xref: /linux/drivers/gpu/drm/i915/gt/intel_engine_cs.c (revision 173b0b5b0e865348684c02bd9cb1d22b5d46e458)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include <drm/drm_print.h>
9 
10 #include "gem/i915_gem_context.h"
11 #include "gem/i915_gem_internal.h"
12 #include "gt/intel_gt_print.h"
13 #include "gt/intel_gt_regs.h"
14 
15 #include "i915_cmd_parser.h"
16 #include "i915_drv.h"
17 #include "i915_irq.h"
18 #include "i915_reg.h"
19 #include "intel_breadcrumbs.h"
20 #include "intel_context.h"
21 #include "intel_engine.h"
22 #include "intel_engine_pm.h"
23 #include "intel_engine_regs.h"
24 #include "intel_engine_user.h"
25 #include "intel_execlists_submission.h"
26 #include "intel_gt.h"
27 #include "intel_gt_mcr.h"
28 #include "intel_gt_pm.h"
29 #include "intel_gt_requests.h"
30 #include "intel_lrc.h"
31 #include "intel_lrc_reg.h"
32 #include "intel_reset.h"
33 #include "intel_ring.h"
34 #include "uc/intel_guc_submission.h"
35 
36 /* Haswell does have the CXT_SIZE register however it does not appear to be
37  * valid. Now, docs explain in dwords what is in the context object. The full
38  * size is 70720 bytes, however, the power context and execlist context will
39  * never be saved (power context is stored elsewhere, and execlists don't work
40  * on HSW) - so the final size, including the extra state required for the
41  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
42  */
43 #define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)
44 
45 #define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
46 #define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
47 #define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
48 #define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
49 
50 #define GEN8_LR_CONTEXT_OTHER_SIZE	(2 * PAGE_SIZE)
51 
52 #define MAX_MMIO_BASES 3
53 struct engine_info {
54 	u8 class;
55 	u8 instance;
56 	/* mmio bases table *must* be sorted in reverse graphics_ver order */
57 	struct engine_mmio_base {
58 		u32 graphics_ver : 8;
59 		u32 base : 24;
60 	} mmio_bases[MAX_MMIO_BASES];
61 };
62 
63 static const struct engine_info intel_engines[] = {
64 	[RCS0] = {
65 		.class = RENDER_CLASS,
66 		.instance = 0,
67 		.mmio_bases = {
68 			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
69 		},
70 	},
71 	[BCS0] = {
72 		.class = COPY_ENGINE_CLASS,
73 		.instance = 0,
74 		.mmio_bases = {
75 			{ .graphics_ver = 6, .base = BLT_RING_BASE }
76 		},
77 	},
78 	[BCS1] = {
79 		.class = COPY_ENGINE_CLASS,
80 		.instance = 1,
81 		.mmio_bases = {
82 			{ .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
83 		},
84 	},
85 	[BCS2] = {
86 		.class = COPY_ENGINE_CLASS,
87 		.instance = 2,
88 		.mmio_bases = {
89 			{ .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
90 		},
91 	},
92 	[BCS3] = {
93 		.class = COPY_ENGINE_CLASS,
94 		.instance = 3,
95 		.mmio_bases = {
96 			{ .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
97 		},
98 	},
99 	[BCS4] = {
100 		.class = COPY_ENGINE_CLASS,
101 		.instance = 4,
102 		.mmio_bases = {
103 			{ .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
104 		},
105 	},
106 	[BCS5] = {
107 		.class = COPY_ENGINE_CLASS,
108 		.instance = 5,
109 		.mmio_bases = {
110 			{ .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
111 		},
112 	},
113 	[BCS6] = {
114 		.class = COPY_ENGINE_CLASS,
115 		.instance = 6,
116 		.mmio_bases = {
117 			{ .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
118 		},
119 	},
120 	[BCS7] = {
121 		.class = COPY_ENGINE_CLASS,
122 		.instance = 7,
123 		.mmio_bases = {
124 			{ .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
125 		},
126 	},
127 	[BCS8] = {
128 		.class = COPY_ENGINE_CLASS,
129 		.instance = 8,
130 		.mmio_bases = {
131 			{ .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
132 		},
133 	},
134 	[VCS0] = {
135 		.class = VIDEO_DECODE_CLASS,
136 		.instance = 0,
137 		.mmio_bases = {
138 			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
139 			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
140 			{ .graphics_ver = 4, .base = BSD_RING_BASE }
141 		},
142 	},
143 	[VCS1] = {
144 		.class = VIDEO_DECODE_CLASS,
145 		.instance = 1,
146 		.mmio_bases = {
147 			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
148 			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
149 		},
150 	},
151 	[VCS2] = {
152 		.class = VIDEO_DECODE_CLASS,
153 		.instance = 2,
154 		.mmio_bases = {
155 			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
156 		},
157 	},
158 	[VCS3] = {
159 		.class = VIDEO_DECODE_CLASS,
160 		.instance = 3,
161 		.mmio_bases = {
162 			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
163 		},
164 	},
165 	[VCS4] = {
166 		.class = VIDEO_DECODE_CLASS,
167 		.instance = 4,
168 		.mmio_bases = {
169 			{ .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
170 		},
171 	},
172 	[VCS5] = {
173 		.class = VIDEO_DECODE_CLASS,
174 		.instance = 5,
175 		.mmio_bases = {
176 			{ .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
177 		},
178 	},
179 	[VCS6] = {
180 		.class = VIDEO_DECODE_CLASS,
181 		.instance = 6,
182 		.mmio_bases = {
183 			{ .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
184 		},
185 	},
186 	[VCS7] = {
187 		.class = VIDEO_DECODE_CLASS,
188 		.instance = 7,
189 		.mmio_bases = {
190 			{ .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
191 		},
192 	},
193 	[VECS0] = {
194 		.class = VIDEO_ENHANCEMENT_CLASS,
195 		.instance = 0,
196 		.mmio_bases = {
197 			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
198 			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
199 		},
200 	},
201 	[VECS1] = {
202 		.class = VIDEO_ENHANCEMENT_CLASS,
203 		.instance = 1,
204 		.mmio_bases = {
205 			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
206 		},
207 	},
208 	[VECS2] = {
209 		.class = VIDEO_ENHANCEMENT_CLASS,
210 		.instance = 2,
211 		.mmio_bases = {
212 			{ .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
213 		},
214 	},
215 	[VECS3] = {
216 		.class = VIDEO_ENHANCEMENT_CLASS,
217 		.instance = 3,
218 		.mmio_bases = {
219 			{ .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
220 		},
221 	},
222 	[CCS0] = {
223 		.class = COMPUTE_CLASS,
224 		.instance = 0,
225 		.mmio_bases = {
226 			{ .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
227 		}
228 	},
229 	[CCS1] = {
230 		.class = COMPUTE_CLASS,
231 		.instance = 1,
232 		.mmio_bases = {
233 			{ .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
234 		}
235 	},
236 	[CCS2] = {
237 		.class = COMPUTE_CLASS,
238 		.instance = 2,
239 		.mmio_bases = {
240 			{ .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
241 		}
242 	},
243 	[CCS3] = {
244 		.class = COMPUTE_CLASS,
245 		.instance = 3,
246 		.mmio_bases = {
247 			{ .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
248 		}
249 	},
250 	[GSC0] = {
251 		.class = OTHER_CLASS,
252 		.instance = OTHER_GSC_INSTANCE,
253 		.mmio_bases = {
254 			{ .graphics_ver = 12, .base = MTL_GSC_RING_BASE }
255 		}
256 	},
257 };
258 
259 /**
260  * intel_engine_context_size() - return the size of the context for an engine
261  * @gt: the gt
262  * @class: engine class
263  *
264  * Each engine class may require a different amount of space for a context
265  * image.
266  *
267  * Return: size (in bytes) of an engine class specific context image
268  *
269  * Note: this size includes the HWSP, which is part of the context image
270  * in LRC mode, but does not include the "shared data page" used with
271  * GuC submission. The caller should account for this if using the GuC.
272  */
273 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
274 {
275 	struct intel_uncore *uncore = gt->uncore;
276 	u32 cxt_size;
277 
278 	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
279 
280 	switch (class) {
281 	case COMPUTE_CLASS:
282 		fallthrough;
283 	case RENDER_CLASS:
284 		switch (GRAPHICS_VER(gt->i915)) {
285 		default:
286 			MISSING_CASE(GRAPHICS_VER(gt->i915));
287 			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
288 		case 12:
289 		case 11:
290 			return GEN11_LR_CONTEXT_RENDER_SIZE;
291 		case 9:
292 			return GEN9_LR_CONTEXT_RENDER_SIZE;
293 		case 8:
294 			return GEN8_LR_CONTEXT_RENDER_SIZE;
295 		case 7:
296 			if (IS_HASWELL(gt->i915))
297 				return HSW_CXT_TOTAL_SIZE;
298 
299 			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
300 			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
301 					PAGE_SIZE);
302 		case 6:
303 			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
304 			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
305 					PAGE_SIZE);
306 		case 5:
307 		case 4:
308 			/*
309 			 * There is a discrepancy here between the size reported
310 			 * by the register and the size of the context layout
311 			 * in the docs. Both are described as authorative!
312 			 *
313 			 * The discrepancy is on the order of a few cachelines,
314 			 * but the total is under one page (4k), which is our
315 			 * minimum allocation anyway so it should all come
316 			 * out in the wash.
317 			 */
318 			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
319 			gt_dbg(gt, "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
320 			       GRAPHICS_VER(gt->i915), cxt_size * 64,
321 			       cxt_size - 1);
322 			return round_up(cxt_size * 64, PAGE_SIZE);
323 		case 3:
324 		case 2:
325 		/* For the special day when i810 gets merged. */
326 		case 1:
327 			return 0;
328 		}
329 		break;
330 	default:
331 		MISSING_CASE(class);
332 		fallthrough;
333 	case VIDEO_DECODE_CLASS:
334 	case VIDEO_ENHANCEMENT_CLASS:
335 	case COPY_ENGINE_CLASS:
336 	case OTHER_CLASS:
337 		if (GRAPHICS_VER(gt->i915) < 8)
338 			return 0;
339 		return GEN8_LR_CONTEXT_OTHER_SIZE;
340 	}
341 }
342 
343 static u32 __engine_mmio_base(struct drm_i915_private *i915,
344 			      const struct engine_mmio_base *bases)
345 {
346 	int i;
347 
348 	for (i = 0; i < MAX_MMIO_BASES; i++)
349 		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
350 			break;
351 
352 	GEM_BUG_ON(i == MAX_MMIO_BASES);
353 	GEM_BUG_ON(!bases[i].base);
354 
355 	return bases[i].base;
356 }
357 
358 static void __sprint_engine_name(struct intel_engine_cs *engine)
359 {
360 	/*
361 	 * Before we know what the uABI name for this engine will be,
362 	 * we still would like to keep track of this engine in the debug logs.
363 	 * We throw in a ' here as a reminder that this isn't its final name.
364 	 */
365 	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
366 			     intel_engine_class_repr(engine->class),
367 			     engine->instance) >= sizeof(engine->name));
368 }
369 
370 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
371 {
372 	/*
373 	 * Though they added more rings on g4x/ilk, they did not add
374 	 * per-engine HWSTAM until gen6.
375 	 */
376 	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
377 		return;
378 
379 	if (GRAPHICS_VER(engine->i915) >= 3)
380 		ENGINE_WRITE(engine, RING_HWSTAM, mask);
381 	else
382 		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
383 }
384 
385 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
386 {
387 	/* Mask off all writes into the unknown HWSP */
388 	intel_engine_set_hwsp_writemask(engine, ~0u);
389 }
390 
391 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
392 {
393 	GEM_DEBUG_WARN_ON(iir);
394 }
395 
396 static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
397 {
398 	u32 reset_domain;
399 
400 	if (ver >= 11) {
401 		static const u32 engine_reset_domains[] = {
402 			[RCS0]  = GEN11_GRDOM_RENDER,
403 			[BCS0]  = GEN11_GRDOM_BLT,
404 			[BCS1]  = XEHPC_GRDOM_BLT1,
405 			[BCS2]  = XEHPC_GRDOM_BLT2,
406 			[BCS3]  = XEHPC_GRDOM_BLT3,
407 			[BCS4]  = XEHPC_GRDOM_BLT4,
408 			[BCS5]  = XEHPC_GRDOM_BLT5,
409 			[BCS6]  = XEHPC_GRDOM_BLT6,
410 			[BCS7]  = XEHPC_GRDOM_BLT7,
411 			[BCS8]  = XEHPC_GRDOM_BLT8,
412 			[VCS0]  = GEN11_GRDOM_MEDIA,
413 			[VCS1]  = GEN11_GRDOM_MEDIA2,
414 			[VCS2]  = GEN11_GRDOM_MEDIA3,
415 			[VCS3]  = GEN11_GRDOM_MEDIA4,
416 			[VCS4]  = GEN11_GRDOM_MEDIA5,
417 			[VCS5]  = GEN11_GRDOM_MEDIA6,
418 			[VCS6]  = GEN11_GRDOM_MEDIA7,
419 			[VCS7]  = GEN11_GRDOM_MEDIA8,
420 			[VECS0] = GEN11_GRDOM_VECS,
421 			[VECS1] = GEN11_GRDOM_VECS2,
422 			[VECS2] = GEN11_GRDOM_VECS3,
423 			[VECS3] = GEN11_GRDOM_VECS4,
424 			[CCS0]  = GEN11_GRDOM_RENDER,
425 			[CCS1]  = GEN11_GRDOM_RENDER,
426 			[CCS2]  = GEN11_GRDOM_RENDER,
427 			[CCS3]  = GEN11_GRDOM_RENDER,
428 			[GSC0]  = GEN12_GRDOM_GSC,
429 		};
430 		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
431 			   !engine_reset_domains[id]);
432 		reset_domain = engine_reset_domains[id];
433 	} else {
434 		static const u32 engine_reset_domains[] = {
435 			[RCS0]  = GEN6_GRDOM_RENDER,
436 			[BCS0]  = GEN6_GRDOM_BLT,
437 			[VCS0]  = GEN6_GRDOM_MEDIA,
438 			[VCS1]  = GEN8_GRDOM_MEDIA2,
439 			[VECS0] = GEN6_GRDOM_VECS,
440 		};
441 		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
442 			   !engine_reset_domains[id]);
443 		reset_domain = engine_reset_domains[id];
444 	}
445 
446 	return reset_domain;
447 }
448 
449 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
450 			      u8 logical_instance)
451 {
452 	const struct engine_info *info = &intel_engines[id];
453 	struct drm_i915_private *i915 = gt->i915;
454 	struct intel_engine_cs *engine;
455 	u8 guc_class;
456 
457 	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
458 	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
459 	BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
460 	BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
461 
462 	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
463 		return -EINVAL;
464 
465 	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
466 		return -EINVAL;
467 
468 	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
469 		return -EINVAL;
470 
471 	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
472 		return -EINVAL;
473 
474 	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
475 	if (!engine)
476 		return -ENOMEM;
477 
478 	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
479 
480 	INIT_LIST_HEAD(&engine->pinned_contexts_list);
481 	engine->id = id;
482 	engine->legacy_idx = INVALID_ENGINE;
483 	engine->mask = BIT(id);
484 	engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
485 						id);
486 	engine->i915 = i915;
487 	engine->gt = gt;
488 	engine->uncore = gt->uncore;
489 	guc_class = engine_class_to_guc_class(info->class);
490 	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
491 	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
492 
493 	engine->irq_handler = nop_irq_handler;
494 
495 	engine->class = info->class;
496 	engine->instance = info->instance;
497 	engine->logical_mask = BIT(logical_instance);
498 	__sprint_engine_name(engine);
499 
500 	if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) &&
501 	     __ffs(CCS_MASK(engine->gt)) == engine->instance) ||
502 	     engine->class == RENDER_CLASS)
503 		engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
504 
505 	/* features common between engines sharing EUs */
506 	if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
507 		engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
508 		engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
509 	}
510 
511 	engine->props.heartbeat_interval_ms =
512 		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
513 	engine->props.max_busywait_duration_ns =
514 		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
515 	engine->props.preempt_timeout_ms =
516 		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
517 	engine->props.stop_timeout_ms =
518 		CONFIG_DRM_I915_STOP_TIMEOUT;
519 	engine->props.timeslice_duration_ms =
520 		CONFIG_DRM_I915_TIMESLICE_DURATION;
521 
522 	/*
523 	 * Mid-thread pre-emption is not available in Gen12. Unfortunately,
524 	 * some compute workloads run quite long threads. That means they get
525 	 * reset due to not pre-empting in a timely manner. So, bump the
526 	 * pre-emption timeout value to be much higher for compute engines.
527 	 */
528 	if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
529 		engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE;
530 
531 	/* Cap properties according to any system limits */
532 #define CLAMP_PROP(field) \
533 	do { \
534 		u64 clamp = intel_clamp_##field(engine, engine->props.field); \
535 		if (clamp != engine->props.field) { \
536 			drm_notice(&engine->i915->drm, \
537 				   "Warning, clamping %s to %lld to prevent overflow\n", \
538 				   #field, clamp); \
539 			engine->props.field = clamp; \
540 		} \
541 	} while (0)
542 
543 	CLAMP_PROP(heartbeat_interval_ms);
544 	CLAMP_PROP(max_busywait_duration_ns);
545 	CLAMP_PROP(preempt_timeout_ms);
546 	CLAMP_PROP(stop_timeout_ms);
547 	CLAMP_PROP(timeslice_duration_ms);
548 
549 #undef CLAMP_PROP
550 
551 	engine->defaults = engine->props; /* never to change again */
552 
553 	engine->context_size = intel_engine_context_size(gt, engine->class);
554 	if (WARN_ON(engine->context_size > BIT(20)))
555 		engine->context_size = 0;
556 	if (engine->context_size)
557 		DRIVER_CAPS(i915)->has_logical_contexts = true;
558 
559 	ewma__engine_latency_init(&engine->latency);
560 
561 	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
562 
563 	/* Scrub mmio state on takeover */
564 	intel_engine_sanitize_mmio(engine);
565 
566 	gt->engine_class[info->class][info->instance] = engine;
567 	gt->engine[id] = engine;
568 
569 	return 0;
570 }
571 
572 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
573 {
574 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
575 
576 	return value;
577 }
578 
579 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
580 {
581 	value = min(value, jiffies_to_nsecs(2));
582 
583 	return value;
584 }
585 
586 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
587 {
588 	/*
589 	 * NB: The GuC API only supports 32bit values. However, the limit is further
590 	 * reduced due to internal calculations which would otherwise overflow.
591 	 */
592 	if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
593 		value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
594 
595 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
596 
597 	return value;
598 }
599 
600 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
601 {
602 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
603 
604 	return value;
605 }
606 
607 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
608 {
609 	/*
610 	 * NB: The GuC API only supports 32bit values. However, the limit is further
611 	 * reduced due to internal calculations which would otherwise overflow.
612 	 */
613 	if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
614 		value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
615 
616 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
617 
618 	return value;
619 }
620 
621 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
622 {
623 	struct drm_i915_private *i915 = engine->i915;
624 
625 	if (engine->class == VIDEO_DECODE_CLASS) {
626 		/*
627 		 * HEVC support is present on first engine instance
628 		 * before Gen11 and on all instances afterwards.
629 		 */
630 		if (GRAPHICS_VER(i915) >= 11 ||
631 		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
632 			engine->uabi_capabilities |=
633 				I915_VIDEO_CLASS_CAPABILITY_HEVC;
634 
635 		/*
636 		 * SFC block is present only on even logical engine
637 		 * instances.
638 		 */
639 		if ((GRAPHICS_VER(i915) >= 11 &&
640 		     (engine->gt->info.vdbox_sfc_access &
641 		      BIT(engine->instance))) ||
642 		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
643 			engine->uabi_capabilities |=
644 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
645 	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
646 		if (GRAPHICS_VER(i915) >= 9 &&
647 		    engine->gt->info.sfc_mask & BIT(engine->instance))
648 			engine->uabi_capabilities |=
649 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
650 	}
651 }
652 
653 static void intel_setup_engine_capabilities(struct intel_gt *gt)
654 {
655 	struct intel_engine_cs *engine;
656 	enum intel_engine_id id;
657 
658 	for_each_engine(engine, gt, id)
659 		__setup_engine_capabilities(engine);
660 }
661 
662 /**
663  * intel_engines_release() - free the resources allocated for Command Streamers
664  * @gt: pointer to struct intel_gt
665  */
666 void intel_engines_release(struct intel_gt *gt)
667 {
668 	struct intel_engine_cs *engine;
669 	enum intel_engine_id id;
670 
671 	/*
672 	 * Before we release the resources held by engine, we must be certain
673 	 * that the HW is no longer accessing them -- having the GPU scribble
674 	 * to or read from a page being used for something else causes no end
675 	 * of fun.
676 	 *
677 	 * The GPU should be reset by this point, but assume the worst just
678 	 * in case we aborted before completely initialising the engines.
679 	 */
680 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
681 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
682 		__intel_gt_reset(gt, ALL_ENGINES);
683 
684 	/* Decouple the backend; but keep the layout for late GPU resets */
685 	for_each_engine(engine, gt, id) {
686 		if (!engine->release)
687 			continue;
688 
689 		intel_wakeref_wait_for_idle(&engine->wakeref);
690 		GEM_BUG_ON(intel_engine_pm_is_awake(engine));
691 
692 		engine->release(engine);
693 		engine->release = NULL;
694 
695 		memset(&engine->reset, 0, sizeof(engine->reset));
696 	}
697 }
698 
699 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
700 {
701 	if (!engine->request_pool)
702 		return;
703 
704 	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
705 }
706 
707 void intel_engines_free(struct intel_gt *gt)
708 {
709 	struct intel_engine_cs *engine;
710 	enum intel_engine_id id;
711 
712 	/* Free the requests! dma-resv keeps fences around for an eternity */
713 	rcu_barrier();
714 
715 	for_each_engine(engine, gt, id) {
716 		intel_engine_free_request_pool(engine);
717 		kfree(engine);
718 		gt->engine[id] = NULL;
719 	}
720 }
721 
722 static
723 bool gen11_vdbox_has_sfc(struct intel_gt *gt,
724 			 unsigned int physical_vdbox,
725 			 unsigned int logical_vdbox, u16 vdbox_mask)
726 {
727 	struct drm_i915_private *i915 = gt->i915;
728 
729 	/*
730 	 * In Gen11, only even numbered logical VDBOXes are hooked
731 	 * up to an SFC (Scaler & Format Converter) unit.
732 	 * In Gen12, Even numbered physical instance always are connected
733 	 * to an SFC. Odd numbered physical instances have SFC only if
734 	 * previous even instance is fused off.
735 	 *
736 	 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
737 	 * in the fuse register that tells us whether a specific SFC is present.
738 	 */
739 	if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
740 		return false;
741 	else if (MEDIA_VER(i915) >= 12)
742 		return (physical_vdbox % 2 == 0) ||
743 			!(BIT(physical_vdbox - 1) & vdbox_mask);
744 	else if (MEDIA_VER(i915) == 11)
745 		return logical_vdbox % 2 == 0;
746 
747 	return false;
748 }
749 
750 static void engine_mask_apply_media_fuses(struct intel_gt *gt)
751 {
752 	struct drm_i915_private *i915 = gt->i915;
753 	unsigned int logical_vdbox = 0;
754 	unsigned int i;
755 	u32 media_fuse, fuse1;
756 	u16 vdbox_mask;
757 	u16 vebox_mask;
758 
759 	if (MEDIA_VER(gt->i915) < 11)
760 		return;
761 
762 	/*
763 	 * On newer platforms the fusing register is called 'enable' and has
764 	 * enable semantics, while on older platforms it is called 'disable'
765 	 * and bits have disable semantices.
766 	 */
767 	media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
768 	if (MEDIA_VER_FULL(i915) < IP_VER(12, 50))
769 		media_fuse = ~media_fuse;
770 
771 	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
772 	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
773 		      GEN11_GT_VEBOX_DISABLE_SHIFT;
774 
775 	if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) {
776 		fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
777 		gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
778 	} else {
779 		gt->info.sfc_mask = ~0;
780 	}
781 
782 	for (i = 0; i < I915_MAX_VCS; i++) {
783 		if (!HAS_ENGINE(gt, _VCS(i))) {
784 			vdbox_mask &= ~BIT(i);
785 			continue;
786 		}
787 
788 		if (!(BIT(i) & vdbox_mask)) {
789 			gt->info.engine_mask &= ~BIT(_VCS(i));
790 			gt_dbg(gt, "vcs%u fused off\n", i);
791 			continue;
792 		}
793 
794 		if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
795 			gt->info.vdbox_sfc_access |= BIT(i);
796 		logical_vdbox++;
797 	}
798 	gt_dbg(gt, "vdbox enable: %04x, instances: %04lx\n", vdbox_mask, VDBOX_MASK(gt));
799 	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
800 
801 	for (i = 0; i < I915_MAX_VECS; i++) {
802 		if (!HAS_ENGINE(gt, _VECS(i))) {
803 			vebox_mask &= ~BIT(i);
804 			continue;
805 		}
806 
807 		if (!(BIT(i) & vebox_mask)) {
808 			gt->info.engine_mask &= ~BIT(_VECS(i));
809 			gt_dbg(gt, "vecs%u fused off\n", i);
810 		}
811 	}
812 	gt_dbg(gt, "vebox enable: %04x, instances: %04lx\n", vebox_mask, VEBOX_MASK(gt));
813 	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
814 }
815 
816 static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
817 {
818 	struct drm_i915_private *i915 = gt->i915;
819 	struct intel_gt_info *info = &gt->info;
820 	int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
821 	unsigned long ccs_mask;
822 	unsigned int i;
823 
824 	if (GRAPHICS_VER(i915) < 11)
825 		return;
826 
827 	if (hweight32(CCS_MASK(gt)) <= 1)
828 		return;
829 
830 	ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
831 						     ss_per_ccs);
832 	/*
833 	 * If all DSS in a quadrant are fused off, the corresponding CCS
834 	 * engine is not available for use.
835 	 */
836 	for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
837 		info->engine_mask &= ~BIT(_CCS(i));
838 		gt_dbg(gt, "ccs%u fused off\n", i);
839 	}
840 }
841 
842 static void engine_mask_apply_copy_fuses(struct intel_gt *gt)
843 {
844 	struct drm_i915_private *i915 = gt->i915;
845 	struct intel_gt_info *info = &gt->info;
846 	unsigned long meml3_mask;
847 	unsigned long quad;
848 
849 	if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) &&
850 	      GRAPHICS_VER_FULL(i915) < IP_VER(12, 70)))
851 		return;
852 
853 	meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3);
854 	meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask);
855 
856 	/*
857 	 * Link Copy engines may be fused off according to meml3_mask. Each
858 	 * bit is a quad that houses 2 Link Copy and two Sub Copy engines.
859 	 */
860 	for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) {
861 		unsigned int instance = quad * 2 + 1;
862 		intel_engine_mask_t mask = GENMASK(_BCS(instance + 1),
863 						   _BCS(instance));
864 
865 		if (mask & info->engine_mask) {
866 			gt_dbg(gt, "bcs%u fused off\n", instance);
867 			gt_dbg(gt, "bcs%u fused off\n", instance + 1);
868 
869 			info->engine_mask &= ~mask;
870 		}
871 	}
872 }
873 
874 /*
875  * Determine which engines are fused off in our particular hardware.
876  * Note that we have a catch-22 situation where we need to be able to access
877  * the blitter forcewake domain to read the engine fuses, but at the same time
878  * we need to know which engines are available on the system to know which
879  * forcewake domains are present. We solve this by intializing the forcewake
880  * domains based on the full engine mask in the platform capabilities before
881  * calling this function and pruning the domains for fused-off engines
882  * afterwards.
883  */
884 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
885 {
886 	struct intel_gt_info *info = &gt->info;
887 
888 	GEM_BUG_ON(!info->engine_mask);
889 
890 	engine_mask_apply_media_fuses(gt);
891 	engine_mask_apply_compute_fuses(gt);
892 	engine_mask_apply_copy_fuses(gt);
893 
894 	/*
895 	 * The only use of the GSC CS is to load and communicate with the GSC
896 	 * FW, so we have no use for it if we don't have the FW.
897 	 *
898 	 * IMPORTANT: in cases where we don't have the GSC FW, we have a
899 	 * catch-22 situation that breaks media C6 due to 2 requirements:
900 	 * 1) once turned on, the GSC power well will not go to sleep unless the
901 	 *    GSC FW is loaded.
902 	 * 2) to enable idling (which is required for media C6) we need to
903 	 *    initialize the IDLE_MSG register for the GSC CS and do at least 1
904 	 *    submission, which will wake up the GSC power well.
905 	 */
906 	if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(&gt->uc)) {
907 		gt_notice(gt, "No GSC FW selected, disabling GSC CS and media C6\n");
908 		info->engine_mask &= ~BIT(GSC0);
909 	}
910 
911 	/*
912 	 * Do not create the command streamer for CCS slices beyond the first.
913 	 * All the workload submitted to the first engine will be shared among
914 	 * all the slices.
915 	 *
916 	 * Once the user will be allowed to customize the CCS mode, then this
917 	 * check needs to be removed.
918 	 */
919 	if (IS_DG2(gt->i915)) {
920 		u8 first_ccs = __ffs(CCS_MASK(gt));
921 
922 		/* Mask off all the CCS engine */
923 		info->engine_mask &= ~GENMASK(CCS3, CCS0);
924 		/* Put back in the first CCS engine */
925 		info->engine_mask |= BIT(_CCS(first_ccs));
926 	}
927 
928 	return info->engine_mask;
929 }
930 
931 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
932 				 u8 class, const u8 *map, u8 num_instances)
933 {
934 	int i, j;
935 	u8 current_logical_id = 0;
936 
937 	for (j = 0; j < num_instances; ++j) {
938 		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
939 			if (!HAS_ENGINE(gt, i) ||
940 			    intel_engines[i].class != class)
941 				continue;
942 
943 			if (intel_engines[i].instance == map[j]) {
944 				logical_ids[intel_engines[i].instance] =
945 					current_logical_id++;
946 				break;
947 			}
948 		}
949 	}
950 }
951 
952 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
953 {
954 	/*
955 	 * Logical to physical mapping is needed for proper support
956 	 * to split-frame feature.
957 	 */
958 	if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
959 		const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
960 
961 		populate_logical_ids(gt, logical_ids, class,
962 				     map, ARRAY_SIZE(map));
963 	} else {
964 		int i;
965 		u8 map[MAX_ENGINE_INSTANCE + 1];
966 
967 		for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
968 			map[i] = i;
969 		populate_logical_ids(gt, logical_ids, class,
970 				     map, ARRAY_SIZE(map));
971 	}
972 }
973 
974 /**
975  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
976  * @gt: pointer to struct intel_gt
977  *
978  * Return: non-zero if the initialization failed.
979  */
980 int intel_engines_init_mmio(struct intel_gt *gt)
981 {
982 	struct drm_i915_private *i915 = gt->i915;
983 	const unsigned int engine_mask = init_engine_mask(gt);
984 	unsigned int mask = 0;
985 	unsigned int i, class;
986 	u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
987 	int err;
988 
989 	drm_WARN_ON(&i915->drm, engine_mask == 0);
990 	drm_WARN_ON(&i915->drm, engine_mask &
991 		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
992 
993 	if (i915_inject_probe_failure(i915))
994 		return -ENODEV;
995 
996 	for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
997 		setup_logical_ids(gt, logical_ids, class);
998 
999 		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
1000 			u8 instance = intel_engines[i].instance;
1001 
1002 			if (intel_engines[i].class != class ||
1003 			    !HAS_ENGINE(gt, i))
1004 				continue;
1005 
1006 			err = intel_engine_setup(gt, i,
1007 						 logical_ids[instance]);
1008 			if (err)
1009 				goto cleanup;
1010 
1011 			mask |= BIT(i);
1012 		}
1013 	}
1014 
1015 	/*
1016 	 * Catch failures to update intel_engines table when the new engines
1017 	 * are added to the driver by a warning and disabling the forgotten
1018 	 * engines.
1019 	 */
1020 	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
1021 		gt->info.engine_mask = mask;
1022 
1023 	gt->info.num_engines = hweight32(mask);
1024 
1025 	intel_gt_check_and_clear_faults(gt);
1026 
1027 	intel_setup_engine_capabilities(gt);
1028 
1029 	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
1030 
1031 	return 0;
1032 
1033 cleanup:
1034 	intel_engines_free(gt);
1035 	return err;
1036 }
1037 
1038 void intel_engine_init_execlists(struct intel_engine_cs *engine)
1039 {
1040 	struct intel_engine_execlists * const execlists = &engine->execlists;
1041 
1042 	execlists->port_mask = 1;
1043 	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
1044 	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
1045 
1046 	memset(execlists->pending, 0, sizeof(execlists->pending));
1047 	execlists->active =
1048 		memset(execlists->inflight, 0, sizeof(execlists->inflight));
1049 }
1050 
1051 static void cleanup_status_page(struct intel_engine_cs *engine)
1052 {
1053 	struct i915_vma *vma;
1054 
1055 	/* Prevent writes into HWSP after returning the page to the system */
1056 	intel_engine_set_hwsp_writemask(engine, ~0u);
1057 
1058 	vma = fetch_and_zero(&engine->status_page.vma);
1059 	if (!vma)
1060 		return;
1061 
1062 	if (!HWS_NEEDS_PHYSICAL(engine->i915))
1063 		i915_vma_unpin(vma);
1064 
1065 	i915_gem_object_unpin_map(vma->obj);
1066 	i915_gem_object_put(vma->obj);
1067 }
1068 
1069 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
1070 				struct i915_gem_ww_ctx *ww,
1071 				struct i915_vma *vma)
1072 {
1073 	unsigned int flags;
1074 
1075 	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
1076 		/*
1077 		 * On g33, we cannot place HWS above 256MiB, so
1078 		 * restrict its pinning to the low mappable arena.
1079 		 * Though this restriction is not documented for
1080 		 * gen4, gen5, or byt, they also behave similarly
1081 		 * and hang if the HWS is placed at the top of the
1082 		 * GTT. To generalise, it appears that all !llc
1083 		 * platforms have issues with us placing the HWS
1084 		 * above the mappable region (even though we never
1085 		 * actually map it).
1086 		 */
1087 		flags = PIN_MAPPABLE;
1088 	else
1089 		flags = PIN_HIGH;
1090 
1091 	return i915_ggtt_pin(vma, ww, 0, flags);
1092 }
1093 
1094 static int init_status_page(struct intel_engine_cs *engine)
1095 {
1096 	struct drm_i915_gem_object *obj;
1097 	struct i915_gem_ww_ctx ww;
1098 	struct i915_vma *vma;
1099 	void *vaddr;
1100 	int ret;
1101 
1102 	INIT_LIST_HEAD(&engine->status_page.timelines);
1103 
1104 	/*
1105 	 * Though the HWS register does support 36bit addresses, historically
1106 	 * we have had hangs and corruption reported due to wild writes if
1107 	 * the HWS is placed above 4G. We only allow objects to be allocated
1108 	 * in GFP_DMA32 for i965, and no earlier physical address users had
1109 	 * access to more than 4G.
1110 	 */
1111 	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1112 	if (IS_ERR(obj)) {
1113 		gt_err(engine->gt, "Failed to allocate status page\n");
1114 		return PTR_ERR(obj);
1115 	}
1116 
1117 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
1118 
1119 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1120 	if (IS_ERR(vma)) {
1121 		ret = PTR_ERR(vma);
1122 		goto err_put;
1123 	}
1124 
1125 	i915_gem_ww_ctx_init(&ww, true);
1126 retry:
1127 	ret = i915_gem_object_lock(obj, &ww);
1128 	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1129 		ret = pin_ggtt_status_page(engine, &ww, vma);
1130 	if (ret)
1131 		goto err;
1132 
1133 	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1134 	if (IS_ERR(vaddr)) {
1135 		ret = PTR_ERR(vaddr);
1136 		goto err_unpin;
1137 	}
1138 
1139 	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1140 	engine->status_page.vma = vma;
1141 
1142 err_unpin:
1143 	if (ret)
1144 		i915_vma_unpin(vma);
1145 err:
1146 	if (ret == -EDEADLK) {
1147 		ret = i915_gem_ww_ctx_backoff(&ww);
1148 		if (!ret)
1149 			goto retry;
1150 	}
1151 	i915_gem_ww_ctx_fini(&ww);
1152 err_put:
1153 	if (ret)
1154 		i915_gem_object_put(obj);
1155 	return ret;
1156 }
1157 
1158 static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine)
1159 {
1160 	static const union intel_engine_tlb_inv_reg gen8_regs[] = {
1161 		[RENDER_CLASS].reg		= GEN8_RTCR,
1162 		[VIDEO_DECODE_CLASS].reg	= GEN8_M1TCR, /* , GEN8_M2TCR */
1163 		[VIDEO_ENHANCEMENT_CLASS].reg	= GEN8_VTCR,
1164 		[COPY_ENGINE_CLASS].reg		= GEN8_BTCR,
1165 	};
1166 	static const union intel_engine_tlb_inv_reg gen12_regs[] = {
1167 		[RENDER_CLASS].reg		= GEN12_GFX_TLB_INV_CR,
1168 		[VIDEO_DECODE_CLASS].reg	= GEN12_VD_TLB_INV_CR,
1169 		[VIDEO_ENHANCEMENT_CLASS].reg	= GEN12_VE_TLB_INV_CR,
1170 		[COPY_ENGINE_CLASS].reg		= GEN12_BLT_TLB_INV_CR,
1171 		[COMPUTE_CLASS].reg		= GEN12_COMPCTX_TLB_INV_CR,
1172 	};
1173 	static const union intel_engine_tlb_inv_reg xehp_regs[] = {
1174 		[RENDER_CLASS].mcr_reg		  = XEHP_GFX_TLB_INV_CR,
1175 		[VIDEO_DECODE_CLASS].mcr_reg	  = XEHP_VD_TLB_INV_CR,
1176 		[VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR,
1177 		[COPY_ENGINE_CLASS].mcr_reg	  = XEHP_BLT_TLB_INV_CR,
1178 		[COMPUTE_CLASS].mcr_reg		  = XEHP_COMPCTX_TLB_INV_CR,
1179 	};
1180 	static const union intel_engine_tlb_inv_reg xelpmp_regs[] = {
1181 		[VIDEO_DECODE_CLASS].reg	  = GEN12_VD_TLB_INV_CR,
1182 		[VIDEO_ENHANCEMENT_CLASS].reg     = GEN12_VE_TLB_INV_CR,
1183 		[OTHER_CLASS].reg		  = XELPMP_GSC_TLB_INV_CR,
1184 	};
1185 	struct drm_i915_private *i915 = engine->i915;
1186 	const unsigned int instance = engine->instance;
1187 	const unsigned int class = engine->class;
1188 	const union intel_engine_tlb_inv_reg *regs;
1189 	union intel_engine_tlb_inv_reg reg;
1190 	unsigned int num = 0;
1191 	u32 val;
1192 
1193 	/*
1194 	 * New platforms should not be added with catch-all-newer (>=)
1195 	 * condition so that any later platform added triggers the below warning
1196 	 * and in turn mandates a human cross-check of whether the invalidation
1197 	 * flows have compatible semantics.
1198 	 *
1199 	 * For instance with the 11.00 -> 12.00 transition three out of five
1200 	 * respective engine registers were moved to masked type. Then after the
1201 	 * 12.00 -> 12.50 transition multi cast handling is required too.
1202 	 */
1203 
1204 	if (engine->gt->type == GT_MEDIA) {
1205 		if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) {
1206 			regs = xelpmp_regs;
1207 			num = ARRAY_SIZE(xelpmp_regs);
1208 		}
1209 	} else {
1210 		if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 74) ||
1211 		    GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) ||
1212 		    GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) ||
1213 		    GRAPHICS_VER_FULL(i915) == IP_VER(12, 50) ||
1214 		    GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) {
1215 			regs = xehp_regs;
1216 			num = ARRAY_SIZE(xehp_regs);
1217 		} else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) ||
1218 			   GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) {
1219 			regs = gen12_regs;
1220 			num = ARRAY_SIZE(gen12_regs);
1221 		} else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
1222 			regs = gen8_regs;
1223 			num = ARRAY_SIZE(gen8_regs);
1224 		} else if (GRAPHICS_VER(i915) < 8) {
1225 			return 0;
1226 		}
1227 	}
1228 
1229 	if (gt_WARN_ONCE(engine->gt, !num,
1230 			 "Platform does not implement TLB invalidation!"))
1231 		return -ENODEV;
1232 
1233 	if (gt_WARN_ON_ONCE(engine->gt,
1234 			    class >= num ||
1235 			    (!regs[class].reg.reg &&
1236 			     !regs[class].mcr_reg.reg)))
1237 		return -ERANGE;
1238 
1239 	reg = regs[class];
1240 
1241 	if (regs == xelpmp_regs && class == OTHER_CLASS) {
1242 		/*
1243 		 * There's only a single GSC instance, but it uses register bit
1244 		 * 1 instead of either 0 or OTHER_GSC_INSTANCE.
1245 		 */
1246 		GEM_WARN_ON(instance != OTHER_GSC_INSTANCE);
1247 		val = 1;
1248 	} else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) {
1249 		reg.reg = GEN8_M2TCR;
1250 		val = 0;
1251 	} else {
1252 		val = instance;
1253 	}
1254 
1255 	val = BIT(val);
1256 
1257 	engine->tlb_inv.mcr = regs == xehp_regs;
1258 	engine->tlb_inv.reg = reg;
1259 	engine->tlb_inv.done = val;
1260 
1261 	if (GRAPHICS_VER(i915) >= 12 &&
1262 	    (engine->class == VIDEO_DECODE_CLASS ||
1263 	     engine->class == VIDEO_ENHANCEMENT_CLASS ||
1264 	     engine->class == COMPUTE_CLASS ||
1265 	     engine->class == OTHER_CLASS))
1266 		engine->tlb_inv.request = _MASKED_BIT_ENABLE(val);
1267 	else
1268 		engine->tlb_inv.request = val;
1269 
1270 	return 0;
1271 }
1272 
1273 static int engine_setup_common(struct intel_engine_cs *engine)
1274 {
1275 	int err;
1276 
1277 	init_llist_head(&engine->barrier_tasks);
1278 
1279 	err = intel_engine_init_tlb_invalidation(engine);
1280 	if (err)
1281 		return err;
1282 
1283 	err = init_status_page(engine);
1284 	if (err)
1285 		return err;
1286 
1287 	engine->breadcrumbs = intel_breadcrumbs_create(engine);
1288 	if (!engine->breadcrumbs) {
1289 		err = -ENOMEM;
1290 		goto err_status;
1291 	}
1292 
1293 	engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1294 	if (!engine->sched_engine) {
1295 		err = -ENOMEM;
1296 		goto err_sched_engine;
1297 	}
1298 	engine->sched_engine->private_data = engine;
1299 
1300 	err = intel_engine_init_cmd_parser(engine);
1301 	if (err)
1302 		goto err_cmd_parser;
1303 
1304 	intel_engine_init_execlists(engine);
1305 	intel_engine_init__pm(engine);
1306 	intel_engine_init_retire(engine);
1307 
1308 	/* Use the whole device by default */
1309 	engine->sseu =
1310 		intel_sseu_from_device_info(&engine->gt->info.sseu);
1311 
1312 	intel_engine_init_workarounds(engine);
1313 	intel_engine_init_whitelist(engine);
1314 	intel_engine_init_ctx_wa(engine);
1315 
1316 	if (GRAPHICS_VER(engine->i915) >= 12)
1317 		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1318 
1319 	return 0;
1320 
1321 err_cmd_parser:
1322 	i915_sched_engine_put(engine->sched_engine);
1323 err_sched_engine:
1324 	intel_breadcrumbs_put(engine->breadcrumbs);
1325 err_status:
1326 	cleanup_status_page(engine);
1327 	return err;
1328 }
1329 
1330 struct measure_breadcrumb {
1331 	struct i915_request rq;
1332 	struct intel_ring ring;
1333 	u32 cs[2048];
1334 };
1335 
1336 static int measure_breadcrumb_dw(struct intel_context *ce)
1337 {
1338 	struct intel_engine_cs *engine = ce->engine;
1339 	struct measure_breadcrumb *frame;
1340 	int dw;
1341 
1342 	GEM_BUG_ON(!engine->gt->scratch);
1343 
1344 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1345 	if (!frame)
1346 		return -ENOMEM;
1347 
1348 	frame->rq.i915 = engine->i915;
1349 	frame->rq.engine = engine;
1350 	frame->rq.context = ce;
1351 	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1352 	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1353 
1354 	frame->ring.vaddr = frame->cs;
1355 	frame->ring.size = sizeof(frame->cs);
1356 	frame->ring.wrap =
1357 		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1358 	frame->ring.effective_size = frame->ring.size;
1359 	intel_ring_update_space(&frame->ring);
1360 	frame->rq.ring = &frame->ring;
1361 
1362 	mutex_lock(&ce->timeline->mutex);
1363 	spin_lock_irq(&engine->sched_engine->lock);
1364 
1365 	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1366 
1367 	spin_unlock_irq(&engine->sched_engine->lock);
1368 	mutex_unlock(&ce->timeline->mutex);
1369 
1370 	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1371 
1372 	kfree(frame);
1373 	return dw;
1374 }
1375 
1376 struct intel_context *
1377 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1378 				   struct i915_address_space *vm,
1379 				   unsigned int ring_size,
1380 				   unsigned int hwsp,
1381 				   struct lock_class_key *key,
1382 				   const char *name)
1383 {
1384 	struct intel_context *ce;
1385 	int err;
1386 
1387 	ce = intel_context_create(engine);
1388 	if (IS_ERR(ce))
1389 		return ce;
1390 
1391 	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1392 	ce->timeline = page_pack_bits(NULL, hwsp);
1393 	ce->ring = NULL;
1394 	ce->ring_size = ring_size;
1395 
1396 	i915_vm_put(ce->vm);
1397 	ce->vm = i915_vm_get(vm);
1398 
1399 	err = intel_context_pin(ce); /* perma-pin so it is always available */
1400 	if (err) {
1401 		intel_context_put(ce);
1402 		return ERR_PTR(err);
1403 	}
1404 
1405 	list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1406 
1407 	/*
1408 	 * Give our perma-pinned kernel timelines a separate lockdep class,
1409 	 * so that we can use them from within the normal user timelines
1410 	 * should we need to inject GPU operations during their request
1411 	 * construction.
1412 	 */
1413 	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1414 
1415 	return ce;
1416 }
1417 
1418 void intel_engine_destroy_pinned_context(struct intel_context *ce)
1419 {
1420 	struct intel_engine_cs *engine = ce->engine;
1421 	struct i915_vma *hwsp = engine->status_page.vma;
1422 
1423 	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1424 
1425 	mutex_lock(&hwsp->vm->mutex);
1426 	list_del(&ce->timeline->engine_link);
1427 	mutex_unlock(&hwsp->vm->mutex);
1428 
1429 	list_del(&ce->pinned_contexts_link);
1430 	intel_context_unpin(ce);
1431 	intel_context_put(ce);
1432 }
1433 
1434 static struct intel_context *
1435 create_ggtt_bind_context(struct intel_engine_cs *engine)
1436 {
1437 	static struct lock_class_key kernel;
1438 
1439 	/*
1440 	 * MI_UPDATE_GTT can insert up to 511 PTE entries and there could be multiple
1441 	 * bind requets at a time so get a bigger ring.
1442 	 */
1443 	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_512K,
1444 						  I915_GEM_HWS_GGTT_BIND_ADDR,
1445 						  &kernel, "ggtt_bind_context");
1446 }
1447 
1448 static struct intel_context *
1449 create_kernel_context(struct intel_engine_cs *engine)
1450 {
1451 	static struct lock_class_key kernel;
1452 
1453 	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1454 						  I915_GEM_HWS_SEQNO_ADDR,
1455 						  &kernel, "kernel_context");
1456 }
1457 
1458 /*
1459  * engine_init_common - initialize engine state which might require hw access
1460  * @engine: Engine to initialize.
1461  *
1462  * Initializes @engine@ structure members shared between legacy and execlists
1463  * submission modes which do require hardware access.
1464  *
1465  * Typcally done at later stages of submission mode specific engine setup.
1466  *
1467  * Returns zero on success or an error code on failure.
1468  */
1469 static int engine_init_common(struct intel_engine_cs *engine)
1470 {
1471 	struct intel_context *ce, *bce = NULL;
1472 	int ret;
1473 
1474 	engine->set_default_submission(engine);
1475 
1476 	/*
1477 	 * We may need to do things with the shrinker which
1478 	 * require us to immediately switch back to the default
1479 	 * context. This can cause a problem as pinning the
1480 	 * default context also requires GTT space which may not
1481 	 * be available. To avoid this we always pin the default
1482 	 * context.
1483 	 */
1484 	ce = create_kernel_context(engine);
1485 	if (IS_ERR(ce))
1486 		return PTR_ERR(ce);
1487 	/*
1488 	 * Create a separate pinned context for GGTT update with blitter engine
1489 	 * if a platform require such service. MI_UPDATE_GTT works on other
1490 	 * engines as well but BCS should be less busy engine so pick that for
1491 	 * GGTT updates.
1492 	 */
1493 	if (i915_ggtt_require_binder(engine->i915) && engine->id == BCS0) {
1494 		bce = create_ggtt_bind_context(engine);
1495 		if (IS_ERR(bce)) {
1496 			ret = PTR_ERR(bce);
1497 			goto err_ce_context;
1498 		}
1499 	}
1500 
1501 	ret = measure_breadcrumb_dw(ce);
1502 	if (ret < 0)
1503 		goto err_bce_context;
1504 
1505 	engine->emit_fini_breadcrumb_dw = ret;
1506 	engine->kernel_context = ce;
1507 	engine->bind_context = bce;
1508 
1509 	return 0;
1510 
1511 err_bce_context:
1512 	if (bce)
1513 		intel_engine_destroy_pinned_context(bce);
1514 err_ce_context:
1515 	intel_engine_destroy_pinned_context(ce);
1516 	return ret;
1517 }
1518 
1519 int intel_engines_init(struct intel_gt *gt)
1520 {
1521 	int (*setup)(struct intel_engine_cs *engine);
1522 	struct intel_engine_cs *engine;
1523 	enum intel_engine_id id;
1524 	int err;
1525 
1526 	if (intel_uc_uses_guc_submission(&gt->uc)) {
1527 		gt->submission_method = INTEL_SUBMISSION_GUC;
1528 		setup = intel_guc_submission_setup;
1529 	} else if (HAS_EXECLISTS(gt->i915)) {
1530 		gt->submission_method = INTEL_SUBMISSION_ELSP;
1531 		setup = intel_execlists_submission_setup;
1532 	} else {
1533 		gt->submission_method = INTEL_SUBMISSION_RING;
1534 		setup = intel_ring_submission_setup;
1535 	}
1536 
1537 	for_each_engine(engine, gt, id) {
1538 		err = engine_setup_common(engine);
1539 		if (err)
1540 			return err;
1541 
1542 		err = setup(engine);
1543 		if (err) {
1544 			intel_engine_cleanup_common(engine);
1545 			return err;
1546 		}
1547 
1548 		/* The backend should now be responsible for cleanup */
1549 		GEM_BUG_ON(engine->release == NULL);
1550 
1551 		err = engine_init_common(engine);
1552 		if (err)
1553 			return err;
1554 
1555 		intel_engine_add_user(engine);
1556 	}
1557 
1558 	return 0;
1559 }
1560 
1561 /**
1562  * intel_engine_cleanup_common - cleans up the engine state created by
1563  *                                the common initiailizers.
1564  * @engine: Engine to cleanup.
1565  *
1566  * This cleans up everything created by the common helpers.
1567  */
1568 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1569 {
1570 	GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1571 
1572 	i915_sched_engine_put(engine->sched_engine);
1573 	intel_breadcrumbs_put(engine->breadcrumbs);
1574 
1575 	intel_engine_fini_retire(engine);
1576 	intel_engine_cleanup_cmd_parser(engine);
1577 
1578 	if (engine->default_state)
1579 		fput(engine->default_state);
1580 
1581 	if (engine->kernel_context)
1582 		intel_engine_destroy_pinned_context(engine->kernel_context);
1583 
1584 	if (engine->bind_context)
1585 		intel_engine_destroy_pinned_context(engine->bind_context);
1586 
1587 
1588 	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1589 	cleanup_status_page(engine);
1590 
1591 	intel_wa_list_free(&engine->ctx_wa_list);
1592 	intel_wa_list_free(&engine->wa_list);
1593 	intel_wa_list_free(&engine->whitelist);
1594 }
1595 
1596 /**
1597  * intel_engine_resume - re-initializes the HW state of the engine
1598  * @engine: Engine to resume.
1599  *
1600  * Returns zero on success or an error code on failure.
1601  */
1602 int intel_engine_resume(struct intel_engine_cs *engine)
1603 {
1604 	intel_engine_apply_workarounds(engine);
1605 	intel_engine_apply_whitelist(engine);
1606 
1607 	return engine->resume(engine);
1608 }
1609 
1610 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1611 {
1612 	struct drm_i915_private *i915 = engine->i915;
1613 
1614 	u64 acthd;
1615 
1616 	if (GRAPHICS_VER(i915) >= 8)
1617 		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1618 	else if (GRAPHICS_VER(i915) >= 4)
1619 		acthd = ENGINE_READ(engine, RING_ACTHD);
1620 	else
1621 		acthd = ENGINE_READ(engine, ACTHD);
1622 
1623 	return acthd;
1624 }
1625 
1626 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1627 {
1628 	u64 bbaddr;
1629 
1630 	if (GRAPHICS_VER(engine->i915) >= 8)
1631 		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1632 	else
1633 		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1634 
1635 	return bbaddr;
1636 }
1637 
1638 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1639 {
1640 	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1641 		return 0;
1642 
1643 	/*
1644 	 * If we are doing a normal GPU reset, we can take our time and allow
1645 	 * the engine to quiesce. We've stopped submission to the engine, and
1646 	 * if we wait long enough an innocent context should complete and
1647 	 * leave the engine idle. So they should not be caught unaware by
1648 	 * the forthcoming GPU reset (which usually follows the stop_cs)!
1649 	 */
1650 	return READ_ONCE(engine->props.stop_timeout_ms);
1651 }
1652 
1653 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1654 				  int fast_timeout_us,
1655 				  int slow_timeout_ms)
1656 {
1657 	struct intel_uncore *uncore = engine->uncore;
1658 	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1659 	int err;
1660 
1661 	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1662 
1663 	/*
1664 	 * Wa_22011802037: Prior to doing a reset, ensure CS is
1665 	 * stopped, set ring stop bit and prefetch disable bit to halt CS
1666 	 */
1667 	if (intel_engine_reset_needs_wa_22011802037(engine->gt))
1668 		intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1669 				      _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1670 
1671 	err = __intel_wait_for_register_fw(engine->uncore, mode,
1672 					   MODE_IDLE, MODE_IDLE,
1673 					   fast_timeout_us,
1674 					   slow_timeout_ms,
1675 					   NULL);
1676 
1677 	/* A final mmio read to let GPU writes be hopefully flushed to memory */
1678 	intel_uncore_posting_read_fw(uncore, mode);
1679 	return err;
1680 }
1681 
1682 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1683 {
1684 	int err = 0;
1685 
1686 	if (GRAPHICS_VER(engine->i915) < 3)
1687 		return -ENODEV;
1688 
1689 	ENGINE_TRACE(engine, "\n");
1690 	/*
1691 	 * TODO: Find out why occasionally stopping the CS times out. Seen
1692 	 * especially with gem_eio tests.
1693 	 *
1694 	 * Occasionally trying to stop the cs times out, but does not adversely
1695 	 * affect functionality. The timeout is set as a config parameter that
1696 	 * defaults to 100ms. In most cases the follow up operation is to wait
1697 	 * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1698 	 * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1699 	 * caused, the caller must check and handle the return from this
1700 	 * function.
1701 	 */
1702 	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1703 		ENGINE_TRACE(engine,
1704 			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1705 			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1706 			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1707 
1708 		/*
1709 		 * Sometimes we observe that the idle flag is not
1710 		 * set even though the ring is empty. So double
1711 		 * check before giving up.
1712 		 */
1713 		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1714 		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1715 			err = -ETIMEDOUT;
1716 	}
1717 
1718 	return err;
1719 }
1720 
1721 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1722 {
1723 	ENGINE_TRACE(engine, "\n");
1724 
1725 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1726 }
1727 
1728 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1729 {
1730 	static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1731 		[RCS0] = MSG_IDLE_CS,
1732 		[BCS0] = MSG_IDLE_BCS,
1733 		[VCS0] = MSG_IDLE_VCS0,
1734 		[VCS1] = MSG_IDLE_VCS1,
1735 		[VCS2] = MSG_IDLE_VCS2,
1736 		[VCS3] = MSG_IDLE_VCS3,
1737 		[VCS4] = MSG_IDLE_VCS4,
1738 		[VCS5] = MSG_IDLE_VCS5,
1739 		[VCS6] = MSG_IDLE_VCS6,
1740 		[VCS7] = MSG_IDLE_VCS7,
1741 		[VECS0] = MSG_IDLE_VECS0,
1742 		[VECS1] = MSG_IDLE_VECS1,
1743 		[VECS2] = MSG_IDLE_VECS2,
1744 		[VECS3] = MSG_IDLE_VECS3,
1745 		[CCS0] = MSG_IDLE_CS,
1746 		[CCS1] = MSG_IDLE_CS,
1747 		[CCS2] = MSG_IDLE_CS,
1748 		[CCS3] = MSG_IDLE_CS,
1749 	};
1750 	u32 val;
1751 
1752 	if (!_reg[engine->id].reg)
1753 		return 0;
1754 
1755 	val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1756 
1757 	/* bits[29:25] & bits[13:9] >> shift */
1758 	return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1759 }
1760 
1761 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1762 {
1763 	int ret;
1764 
1765 	/* Ensure GPM receives fw up/down after CS is stopped */
1766 	udelay(1);
1767 
1768 	/* Wait for forcewake request to complete in GPM */
1769 	ret =  __intel_wait_for_register_fw(gt->uncore,
1770 					    GEN9_PWRGT_DOMAIN_STATUS,
1771 					    fw_mask, fw_mask, 5000, 0, NULL);
1772 
1773 	/* Ensure CS receives fw ack from GPM */
1774 	udelay(1);
1775 
1776 	if (ret)
1777 		GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1778 }
1779 
1780 /*
1781  * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1782  * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1783  * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1784  * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1785  * are concerned only with the gt reset here, we use a logical OR of pending
1786  * forcewakeups from all reset domains and then wait for them to complete by
1787  * querying PWRGT_DOMAIN_STATUS.
1788  */
1789 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1790 {
1791 	u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1792 
1793 	if (fw_pending)
1794 		__gpm_wait_for_fw_complete(engine->gt, fw_pending);
1795 }
1796 
1797 /* NB: please notice the memset */
1798 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1799 			       struct intel_instdone *instdone)
1800 {
1801 	struct drm_i915_private *i915 = engine->i915;
1802 	struct intel_uncore *uncore = engine->uncore;
1803 	u32 mmio_base = engine->mmio_base;
1804 	int slice;
1805 	int subslice;
1806 	int iter;
1807 
1808 	memset(instdone, 0, sizeof(*instdone));
1809 
1810 	if (GRAPHICS_VER(i915) >= 8) {
1811 		instdone->instdone =
1812 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1813 
1814 		if (engine->id != RCS0)
1815 			return;
1816 
1817 		instdone->slice_common =
1818 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1819 		if (GRAPHICS_VER(i915) >= 12) {
1820 			instdone->slice_common_extra[0] =
1821 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1822 			instdone->slice_common_extra[1] =
1823 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1824 		}
1825 
1826 		for_each_ss_steering(iter, engine->gt, slice, subslice) {
1827 			instdone->sampler[slice][subslice] =
1828 				intel_gt_mcr_read(engine->gt,
1829 						  GEN8_SAMPLER_INSTDONE,
1830 						  slice, subslice);
1831 			instdone->row[slice][subslice] =
1832 				intel_gt_mcr_read(engine->gt,
1833 						  GEN8_ROW_INSTDONE,
1834 						  slice, subslice);
1835 		}
1836 
1837 		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1838 			for_each_ss_steering(iter, engine->gt, slice, subslice)
1839 				instdone->geom_svg[slice][subslice] =
1840 					intel_gt_mcr_read(engine->gt,
1841 							  XEHPG_INSTDONE_GEOM_SVG,
1842 							  slice, subslice);
1843 		}
1844 	} else if (GRAPHICS_VER(i915) >= 7) {
1845 		instdone->instdone =
1846 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1847 
1848 		if (engine->id != RCS0)
1849 			return;
1850 
1851 		instdone->slice_common =
1852 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1853 		instdone->sampler[0][0] =
1854 			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1855 		instdone->row[0][0] =
1856 			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1857 	} else if (GRAPHICS_VER(i915) >= 4) {
1858 		instdone->instdone =
1859 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1860 		if (engine->id == RCS0)
1861 			/* HACK: Using the wrong struct member */
1862 			instdone->slice_common =
1863 				intel_uncore_read(uncore, GEN4_INSTDONE1);
1864 	} else {
1865 		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1866 	}
1867 }
1868 
1869 static bool ring_is_idle(struct intel_engine_cs *engine)
1870 {
1871 	bool idle = true;
1872 
1873 	if (I915_SELFTEST_ONLY(!engine->mmio_base))
1874 		return true;
1875 
1876 	if (!intel_engine_pm_get_if_awake(engine))
1877 		return true;
1878 
1879 	/* First check that no commands are left in the ring */
1880 	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1881 	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1882 		idle = false;
1883 
1884 	/* No bit for gen2, so assume the CS parser is idle */
1885 	if (GRAPHICS_VER(engine->i915) > 2 &&
1886 	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1887 		idle = false;
1888 
1889 	intel_engine_pm_put(engine);
1890 
1891 	return idle;
1892 }
1893 
1894 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1895 {
1896 	struct tasklet_struct *t = &engine->sched_engine->tasklet;
1897 
1898 	if (!t->callback)
1899 		return;
1900 
1901 	local_bh_disable();
1902 	if (tasklet_trylock(t)) {
1903 		/* Must wait for any GPU reset in progress. */
1904 		if (__tasklet_is_enabled(t))
1905 			t->callback(t);
1906 		tasklet_unlock(t);
1907 	}
1908 	local_bh_enable();
1909 
1910 	/* Synchronise and wait for the tasklet on another CPU */
1911 	if (sync)
1912 		tasklet_unlock_wait(t);
1913 }
1914 
1915 /**
1916  * intel_engine_is_idle() - Report if the engine has finished process all work
1917  * @engine: the intel_engine_cs
1918  *
1919  * Return true if there are no requests pending, nothing left to be submitted
1920  * to hardware, and that the engine is idle.
1921  */
1922 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1923 {
1924 	/* More white lies, if wedged, hw state is inconsistent */
1925 	if (intel_gt_is_wedged(engine->gt))
1926 		return true;
1927 
1928 	if (!intel_engine_pm_is_awake(engine))
1929 		return true;
1930 
1931 	/* Waiting to drain ELSP? */
1932 	intel_synchronize_hardirq(engine->i915);
1933 	intel_engine_flush_submission(engine);
1934 
1935 	/* ELSP is empty, but there are ready requests? E.g. after reset */
1936 	if (!i915_sched_engine_is_empty(engine->sched_engine))
1937 		return false;
1938 
1939 	/* Ring stopped? */
1940 	return ring_is_idle(engine);
1941 }
1942 
1943 bool intel_engines_are_idle(struct intel_gt *gt)
1944 {
1945 	struct intel_engine_cs *engine;
1946 	enum intel_engine_id id;
1947 
1948 	/*
1949 	 * If the driver is wedged, HW state may be very inconsistent and
1950 	 * report that it is still busy, even though we have stopped using it.
1951 	 */
1952 	if (intel_gt_is_wedged(gt))
1953 		return true;
1954 
1955 	/* Already parked (and passed an idleness test); must still be idle */
1956 	if (!READ_ONCE(gt->awake))
1957 		return true;
1958 
1959 	for_each_engine(engine, gt, id) {
1960 		if (!intel_engine_is_idle(engine))
1961 			return false;
1962 	}
1963 
1964 	return true;
1965 }
1966 
1967 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1968 {
1969 	if (!engine->irq_enable)
1970 		return false;
1971 
1972 	/* Caller disables interrupts */
1973 	spin_lock(engine->gt->irq_lock);
1974 	engine->irq_enable(engine);
1975 	spin_unlock(engine->gt->irq_lock);
1976 
1977 	return true;
1978 }
1979 
1980 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1981 {
1982 	if (!engine->irq_disable)
1983 		return;
1984 
1985 	/* Caller disables interrupts */
1986 	spin_lock(engine->gt->irq_lock);
1987 	engine->irq_disable(engine);
1988 	spin_unlock(engine->gt->irq_lock);
1989 }
1990 
1991 void intel_engines_reset_default_submission(struct intel_gt *gt)
1992 {
1993 	struct intel_engine_cs *engine;
1994 	enum intel_engine_id id;
1995 
1996 	for_each_engine(engine, gt, id) {
1997 		if (engine->sanitize)
1998 			engine->sanitize(engine);
1999 
2000 		engine->set_default_submission(engine);
2001 	}
2002 }
2003 
2004 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
2005 {
2006 	switch (GRAPHICS_VER(engine->i915)) {
2007 	case 2:
2008 		return false; /* uses physical not virtual addresses */
2009 	case 3:
2010 		/* maybe only uses physical not virtual addresses */
2011 		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
2012 	case 4:
2013 		return !IS_I965G(engine->i915); /* who knows! */
2014 	case 6:
2015 		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
2016 	default:
2017 		return true;
2018 	}
2019 }
2020 
2021 static struct intel_timeline *get_timeline(struct i915_request *rq)
2022 {
2023 	struct intel_timeline *tl;
2024 
2025 	/*
2026 	 * Even though we are holding the engine->sched_engine->lock here, there
2027 	 * is no control over the submission queue per-se and we are
2028 	 * inspecting the active state at a random point in time, with an
2029 	 * unknown queue. Play safe and make sure the timeline remains valid.
2030 	 * (Only being used for pretty printing, one extra kref shouldn't
2031 	 * cause a camel stampede!)
2032 	 */
2033 	rcu_read_lock();
2034 	tl = rcu_dereference(rq->timeline);
2035 	if (!kref_get_unless_zero(&tl->kref))
2036 		tl = NULL;
2037 	rcu_read_unlock();
2038 
2039 	return tl;
2040 }
2041 
2042 static int print_ring(char *buf, int sz, struct i915_request *rq)
2043 {
2044 	int len = 0;
2045 
2046 	if (!i915_request_signaled(rq)) {
2047 		struct intel_timeline *tl = get_timeline(rq);
2048 
2049 		len = scnprintf(buf, sz,
2050 				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
2051 				i915_ggtt_offset(rq->ring->vma),
2052 				tl ? tl->hwsp_offset : 0,
2053 				hwsp_seqno(rq),
2054 				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
2055 						      1000 * 1000));
2056 
2057 		if (tl)
2058 			intel_timeline_put(tl);
2059 	}
2060 
2061 	return len;
2062 }
2063 
2064 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
2065 {
2066 	const size_t rowsize = 8 * sizeof(u32);
2067 	const void *prev = NULL;
2068 	bool skip = false;
2069 	size_t pos;
2070 
2071 	for (pos = 0; pos < len; pos += rowsize) {
2072 		char line[128];
2073 
2074 		if (prev && !memcmp(prev, buf + pos, rowsize)) {
2075 			if (!skip) {
2076 				drm_printf(m, "*\n");
2077 				skip = true;
2078 			}
2079 			continue;
2080 		}
2081 
2082 		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
2083 						rowsize, sizeof(u32),
2084 						line, sizeof(line),
2085 						false) >= sizeof(line));
2086 		drm_printf(m, "[%04zx] %s\n", pos, line);
2087 
2088 		prev = buf + pos;
2089 		skip = false;
2090 	}
2091 }
2092 
2093 static const char *repr_timer(const struct timer_list *t)
2094 {
2095 	if (!READ_ONCE(t->expires))
2096 		return "inactive";
2097 
2098 	if (timer_pending(t))
2099 		return "active";
2100 
2101 	return "expired";
2102 }
2103 
2104 static void intel_engine_print_registers(struct intel_engine_cs *engine,
2105 					 struct drm_printer *m)
2106 {
2107 	struct drm_i915_private *i915 = engine->i915;
2108 	struct intel_engine_execlists * const execlists = &engine->execlists;
2109 	u64 addr;
2110 
2111 	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7))
2112 		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
2113 	if (HAS_EXECLISTS(i915)) {
2114 		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
2115 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
2116 		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
2117 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
2118 	}
2119 	drm_printf(m, "\tRING_START: 0x%08x\n",
2120 		   ENGINE_READ(engine, RING_START));
2121 	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
2122 		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
2123 	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
2124 		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
2125 	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
2126 		   ENGINE_READ(engine, RING_CTL),
2127 		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
2128 	if (GRAPHICS_VER(engine->i915) > 2) {
2129 		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
2130 			   ENGINE_READ(engine, RING_MI_MODE),
2131 			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
2132 	}
2133 
2134 	if (GRAPHICS_VER(i915) >= 6) {
2135 		drm_printf(m, "\tRING_IMR:   0x%08x\n",
2136 			   ENGINE_READ(engine, RING_IMR));
2137 		drm_printf(m, "\tRING_ESR:   0x%08x\n",
2138 			   ENGINE_READ(engine, RING_ESR));
2139 		drm_printf(m, "\tRING_EMR:   0x%08x\n",
2140 			   ENGINE_READ(engine, RING_EMR));
2141 		drm_printf(m, "\tRING_EIR:   0x%08x\n",
2142 			   ENGINE_READ(engine, RING_EIR));
2143 	}
2144 
2145 	addr = intel_engine_get_active_head(engine);
2146 	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
2147 		   upper_32_bits(addr), lower_32_bits(addr));
2148 	addr = intel_engine_get_last_batch_head(engine);
2149 	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
2150 		   upper_32_bits(addr), lower_32_bits(addr));
2151 	if (GRAPHICS_VER(i915) >= 8)
2152 		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
2153 	else if (GRAPHICS_VER(i915) >= 4)
2154 		addr = ENGINE_READ(engine, RING_DMA_FADD);
2155 	else
2156 		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
2157 	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
2158 		   upper_32_bits(addr), lower_32_bits(addr));
2159 	if (GRAPHICS_VER(i915) >= 4) {
2160 		drm_printf(m, "\tIPEIR: 0x%08x\n",
2161 			   ENGINE_READ(engine, RING_IPEIR));
2162 		drm_printf(m, "\tIPEHR: 0x%08x\n",
2163 			   ENGINE_READ(engine, RING_IPEHR));
2164 	} else {
2165 		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
2166 		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
2167 	}
2168 
2169 	if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) {
2170 		struct i915_request * const *port, *rq;
2171 		const u32 *hws =
2172 			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2173 		const u8 num_entries = execlists->csb_size;
2174 		unsigned int idx;
2175 		u8 read, write;
2176 
2177 		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
2178 			   str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
2179 			   str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
2180 			   repr_timer(&engine->execlists.preempt),
2181 			   repr_timer(&engine->execlists.timer));
2182 
2183 		read = execlists->csb_head;
2184 		write = READ_ONCE(*execlists->csb_write);
2185 
2186 		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
2187 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
2188 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
2189 			   read, write, num_entries);
2190 
2191 		if (read >= num_entries)
2192 			read = 0;
2193 		if (write >= num_entries)
2194 			write = 0;
2195 		if (read > write)
2196 			write += num_entries;
2197 		while (read < write) {
2198 			idx = ++read % num_entries;
2199 			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
2200 				   idx, hws[idx * 2], hws[idx * 2 + 1]);
2201 		}
2202 
2203 		i915_sched_engine_active_lock_bh(engine->sched_engine);
2204 		rcu_read_lock();
2205 		for (port = execlists->active; (rq = *port); port++) {
2206 			char hdr[160];
2207 			int len;
2208 
2209 			len = scnprintf(hdr, sizeof(hdr),
2210 					"\t\tActive[%d]:  ccid:%08x%s%s, ",
2211 					(int)(port - execlists->active),
2212 					rq->context->lrc.ccid,
2213 					intel_context_is_closed(rq->context) ? "!" : "",
2214 					intel_context_is_banned(rq->context) ? "*" : "");
2215 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2216 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2217 			i915_request_show(m, rq, hdr, 0);
2218 		}
2219 		for (port = execlists->pending; (rq = *port); port++) {
2220 			char hdr[160];
2221 			int len;
2222 
2223 			len = scnprintf(hdr, sizeof(hdr),
2224 					"\t\tPending[%d]: ccid:%08x%s%s, ",
2225 					(int)(port - execlists->pending),
2226 					rq->context->lrc.ccid,
2227 					intel_context_is_closed(rq->context) ? "!" : "",
2228 					intel_context_is_banned(rq->context) ? "*" : "");
2229 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2230 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2231 			i915_request_show(m, rq, hdr, 0);
2232 		}
2233 		rcu_read_unlock();
2234 		i915_sched_engine_active_unlock_bh(engine->sched_engine);
2235 	} else if (GRAPHICS_VER(i915) > 6) {
2236 		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
2237 			   ENGINE_READ(engine, RING_PP_DIR_BASE));
2238 		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
2239 			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
2240 		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
2241 			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
2242 	}
2243 }
2244 
2245 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
2246 {
2247 	struct i915_vma_resource *vma_res = rq->batch_res;
2248 	void *ring;
2249 	int size;
2250 
2251 	drm_printf(m,
2252 		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
2253 		   rq->head, rq->postfix, rq->tail,
2254 		   vma_res ? upper_32_bits(vma_res->start) : ~0u,
2255 		   vma_res ? lower_32_bits(vma_res->start) : ~0u);
2256 
2257 	size = rq->tail - rq->head;
2258 	if (rq->tail < rq->head)
2259 		size += rq->ring->size;
2260 
2261 	ring = kmalloc(size, GFP_ATOMIC);
2262 	if (ring) {
2263 		const void *vaddr = rq->ring->vaddr;
2264 		unsigned int head = rq->head;
2265 		unsigned int len = 0;
2266 
2267 		if (rq->tail < head) {
2268 			len = rq->ring->size - head;
2269 			memcpy(ring, vaddr + head, len);
2270 			head = 0;
2271 		}
2272 		memcpy(ring + len, vaddr + head, size - len);
2273 
2274 		hexdump(m, ring, size);
2275 		kfree(ring);
2276 	}
2277 }
2278 
2279 static unsigned long read_ul(void *p, size_t x)
2280 {
2281 	return *(unsigned long *)(p + x);
2282 }
2283 
2284 static void print_properties(struct intel_engine_cs *engine,
2285 			     struct drm_printer *m)
2286 {
2287 	static const struct pmap {
2288 		size_t offset;
2289 		const char *name;
2290 	} props[] = {
2291 #define P(x) { \
2292 	.offset = offsetof(typeof(engine->props), x), \
2293 	.name = #x \
2294 }
2295 		P(heartbeat_interval_ms),
2296 		P(max_busywait_duration_ns),
2297 		P(preempt_timeout_ms),
2298 		P(stop_timeout_ms),
2299 		P(timeslice_duration_ms),
2300 
2301 		{},
2302 #undef P
2303 	};
2304 	const struct pmap *p;
2305 
2306 	drm_printf(m, "\tProperties:\n");
2307 	for (p = props; p->name; p++)
2308 		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2309 			   p->name,
2310 			   read_ul(&engine->props, p->offset),
2311 			   read_ul(&engine->defaults, p->offset));
2312 }
2313 
2314 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2315 {
2316 	struct intel_timeline *tl = get_timeline(rq);
2317 
2318 	i915_request_show(m, rq, msg, 0);
2319 
2320 	drm_printf(m, "\t\tring->start:  0x%08x\n",
2321 		   i915_ggtt_offset(rq->ring->vma));
2322 	drm_printf(m, "\t\tring->head:   0x%08x\n",
2323 		   rq->ring->head);
2324 	drm_printf(m, "\t\tring->tail:   0x%08x\n",
2325 		   rq->ring->tail);
2326 	drm_printf(m, "\t\tring->emit:   0x%08x\n",
2327 		   rq->ring->emit);
2328 	drm_printf(m, "\t\tring->space:  0x%08x\n",
2329 		   rq->ring->space);
2330 
2331 	if (tl) {
2332 		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
2333 			   tl->hwsp_offset);
2334 		intel_timeline_put(tl);
2335 	}
2336 
2337 	print_request_ring(m, rq);
2338 
2339 	if (rq->context->lrc_reg_state) {
2340 		drm_printf(m, "Logical Ring Context:\n");
2341 		hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2342 	}
2343 }
2344 
2345 void intel_engine_dump_active_requests(struct list_head *requests,
2346 				       struct i915_request *hung_rq,
2347 				       struct drm_printer *m)
2348 {
2349 	struct i915_request *rq;
2350 	const char *msg;
2351 	enum i915_request_state state;
2352 
2353 	list_for_each_entry(rq, requests, sched.link) {
2354 		if (rq == hung_rq)
2355 			continue;
2356 
2357 		state = i915_test_request_state(rq);
2358 		if (state < I915_REQUEST_QUEUED)
2359 			continue;
2360 
2361 		if (state == I915_REQUEST_ACTIVE)
2362 			msg = "\t\tactive on engine";
2363 		else
2364 			msg = "\t\tactive in queue";
2365 
2366 		engine_dump_request(rq, m, msg);
2367 	}
2368 }
2369 
2370 static void engine_dump_active_requests(struct intel_engine_cs *engine,
2371 					struct drm_printer *m)
2372 {
2373 	struct intel_context *hung_ce = NULL;
2374 	struct i915_request *hung_rq = NULL;
2375 
2376 	/*
2377 	 * No need for an engine->irq_seqno_barrier() before the seqno reads.
2378 	 * The GPU is still running so requests are still executing and any
2379 	 * hardware reads will be out of date by the time they are reported.
2380 	 * But the intention here is just to report an instantaneous snapshot
2381 	 * so that's fine.
2382 	 */
2383 	intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq);
2384 
2385 	drm_printf(m, "\tRequests:\n");
2386 
2387 	if (hung_rq)
2388 		engine_dump_request(hung_rq, m, "\t\thung");
2389 	else if (hung_ce)
2390 		drm_printf(m, "\t\tGot hung ce but no hung rq!\n");
2391 
2392 	if (intel_uc_uses_guc_submission(&engine->gt->uc))
2393 		intel_guc_dump_active_requests(engine, hung_rq, m);
2394 	else
2395 		intel_execlists_dump_active_requests(engine, hung_rq, m);
2396 
2397 	if (hung_rq)
2398 		i915_request_put(hung_rq);
2399 }
2400 
2401 void intel_engine_dump(struct intel_engine_cs *engine,
2402 		       struct drm_printer *m,
2403 		       const char *header, ...)
2404 {
2405 	struct i915_gpu_error * const error = &engine->i915->gpu_error;
2406 	struct i915_request *rq;
2407 	intel_wakeref_t wakeref;
2408 	ktime_t dummy;
2409 
2410 	if (header) {
2411 		va_list ap;
2412 
2413 		va_start(ap, header);
2414 		drm_vprintf(m, header, &ap);
2415 		va_end(ap);
2416 	}
2417 
2418 	if (intel_gt_is_wedged(engine->gt))
2419 		drm_printf(m, "*** WEDGED ***\n");
2420 
2421 	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2422 	drm_printf(m, "\tBarriers?: %s\n",
2423 		   str_yes_no(!llist_empty(&engine->barrier_tasks)));
2424 	drm_printf(m, "\tLatency: %luus\n",
2425 		   ewma__engine_latency_read(&engine->latency));
2426 	if (intel_engine_supports_stats(engine))
2427 		drm_printf(m, "\tRuntime: %llums\n",
2428 			   ktime_to_ms(intel_engine_get_busy_time(engine,
2429 								  &dummy)));
2430 	drm_printf(m, "\tForcewake: %x domains, %d active\n",
2431 		   engine->fw_domain, READ_ONCE(engine->fw_active));
2432 
2433 	rcu_read_lock();
2434 	rq = READ_ONCE(engine->heartbeat.systole);
2435 	if (rq)
2436 		drm_printf(m, "\tHeartbeat: %d ms ago\n",
2437 			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2438 	rcu_read_unlock();
2439 	drm_printf(m, "\tReset count: %d (global %d)\n",
2440 		   i915_reset_engine_count(error, engine),
2441 		   i915_reset_count(error));
2442 	print_properties(engine, m);
2443 
2444 	engine_dump_active_requests(engine, m);
2445 
2446 	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
2447 	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2448 	if (wakeref) {
2449 		intel_engine_print_registers(engine, m);
2450 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2451 	} else {
2452 		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2453 	}
2454 
2455 	intel_execlists_show_requests(engine, m, i915_request_show, 8);
2456 
2457 	drm_printf(m, "HWSP:\n");
2458 	hexdump(m, engine->status_page.addr, PAGE_SIZE);
2459 
2460 	drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2461 
2462 	intel_engine_print_breadcrumbs(engine, m);
2463 }
2464 
2465 /**
2466  * intel_engine_get_busy_time() - Return current accumulated engine busyness
2467  * @engine: engine to report on
2468  * @now: monotonic timestamp of sampling
2469  *
2470  * Returns accumulated time @engine was busy since engine stats were enabled.
2471  */
2472 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2473 {
2474 	return engine->busyness(engine, now);
2475 }
2476 
2477 struct intel_context *
2478 intel_engine_create_virtual(struct intel_engine_cs **siblings,
2479 			    unsigned int count, unsigned long flags)
2480 {
2481 	if (count == 0)
2482 		return ERR_PTR(-EINVAL);
2483 
2484 	if (count == 1 && !(flags & FORCE_VIRTUAL))
2485 		return intel_context_create(siblings[0]);
2486 
2487 	GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2488 	return siblings[0]->cops->create_virtual(siblings, count, flags);
2489 }
2490 
2491 static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2492 {
2493 	struct i915_request *request, *active = NULL;
2494 
2495 	/*
2496 	 * This search does not work in GuC submission mode. However, the GuC
2497 	 * will report the hanging context directly to the driver itself. So
2498 	 * the driver should never get here when in GuC mode.
2499 	 */
2500 	GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2501 
2502 	/*
2503 	 * We are called by the error capture, reset and to dump engine
2504 	 * state at random points in time. In particular, note that neither is
2505 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
2506 	 * and we assume that no more writes can happen (we waited long enough
2507 	 * for all writes that were in transaction to be flushed) - adding an
2508 	 * extra delay for a recent interrupt is pointless. Hence, we do
2509 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2510 	 * At all other times, we must assume the GPU is still running, but
2511 	 * we only care about the snapshot of this moment.
2512 	 */
2513 	lockdep_assert_held(&engine->sched_engine->lock);
2514 
2515 	rcu_read_lock();
2516 	request = execlists_active(&engine->execlists);
2517 	if (request) {
2518 		struct intel_timeline *tl = request->context->timeline;
2519 
2520 		list_for_each_entry_from_reverse(request, &tl->requests, link) {
2521 			if (__i915_request_is_complete(request))
2522 				break;
2523 
2524 			active = request;
2525 		}
2526 	}
2527 	rcu_read_unlock();
2528 	if (active)
2529 		return active;
2530 
2531 	list_for_each_entry(request, &engine->sched_engine->requests,
2532 			    sched.link) {
2533 		if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2534 			continue;
2535 
2536 		active = request;
2537 		break;
2538 	}
2539 
2540 	return active;
2541 }
2542 
2543 void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
2544 				  struct intel_context **ce, struct i915_request **rq)
2545 {
2546 	unsigned long flags;
2547 
2548 	*ce = intel_engine_get_hung_context(engine);
2549 	if (*ce) {
2550 		intel_engine_clear_hung_context(engine);
2551 
2552 		*rq = intel_context_get_active_request(*ce);
2553 		return;
2554 	}
2555 
2556 	/*
2557 	 * Getting here with GuC enabled means it is a forced error capture
2558 	 * with no actual hang. So, no need to attempt the execlist search.
2559 	 */
2560 	if (intel_uc_uses_guc_submission(&engine->gt->uc))
2561 		return;
2562 
2563 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
2564 	*rq = engine_execlist_find_hung_request(engine);
2565 	if (*rq)
2566 		*rq = i915_request_get_rcu(*rq);
2567 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2568 }
2569 
2570 void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2571 {
2572 	/*
2573 	 * If there are any non-fused-off CCS engines, we need to enable CCS
2574 	 * support in the RCU_MODE register.  This only needs to be done once,
2575 	 * so for simplicity we'll take care of this in the RCS engine's
2576 	 * resume handler; since the RCS and all CCS engines belong to the
2577 	 * same reset domain and are reset together, this will also take care
2578 	 * of re-applying the setting after i915-triggered resets.
2579 	 */
2580 	if (!CCS_MASK(engine->gt))
2581 		return;
2582 
2583 	intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2584 			   _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2585 }
2586 
2587 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2588 #include "mock_engine.c"
2589 #include "selftest_engine.c"
2590 #include "selftest_engine_cs.c"
2591 #endif
2592