08x\n", 2120 ENGINE_READ(engine, RING_START)); 2121 drm_printf(m, "\tRING_HEAD: 0x%08x\n", 2122 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR); 2123 drm_printf(m, "\tRING_TAIL: 0x%08x\n", 2124 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR); 2125 drm_printf(m, "\tRING_CTL: 0x%08x%s\n", 2126 ENGINE_READ(engine, RING_CTL), 2127 ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : ""); 2128 if (GRAPHICS_VER(engine->i915) > 2) { 2129 drm_printf(m, "\tRING_MODE: 0x%08x%s\n", 2130 ENGINE_READ(engine, RING_MI_MODE), 2131 ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : ""); 2132 } 2133 2134 if (GRAPHICS_VER(i915) >= 6) { 2135 drm_printf(m, "\tRING_IMR: 0x%08x\n", 2136 ENGINE_READ(engine, RING_IMR)); 2137 drm_printf(m, "\tRING_ESR: 0x%08x\n", 2138 ENGINE_READ(engine, RING_ESR)); 2139 drm_printf(m, "\tRING_EMR: 0x%08x\n", 2140 ENGINE_READ(engine, RING_EMR)); 2141 drm_printf(m, "\tRING_EIR: 0x%08x\n", 2142 ENGINE_READ(engine, RING_EIR)); 2143 } 2144 2145 addr = intel_engine_get_active_head(engine); 2146 drm_printf(m, "\tACTHD: 0x%08x_%08x\n", 2147 upper_32_bits(addr), lower_32_bits(addr)); 2148 addr = intel_engine_get_last_batch_head(engine); 2149 drm_printf(m, "\tBBADDR: 0x%08x_%08x\n", 2150 upper_32_bits(addr), lower_32_bits(addr)); 2151 if (GRAPHICS_VER(i915) >= 8) 2152 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW); 2153 else if (GRAPHICS_VER(i915) >= 4) 2154 addr = ENGINE_READ(engine, RING_DMA_FADD); 2155 else 2156 addr = ENGINE_READ(engine, DMA_FADD_I8XX); 2157 drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n", 2158 upper_32_bits(addr), lower_32_bits(addr)); 2159 if (GRAPHICS_VER(i915) >= 4) { 2160 drm_printf(m, "\tIPEIR: 0x%08x\n", 2161 ENGINE_READ(engine, RING_IPEIR)); 2162 drm_printf(m, "\tIPEHR: 0x%08x\n", 2163 ENGINE_READ(engine, RING_IPEHR)); 2164 } else { 2165 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR)); 2166 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR)); 2167 } 2168 2169 if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) { 2170 struct i915_request * const *port, *rq; 2171 const u32 *hws = 2172 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX]; 2173 const u8 num_entries = execlists->csb_size; 2174 unsigned int idx; 2175 u8 read, write; 2176 2177 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n", 2178 str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)), 2179 str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)), 2180 repr_timer(&engine->execlists.preempt), 2181 repr_timer(&engine->execlists.timer)); 2182 2183 read = execlists->csb_head; 2184 write = READ_ONCE(*execlists->csb_write); 2185 2186 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n", 2187 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO), 2188 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI), 2189 read, write, num_entries); 2190 2191 if (read >= num_entries) 2192 read = 0; 2193 if (write >= num_entries) 2194 write = 0; 2195 if (read > write) 2196 write += num_entries; 2197 while (read < write) { 2198 idx = ++read % num_entries; 2199 drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n", 2200 idx, hws[idx * 2], hws[idx * 2 + 1]); 2201 } 2202 2203 i915_sched_engine_active_lock_bh(engine->sched_engine); 2204 rcu_read_lock(); 2205 for (port = execlists->active; (rq = *port); port++) { 2206 char hdr[160]; 2207 int len; 2208 2209 len = scnprintf(hdr, sizeof(hdr), 2210 "\t\tActive[%d]: ccid:%08x%s%s, ", 2211 (int)(port - execlists->active), 2212 rq->context->lrc.ccid, 2213 intel_context_is_closed(rq->context) ? "!" : "", 2214 intel_context_is_banned(rq->context) ? "*" : ""); 2215 len += print_ring(hdr + len, sizeof(hdr) - len, rq); 2216 scnprintf(hdr + len, sizeof(hdr) - len, "rq: "); 2217 i915_request_show(m, rq, hdr, 0); 2218 } 2219 for (port = execlists->pending; (rq = *port); port++) { 2220 char hdr[160]; 2221 int len; 2222 2223 len = scnprintf(hdr, sizeof(hdr), 2224 "\t\tPending[%d]: ccid:%08x%s%s, ", 2225 (int)(port - execlists->pending), 2226 rq->context->lrc.ccid, 2227 intel_context_is_closed(rq->context) ? "!" : "", 2228 intel_context_is_banned(rq->context) ? "*" : ""); 2229 len += print_ring(hdr + len, sizeof(hdr) - len, rq); 2230 scnprintf(hdr + len, sizeof(hdr) - len, "rq: "); 2231 i915_request_show(m, rq, hdr, 0); 2232 } 2233 rcu_read_unlock(); 2234 i915_sched_engine_active_unlock_bh(engine->sched_engine); 2235 } else if (GRAPHICS_VER(i915) > 6) { 2236 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n", 2237 ENGINE_READ(engine, RING_PP_DIR_BASE)); 2238 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n", 2239 ENGINE_READ(engine, RING_PP_DIR_BASE_READ)); 2240 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n", 2241 ENGINE_READ(engine, RING_PP_DIR_DCLV)); 2242 } 2243 } 2244 2245 static void print_request_ring(struct drm_printer *m, struct i915_request *rq) 2246 { 2247 struct i915_vma_resource *vma_res = rq->batch_res; 2248 void *ring; 2249 int size; 2250 2251 drm_printf(m, 2252 "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n", 2253 rq->head, rq->postfix, rq->tail, 2254 vma_res ? upper_32_bits(vma_res->start) : ~0u, 2255 vma_res ? lower_32_bits(vma_res->start) : ~0u); 2256 2257 size = rq->tail - rq->head; 2258 if (rq->tail < rq->head) 2259 size += rq->ring->size; 2260 2261 ring = kmalloc(size, GFP_ATOMIC); 2262 if (ring) { 2263 const void *vaddr = rq->ring->vaddr; 2264 unsigned int head = rq->head; 2265 unsigned int len = 0; 2266 2267 if (rq->tail < head) { 2268 len = rq->ring->size - head; 2269 memcpy(ring, vaddr + head, len); 2270 head = 0; 2271 } 2272 memcpy(ring + len, vaddr + head, size - len); 2273 2274 hexdump(m, ring, size); 2275 kfree(ring); 2276 } 2277 } 2278 2279 static unsigned long read_ul(void *p, size_t x) 2280 { 2281 return *(unsigned long *)(p + x); 2282 } 2283 2284 static void print_properties(struct intel_engine_cs *engine, 2285 struct drm_printer *m) 2286 { 2287 static const struct pmap { 2288 size_t offset; 2289 const char *name; 2290 } props[] = { 2291 #define P(x) { \ 2292 .offset = offsetof(typeof(engine->props), x), \ 2293 .name = #x \ 2294 } 2295 P(heartbeat_interval_ms), 2296 P(max_busywait_duration_ns), 2297 P(preempt_timeout_ms), 2298 P(stop_timeout_ms), 2299 P(timeslice_duration_ms), 2300 2301 {}, 2302 #undef P 2303 }; 2304 const struct pmap *p; 2305 2306 drm_printf(m, "\tProperties:\n"); 2307 for (p = props; p->name; p++) 2308 drm_printf(m, "\t\t%s: %lu [default %lu]\n", 2309 p->name, 2310 read_ul(&engine->props, p->offset), 2311 read_ul(&engine->defaults, p->offset)); 2312 } 2313 2314 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg) 2315 { 2316 struct intel_timeline *tl = get_timeline(rq); 2317 2318 i915_request_show(m, rq, msg, 0); 2319 2320 drm_printf(m, "\t\tring->start: 0x%08x\n", 2321 i915_ggtt_offset(rq->ring->vma)); 2322 drm_printf(m, "\t\tring->head: 0x%08x\n", 2323 rq->ring->head); 2324 drm_printf(m, "\t\tring->tail: 0x%08x\n", 2325 rq->ring->tail); 2326 drm_printf(m, "\t\tring->emit: 0x%08x\n", 2327 rq->ring->emit); 2328 drm_printf(m, "\t\tring->space: 0x%08x\n", 2329 rq->ring->space); 2330 2331 if (tl) { 2332 drm_printf(m, "\t\tring->hwsp: 0x%08x\n", 2333 tl->hwsp_offset); 2334 intel_timeline_put(tl); 2335 } 2336 2337 print_request_ring(m, rq); 2338 2339 if (rq->context->lrc_reg_state) { 2340 drm_printf(m, "Logical Ring Context:\n"); 2341 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE); 2342 } 2343 } 2344 2345 void intel_engine_dump_active_requests(struct list_head *requests, 2346 struct i915_request *hung_rq, 2347 struct drm_printer *m) 2348 { 2349 struct i915_request *rq; 2350 const char *msg; 2351 enum i915_request_state state; 2352 2353 list_for_each_entry(rq, requests, sched.link) { 2354 if (rq == hung_rq) 2355 continue; 2356 2357 state = i915_test_request_state(rq); 2358 if (state < I915_REQUEST_QUEUED) 2359 continue; 2360 2361 if (state == I915_REQUEST_ACTIVE) 2362 msg = "\t\tactive on engine"; 2363 else 2364 msg = "\t\tactive in queue"; 2365 2366 engine_dump_request(rq, m, msg); 2367 } 2368 } 2369 2370 static void engine_dump_active_requests(struct intel_engine_cs *engine, 2371 struct drm_printer *m) 2372 { 2373 struct intel_context *hung_ce = NULL; 2374 struct i915_request *hung_rq = NULL; 2375 2376 /* 2377 * No need for an engine->irq_seqno_barrier() before the seqno reads. 2378 * The GPU is still running so requests are still executing and any 2379 * hardware reads will be out of date by the time they are reported. 2380 * But the intention here is just to report an instantaneous snapshot 2381 * so that's fine. 2382 */ 2383 intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq); 2384 2385 drm_printf(m, "\tRequests:\n"); 2386 2387 if (hung_rq) 2388 engine_dump_request(hung_rq, m, "\t\thung"); 2389 else if (hung_ce) 2390 drm_printf(m, "\t\tGot hung ce but no hung rq!\n"); 2391 2392 if (intel_uc_uses_guc_submission(&engine->gt->uc)) 2393 intel_guc_dump_active_requests(engine, hung_rq, m); 2394 else 2395 intel_execlists_dump_active_requests(engine, hung_rq, m); 2396 2397 if (hung_rq) 2398 i915_request_put(hung_rq); 2399 } 2400 2401 void intel_engine_dump(struct intel_engine_cs *engine, 2402 struct drm_printer *m, 2403 const char *header, ...) 2404 { 2405 struct i915_gpu_error * const error = &engine->i915->gpu_error; 2406 struct i915_request *rq; 2407 intel_wakeref_t wakeref; 2408 ktime_t dummy; 2409 2410 if (header) { 2411 va_list ap; 2412 2413 va_start(ap, header); 2414 drm_vprintf(m, header, &ap); 2415 va_end(ap); 2416 } 2417 2418 if (intel_gt_is_wedged(engine->gt)) 2419 drm_printf(m, "*** WEDGED ***\n"); 2420 2421 drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count)); 2422 drm_printf(m, "\tBarriers?: %s\n", 2423 str_yes_no(!llist_empty(&engine->barrier_tasks))); 2424 drm_printf(m, "\tLatency: %luus\n", 2425 ewma__engine_latency_read(&engine->latency)); 2426 if (intel_engine_supports_stats(engine)) 2427 drm_printf(m, "\tRuntime: %llums\n", 2428 ktime_to_ms(intel_engine_get_busy_time(engine, 2429 &dummy))); 2430 drm_printf(m, "\tForcewake: %x domains, %d active\n", 2431 engine->fw_domain, READ_ONCE(engine->fw_active)); 2432 2433 rcu_read_lock(); 2434 rq = READ_ONCE(engine->heartbeat.systole); 2435 if (rq) 2436 drm_printf(m, "\tHeartbeat: %d ms ago\n", 2437 jiffies_to_msecs(jiffies - rq->emitted_jiffies)); 2438 rcu_read_unlock(); 2439 drm_printf(m, "\tReset count: %d (global %d)\n", 2440 i915_reset_engine_count(error, engine), 2441 i915_reset_count(error)); 2442 print_properties(engine, m); 2443 2444 engine_dump_active_requests(engine, m); 2445 2446 drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base); 2447 wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm); 2448 if (wakeref) { 2449 intel_engine_print_registers(engine, m); 2450 intel_runtime_pm_put(engine->uncore->rpm, wakeref); 2451 } else { 2452 drm_printf(m, "\tDevice is asleep; skipping register dump\n"); 2453 } 2454 2455 intel_execlists_show_requests(engine, m, i915_request_show, 8); 2456 2457 drm_printf(m, "HWSP:\n"); 2458 hexdump(m, engine->status_page.addr, PAGE_SIZE); 2459 2460 drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine))); 2461 2462 intel_engine_print_breadcrumbs(engine, m); 2463 } 2464 2465 /** 2466 * intel_engine_get_busy_time() - Return current accumulated engine busyness 2467 * @engine: engine to report on 2468 * @now: monotonic timestamp of sampling 2469 * 2470 * Returns accumulated time @engine was busy since engine stats were enabled. 2471 */ 2472 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now) 2473 { 2474 return engine->busyness(engine, now); 2475 } 2476 2477 struct intel_context * 2478 intel_engine_create_virtual(struct intel_engine_cs **siblings, 2479 unsigned int count, unsigned long flags) 2480 { 2481 if (count == 0) 2482 return ERR_PTR(-EINVAL); 2483 2484 if (count == 1 && !(flags & FORCE_VIRTUAL)) 2485 return intel_context_create(siblings[0]); 2486 2487 GEM_BUG_ON(!siblings[0]->cops->create_virtual); 2488 return siblings[0]->cops->create_virtual(siblings, count, flags); 2489 } 2490 2491 static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine) 2492 { 2493 struct i915_request *request, *active = NULL; 2494 2495 /* 2496 * This search does not work in GuC submission mode. However, the GuC 2497 * will report the hanging context directly to the driver itself. So 2498 * the driver should never get here when in GuC mode. 2499 */ 2500 GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc)); 2501 2502 /* 2503 * We are called by the error capture, reset and to dump engine 2504 * state at random points in time. In particular, note that neither is 2505 * crucially ordered with an interrupt. After a hang, the GPU is dead 2506 * and we assume that no more writes can happen (we waited long enough 2507 * for all writes that were in transaction to be flushed) - adding an 2508 * extra delay for a recent interrupt is pointless. Hence, we do 2509 * not need an engine->irq_seqno_barrier() before the seqno reads. 2510 * At all other times, we must assume the GPU is still running, but 2511 * we only care about the snapshot of this moment. 2512 */ 2513 lockdep_assert_held(&engine->sched_engine->lock); 2514 2515 rcu_read_lock(); 2516 request = execlists_active(&engine->execlists); 2517 if (request) { 2518 struct intel_timeline *tl = request->context->timeline; 2519 2520 list_for_each_entry_from_reverse(request, &tl->requests, link) { 2521 if (__i915_request_is_complete(request)) 2522 break; 2523 2524 active = request; 2525 } 2526 } 2527 rcu_read_unlock(); 2528 if (active) 2529 return active; 2530 2531 list_for_each_entry(request, &engine->sched_engine->requests, 2532 sched.link) { 2533 if (i915_test_request_state(request) != I915_REQUEST_ACTIVE) 2534 continue; 2535 2536 active = request; 2537 break; 2538 } 2539 2540 return active; 2541 } 2542 2543 void intel_engine_get_hung_entity(struct intel_engine_cs *engine, 2544 struct intel_context **ce, struct i915_request **rq) 2545 { 2546 unsigned long flags; 2547 2548 *ce = intel_engine_get_hung_context(engine); 2549 if (*ce) { 2550 intel_engine_clear_hung_context(engine); 2551 2552 *rq = intel_context_get_active_request(*ce); 2553 return; 2554 } 2555 2556 /* 2557 * Getting here with GuC enabled means it is a forced error capture 2558 * with no actual hang. So, no need to attempt the execlist search. 2559 */ 2560 if (intel_uc_uses_guc_submission(&engine->gt->uc)) 2561 return; 2562 2563 spin_lock_irqsave(&engine->sched_engine->lock, flags); 2564 *rq = engine_execlist_find_hung_request(engine); 2565 if (*rq) 2566 *rq = i915_request_get_rcu(*rq); 2567 spin_unlock_irqrestore(&engine->sched_engine->lock, flags); 2568 } 2569 2570 void xehp_enable_ccs_engines(struct intel_engine_cs *engine) 2571 { 2572 /* 2573 * If there are any non-fused-off CCS engines, we need to enable CCS 2574 * support in the RCU_MODE register. This only needs to be done once, 2575 * so for simplicity we'll take care of this in the RCS engine's 2576 * resume handler; since the RCS and all CCS engines belong to the 2577 * same reset domain and are reset together, this will also take care 2578 * of re-applying the setting after i915-triggered resets. 2579 */ 2580 if (!CCS_MASK(engine->gt)) 2581 return; 2582 2583 intel_uncore_write(engine->uncore, GEN12_RCU_MODE, 2584 _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE)); 2585 } 2586 2587 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 2588 #include "mock_engine.c" 2589 #include "selftest_engine.c" 2590 #include "selftest_engine_cs.c" 2591 #endif 2592