xref: /linux/drivers/gpu/drm/i915/gt/intel_engine_cs.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <drm/drm_print.h>
26 
27 #include "gem/i915_gem_context.h"
28 
29 #include "i915_drv.h"
30 
31 #include "intel_context.h"
32 #include "intel_engine.h"
33 #include "intel_engine_pm.h"
34 #include "intel_engine_pool.h"
35 #include "intel_engine_user.h"
36 #include "intel_gt.h"
37 #include "intel_gt_requests.h"
38 #include "intel_gt_pm.h"
39 #include "intel_lrc.h"
40 #include "intel_reset.h"
41 #include "intel_ring.h"
42 
43 /* Haswell does have the CXT_SIZE register however it does not appear to be
44  * valid. Now, docs explain in dwords what is in the context object. The full
45  * size is 70720 bytes, however, the power context and execlist context will
46  * never be saved (power context is stored elsewhere, and execlists don't work
47  * on HSW) - so the final size, including the extra state required for the
48  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
49  */
50 #define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)
51 
52 #define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
53 #define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
54 #define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
55 #define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
56 #define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
57 
58 #define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)
59 
60 #define MAX_MMIO_BASES 3
61 struct engine_info {
62 	unsigned int hw_id;
63 	u8 class;
64 	u8 instance;
65 	/* mmio bases table *must* be sorted in reverse gen order */
66 	struct engine_mmio_base {
67 		u32 gen : 8;
68 		u32 base : 24;
69 	} mmio_bases[MAX_MMIO_BASES];
70 };
71 
72 static const struct engine_info intel_engines[] = {
73 	[RCS0] = {
74 		.hw_id = RCS0_HW,
75 		.class = RENDER_CLASS,
76 		.instance = 0,
77 		.mmio_bases = {
78 			{ .gen = 1, .base = RENDER_RING_BASE }
79 		},
80 	},
81 	[BCS0] = {
82 		.hw_id = BCS0_HW,
83 		.class = COPY_ENGINE_CLASS,
84 		.instance = 0,
85 		.mmio_bases = {
86 			{ .gen = 6, .base = BLT_RING_BASE }
87 		},
88 	},
89 	[VCS0] = {
90 		.hw_id = VCS0_HW,
91 		.class = VIDEO_DECODE_CLASS,
92 		.instance = 0,
93 		.mmio_bases = {
94 			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
95 			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
96 			{ .gen = 4, .base = BSD_RING_BASE }
97 		},
98 	},
99 	[VCS1] = {
100 		.hw_id = VCS1_HW,
101 		.class = VIDEO_DECODE_CLASS,
102 		.instance = 1,
103 		.mmio_bases = {
104 			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
105 			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
106 		},
107 	},
108 	[VCS2] = {
109 		.hw_id = VCS2_HW,
110 		.class = VIDEO_DECODE_CLASS,
111 		.instance = 2,
112 		.mmio_bases = {
113 			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
114 		},
115 	},
116 	[VCS3] = {
117 		.hw_id = VCS3_HW,
118 		.class = VIDEO_DECODE_CLASS,
119 		.instance = 3,
120 		.mmio_bases = {
121 			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
122 		},
123 	},
124 	[VECS0] = {
125 		.hw_id = VECS0_HW,
126 		.class = VIDEO_ENHANCEMENT_CLASS,
127 		.instance = 0,
128 		.mmio_bases = {
129 			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
130 			{ .gen = 7, .base = VEBOX_RING_BASE }
131 		},
132 	},
133 	[VECS1] = {
134 		.hw_id = VECS1_HW,
135 		.class = VIDEO_ENHANCEMENT_CLASS,
136 		.instance = 1,
137 		.mmio_bases = {
138 			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
139 		},
140 	},
141 };
142 
143 /**
144  * intel_engine_context_size() - return the size of the context for an engine
145  * @gt: the gt
146  * @class: engine class
147  *
148  * Each engine class may require a different amount of space for a context
149  * image.
150  *
151  * Return: size (in bytes) of an engine class specific context image
152  *
153  * Note: this size includes the HWSP, which is part of the context image
154  * in LRC mode, but does not include the "shared data page" used with
155  * GuC submission. The caller should account for this if using the GuC.
156  */
157 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
158 {
159 	struct intel_uncore *uncore = gt->uncore;
160 	u32 cxt_size;
161 
162 	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
163 
164 	switch (class) {
165 	case RENDER_CLASS:
166 		switch (INTEL_GEN(gt->i915)) {
167 		default:
168 			MISSING_CASE(INTEL_GEN(gt->i915));
169 			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
170 		case 12:
171 		case 11:
172 			return GEN11_LR_CONTEXT_RENDER_SIZE;
173 		case 10:
174 			return GEN10_LR_CONTEXT_RENDER_SIZE;
175 		case 9:
176 			return GEN9_LR_CONTEXT_RENDER_SIZE;
177 		case 8:
178 			return GEN8_LR_CONTEXT_RENDER_SIZE;
179 		case 7:
180 			if (IS_HASWELL(gt->i915))
181 				return HSW_CXT_TOTAL_SIZE;
182 
183 			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
184 			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
185 					PAGE_SIZE);
186 		case 6:
187 			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
188 			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
189 					PAGE_SIZE);
190 		case 5:
191 		case 4:
192 			/*
193 			 * There is a discrepancy here between the size reported
194 			 * by the register and the size of the context layout
195 			 * in the docs. Both are described as authorative!
196 			 *
197 			 * The discrepancy is on the order of a few cachelines,
198 			 * but the total is under one page (4k), which is our
199 			 * minimum allocation anyway so it should all come
200 			 * out in the wash.
201 			 */
202 			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
203 			drm_dbg(&gt->i915->drm,
204 				"gen%d CXT_SIZE = %d bytes [0x%08x]\n",
205 				INTEL_GEN(gt->i915), cxt_size * 64,
206 				cxt_size - 1);
207 			return round_up(cxt_size * 64, PAGE_SIZE);
208 		case 3:
209 		case 2:
210 		/* For the special day when i810 gets merged. */
211 		case 1:
212 			return 0;
213 		}
214 		break;
215 	default:
216 		MISSING_CASE(class);
217 		/* fall through */
218 	case VIDEO_DECODE_CLASS:
219 	case VIDEO_ENHANCEMENT_CLASS:
220 	case COPY_ENGINE_CLASS:
221 		if (INTEL_GEN(gt->i915) < 8)
222 			return 0;
223 		return GEN8_LR_CONTEXT_OTHER_SIZE;
224 	}
225 }
226 
227 static u32 __engine_mmio_base(struct drm_i915_private *i915,
228 			      const struct engine_mmio_base *bases)
229 {
230 	int i;
231 
232 	for (i = 0; i < MAX_MMIO_BASES; i++)
233 		if (INTEL_GEN(i915) >= bases[i].gen)
234 			break;
235 
236 	GEM_BUG_ON(i == MAX_MMIO_BASES);
237 	GEM_BUG_ON(!bases[i].base);
238 
239 	return bases[i].base;
240 }
241 
242 static void __sprint_engine_name(struct intel_engine_cs *engine)
243 {
244 	/*
245 	 * Before we know what the uABI name for this engine will be,
246 	 * we still would like to keep track of this engine in the debug logs.
247 	 * We throw in a ' here as a reminder that this isn't its final name.
248 	 */
249 	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
250 			     intel_engine_class_repr(engine->class),
251 			     engine->instance) >= sizeof(engine->name));
252 }
253 
254 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
255 {
256 	/*
257 	 * Though they added more rings on g4x/ilk, they did not add
258 	 * per-engine HWSTAM until gen6.
259 	 */
260 	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
261 		return;
262 
263 	if (INTEL_GEN(engine->i915) >= 3)
264 		ENGINE_WRITE(engine, RING_HWSTAM, mask);
265 	else
266 		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
267 }
268 
269 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
270 {
271 	/* Mask off all writes into the unknown HWSP */
272 	intel_engine_set_hwsp_writemask(engine, ~0u);
273 }
274 
275 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
276 {
277 	const struct engine_info *info = &intel_engines[id];
278 	struct intel_engine_cs *engine;
279 
280 	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
281 	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
282 
283 	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
284 		return -EINVAL;
285 
286 	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
287 		return -EINVAL;
288 
289 	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
290 		return -EINVAL;
291 
292 	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
293 		return -EINVAL;
294 
295 	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
296 	if (!engine)
297 		return -ENOMEM;
298 
299 	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
300 
301 	engine->id = id;
302 	engine->legacy_idx = INVALID_ENGINE;
303 	engine->mask = BIT(id);
304 	engine->i915 = gt->i915;
305 	engine->gt = gt;
306 	engine->uncore = gt->uncore;
307 	engine->hw_id = engine->guc_id = info->hw_id;
308 	engine->mmio_base = __engine_mmio_base(gt->i915, info->mmio_bases);
309 
310 	engine->class = info->class;
311 	engine->instance = info->instance;
312 	__sprint_engine_name(engine);
313 
314 	engine->props.heartbeat_interval_ms =
315 		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
316 	engine->props.preempt_timeout_ms =
317 		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
318 	engine->props.stop_timeout_ms =
319 		CONFIG_DRM_I915_STOP_TIMEOUT;
320 	engine->props.timeslice_duration_ms =
321 		CONFIG_DRM_I915_TIMESLICE_DURATION;
322 
323 	engine->context_size = intel_engine_context_size(gt, engine->class);
324 	if (WARN_ON(engine->context_size > BIT(20)))
325 		engine->context_size = 0;
326 	if (engine->context_size)
327 		DRIVER_CAPS(gt->i915)->has_logical_contexts = true;
328 
329 	/* Nothing to do here, execute in order of dependencies */
330 	engine->schedule = NULL;
331 
332 	ewma__engine_latency_init(&engine->latency);
333 	seqlock_init(&engine->stats.lock);
334 
335 	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
336 
337 	/* Scrub mmio state on takeover */
338 	intel_engine_sanitize_mmio(engine);
339 
340 	gt->engine_class[info->class][info->instance] = engine;
341 	gt->engine[id] = engine;
342 
343 	gt->i915->engine[id] = engine;
344 
345 	return 0;
346 }
347 
348 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
349 {
350 	struct drm_i915_private *i915 = engine->i915;
351 
352 	if (engine->class == VIDEO_DECODE_CLASS) {
353 		/*
354 		 * HEVC support is present on first engine instance
355 		 * before Gen11 and on all instances afterwards.
356 		 */
357 		if (INTEL_GEN(i915) >= 11 ||
358 		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
359 			engine->uabi_capabilities |=
360 				I915_VIDEO_CLASS_CAPABILITY_HEVC;
361 
362 		/*
363 		 * SFC block is present only on even logical engine
364 		 * instances.
365 		 */
366 		if ((INTEL_GEN(i915) >= 11 &&
367 		     RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) ||
368 		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
369 			engine->uabi_capabilities |=
370 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
371 	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
372 		if (INTEL_GEN(i915) >= 9)
373 			engine->uabi_capabilities |=
374 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
375 	}
376 }
377 
378 static void intel_setup_engine_capabilities(struct intel_gt *gt)
379 {
380 	struct intel_engine_cs *engine;
381 	enum intel_engine_id id;
382 
383 	for_each_engine(engine, gt, id)
384 		__setup_engine_capabilities(engine);
385 }
386 
387 /**
388  * intel_engines_release() - free the resources allocated for Command Streamers
389  * @gt: pointer to struct intel_gt
390  */
391 void intel_engines_release(struct intel_gt *gt)
392 {
393 	struct intel_engine_cs *engine;
394 	enum intel_engine_id id;
395 
396 	/*
397 	 * Before we release the resources held by engine, we must be certain
398 	 * that the HW is no longer accessing them -- having the GPU scribble
399 	 * to or read from a page being used for something else causes no end
400 	 * of fun.
401 	 *
402 	 * The GPU should be reset by this point, but assume the worst just
403 	 * in case we aborted before completely initialising the engines.
404 	 */
405 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
406 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
407 		__intel_gt_reset(gt, ALL_ENGINES);
408 
409 	/* Decouple the backend; but keep the layout for late GPU resets */
410 	for_each_engine(engine, gt, id) {
411 		intel_wakeref_wait_for_idle(&engine->wakeref);
412 		GEM_BUG_ON(intel_engine_pm_is_awake(engine));
413 
414 		if (!engine->release)
415 			continue;
416 
417 		engine->release(engine);
418 		engine->release = NULL;
419 
420 		memset(&engine->reset, 0, sizeof(engine->reset));
421 
422 		gt->i915->engine[id] = NULL;
423 	}
424 }
425 
426 void intel_engines_free(struct intel_gt *gt)
427 {
428 	struct intel_engine_cs *engine;
429 	enum intel_engine_id id;
430 
431 	for_each_engine(engine, gt, id) {
432 		kfree(engine);
433 		gt->engine[id] = NULL;
434 	}
435 }
436 
437 /**
438  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
439  * @gt: pointer to struct intel_gt
440  *
441  * Return: non-zero if the initialization failed.
442  */
443 int intel_engines_init_mmio(struct intel_gt *gt)
444 {
445 	struct drm_i915_private *i915 = gt->i915;
446 	struct intel_device_info *device_info = mkwrite_device_info(i915);
447 	const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
448 	unsigned int mask = 0;
449 	unsigned int i;
450 	int err;
451 
452 	drm_WARN_ON(&i915->drm, engine_mask == 0);
453 	drm_WARN_ON(&i915->drm, engine_mask &
454 		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
455 
456 	if (i915_inject_probe_failure(i915))
457 		return -ENODEV;
458 
459 	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
460 		if (!HAS_ENGINE(i915, i))
461 			continue;
462 
463 		err = intel_engine_setup(gt, i);
464 		if (err)
465 			goto cleanup;
466 
467 		mask |= BIT(i);
468 	}
469 
470 	/*
471 	 * Catch failures to update intel_engines table when the new engines
472 	 * are added to the driver by a warning and disabling the forgotten
473 	 * engines.
474 	 */
475 	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
476 		device_info->engine_mask = mask;
477 
478 	RUNTIME_INFO(i915)->num_engines = hweight32(mask);
479 
480 	intel_gt_check_and_clear_faults(gt);
481 
482 	intel_setup_engine_capabilities(gt);
483 
484 	return 0;
485 
486 cleanup:
487 	intel_engines_free(gt);
488 	return err;
489 }
490 
491 void intel_engine_init_execlists(struct intel_engine_cs *engine)
492 {
493 	struct intel_engine_execlists * const execlists = &engine->execlists;
494 
495 	execlists->port_mask = 1;
496 	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
497 	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
498 
499 	memset(execlists->pending, 0, sizeof(execlists->pending));
500 	execlists->active =
501 		memset(execlists->inflight, 0, sizeof(execlists->inflight));
502 
503 	execlists->queue_priority_hint = INT_MIN;
504 	execlists->queue = RB_ROOT_CACHED;
505 }
506 
507 static void cleanup_status_page(struct intel_engine_cs *engine)
508 {
509 	struct i915_vma *vma;
510 
511 	/* Prevent writes into HWSP after returning the page to the system */
512 	intel_engine_set_hwsp_writemask(engine, ~0u);
513 
514 	vma = fetch_and_zero(&engine->status_page.vma);
515 	if (!vma)
516 		return;
517 
518 	if (!HWS_NEEDS_PHYSICAL(engine->i915))
519 		i915_vma_unpin(vma);
520 
521 	i915_gem_object_unpin_map(vma->obj);
522 	i915_gem_object_put(vma->obj);
523 }
524 
525 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
526 				struct i915_vma *vma)
527 {
528 	unsigned int flags;
529 
530 	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
531 		/*
532 		 * On g33, we cannot place HWS above 256MiB, so
533 		 * restrict its pinning to the low mappable arena.
534 		 * Though this restriction is not documented for
535 		 * gen4, gen5, or byt, they also behave similarly
536 		 * and hang if the HWS is placed at the top of the
537 		 * GTT. To generalise, it appears that all !llc
538 		 * platforms have issues with us placing the HWS
539 		 * above the mappable region (even though we never
540 		 * actually map it).
541 		 */
542 		flags = PIN_MAPPABLE;
543 	else
544 		flags = PIN_HIGH;
545 
546 	return i915_ggtt_pin(vma, 0, flags);
547 }
548 
549 static int init_status_page(struct intel_engine_cs *engine)
550 {
551 	struct drm_i915_gem_object *obj;
552 	struct i915_vma *vma;
553 	void *vaddr;
554 	int ret;
555 
556 	/*
557 	 * Though the HWS register does support 36bit addresses, historically
558 	 * we have had hangs and corruption reported due to wild writes if
559 	 * the HWS is placed above 4G. We only allow objects to be allocated
560 	 * in GFP_DMA32 for i965, and no earlier physical address users had
561 	 * access to more than 4G.
562 	 */
563 	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
564 	if (IS_ERR(obj)) {
565 		drm_err(&engine->i915->drm,
566 			"Failed to allocate status page\n");
567 		return PTR_ERR(obj);
568 	}
569 
570 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
571 
572 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
573 	if (IS_ERR(vma)) {
574 		ret = PTR_ERR(vma);
575 		goto err;
576 	}
577 
578 	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
579 	if (IS_ERR(vaddr)) {
580 		ret = PTR_ERR(vaddr);
581 		goto err;
582 	}
583 
584 	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
585 	engine->status_page.vma = vma;
586 
587 	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
588 		ret = pin_ggtt_status_page(engine, vma);
589 		if (ret)
590 			goto err_unpin;
591 	}
592 
593 	return 0;
594 
595 err_unpin:
596 	i915_gem_object_unpin_map(obj);
597 err:
598 	i915_gem_object_put(obj);
599 	return ret;
600 }
601 
602 static int engine_setup_common(struct intel_engine_cs *engine)
603 {
604 	int err;
605 
606 	init_llist_head(&engine->barrier_tasks);
607 
608 	err = init_status_page(engine);
609 	if (err)
610 		return err;
611 
612 	intel_engine_init_active(engine, ENGINE_PHYSICAL);
613 	intel_engine_init_breadcrumbs(engine);
614 	intel_engine_init_execlists(engine);
615 	intel_engine_init_cmd_parser(engine);
616 	intel_engine_init__pm(engine);
617 	intel_engine_init_retire(engine);
618 
619 	intel_engine_pool_init(&engine->pool);
620 
621 	/* Use the whole device by default */
622 	engine->sseu =
623 		intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);
624 
625 	intel_engine_init_workarounds(engine);
626 	intel_engine_init_whitelist(engine);
627 	intel_engine_init_ctx_wa(engine);
628 
629 	return 0;
630 }
631 
632 struct measure_breadcrumb {
633 	struct i915_request rq;
634 	struct intel_ring ring;
635 	u32 cs[1024];
636 };
637 
638 static int measure_breadcrumb_dw(struct intel_context *ce)
639 {
640 	struct intel_engine_cs *engine = ce->engine;
641 	struct measure_breadcrumb *frame;
642 	int dw;
643 
644 	GEM_BUG_ON(!engine->gt->scratch);
645 
646 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
647 	if (!frame)
648 		return -ENOMEM;
649 
650 	frame->rq.i915 = engine->i915;
651 	frame->rq.engine = engine;
652 	frame->rq.context = ce;
653 	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
654 
655 	frame->ring.vaddr = frame->cs;
656 	frame->ring.size = sizeof(frame->cs);
657 	frame->ring.effective_size = frame->ring.size;
658 	intel_ring_update_space(&frame->ring);
659 	frame->rq.ring = &frame->ring;
660 
661 	mutex_lock(&ce->timeline->mutex);
662 	spin_lock_irq(&engine->active.lock);
663 
664 	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
665 
666 	spin_unlock_irq(&engine->active.lock);
667 	mutex_unlock(&ce->timeline->mutex);
668 
669 	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
670 
671 	kfree(frame);
672 	return dw;
673 }
674 
675 void
676 intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
677 {
678 	INIT_LIST_HEAD(&engine->active.requests);
679 	INIT_LIST_HEAD(&engine->active.hold);
680 
681 	spin_lock_init(&engine->active.lock);
682 	lockdep_set_subclass(&engine->active.lock, subclass);
683 
684 	/*
685 	 * Due to an interesting quirk in lockdep's internal debug tracking,
686 	 * after setting a subclass we must ensure the lock is used. Otherwise,
687 	 * nr_unused_locks is incremented once too often.
688 	 */
689 #ifdef CONFIG_DEBUG_LOCK_ALLOC
690 	local_irq_disable();
691 	lock_map_acquire(&engine->active.lock.dep_map);
692 	lock_map_release(&engine->active.lock.dep_map);
693 	local_irq_enable();
694 #endif
695 }
696 
697 static struct intel_context *
698 create_kernel_context(struct intel_engine_cs *engine)
699 {
700 	static struct lock_class_key kernel;
701 	struct intel_context *ce;
702 	int err;
703 
704 	ce = intel_context_create(engine);
705 	if (IS_ERR(ce))
706 		return ce;
707 
708 	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
709 
710 	err = intel_context_pin(ce); /* perma-pin so it is always available */
711 	if (err) {
712 		intel_context_put(ce);
713 		return ERR_PTR(err);
714 	}
715 
716 	/*
717 	 * Give our perma-pinned kernel timelines a separate lockdep class,
718 	 * so that we can use them from within the normal user timelines
719 	 * should we need to inject GPU operations during their request
720 	 * construction.
721 	 */
722 	lockdep_set_class(&ce->timeline->mutex, &kernel);
723 
724 	return ce;
725 }
726 
727 /**
728  * intel_engines_init_common - initialize cengine state which might require hw access
729  * @engine: Engine to initialize.
730  *
731  * Initializes @engine@ structure members shared between legacy and execlists
732  * submission modes which do require hardware access.
733  *
734  * Typcally done at later stages of submission mode specific engine setup.
735  *
736  * Returns zero on success or an error code on failure.
737  */
738 static int engine_init_common(struct intel_engine_cs *engine)
739 {
740 	struct intel_context *ce;
741 	int ret;
742 
743 	engine->set_default_submission(engine);
744 
745 	/*
746 	 * We may need to do things with the shrinker which
747 	 * require us to immediately switch back to the default
748 	 * context. This can cause a problem as pinning the
749 	 * default context also requires GTT space which may not
750 	 * be available. To avoid this we always pin the default
751 	 * context.
752 	 */
753 	ce = create_kernel_context(engine);
754 	if (IS_ERR(ce))
755 		return PTR_ERR(ce);
756 
757 	ret = measure_breadcrumb_dw(ce);
758 	if (ret < 0)
759 		goto err_context;
760 
761 	engine->emit_fini_breadcrumb_dw = ret;
762 	engine->kernel_context = ce;
763 
764 	return 0;
765 
766 err_context:
767 	intel_context_put(ce);
768 	return ret;
769 }
770 
771 int intel_engines_init(struct intel_gt *gt)
772 {
773 	int (*setup)(struct intel_engine_cs *engine);
774 	struct intel_engine_cs *engine;
775 	enum intel_engine_id id;
776 	int err;
777 
778 	if (HAS_EXECLISTS(gt->i915))
779 		setup = intel_execlists_submission_setup;
780 	else
781 		setup = intel_ring_submission_setup;
782 
783 	for_each_engine(engine, gt, id) {
784 		err = engine_setup_common(engine);
785 		if (err)
786 			return err;
787 
788 		err = setup(engine);
789 		if (err)
790 			return err;
791 
792 		err = engine_init_common(engine);
793 		if (err)
794 			return err;
795 
796 		intel_engine_add_user(engine);
797 	}
798 
799 	return 0;
800 }
801 
802 /**
803  * intel_engines_cleanup_common - cleans up the engine state created by
804  *                                the common initiailizers.
805  * @engine: Engine to cleanup.
806  *
807  * This cleans up everything created by the common helpers.
808  */
809 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
810 {
811 	GEM_BUG_ON(!list_empty(&engine->active.requests));
812 	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
813 
814 	cleanup_status_page(engine);
815 
816 	intel_engine_fini_retire(engine);
817 	intel_engine_pool_fini(&engine->pool);
818 	intel_engine_fini_breadcrumbs(engine);
819 	intel_engine_cleanup_cmd_parser(engine);
820 
821 	if (engine->default_state)
822 		i915_gem_object_put(engine->default_state);
823 
824 	if (engine->kernel_context) {
825 		intel_context_unpin(engine->kernel_context);
826 		intel_context_put(engine->kernel_context);
827 	}
828 	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
829 
830 	intel_wa_list_free(&engine->ctx_wa_list);
831 	intel_wa_list_free(&engine->wa_list);
832 	intel_wa_list_free(&engine->whitelist);
833 }
834 
835 /**
836  * intel_engine_resume - re-initializes the HW state of the engine
837  * @engine: Engine to resume.
838  *
839  * Returns zero on success or an error code on failure.
840  */
841 int intel_engine_resume(struct intel_engine_cs *engine)
842 {
843 	intel_engine_apply_workarounds(engine);
844 	intel_engine_apply_whitelist(engine);
845 
846 	return engine->resume(engine);
847 }
848 
849 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
850 {
851 	struct drm_i915_private *i915 = engine->i915;
852 
853 	u64 acthd;
854 
855 	if (INTEL_GEN(i915) >= 8)
856 		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
857 	else if (INTEL_GEN(i915) >= 4)
858 		acthd = ENGINE_READ(engine, RING_ACTHD);
859 	else
860 		acthd = ENGINE_READ(engine, ACTHD);
861 
862 	return acthd;
863 }
864 
865 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
866 {
867 	u64 bbaddr;
868 
869 	if (INTEL_GEN(engine->i915) >= 8)
870 		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
871 	else
872 		bbaddr = ENGINE_READ(engine, RING_BBADDR);
873 
874 	return bbaddr;
875 }
876 
877 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
878 {
879 	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
880 		return 0;
881 
882 	/*
883 	 * If we are doing a normal GPU reset, we can take our time and allow
884 	 * the engine to quiesce. We've stopped submission to the engine, and
885 	 * if we wait long enough an innocent context should complete and
886 	 * leave the engine idle. So they should not be caught unaware by
887 	 * the forthcoming GPU reset (which usually follows the stop_cs)!
888 	 */
889 	return READ_ONCE(engine->props.stop_timeout_ms);
890 }
891 
892 int intel_engine_stop_cs(struct intel_engine_cs *engine)
893 {
894 	struct intel_uncore *uncore = engine->uncore;
895 	const u32 base = engine->mmio_base;
896 	const i915_reg_t mode = RING_MI_MODE(base);
897 	int err;
898 
899 	if (INTEL_GEN(engine->i915) < 3)
900 		return -ENODEV;
901 
902 	ENGINE_TRACE(engine, "\n");
903 
904 	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
905 
906 	err = 0;
907 	if (__intel_wait_for_register_fw(uncore,
908 					 mode, MODE_IDLE, MODE_IDLE,
909 					 1000, stop_timeout(engine),
910 					 NULL)) {
911 		ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
912 		err = -ETIMEDOUT;
913 	}
914 
915 	/* A final mmio read to let GPU writes be hopefully flushed to memory */
916 	intel_uncore_posting_read_fw(uncore, mode);
917 
918 	return err;
919 }
920 
921 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
922 {
923 	ENGINE_TRACE(engine, "\n");
924 
925 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
926 }
927 
928 const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
929 {
930 	switch (type) {
931 	case I915_CACHE_NONE: return " uncached";
932 	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
933 	case I915_CACHE_L3_LLC: return " L3+LLC";
934 	case I915_CACHE_WT: return " WT";
935 	default: return "";
936 	}
937 }
938 
939 static u32
940 read_subslice_reg(const struct intel_engine_cs *engine,
941 		  int slice, int subslice, i915_reg_t reg)
942 {
943 	struct drm_i915_private *i915 = engine->i915;
944 	struct intel_uncore *uncore = engine->uncore;
945 	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
946 	enum forcewake_domains fw_domains;
947 
948 	if (INTEL_GEN(i915) >= 11) {
949 		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
950 		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
951 	} else {
952 		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
953 		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
954 	}
955 
956 	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
957 						    FW_REG_READ);
958 	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
959 						     GEN8_MCR_SELECTOR,
960 						     FW_REG_READ | FW_REG_WRITE);
961 
962 	spin_lock_irq(&uncore->lock);
963 	intel_uncore_forcewake_get__locked(uncore, fw_domains);
964 
965 	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
966 
967 	mcr &= ~mcr_mask;
968 	mcr |= mcr_ss;
969 	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
970 
971 	val = intel_uncore_read_fw(uncore, reg);
972 
973 	mcr &= ~mcr_mask;
974 	mcr |= old_mcr & mcr_mask;
975 
976 	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
977 
978 	intel_uncore_forcewake_put__locked(uncore, fw_domains);
979 	spin_unlock_irq(&uncore->lock);
980 
981 	return val;
982 }
983 
984 /* NB: please notice the memset */
985 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
986 			       struct intel_instdone *instdone)
987 {
988 	struct drm_i915_private *i915 = engine->i915;
989 	const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
990 	struct intel_uncore *uncore = engine->uncore;
991 	u32 mmio_base = engine->mmio_base;
992 	int slice;
993 	int subslice;
994 
995 	memset(instdone, 0, sizeof(*instdone));
996 
997 	switch (INTEL_GEN(i915)) {
998 	default:
999 		instdone->instdone =
1000 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1001 
1002 		if (engine->id != RCS0)
1003 			break;
1004 
1005 		instdone->slice_common =
1006 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1007 		if (INTEL_GEN(i915) >= 12) {
1008 			instdone->slice_common_extra[0] =
1009 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1010 			instdone->slice_common_extra[1] =
1011 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1012 		}
1013 		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1014 			instdone->sampler[slice][subslice] =
1015 				read_subslice_reg(engine, slice, subslice,
1016 						  GEN7_SAMPLER_INSTDONE);
1017 			instdone->row[slice][subslice] =
1018 				read_subslice_reg(engine, slice, subslice,
1019 						  GEN7_ROW_INSTDONE);
1020 		}
1021 		break;
1022 	case 7:
1023 		instdone->instdone =
1024 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1025 
1026 		if (engine->id != RCS0)
1027 			break;
1028 
1029 		instdone->slice_common =
1030 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1031 		instdone->sampler[0][0] =
1032 			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1033 		instdone->row[0][0] =
1034 			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1035 
1036 		break;
1037 	case 6:
1038 	case 5:
1039 	case 4:
1040 		instdone->instdone =
1041 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1042 		if (engine->id == RCS0)
1043 			/* HACK: Using the wrong struct member */
1044 			instdone->slice_common =
1045 				intel_uncore_read(uncore, GEN4_INSTDONE1);
1046 		break;
1047 	case 3:
1048 	case 2:
1049 		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1050 		break;
1051 	}
1052 }
1053 
1054 static bool ring_is_idle(struct intel_engine_cs *engine)
1055 {
1056 	bool idle = true;
1057 
1058 	if (I915_SELFTEST_ONLY(!engine->mmio_base))
1059 		return true;
1060 
1061 	if (!intel_engine_pm_get_if_awake(engine))
1062 		return true;
1063 
1064 	/* First check that no commands are left in the ring */
1065 	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1066 	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1067 		idle = false;
1068 
1069 	/* No bit for gen2, so assume the CS parser is idle */
1070 	if (INTEL_GEN(engine->i915) > 2 &&
1071 	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1072 		idle = false;
1073 
1074 	intel_engine_pm_put(engine);
1075 
1076 	return idle;
1077 }
1078 
1079 void intel_engine_flush_submission(struct intel_engine_cs *engine)
1080 {
1081 	struct tasklet_struct *t = &engine->execlists.tasklet;
1082 
1083 	if (__tasklet_is_scheduled(t)) {
1084 		local_bh_disable();
1085 		if (tasklet_trylock(t)) {
1086 			/* Must wait for any GPU reset in progress. */
1087 			if (__tasklet_is_enabled(t))
1088 				t->func(t->data);
1089 			tasklet_unlock(t);
1090 		}
1091 		local_bh_enable();
1092 	}
1093 
1094 	/* Otherwise flush the tasklet if it was running on another cpu */
1095 	tasklet_unlock_wait(t);
1096 }
1097 
1098 /**
1099  * intel_engine_is_idle() - Report if the engine has finished process all work
1100  * @engine: the intel_engine_cs
1101  *
1102  * Return true if there are no requests pending, nothing left to be submitted
1103  * to hardware, and that the engine is idle.
1104  */
1105 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1106 {
1107 	/* More white lies, if wedged, hw state is inconsistent */
1108 	if (intel_gt_is_wedged(engine->gt))
1109 		return true;
1110 
1111 	if (!intel_engine_pm_is_awake(engine))
1112 		return true;
1113 
1114 	/* Waiting to drain ELSP? */
1115 	if (execlists_active(&engine->execlists)) {
1116 		synchronize_hardirq(engine->i915->drm.pdev->irq);
1117 
1118 		intel_engine_flush_submission(engine);
1119 
1120 		if (execlists_active(&engine->execlists))
1121 			return false;
1122 	}
1123 
1124 	/* ELSP is empty, but there are ready requests? E.g. after reset */
1125 	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1126 		return false;
1127 
1128 	/* Ring stopped? */
1129 	return ring_is_idle(engine);
1130 }
1131 
1132 bool intel_engines_are_idle(struct intel_gt *gt)
1133 {
1134 	struct intel_engine_cs *engine;
1135 	enum intel_engine_id id;
1136 
1137 	/*
1138 	 * If the driver is wedged, HW state may be very inconsistent and
1139 	 * report that it is still busy, even though we have stopped using it.
1140 	 */
1141 	if (intel_gt_is_wedged(gt))
1142 		return true;
1143 
1144 	/* Already parked (and passed an idleness test); must still be idle */
1145 	if (!READ_ONCE(gt->awake))
1146 		return true;
1147 
1148 	for_each_engine(engine, gt, id) {
1149 		if (!intel_engine_is_idle(engine))
1150 			return false;
1151 	}
1152 
1153 	return true;
1154 }
1155 
1156 void intel_engines_reset_default_submission(struct intel_gt *gt)
1157 {
1158 	struct intel_engine_cs *engine;
1159 	enum intel_engine_id id;
1160 
1161 	for_each_engine(engine, gt, id)
1162 		engine->set_default_submission(engine);
1163 }
1164 
1165 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1166 {
1167 	switch (INTEL_GEN(engine->i915)) {
1168 	case 2:
1169 		return false; /* uses physical not virtual addresses */
1170 	case 3:
1171 		/* maybe only uses physical not virtual addresses */
1172 		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1173 	case 4:
1174 		return !IS_I965G(engine->i915); /* who knows! */
1175 	case 6:
1176 		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1177 	default:
1178 		return true;
1179 	}
1180 }
1181 
1182 static int print_sched_attr(struct drm_i915_private *i915,
1183 			    const struct i915_sched_attr *attr,
1184 			    char *buf, int x, int len)
1185 {
1186 	if (attr->priority == I915_PRIORITY_INVALID)
1187 		return x;
1188 
1189 	x += snprintf(buf + x, len - x,
1190 		      " prio=%d", attr->priority);
1191 
1192 	return x;
1193 }
1194 
1195 static void print_request(struct drm_printer *m,
1196 			  struct i915_request *rq,
1197 			  const char *prefix)
1198 {
1199 	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1200 	char buf[80] = "";
1201 	int x = 0;
1202 
1203 	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1204 
1205 	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1206 		   prefix,
1207 		   rq->fence.context, rq->fence.seqno,
1208 		   i915_request_completed(rq) ? "!" :
1209 		   i915_request_started(rq) ? "*" :
1210 		   "",
1211 		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1212 			    &rq->fence.flags) ? "+" :
1213 		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1214 			    &rq->fence.flags) ? "-" :
1215 		   "",
1216 		   buf,
1217 		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1218 		   name);
1219 }
1220 
1221 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1222 {
1223 	const size_t rowsize = 8 * sizeof(u32);
1224 	const void *prev = NULL;
1225 	bool skip = false;
1226 	size_t pos;
1227 
1228 	for (pos = 0; pos < len; pos += rowsize) {
1229 		char line[128];
1230 
1231 		if (prev && !memcmp(prev, buf + pos, rowsize)) {
1232 			if (!skip) {
1233 				drm_printf(m, "*\n");
1234 				skip = true;
1235 			}
1236 			continue;
1237 		}
1238 
1239 		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1240 						rowsize, sizeof(u32),
1241 						line, sizeof(line),
1242 						false) >= sizeof(line));
1243 		drm_printf(m, "[%04zx] %s\n", pos, line);
1244 
1245 		prev = buf + pos;
1246 		skip = false;
1247 	}
1248 }
1249 
1250 static struct intel_timeline *get_timeline(struct i915_request *rq)
1251 {
1252 	struct intel_timeline *tl;
1253 
1254 	/*
1255 	 * Even though we are holding the engine->active.lock here, there
1256 	 * is no control over the submission queue per-se and we are
1257 	 * inspecting the active state at a random point in time, with an
1258 	 * unknown queue. Play safe and make sure the timeline remains valid.
1259 	 * (Only being used for pretty printing, one extra kref shouldn't
1260 	 * cause a camel stampede!)
1261 	 */
1262 	rcu_read_lock();
1263 	tl = rcu_dereference(rq->timeline);
1264 	if (!kref_get_unless_zero(&tl->kref))
1265 		tl = NULL;
1266 	rcu_read_unlock();
1267 
1268 	return tl;
1269 }
1270 
1271 static const char *repr_timer(const struct timer_list *t)
1272 {
1273 	if (!READ_ONCE(t->expires))
1274 		return "inactive";
1275 
1276 	if (timer_pending(t))
1277 		return "active";
1278 
1279 	return "expired";
1280 }
1281 
1282 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1283 					 struct drm_printer *m)
1284 {
1285 	struct drm_i915_private *dev_priv = engine->i915;
1286 	struct intel_engine_execlists * const execlists = &engine->execlists;
1287 	u64 addr;
1288 
1289 	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1290 		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1291 	drm_printf(m, "\tRING_START: 0x%08x\n",
1292 		   ENGINE_READ(engine, RING_START));
1293 	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1294 		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1295 	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1296 		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1297 	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1298 		   ENGINE_READ(engine, RING_CTL),
1299 		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1300 	if (INTEL_GEN(engine->i915) > 2) {
1301 		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1302 			   ENGINE_READ(engine, RING_MI_MODE),
1303 			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1304 	}
1305 
1306 	if (INTEL_GEN(dev_priv) >= 6) {
1307 		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1308 			   ENGINE_READ(engine, RING_IMR));
1309 		drm_printf(m, "\tRING_ESR:   0x%08x\n",
1310 			   ENGINE_READ(engine, RING_ESR));
1311 		drm_printf(m, "\tRING_EMR:   0x%08x\n",
1312 			   ENGINE_READ(engine, RING_EMR));
1313 		drm_printf(m, "\tRING_EIR:   0x%08x\n",
1314 			   ENGINE_READ(engine, RING_EIR));
1315 	}
1316 
1317 	addr = intel_engine_get_active_head(engine);
1318 	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
1319 		   upper_32_bits(addr), lower_32_bits(addr));
1320 	addr = intel_engine_get_last_batch_head(engine);
1321 	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1322 		   upper_32_bits(addr), lower_32_bits(addr));
1323 	if (INTEL_GEN(dev_priv) >= 8)
1324 		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1325 	else if (INTEL_GEN(dev_priv) >= 4)
1326 		addr = ENGINE_READ(engine, RING_DMA_FADD);
1327 	else
1328 		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1329 	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1330 		   upper_32_bits(addr), lower_32_bits(addr));
1331 	if (INTEL_GEN(dev_priv) >= 4) {
1332 		drm_printf(m, "\tIPEIR: 0x%08x\n",
1333 			   ENGINE_READ(engine, RING_IPEIR));
1334 		drm_printf(m, "\tIPEHR: 0x%08x\n",
1335 			   ENGINE_READ(engine, RING_IPEHR));
1336 	} else {
1337 		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1338 		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1339 	}
1340 
1341 	if (HAS_EXECLISTS(dev_priv)) {
1342 		struct i915_request * const *port, *rq;
1343 		const u32 *hws =
1344 			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1345 		const u8 num_entries = execlists->csb_size;
1346 		unsigned int idx;
1347 		u8 read, write;
1348 
1349 		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1350 			   yesno(test_bit(TASKLET_STATE_SCHED,
1351 					  &engine->execlists.tasklet.state)),
1352 			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1353 			   repr_timer(&engine->execlists.preempt),
1354 			   repr_timer(&engine->execlists.timer));
1355 
1356 		read = execlists->csb_head;
1357 		write = READ_ONCE(*execlists->csb_write);
1358 
1359 		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1360 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1361 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1362 			   read, write, num_entries);
1363 
1364 		if (read >= num_entries)
1365 			read = 0;
1366 		if (write >= num_entries)
1367 			write = 0;
1368 		if (read > write)
1369 			write += num_entries;
1370 		while (read < write) {
1371 			idx = ++read % num_entries;
1372 			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
1373 				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1374 		}
1375 
1376 		execlists_active_lock_bh(execlists);
1377 		rcu_read_lock();
1378 		for (port = execlists->active; (rq = *port); port++) {
1379 			char hdr[160];
1380 			int len;
1381 
1382 			len = snprintf(hdr, sizeof(hdr),
1383 				       "\t\tActive[%d]: ",
1384 				       (int)(port - execlists->active));
1385 			if (!i915_request_signaled(rq)) {
1386 				struct intel_timeline *tl = get_timeline(rq);
1387 
1388 				len += snprintf(hdr + len, sizeof(hdr) - len,
1389 						"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1390 						i915_ggtt_offset(rq->ring->vma),
1391 						tl ? tl->hwsp_offset : 0,
1392 						hwsp_seqno(rq),
1393 						DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1394 								      1000 * 1000));
1395 
1396 				if (tl)
1397 					intel_timeline_put(tl);
1398 			}
1399 			snprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1400 			print_request(m, rq, hdr);
1401 		}
1402 		for (port = execlists->pending; (rq = *port); port++) {
1403 			struct intel_timeline *tl = get_timeline(rq);
1404 			char hdr[80];
1405 
1406 			snprintf(hdr, sizeof(hdr),
1407 				 "\t\tPending[%d] ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
1408 				 (int)(port - execlists->pending),
1409 				 i915_ggtt_offset(rq->ring->vma),
1410 				 tl ? tl->hwsp_offset : 0,
1411 				 hwsp_seqno(rq));
1412 			print_request(m, rq, hdr);
1413 
1414 			if (tl)
1415 				intel_timeline_put(tl);
1416 		}
1417 		rcu_read_unlock();
1418 		execlists_active_unlock_bh(execlists);
1419 	} else if (INTEL_GEN(dev_priv) > 6) {
1420 		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1421 			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1422 		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1423 			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1424 		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1425 			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1426 	}
1427 }
1428 
1429 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
1430 {
1431 	void *ring;
1432 	int size;
1433 
1434 	drm_printf(m,
1435 		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
1436 		   rq->head, rq->postfix, rq->tail,
1437 		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
1438 		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
1439 
1440 	size = rq->tail - rq->head;
1441 	if (rq->tail < rq->head)
1442 		size += rq->ring->size;
1443 
1444 	ring = kmalloc(size, GFP_ATOMIC);
1445 	if (ring) {
1446 		const void *vaddr = rq->ring->vaddr;
1447 		unsigned int head = rq->head;
1448 		unsigned int len = 0;
1449 
1450 		if (rq->tail < head) {
1451 			len = rq->ring->size - head;
1452 			memcpy(ring, vaddr + head, len);
1453 			head = 0;
1454 		}
1455 		memcpy(ring + len, vaddr + head, size - len);
1456 
1457 		hexdump(m, ring, size);
1458 		kfree(ring);
1459 	}
1460 }
1461 
1462 static unsigned long list_count(struct list_head *list)
1463 {
1464 	struct list_head *pos;
1465 	unsigned long count = 0;
1466 
1467 	list_for_each(pos, list)
1468 		count++;
1469 
1470 	return count;
1471 }
1472 
1473 void intel_engine_dump(struct intel_engine_cs *engine,
1474 		       struct drm_printer *m,
1475 		       const char *header, ...)
1476 {
1477 	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1478 	struct i915_request *rq;
1479 	intel_wakeref_t wakeref;
1480 	unsigned long flags;
1481 
1482 	if (header) {
1483 		va_list ap;
1484 
1485 		va_start(ap, header);
1486 		drm_vprintf(m, header, &ap);
1487 		va_end(ap);
1488 	}
1489 
1490 	if (intel_gt_is_wedged(engine->gt))
1491 		drm_printf(m, "*** WEDGED ***\n");
1492 
1493 	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1494 	drm_printf(m, "\tBarriers?: %s\n",
1495 		   yesno(!llist_empty(&engine->barrier_tasks)));
1496 	drm_printf(m, "\tLatency: %luus\n",
1497 		   ewma__engine_latency_read(&engine->latency));
1498 
1499 	rcu_read_lock();
1500 	rq = READ_ONCE(engine->heartbeat.systole);
1501 	if (rq)
1502 		drm_printf(m, "\tHeartbeat: %d ms ago\n",
1503 			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
1504 	rcu_read_unlock();
1505 	drm_printf(m, "\tReset count: %d (global %d)\n",
1506 		   i915_reset_engine_count(error, engine),
1507 		   i915_reset_count(error));
1508 
1509 	drm_printf(m, "\tRequests:\n");
1510 
1511 	spin_lock_irqsave(&engine->active.lock, flags);
1512 	rq = intel_engine_find_active_request(engine);
1513 	if (rq) {
1514 		struct intel_timeline *tl = get_timeline(rq);
1515 
1516 		print_request(m, rq, "\t\tactive ");
1517 
1518 		drm_printf(m, "\t\tring->start:  0x%08x\n",
1519 			   i915_ggtt_offset(rq->ring->vma));
1520 		drm_printf(m, "\t\tring->head:   0x%08x\n",
1521 			   rq->ring->head);
1522 		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1523 			   rq->ring->tail);
1524 		drm_printf(m, "\t\tring->emit:   0x%08x\n",
1525 			   rq->ring->emit);
1526 		drm_printf(m, "\t\tring->space:  0x%08x\n",
1527 			   rq->ring->space);
1528 
1529 		if (tl) {
1530 			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
1531 				   tl->hwsp_offset);
1532 			intel_timeline_put(tl);
1533 		}
1534 
1535 		print_request_ring(m, rq);
1536 
1537 		if (rq->context->lrc_reg_state) {
1538 			drm_printf(m, "Logical Ring Context:\n");
1539 			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1540 		}
1541 	}
1542 	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1543 	spin_unlock_irqrestore(&engine->active.lock, flags);
1544 
1545 	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1546 	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1547 	if (wakeref) {
1548 		intel_engine_print_registers(engine, m);
1549 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1550 	} else {
1551 		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
1552 	}
1553 
1554 	intel_execlists_show_requests(engine, m, print_request, 8);
1555 
1556 	drm_printf(m, "HWSP:\n");
1557 	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1558 
1559 	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1560 
1561 	intel_engine_print_breadcrumbs(engine, m);
1562 }
1563 
1564 /**
1565  * intel_enable_engine_stats() - Enable engine busy tracking on engine
1566  * @engine: engine to enable stats collection
1567  *
1568  * Start collecting the engine busyness data for @engine.
1569  *
1570  * Returns 0 on success or a negative error code.
1571  */
1572 int intel_enable_engine_stats(struct intel_engine_cs *engine)
1573 {
1574 	struct intel_engine_execlists *execlists = &engine->execlists;
1575 	unsigned long flags;
1576 	int err = 0;
1577 
1578 	if (!intel_engine_supports_stats(engine))
1579 		return -ENODEV;
1580 
1581 	execlists_active_lock_bh(execlists);
1582 	write_seqlock_irqsave(&engine->stats.lock, flags);
1583 
1584 	if (unlikely(engine->stats.enabled == ~0)) {
1585 		err = -EBUSY;
1586 		goto unlock;
1587 	}
1588 
1589 	if (engine->stats.enabled++ == 0) {
1590 		struct i915_request * const *port;
1591 		struct i915_request *rq;
1592 
1593 		engine->stats.enabled_at = ktime_get();
1594 
1595 		/* XXX submission method oblivious? */
1596 		for (port = execlists->active; (rq = *port); port++)
1597 			engine->stats.active++;
1598 
1599 		for (port = execlists->pending; (rq = *port); port++) {
1600 			/* Exclude any contexts already counted in active */
1601 			if (!intel_context_inflight_count(rq->context))
1602 				engine->stats.active++;
1603 		}
1604 
1605 		if (engine->stats.active)
1606 			engine->stats.start = engine->stats.enabled_at;
1607 	}
1608 
1609 unlock:
1610 	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1611 	execlists_active_unlock_bh(execlists);
1612 
1613 	return err;
1614 }
1615 
1616 static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
1617 {
1618 	ktime_t total = engine->stats.total;
1619 
1620 	/*
1621 	 * If the engine is executing something at the moment
1622 	 * add it to the total.
1623 	 */
1624 	if (engine->stats.active)
1625 		total = ktime_add(total,
1626 				  ktime_sub(ktime_get(), engine->stats.start));
1627 
1628 	return total;
1629 }
1630 
1631 /**
1632  * intel_engine_get_busy_time() - Return current accumulated engine busyness
1633  * @engine: engine to report on
1634  *
1635  * Returns accumulated time @engine was busy since engine stats were enabled.
1636  */
1637 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
1638 {
1639 	unsigned int seq;
1640 	ktime_t total;
1641 
1642 	do {
1643 		seq = read_seqbegin(&engine->stats.lock);
1644 		total = __intel_engine_get_busy_time(engine);
1645 	} while (read_seqretry(&engine->stats.lock, seq));
1646 
1647 	return total;
1648 }
1649 
1650 /**
1651  * intel_disable_engine_stats() - Disable engine busy tracking on engine
1652  * @engine: engine to disable stats collection
1653  *
1654  * Stops collecting the engine busyness data for @engine.
1655  */
1656 void intel_disable_engine_stats(struct intel_engine_cs *engine)
1657 {
1658 	unsigned long flags;
1659 
1660 	if (!intel_engine_supports_stats(engine))
1661 		return;
1662 
1663 	write_seqlock_irqsave(&engine->stats.lock, flags);
1664 	WARN_ON_ONCE(engine->stats.enabled == 0);
1665 	if (--engine->stats.enabled == 0) {
1666 		engine->stats.total = __intel_engine_get_busy_time(engine);
1667 		engine->stats.active = 0;
1668 	}
1669 	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1670 }
1671 
1672 static bool match_ring(struct i915_request *rq)
1673 {
1674 	u32 ring = ENGINE_READ(rq->engine, RING_START);
1675 
1676 	return ring == i915_ggtt_offset(rq->ring->vma);
1677 }
1678 
1679 struct i915_request *
1680 intel_engine_find_active_request(struct intel_engine_cs *engine)
1681 {
1682 	struct i915_request *request, *active = NULL;
1683 
1684 	/*
1685 	 * We are called by the error capture, reset and to dump engine
1686 	 * state at random points in time. In particular, note that neither is
1687 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
1688 	 * and we assume that no more writes can happen (we waited long enough
1689 	 * for all writes that were in transaction to be flushed) - adding an
1690 	 * extra delay for a recent interrupt is pointless. Hence, we do
1691 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
1692 	 * At all other times, we must assume the GPU is still running, but
1693 	 * we only care about the snapshot of this moment.
1694 	 */
1695 	lockdep_assert_held(&engine->active.lock);
1696 
1697 	rcu_read_lock();
1698 	request = execlists_active(&engine->execlists);
1699 	if (request) {
1700 		struct intel_timeline *tl = request->context->timeline;
1701 
1702 		list_for_each_entry_from_reverse(request, &tl->requests, link) {
1703 			if (i915_request_completed(request))
1704 				break;
1705 
1706 			active = request;
1707 		}
1708 	}
1709 	rcu_read_unlock();
1710 	if (active)
1711 		return active;
1712 
1713 	list_for_each_entry(request, &engine->active.requests, sched.link) {
1714 		if (i915_request_completed(request))
1715 			continue;
1716 
1717 		if (!i915_request_started(request))
1718 			continue;
1719 
1720 		/* More than one preemptible request may match! */
1721 		if (!match_ring(request))
1722 			continue;
1723 
1724 		active = request;
1725 		break;
1726 	}
1727 
1728 	return active;
1729 }
1730 
1731 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1732 #include "mock_engine.c"
1733 #include "selftest_engine.c"
1734 #include "selftest_engine_cs.c"
1735 #endif
1736