1 /* 2 * Copyright © 2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <drm/drm_print.h> 26 27 #include "gem/i915_gem_context.h" 28 29 #include "i915_drv.h" 30 31 #include "intel_context.h" 32 #include "intel_engine.h" 33 #include "intel_engine_pm.h" 34 #include "intel_engine_pool.h" 35 #include "intel_engine_user.h" 36 #include "intel_gt.h" 37 #include "intel_gt_requests.h" 38 #include "intel_gt_pm.h" 39 #include "intel_lrc.h" 40 #include "intel_reset.h" 41 #include "intel_ring.h" 42 43 /* Haswell does have the CXT_SIZE register however it does not appear to be 44 * valid. Now, docs explain in dwords what is in the context object. The full 45 * size is 70720 bytes, however, the power context and execlist context will 46 * never be saved (power context is stored elsewhere, and execlists don't work 47 * on HSW) - so the final size, including the extra state required for the 48 * Resource Streamer, is 66944 bytes, which rounds to 17 pages. 49 */ 50 #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE) 51 52 #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) 53 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE) 54 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) 55 #define GEN10_LR_CONTEXT_RENDER_SIZE (18 * PAGE_SIZE) 56 #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE) 57 58 #define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE) 59 60 #define MAX_MMIO_BASES 3 61 struct engine_info { 62 unsigned int hw_id; 63 u8 class; 64 u8 instance; 65 /* mmio bases table *must* be sorted in reverse gen order */ 66 struct engine_mmio_base { 67 u32 gen : 8; 68 u32 base : 24; 69 } mmio_bases[MAX_MMIO_BASES]; 70 }; 71 72 static const struct engine_info intel_engines[] = { 73 [RCS0] = { 74 .hw_id = RCS0_HW, 75 .class = RENDER_CLASS, 76 .instance = 0, 77 .mmio_bases = { 78 { .gen = 1, .base = RENDER_RING_BASE } 79 }, 80 }, 81 [BCS0] = { 82 .hw_id = BCS0_HW, 83 .class = COPY_ENGINE_CLASS, 84 .instance = 0, 85 .mmio_bases = { 86 { .gen = 6, .base = BLT_RING_BASE } 87 }, 88 }, 89 [VCS0] = { 90 .hw_id = VCS0_HW, 91 .class = VIDEO_DECODE_CLASS, 92 .instance = 0, 93 .mmio_bases = { 94 { .gen = 11, .base = GEN11_BSD_RING_BASE }, 95 { .gen = 6, .base = GEN6_BSD_RING_BASE }, 96 { .gen = 4, .base = BSD_RING_BASE } 97 }, 98 }, 99 [VCS1] = { 100 .hw_id = VCS1_HW, 101 .class = VIDEO_DECODE_CLASS, 102 .instance = 1, 103 .mmio_bases = { 104 { .gen = 11, .base = GEN11_BSD2_RING_BASE }, 105 { .gen = 8, .base = GEN8_BSD2_RING_BASE } 106 }, 107 }, 108 [VCS2] = { 109 .hw_id = VCS2_HW, 110 .class = VIDEO_DECODE_CLASS, 111 .instance = 2, 112 .mmio_bases = { 113 { .gen = 11, .base = GEN11_BSD3_RING_BASE } 114 }, 115 }, 116 [VCS3] = { 117 .hw_id = VCS3_HW, 118 .class = VIDEO_DECODE_CLASS, 119 .instance = 3, 120 .mmio_bases = { 121 { .gen = 11, .base = GEN11_BSD4_RING_BASE } 122 }, 123 }, 124 [VECS0] = { 125 .hw_id = VECS0_HW, 126 .class = VIDEO_ENHANCEMENT_CLASS, 127 .instance = 0, 128 .mmio_bases = { 129 { .gen = 11, .base = GEN11_VEBOX_RING_BASE }, 130 { .gen = 7, .base = VEBOX_RING_BASE } 131 }, 132 }, 133 [VECS1] = { 134 .hw_id = VECS1_HW, 135 .class = VIDEO_ENHANCEMENT_CLASS, 136 .instance = 1, 137 .mmio_bases = { 138 { .gen = 11, .base = GEN11_VEBOX2_RING_BASE } 139 }, 140 }, 141 }; 142 143 /** 144 * intel_engine_context_size() - return the size of the context for an engine 145 * @gt: the gt 146 * @class: engine class 147 * 148 * Each engine class may require a different amount of space for a context 149 * image. 150 * 151 * Return: size (in bytes) of an engine class specific context image 152 * 153 * Note: this size includes the HWSP, which is part of the context image 154 * in LRC mode, but does not include the "shared data page" used with 155 * GuC submission. The caller should account for this if using the GuC. 156 */ 157 u32 intel_engine_context_size(struct intel_gt *gt, u8 class) 158 { 159 struct intel_uncore *uncore = gt->uncore; 160 u32 cxt_size; 161 162 BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE); 163 164 switch (class) { 165 case RENDER_CLASS: 166 switch (INTEL_GEN(gt->i915)) { 167 default: 168 MISSING_CASE(INTEL_GEN(gt->i915)); 169 return DEFAULT_LR_CONTEXT_RENDER_SIZE; 170 case 12: 171 case 11: 172 return GEN11_LR_CONTEXT_RENDER_SIZE; 173 case 10: 174 return GEN10_LR_CONTEXT_RENDER_SIZE; 175 case 9: 176 return GEN9_LR_CONTEXT_RENDER_SIZE; 177 case 8: 178 return GEN8_LR_CONTEXT_RENDER_SIZE; 179 case 7: 180 if (IS_HASWELL(gt->i915)) 181 return HSW_CXT_TOTAL_SIZE; 182 183 cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE); 184 return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64, 185 PAGE_SIZE); 186 case 6: 187 cxt_size = intel_uncore_read(uncore, CXT_SIZE); 188 return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64, 189 PAGE_SIZE); 190 case 5: 191 case 4: 192 /* 193 * There is a discrepancy here between the size reported 194 * by the register and the size of the context layout 195 * in the docs. Both are described as authorative! 196 * 197 * The discrepancy is on the order of a few cachelines, 198 * but the total is under one page (4k), which is our 199 * minimum allocation anyway so it should all come 200 * out in the wash. 201 */ 202 cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1; 203 drm_dbg(>->i915->drm, 204 "gen%d CXT_SIZE = %d bytes [0x%08x]\n", 205 INTEL_GEN(gt->i915), cxt_size * 64, 206 cxt_size - 1); 207 return round_up(cxt_size * 64, PAGE_SIZE); 208 case 3: 209 case 2: 210 /* For the special day when i810 gets merged. */ 211 case 1: 212 return 0; 213 } 214 break; 215 default: 216 MISSING_CASE(class); 217 /* fall through */ 218 case VIDEO_DECODE_CLASS: 219 case VIDEO_ENHANCEMENT_CLASS: 220 case COPY_ENGINE_CLASS: 221 if (INTEL_GEN(gt->i915) < 8) 222 return 0; 223 return GEN8_LR_CONTEXT_OTHER_SIZE; 224 } 225 } 226 227 static u32 __engine_mmio_base(struct drm_i915_private *i915, 228 const struct engine_mmio_base *bases) 229 { 230 int i; 231 232 for (i = 0; i < MAX_MMIO_BASES; i++) 233 if (INTEL_GEN(i915) >= bases[i].gen) 234 break; 235 236 GEM_BUG_ON(i == MAX_MMIO_BASES); 237 GEM_BUG_ON(!bases[i].base); 238 239 return bases[i].base; 240 } 241 242 static void __sprint_engine_name(struct intel_engine_cs *engine) 243 { 244 /* 245 * Before we know what the uABI name for this engine will be, 246 * we still would like to keep track of this engine in the debug logs. 247 * We throw in a ' here as a reminder that this isn't its final name. 248 */ 249 GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u", 250 intel_engine_class_repr(engine->class), 251 engine->instance) >= sizeof(engine->name)); 252 } 253 254 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask) 255 { 256 /* 257 * Though they added more rings on g4x/ilk, they did not add 258 * per-engine HWSTAM until gen6. 259 */ 260 if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS) 261 return; 262 263 if (INTEL_GEN(engine->i915) >= 3) 264 ENGINE_WRITE(engine, RING_HWSTAM, mask); 265 else 266 ENGINE_WRITE16(engine, RING_HWSTAM, mask); 267 } 268 269 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine) 270 { 271 /* Mask off all writes into the unknown HWSP */ 272 intel_engine_set_hwsp_writemask(engine, ~0u); 273 } 274 275 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id) 276 { 277 const struct engine_info *info = &intel_engines[id]; 278 struct intel_engine_cs *engine; 279 280 BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH)); 281 BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH)); 282 283 if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine))) 284 return -EINVAL; 285 286 if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS)) 287 return -EINVAL; 288 289 if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE)) 290 return -EINVAL; 291 292 if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance])) 293 return -EINVAL; 294 295 engine = kzalloc(sizeof(*engine), GFP_KERNEL); 296 if (!engine) 297 return -ENOMEM; 298 299 BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES); 300 301 engine->id = id; 302 engine->legacy_idx = INVALID_ENGINE; 303 engine->mask = BIT(id); 304 engine->i915 = gt->i915; 305 engine->gt = gt; 306 engine->uncore = gt->uncore; 307 engine->hw_id = engine->guc_id = info->hw_id; 308 engine->mmio_base = __engine_mmio_base(gt->i915, info->mmio_bases); 309 310 engine->class = info->class; 311 engine->instance = info->instance; 312 __sprint_engine_name(engine); 313 314 engine->props.heartbeat_interval_ms = 315 CONFIG_DRM_I915_HEARTBEAT_INTERVAL; 316 engine->props.preempt_timeout_ms = 317 CONFIG_DRM_I915_PREEMPT_TIMEOUT; 318 engine->props.stop_timeout_ms = 319 CONFIG_DRM_I915_STOP_TIMEOUT; 320 engine->props.timeslice_duration_ms = 321 CONFIG_DRM_I915_TIMESLICE_DURATION; 322 323 engine->context_size = intel_engine_context_size(gt, engine->class); 324 if (WARN_ON(engine->context_size > BIT(20))) 325 engine->context_size = 0; 326 if (engine->context_size) 327 DRIVER_CAPS(gt->i915)->has_logical_contexts = true; 328 329 /* Nothing to do here, execute in order of dependencies */ 330 engine->schedule = NULL; 331 332 ewma__engine_latency_init(&engine->latency); 333 seqlock_init(&engine->stats.lock); 334 335 ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier); 336 337 /* Scrub mmio state on takeover */ 338 intel_engine_sanitize_mmio(engine); 339 340 gt->engine_class[info->class][info->instance] = engine; 341 gt->engine[id] = engine; 342 343 gt->i915->engine[id] = engine; 344 345 return 0; 346 } 347 348 static void __setup_engine_capabilities(struct intel_engine_cs *engine) 349 { 350 struct drm_i915_private *i915 = engine->i915; 351 352 if (engine->class == VIDEO_DECODE_CLASS) { 353 /* 354 * HEVC support is present on first engine instance 355 * before Gen11 and on all instances afterwards. 356 */ 357 if (INTEL_GEN(i915) >= 11 || 358 (INTEL_GEN(i915) >= 9 && engine->instance == 0)) 359 engine->uabi_capabilities |= 360 I915_VIDEO_CLASS_CAPABILITY_HEVC; 361 362 /* 363 * SFC block is present only on even logical engine 364 * instances. 365 */ 366 if ((INTEL_GEN(i915) >= 11 && 367 RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) || 368 (INTEL_GEN(i915) >= 9 && engine->instance == 0)) 369 engine->uabi_capabilities |= 370 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; 371 } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) { 372 if (INTEL_GEN(i915) >= 9) 373 engine->uabi_capabilities |= 374 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; 375 } 376 } 377 378 static void intel_setup_engine_capabilities(struct intel_gt *gt) 379 { 380 struct intel_engine_cs *engine; 381 enum intel_engine_id id; 382 383 for_each_engine(engine, gt, id) 384 __setup_engine_capabilities(engine); 385 } 386 387 /** 388 * intel_engines_release() - free the resources allocated for Command Streamers 389 * @gt: pointer to struct intel_gt 390 */ 391 void intel_engines_release(struct intel_gt *gt) 392 { 393 struct intel_engine_cs *engine; 394 enum intel_engine_id id; 395 396 /* 397 * Before we release the resources held by engine, we must be certain 398 * that the HW is no longer accessing them -- having the GPU scribble 399 * to or read from a page being used for something else causes no end 400 * of fun. 401 * 402 * The GPU should be reset by this point, but assume the worst just 403 * in case we aborted before completely initialising the engines. 404 */ 405 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 406 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 407 __intel_gt_reset(gt, ALL_ENGINES); 408 409 /* Decouple the backend; but keep the layout for late GPU resets */ 410 for_each_engine(engine, gt, id) { 411 intel_wakeref_wait_for_idle(&engine->wakeref); 412 GEM_BUG_ON(intel_engine_pm_is_awake(engine)); 413 414 if (!engine->release) 415 continue; 416 417 engine->release(engine); 418 engine->release = NULL; 419 420 memset(&engine->reset, 0, sizeof(engine->reset)); 421 422 gt->i915->engine[id] = NULL; 423 } 424 } 425 426 void intel_engines_free(struct intel_gt *gt) 427 { 428 struct intel_engine_cs *engine; 429 enum intel_engine_id id; 430 431 for_each_engine(engine, gt, id) { 432 kfree(engine); 433 gt->engine[id] = NULL; 434 } 435 } 436 437 /** 438 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers 439 * @gt: pointer to struct intel_gt 440 * 441 * Return: non-zero if the initialization failed. 442 */ 443 int intel_engines_init_mmio(struct intel_gt *gt) 444 { 445 struct drm_i915_private *i915 = gt->i915; 446 struct intel_device_info *device_info = mkwrite_device_info(i915); 447 const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask; 448 unsigned int mask = 0; 449 unsigned int i; 450 int err; 451 452 drm_WARN_ON(&i915->drm, engine_mask == 0); 453 drm_WARN_ON(&i915->drm, engine_mask & 454 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES)); 455 456 if (i915_inject_probe_failure(i915)) 457 return -ENODEV; 458 459 for (i = 0; i < ARRAY_SIZE(intel_engines); i++) { 460 if (!HAS_ENGINE(i915, i)) 461 continue; 462 463 err = intel_engine_setup(gt, i); 464 if (err) 465 goto cleanup; 466 467 mask |= BIT(i); 468 } 469 470 /* 471 * Catch failures to update intel_engines table when the new engines 472 * are added to the driver by a warning and disabling the forgotten 473 * engines. 474 */ 475 if (drm_WARN_ON(&i915->drm, mask != engine_mask)) 476 device_info->engine_mask = mask; 477 478 RUNTIME_INFO(i915)->num_engines = hweight32(mask); 479 480 intel_gt_check_and_clear_faults(gt); 481 482 intel_setup_engine_capabilities(gt); 483 484 return 0; 485 486 cleanup: 487 intel_engines_free(gt); 488 return err; 489 } 490 491 void intel_engine_init_execlists(struct intel_engine_cs *engine) 492 { 493 struct intel_engine_execlists * const execlists = &engine->execlists; 494 495 execlists->port_mask = 1; 496 GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists))); 497 GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS); 498 499 memset(execlists->pending, 0, sizeof(execlists->pending)); 500 execlists->active = 501 memset(execlists->inflight, 0, sizeof(execlists->inflight)); 502 503 execlists->queue_priority_hint = INT_MIN; 504 execlists->queue = RB_ROOT_CACHED; 505 } 506 507 static void cleanup_status_page(struct intel_engine_cs *engine) 508 { 509 struct i915_vma *vma; 510 511 /* Prevent writes into HWSP after returning the page to the system */ 512 intel_engine_set_hwsp_writemask(engine, ~0u); 513 514 vma = fetch_and_zero(&engine->status_page.vma); 515 if (!vma) 516 return; 517 518 if (!HWS_NEEDS_PHYSICAL(engine->i915)) 519 i915_vma_unpin(vma); 520 521 i915_gem_object_unpin_map(vma->obj); 522 i915_gem_object_put(vma->obj); 523 } 524 525 static int pin_ggtt_status_page(struct intel_engine_cs *engine, 526 struct i915_vma *vma) 527 { 528 unsigned int flags; 529 530 if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt)) 531 /* 532 * On g33, we cannot place HWS above 256MiB, so 533 * restrict its pinning to the low mappable arena. 534 * Though this restriction is not documented for 535 * gen4, gen5, or byt, they also behave similarly 536 * and hang if the HWS is placed at the top of the 537 * GTT. To generalise, it appears that all !llc 538 * platforms have issues with us placing the HWS 539 * above the mappable region (even though we never 540 * actually map it). 541 */ 542 flags = PIN_MAPPABLE; 543 else 544 flags = PIN_HIGH; 545 546 return i915_ggtt_pin(vma, 0, flags); 547 } 548 549 static int init_status_page(struct intel_engine_cs *engine) 550 { 551 struct drm_i915_gem_object *obj; 552 struct i915_vma *vma; 553 void *vaddr; 554 int ret; 555 556 /* 557 * Though the HWS register does support 36bit addresses, historically 558 * we have had hangs and corruption reported due to wild writes if 559 * the HWS is placed above 4G. We only allow objects to be allocated 560 * in GFP_DMA32 for i965, and no earlier physical address users had 561 * access to more than 4G. 562 */ 563 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE); 564 if (IS_ERR(obj)) { 565 drm_err(&engine->i915->drm, 566 "Failed to allocate status page\n"); 567 return PTR_ERR(obj); 568 } 569 570 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC); 571 572 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); 573 if (IS_ERR(vma)) { 574 ret = PTR_ERR(vma); 575 goto err; 576 } 577 578 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB); 579 if (IS_ERR(vaddr)) { 580 ret = PTR_ERR(vaddr); 581 goto err; 582 } 583 584 engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE); 585 engine->status_page.vma = vma; 586 587 if (!HWS_NEEDS_PHYSICAL(engine->i915)) { 588 ret = pin_ggtt_status_page(engine, vma); 589 if (ret) 590 goto err_unpin; 591 } 592 593 return 0; 594 595 err_unpin: 596 i915_gem_object_unpin_map(obj); 597 err: 598 i915_gem_object_put(obj); 599 return ret; 600 } 601 602 static int engine_setup_common(struct intel_engine_cs *engine) 603 { 604 int err; 605 606 init_llist_head(&engine->barrier_tasks); 607 608 err = init_status_page(engine); 609 if (err) 610 return err; 611 612 intel_engine_init_active(engine, ENGINE_PHYSICAL); 613 intel_engine_init_breadcrumbs(engine); 614 intel_engine_init_execlists(engine); 615 intel_engine_init_cmd_parser(engine); 616 intel_engine_init__pm(engine); 617 intel_engine_init_retire(engine); 618 619 intel_engine_pool_init(&engine->pool); 620 621 /* Use the whole device by default */ 622 engine->sseu = 623 intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu); 624 625 intel_engine_init_workarounds(engine); 626 intel_engine_init_whitelist(engine); 627 intel_engine_init_ctx_wa(engine); 628 629 return 0; 630 } 631 632 struct measure_breadcrumb { 633 struct i915_request rq; 634 struct intel_ring ring; 635 u32 cs[1024]; 636 }; 637 638 static int measure_breadcrumb_dw(struct intel_context *ce) 639 { 640 struct intel_engine_cs *engine = ce->engine; 641 struct measure_breadcrumb *frame; 642 int dw; 643 644 GEM_BUG_ON(!engine->gt->scratch); 645 646 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 647 if (!frame) 648 return -ENOMEM; 649 650 frame->rq.i915 = engine->i915; 651 frame->rq.engine = engine; 652 frame->rq.context = ce; 653 rcu_assign_pointer(frame->rq.timeline, ce->timeline); 654 655 frame->ring.vaddr = frame->cs; 656 frame->ring.size = sizeof(frame->cs); 657 frame->ring.effective_size = frame->ring.size; 658 intel_ring_update_space(&frame->ring); 659 frame->rq.ring = &frame->ring; 660 661 mutex_lock(&ce->timeline->mutex); 662 spin_lock_irq(&engine->active.lock); 663 664 dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs; 665 666 spin_unlock_irq(&engine->active.lock); 667 mutex_unlock(&ce->timeline->mutex); 668 669 GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */ 670 671 kfree(frame); 672 return dw; 673 } 674 675 void 676 intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass) 677 { 678 INIT_LIST_HEAD(&engine->active.requests); 679 INIT_LIST_HEAD(&engine->active.hold); 680 681 spin_lock_init(&engine->active.lock); 682 lockdep_set_subclass(&engine->active.lock, subclass); 683 684 /* 685 * Due to an interesting quirk in lockdep's internal debug tracking, 686 * after setting a subclass we must ensure the lock is used. Otherwise, 687 * nr_unused_locks is incremented once too often. 688 */ 689 #ifdef CONFIG_DEBUG_LOCK_ALLOC 690 local_irq_disable(); 691 lock_map_acquire(&engine->active.lock.dep_map); 692 lock_map_release(&engine->active.lock.dep_map); 693 local_irq_enable(); 694 #endif 695 } 696 697 static struct intel_context * 698 create_kernel_context(struct intel_engine_cs *engine) 699 { 700 static struct lock_class_key kernel; 701 struct intel_context *ce; 702 int err; 703 704 ce = intel_context_create(engine); 705 if (IS_ERR(ce)) 706 return ce; 707 708 __set_bit(CONTEXT_BARRIER_BIT, &ce->flags); 709 710 err = intel_context_pin(ce); /* perma-pin so it is always available */ 711 if (err) { 712 intel_context_put(ce); 713 return ERR_PTR(err); 714 } 715 716 /* 717 * Give our perma-pinned kernel timelines a separate lockdep class, 718 * so that we can use them from within the normal user timelines 719 * should we need to inject GPU operations during their request 720 * construction. 721 */ 722 lockdep_set_class(&ce->timeline->mutex, &kernel); 723 724 return ce; 725 } 726 727 /** 728 * intel_engines_init_common - initialize cengine state which might require hw access 729 * @engine: Engine to initialize. 730 * 731 * Initializes @engine@ structure members shared between legacy and execlists 732 * submission modes which do require hardware access. 733 * 734 * Typcally done at later stages of submission mode specific engine setup. 735 * 736 * Returns zero on success or an error code on failure. 737 */ 738 static int engine_init_common(struct intel_engine_cs *engine) 739 { 740 struct intel_context *ce; 741 int ret; 742 743 engine->set_default_submission(engine); 744 745 /* 746 * We may need to do things with the shrinker which 747 * require us to immediately switch back to the default 748 * context. This can cause a problem as pinning the 749 * default context also requires GTT space which may not 750 * be available. To avoid this we always pin the default 751 * context. 752 */ 753 ce = create_kernel_context(engine); 754 if (IS_ERR(ce)) 755 return PTR_ERR(ce); 756 757 ret = measure_breadcrumb_dw(ce); 758 if (ret < 0) 759 goto err_context; 760 761 engine->emit_fini_breadcrumb_dw = ret; 762 engine->kernel_context = ce; 763 764 return 0; 765 766 err_context: 767 intel_context_put(ce); 768 return ret; 769 } 770 771 int intel_engines_init(struct intel_gt *gt) 772 { 773 int (*setup)(struct intel_engine_cs *engine); 774 struct intel_engine_cs *engine; 775 enum intel_engine_id id; 776 int err; 777 778 if (HAS_EXECLISTS(gt->i915)) 779 setup = intel_execlists_submission_setup; 780 else 781 setup = intel_ring_submission_setup; 782 783 for_each_engine(engine, gt, id) { 784 err = engine_setup_common(engine); 785 if (err) 786 return err; 787 788 err = setup(engine); 789 if (err) 790 return err; 791 792 err = engine_init_common(engine); 793 if (err) 794 return err; 795 796 intel_engine_add_user(engine); 797 } 798 799 return 0; 800 } 801 802 /** 803 * intel_engines_cleanup_common - cleans up the engine state created by 804 * the common initiailizers. 805 * @engine: Engine to cleanup. 806 * 807 * This cleans up everything created by the common helpers. 808 */ 809 void intel_engine_cleanup_common(struct intel_engine_cs *engine) 810 { 811 GEM_BUG_ON(!list_empty(&engine->active.requests)); 812 tasklet_kill(&engine->execlists.tasklet); /* flush the callback */ 813 814 cleanup_status_page(engine); 815 816 intel_engine_fini_retire(engine); 817 intel_engine_pool_fini(&engine->pool); 818 intel_engine_fini_breadcrumbs(engine); 819 intel_engine_cleanup_cmd_parser(engine); 820 821 if (engine->default_state) 822 i915_gem_object_put(engine->default_state); 823 824 if (engine->kernel_context) { 825 intel_context_unpin(engine->kernel_context); 826 intel_context_put(engine->kernel_context); 827 } 828 GEM_BUG_ON(!llist_empty(&engine->barrier_tasks)); 829 830 intel_wa_list_free(&engine->ctx_wa_list); 831 intel_wa_list_free(&engine->wa_list); 832 intel_wa_list_free(&engine->whitelist); 833 } 834 835 /** 836 * intel_engine_resume - re-initializes the HW state of the engine 837 * @engine: Engine to resume. 838 * 839 * Returns zero on success or an error code on failure. 840 */ 841 int intel_engine_resume(struct intel_engine_cs *engine) 842 { 843 intel_engine_apply_workarounds(engine); 844 intel_engine_apply_whitelist(engine); 845 846 return engine->resume(engine); 847 } 848 849 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine) 850 { 851 struct drm_i915_private *i915 = engine->i915; 852 853 u64 acthd; 854 855 if (INTEL_GEN(i915) >= 8) 856 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW); 857 else if (INTEL_GEN(i915) >= 4) 858 acthd = ENGINE_READ(engine, RING_ACTHD); 859 else 860 acthd = ENGINE_READ(engine, ACTHD); 861 862 return acthd; 863 } 864 865 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine) 866 { 867 u64 bbaddr; 868 869 if (INTEL_GEN(engine->i915) >= 8) 870 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW); 871 else 872 bbaddr = ENGINE_READ(engine, RING_BBADDR); 873 874 return bbaddr; 875 } 876 877 static unsigned long stop_timeout(const struct intel_engine_cs *engine) 878 { 879 if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */ 880 return 0; 881 882 /* 883 * If we are doing a normal GPU reset, we can take our time and allow 884 * the engine to quiesce. We've stopped submission to the engine, and 885 * if we wait long enough an innocent context should complete and 886 * leave the engine idle. So they should not be caught unaware by 887 * the forthcoming GPU reset (which usually follows the stop_cs)! 888 */ 889 return READ_ONCE(engine->props.stop_timeout_ms); 890 } 891 892 int intel_engine_stop_cs(struct intel_engine_cs *engine) 893 { 894 struct intel_uncore *uncore = engine->uncore; 895 const u32 base = engine->mmio_base; 896 const i915_reg_t mode = RING_MI_MODE(base); 897 int err; 898 899 if (INTEL_GEN(engine->i915) < 3) 900 return -ENODEV; 901 902 ENGINE_TRACE(engine, "\n"); 903 904 intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING)); 905 906 err = 0; 907 if (__intel_wait_for_register_fw(uncore, 908 mode, MODE_IDLE, MODE_IDLE, 909 1000, stop_timeout(engine), 910 NULL)) { 911 ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n"); 912 err = -ETIMEDOUT; 913 } 914 915 /* A final mmio read to let GPU writes be hopefully flushed to memory */ 916 intel_uncore_posting_read_fw(uncore, mode); 917 918 return err; 919 } 920 921 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine) 922 { 923 ENGINE_TRACE(engine, "\n"); 924 925 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); 926 } 927 928 const char *i915_cache_level_str(struct drm_i915_private *i915, int type) 929 { 930 switch (type) { 931 case I915_CACHE_NONE: return " uncached"; 932 case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped"; 933 case I915_CACHE_L3_LLC: return " L3+LLC"; 934 case I915_CACHE_WT: return " WT"; 935 default: return ""; 936 } 937 } 938 939 static u32 940 read_subslice_reg(const struct intel_engine_cs *engine, 941 int slice, int subslice, i915_reg_t reg) 942 { 943 struct drm_i915_private *i915 = engine->i915; 944 struct intel_uncore *uncore = engine->uncore; 945 u32 mcr_mask, mcr_ss, mcr, old_mcr, val; 946 enum forcewake_domains fw_domains; 947 948 if (INTEL_GEN(i915) >= 11) { 949 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK; 950 mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice); 951 } else { 952 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK; 953 mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice); 954 } 955 956 fw_domains = intel_uncore_forcewake_for_reg(uncore, reg, 957 FW_REG_READ); 958 fw_domains |= intel_uncore_forcewake_for_reg(uncore, 959 GEN8_MCR_SELECTOR, 960 FW_REG_READ | FW_REG_WRITE); 961 962 spin_lock_irq(&uncore->lock); 963 intel_uncore_forcewake_get__locked(uncore, fw_domains); 964 965 old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR); 966 967 mcr &= ~mcr_mask; 968 mcr |= mcr_ss; 969 intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr); 970 971 val = intel_uncore_read_fw(uncore, reg); 972 973 mcr &= ~mcr_mask; 974 mcr |= old_mcr & mcr_mask; 975 976 intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr); 977 978 intel_uncore_forcewake_put__locked(uncore, fw_domains); 979 spin_unlock_irq(&uncore->lock); 980 981 return val; 982 } 983 984 /* NB: please notice the memset */ 985 void intel_engine_get_instdone(const struct intel_engine_cs *engine, 986 struct intel_instdone *instdone) 987 { 988 struct drm_i915_private *i915 = engine->i915; 989 const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu; 990 struct intel_uncore *uncore = engine->uncore; 991 u32 mmio_base = engine->mmio_base; 992 int slice; 993 int subslice; 994 995 memset(instdone, 0, sizeof(*instdone)); 996 997 switch (INTEL_GEN(i915)) { 998 default: 999 instdone->instdone = 1000 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1001 1002 if (engine->id != RCS0) 1003 break; 1004 1005 instdone->slice_common = 1006 intel_uncore_read(uncore, GEN7_SC_INSTDONE); 1007 if (INTEL_GEN(i915) >= 12) { 1008 instdone->slice_common_extra[0] = 1009 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA); 1010 instdone->slice_common_extra[1] = 1011 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2); 1012 } 1013 for_each_instdone_slice_subslice(i915, sseu, slice, subslice) { 1014 instdone->sampler[slice][subslice] = 1015 read_subslice_reg(engine, slice, subslice, 1016 GEN7_SAMPLER_INSTDONE); 1017 instdone->row[slice][subslice] = 1018 read_subslice_reg(engine, slice, subslice, 1019 GEN7_ROW_INSTDONE); 1020 } 1021 break; 1022 case 7: 1023 instdone->instdone = 1024 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1025 1026 if (engine->id != RCS0) 1027 break; 1028 1029 instdone->slice_common = 1030 intel_uncore_read(uncore, GEN7_SC_INSTDONE); 1031 instdone->sampler[0][0] = 1032 intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE); 1033 instdone->row[0][0] = 1034 intel_uncore_read(uncore, GEN7_ROW_INSTDONE); 1035 1036 break; 1037 case 6: 1038 case 5: 1039 case 4: 1040 instdone->instdone = 1041 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1042 if (engine->id == RCS0) 1043 /* HACK: Using the wrong struct member */ 1044 instdone->slice_common = 1045 intel_uncore_read(uncore, GEN4_INSTDONE1); 1046 break; 1047 case 3: 1048 case 2: 1049 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE); 1050 break; 1051 } 1052 } 1053 1054 static bool ring_is_idle(struct intel_engine_cs *engine) 1055 { 1056 bool idle = true; 1057 1058 if (I915_SELFTEST_ONLY(!engine->mmio_base)) 1059 return true; 1060 1061 if (!intel_engine_pm_get_if_awake(engine)) 1062 return true; 1063 1064 /* First check that no commands are left in the ring */ 1065 if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) != 1066 (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR)) 1067 idle = false; 1068 1069 /* No bit for gen2, so assume the CS parser is idle */ 1070 if (INTEL_GEN(engine->i915) > 2 && 1071 !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE)) 1072 idle = false; 1073 1074 intel_engine_pm_put(engine); 1075 1076 return idle; 1077 } 1078 1079 void intel_engine_flush_submission(struct intel_engine_cs *engine) 1080 { 1081 struct tasklet_struct *t = &engine->execlists.tasklet; 1082 1083 if (__tasklet_is_scheduled(t)) { 1084 local_bh_disable(); 1085 if (tasklet_trylock(t)) { 1086 /* Must wait for any GPU reset in progress. */ 1087 if (__tasklet_is_enabled(t)) 1088 t->func(t->data); 1089 tasklet_unlock(t); 1090 } 1091 local_bh_enable(); 1092 } 1093 1094 /* Otherwise flush the tasklet if it was running on another cpu */ 1095 tasklet_unlock_wait(t); 1096 } 1097 1098 /** 1099 * intel_engine_is_idle() - Report if the engine has finished process all work 1100 * @engine: the intel_engine_cs 1101 * 1102 * Return true if there are no requests pending, nothing left to be submitted 1103 * to hardware, and that the engine is idle. 1104 */ 1105 bool intel_engine_is_idle(struct intel_engine_cs *engine) 1106 { 1107 /* More white lies, if wedged, hw state is inconsistent */ 1108 if (intel_gt_is_wedged(engine->gt)) 1109 return true; 1110 1111 if (!intel_engine_pm_is_awake(engine)) 1112 return true; 1113 1114 /* Waiting to drain ELSP? */ 1115 if (execlists_active(&engine->execlists)) { 1116 synchronize_hardirq(engine->i915->drm.pdev->irq); 1117 1118 intel_engine_flush_submission(engine); 1119 1120 if (execlists_active(&engine->execlists)) 1121 return false; 1122 } 1123 1124 /* ELSP is empty, but there are ready requests? E.g. after reset */ 1125 if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root)) 1126 return false; 1127 1128 /* Ring stopped? */ 1129 return ring_is_idle(engine); 1130 } 1131 1132 bool intel_engines_are_idle(struct intel_gt *gt) 1133 { 1134 struct intel_engine_cs *engine; 1135 enum intel_engine_id id; 1136 1137 /* 1138 * If the driver is wedged, HW state may be very inconsistent and 1139 * report that it is still busy, even though we have stopped using it. 1140 */ 1141 if (intel_gt_is_wedged(gt)) 1142 return true; 1143 1144 /* Already parked (and passed an idleness test); must still be idle */ 1145 if (!READ_ONCE(gt->awake)) 1146 return true; 1147 1148 for_each_engine(engine, gt, id) { 1149 if (!intel_engine_is_idle(engine)) 1150 return false; 1151 } 1152 1153 return true; 1154 } 1155 1156 void intel_engines_reset_default_submission(struct intel_gt *gt) 1157 { 1158 struct intel_engine_cs *engine; 1159 enum intel_engine_id id; 1160 1161 for_each_engine(engine, gt, id) 1162 engine->set_default_submission(engine); 1163 } 1164 1165 bool intel_engine_can_store_dword(struct intel_engine_cs *engine) 1166 { 1167 switch (INTEL_GEN(engine->i915)) { 1168 case 2: 1169 return false; /* uses physical not virtual addresses */ 1170 case 3: 1171 /* maybe only uses physical not virtual addresses */ 1172 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915)); 1173 case 4: 1174 return !IS_I965G(engine->i915); /* who knows! */ 1175 case 6: 1176 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */ 1177 default: 1178 return true; 1179 } 1180 } 1181 1182 static int print_sched_attr(struct drm_i915_private *i915, 1183 const struct i915_sched_attr *attr, 1184 char *buf, int x, int len) 1185 { 1186 if (attr->priority == I915_PRIORITY_INVALID) 1187 return x; 1188 1189 x += snprintf(buf + x, len - x, 1190 " prio=%d", attr->priority); 1191 1192 return x; 1193 } 1194 1195 static void print_request(struct drm_printer *m, 1196 struct i915_request *rq, 1197 const char *prefix) 1198 { 1199 const char *name = rq->fence.ops->get_timeline_name(&rq->fence); 1200 char buf[80] = ""; 1201 int x = 0; 1202 1203 x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf)); 1204 1205 drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n", 1206 prefix, 1207 rq->fence.context, rq->fence.seqno, 1208 i915_request_completed(rq) ? "!" : 1209 i915_request_started(rq) ? "*" : 1210 "", 1211 test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, 1212 &rq->fence.flags) ? "+" : 1213 test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, 1214 &rq->fence.flags) ? "-" : 1215 "", 1216 buf, 1217 jiffies_to_msecs(jiffies - rq->emitted_jiffies), 1218 name); 1219 } 1220 1221 static void hexdump(struct drm_printer *m, const void *buf, size_t len) 1222 { 1223 const size_t rowsize = 8 * sizeof(u32); 1224 const void *prev = NULL; 1225 bool skip = false; 1226 size_t pos; 1227 1228 for (pos = 0; pos < len; pos += rowsize) { 1229 char line[128]; 1230 1231 if (prev && !memcmp(prev, buf + pos, rowsize)) { 1232 if (!skip) { 1233 drm_printf(m, "*\n"); 1234 skip = true; 1235 } 1236 continue; 1237 } 1238 1239 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos, 1240 rowsize, sizeof(u32), 1241 line, sizeof(line), 1242 false) >= sizeof(line)); 1243 drm_printf(m, "[%04zx] %s\n", pos, line); 1244 1245 prev = buf + pos; 1246 skip = false; 1247 } 1248 } 1249 1250 static struct intel_timeline *get_timeline(struct i915_request *rq) 1251 { 1252 struct intel_timeline *tl; 1253 1254 /* 1255 * Even though we are holding the engine->active.lock here, there 1256 * is no control over the submission queue per-se and we are 1257 * inspecting the active state at a random point in time, with an 1258 * unknown queue. Play safe and make sure the timeline remains valid. 1259 * (Only being used for pretty printing, one extra kref shouldn't 1260 * cause a camel stampede!) 1261 */ 1262 rcu_read_lock(); 1263 tl = rcu_dereference(rq->timeline); 1264 if (!kref_get_unless_zero(&tl->kref)) 1265 tl = NULL; 1266 rcu_read_unlock(); 1267 1268 return tl; 1269 } 1270 1271 static const char *repr_timer(const struct timer_list *t) 1272 { 1273 if (!READ_ONCE(t->expires)) 1274 return "inactive"; 1275 1276 if (timer_pending(t)) 1277 return "active"; 1278 1279 return "expired"; 1280 } 1281 1282 static void intel_engine_print_registers(struct intel_engine_cs *engine, 1283 struct drm_printer *m) 1284 { 1285 struct drm_i915_private *dev_priv = engine->i915; 1286 struct intel_engine_execlists * const execlists = &engine->execlists; 1287 u64 addr; 1288 1289 if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7)) 1290 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID)); 1291 drm_printf(m, "\tRING_START: 0x%08x\n", 1292 ENGINE_READ(engine, RING_START)); 1293 drm_printf(m, "\tRING_HEAD: 0x%08x\n", 1294 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR); 1295 drm_printf(m, "\tRING_TAIL: 0x%08x\n", 1296 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR); 1297 drm_printf(m, "\tRING_CTL: 0x%08x%s\n", 1298 ENGINE_READ(engine, RING_CTL), 1299 ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : ""); 1300 if (INTEL_GEN(engine->i915) > 2) { 1301 drm_printf(m, "\tRING_MODE: 0x%08x%s\n", 1302 ENGINE_READ(engine, RING_MI_MODE), 1303 ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : ""); 1304 } 1305 1306 if (INTEL_GEN(dev_priv) >= 6) { 1307 drm_printf(m, "\tRING_IMR: 0x%08x\n", 1308 ENGINE_READ(engine, RING_IMR)); 1309 drm_printf(m, "\tRING_ESR: 0x%08x\n", 1310 ENGINE_READ(engine, RING_ESR)); 1311 drm_printf(m, "\tRING_EMR: 0x%08x\n", 1312 ENGINE_READ(engine, RING_EMR)); 1313 drm_printf(m, "\tRING_EIR: 0x%08x\n", 1314 ENGINE_READ(engine, RING_EIR)); 1315 } 1316 1317 addr = intel_engine_get_active_head(engine); 1318 drm_printf(m, "\tACTHD: 0x%08x_%08x\n", 1319 upper_32_bits(addr), lower_32_bits(addr)); 1320 addr = intel_engine_get_last_batch_head(engine); 1321 drm_printf(m, "\tBBADDR: 0x%08x_%08x\n", 1322 upper_32_bits(addr), lower_32_bits(addr)); 1323 if (INTEL_GEN(dev_priv) >= 8) 1324 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW); 1325 else if (INTEL_GEN(dev_priv) >= 4) 1326 addr = ENGINE_READ(engine, RING_DMA_FADD); 1327 else 1328 addr = ENGINE_READ(engine, DMA_FADD_I8XX); 1329 drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n", 1330 upper_32_bits(addr), lower_32_bits(addr)); 1331 if (INTEL_GEN(dev_priv) >= 4) { 1332 drm_printf(m, "\tIPEIR: 0x%08x\n", 1333 ENGINE_READ(engine, RING_IPEIR)); 1334 drm_printf(m, "\tIPEHR: 0x%08x\n", 1335 ENGINE_READ(engine, RING_IPEHR)); 1336 } else { 1337 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR)); 1338 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR)); 1339 } 1340 1341 if (HAS_EXECLISTS(dev_priv)) { 1342 struct i915_request * const *port, *rq; 1343 const u32 *hws = 1344 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX]; 1345 const u8 num_entries = execlists->csb_size; 1346 unsigned int idx; 1347 u8 read, write; 1348 1349 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n", 1350 yesno(test_bit(TASKLET_STATE_SCHED, 1351 &engine->execlists.tasklet.state)), 1352 enableddisabled(!atomic_read(&engine->execlists.tasklet.count)), 1353 repr_timer(&engine->execlists.preempt), 1354 repr_timer(&engine->execlists.timer)); 1355 1356 read = execlists->csb_head; 1357 write = READ_ONCE(*execlists->csb_write); 1358 1359 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n", 1360 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO), 1361 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI), 1362 read, write, num_entries); 1363 1364 if (read >= num_entries) 1365 read = 0; 1366 if (write >= num_entries) 1367 write = 0; 1368 if (read > write) 1369 write += num_entries; 1370 while (read < write) { 1371 idx = ++read % num_entries; 1372 drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n", 1373 idx, hws[idx * 2], hws[idx * 2 + 1]); 1374 } 1375 1376 execlists_active_lock_bh(execlists); 1377 rcu_read_lock(); 1378 for (port = execlists->active; (rq = *port); port++) { 1379 char hdr[160]; 1380 int len; 1381 1382 len = snprintf(hdr, sizeof(hdr), 1383 "\t\tActive[%d]: ", 1384 (int)(port - execlists->active)); 1385 if (!i915_request_signaled(rq)) { 1386 struct intel_timeline *tl = get_timeline(rq); 1387 1388 len += snprintf(hdr + len, sizeof(hdr) - len, 1389 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ", 1390 i915_ggtt_offset(rq->ring->vma), 1391 tl ? tl->hwsp_offset : 0, 1392 hwsp_seqno(rq), 1393 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context), 1394 1000 * 1000)); 1395 1396 if (tl) 1397 intel_timeline_put(tl); 1398 } 1399 snprintf(hdr + len, sizeof(hdr) - len, "rq: "); 1400 print_request(m, rq, hdr); 1401 } 1402 for (port = execlists->pending; (rq = *port); port++) { 1403 struct intel_timeline *tl = get_timeline(rq); 1404 char hdr[80]; 1405 1406 snprintf(hdr, sizeof(hdr), 1407 "\t\tPending[%d] ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ", 1408 (int)(port - execlists->pending), 1409 i915_ggtt_offset(rq->ring->vma), 1410 tl ? tl->hwsp_offset : 0, 1411 hwsp_seqno(rq)); 1412 print_request(m, rq, hdr); 1413 1414 if (tl) 1415 intel_timeline_put(tl); 1416 } 1417 rcu_read_unlock(); 1418 execlists_active_unlock_bh(execlists); 1419 } else if (INTEL_GEN(dev_priv) > 6) { 1420 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n", 1421 ENGINE_READ(engine, RING_PP_DIR_BASE)); 1422 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n", 1423 ENGINE_READ(engine, RING_PP_DIR_BASE_READ)); 1424 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n", 1425 ENGINE_READ(engine, RING_PP_DIR_DCLV)); 1426 } 1427 } 1428 1429 static void print_request_ring(struct drm_printer *m, struct i915_request *rq) 1430 { 1431 void *ring; 1432 int size; 1433 1434 drm_printf(m, 1435 "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n", 1436 rq->head, rq->postfix, rq->tail, 1437 rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u, 1438 rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u); 1439 1440 size = rq->tail - rq->head; 1441 if (rq->tail < rq->head) 1442 size += rq->ring->size; 1443 1444 ring = kmalloc(size, GFP_ATOMIC); 1445 if (ring) { 1446 const void *vaddr = rq->ring->vaddr; 1447 unsigned int head = rq->head; 1448 unsigned int len = 0; 1449 1450 if (rq->tail < head) { 1451 len = rq->ring->size - head; 1452 memcpy(ring, vaddr + head, len); 1453 head = 0; 1454 } 1455 memcpy(ring + len, vaddr + head, size - len); 1456 1457 hexdump(m, ring, size); 1458 kfree(ring); 1459 } 1460 } 1461 1462 static unsigned long list_count(struct list_head *list) 1463 { 1464 struct list_head *pos; 1465 unsigned long count = 0; 1466 1467 list_for_each(pos, list) 1468 count++; 1469 1470 return count; 1471 } 1472 1473 void intel_engine_dump(struct intel_engine_cs *engine, 1474 struct drm_printer *m, 1475 const char *header, ...) 1476 { 1477 struct i915_gpu_error * const error = &engine->i915->gpu_error; 1478 struct i915_request *rq; 1479 intel_wakeref_t wakeref; 1480 unsigned long flags; 1481 1482 if (header) { 1483 va_list ap; 1484 1485 va_start(ap, header); 1486 drm_vprintf(m, header, &ap); 1487 va_end(ap); 1488 } 1489 1490 if (intel_gt_is_wedged(engine->gt)) 1491 drm_printf(m, "*** WEDGED ***\n"); 1492 1493 drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count)); 1494 drm_printf(m, "\tBarriers?: %s\n", 1495 yesno(!llist_empty(&engine->barrier_tasks))); 1496 drm_printf(m, "\tLatency: %luus\n", 1497 ewma__engine_latency_read(&engine->latency)); 1498 1499 rcu_read_lock(); 1500 rq = READ_ONCE(engine->heartbeat.systole); 1501 if (rq) 1502 drm_printf(m, "\tHeartbeat: %d ms ago\n", 1503 jiffies_to_msecs(jiffies - rq->emitted_jiffies)); 1504 rcu_read_unlock(); 1505 drm_printf(m, "\tReset count: %d (global %d)\n", 1506 i915_reset_engine_count(error, engine), 1507 i915_reset_count(error)); 1508 1509 drm_printf(m, "\tRequests:\n"); 1510 1511 spin_lock_irqsave(&engine->active.lock, flags); 1512 rq = intel_engine_find_active_request(engine); 1513 if (rq) { 1514 struct intel_timeline *tl = get_timeline(rq); 1515 1516 print_request(m, rq, "\t\tactive "); 1517 1518 drm_printf(m, "\t\tring->start: 0x%08x\n", 1519 i915_ggtt_offset(rq->ring->vma)); 1520 drm_printf(m, "\t\tring->head: 0x%08x\n", 1521 rq->ring->head); 1522 drm_printf(m, "\t\tring->tail: 0x%08x\n", 1523 rq->ring->tail); 1524 drm_printf(m, "\t\tring->emit: 0x%08x\n", 1525 rq->ring->emit); 1526 drm_printf(m, "\t\tring->space: 0x%08x\n", 1527 rq->ring->space); 1528 1529 if (tl) { 1530 drm_printf(m, "\t\tring->hwsp: 0x%08x\n", 1531 tl->hwsp_offset); 1532 intel_timeline_put(tl); 1533 } 1534 1535 print_request_ring(m, rq); 1536 1537 if (rq->context->lrc_reg_state) { 1538 drm_printf(m, "Logical Ring Context:\n"); 1539 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE); 1540 } 1541 } 1542 drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold)); 1543 spin_unlock_irqrestore(&engine->active.lock, flags); 1544 1545 drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base); 1546 wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm); 1547 if (wakeref) { 1548 intel_engine_print_registers(engine, m); 1549 intel_runtime_pm_put(engine->uncore->rpm, wakeref); 1550 } else { 1551 drm_printf(m, "\tDevice is asleep; skipping register dump\n"); 1552 } 1553 1554 intel_execlists_show_requests(engine, m, print_request, 8); 1555 1556 drm_printf(m, "HWSP:\n"); 1557 hexdump(m, engine->status_page.addr, PAGE_SIZE); 1558 1559 drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine))); 1560 1561 intel_engine_print_breadcrumbs(engine, m); 1562 } 1563 1564 /** 1565 * intel_enable_engine_stats() - Enable engine busy tracking on engine 1566 * @engine: engine to enable stats collection 1567 * 1568 * Start collecting the engine busyness data for @engine. 1569 * 1570 * Returns 0 on success or a negative error code. 1571 */ 1572 int intel_enable_engine_stats(struct intel_engine_cs *engine) 1573 { 1574 struct intel_engine_execlists *execlists = &engine->execlists; 1575 unsigned long flags; 1576 int err = 0; 1577 1578 if (!intel_engine_supports_stats(engine)) 1579 return -ENODEV; 1580 1581 execlists_active_lock_bh(execlists); 1582 write_seqlock_irqsave(&engine->stats.lock, flags); 1583 1584 if (unlikely(engine->stats.enabled == ~0)) { 1585 err = -EBUSY; 1586 goto unlock; 1587 } 1588 1589 if (engine->stats.enabled++ == 0) { 1590 struct i915_request * const *port; 1591 struct i915_request *rq; 1592 1593 engine->stats.enabled_at = ktime_get(); 1594 1595 /* XXX submission method oblivious? */ 1596 for (port = execlists->active; (rq = *port); port++) 1597 engine->stats.active++; 1598 1599 for (port = execlists->pending; (rq = *port); port++) { 1600 /* Exclude any contexts already counted in active */ 1601 if (!intel_context_inflight_count(rq->context)) 1602 engine->stats.active++; 1603 } 1604 1605 if (engine->stats.active) 1606 engine->stats.start = engine->stats.enabled_at; 1607 } 1608 1609 unlock: 1610 write_sequnlock_irqrestore(&engine->stats.lock, flags); 1611 execlists_active_unlock_bh(execlists); 1612 1613 return err; 1614 } 1615 1616 static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine) 1617 { 1618 ktime_t total = engine->stats.total; 1619 1620 /* 1621 * If the engine is executing something at the moment 1622 * add it to the total. 1623 */ 1624 if (engine->stats.active) 1625 total = ktime_add(total, 1626 ktime_sub(ktime_get(), engine->stats.start)); 1627 1628 return total; 1629 } 1630 1631 /** 1632 * intel_engine_get_busy_time() - Return current accumulated engine busyness 1633 * @engine: engine to report on 1634 * 1635 * Returns accumulated time @engine was busy since engine stats were enabled. 1636 */ 1637 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine) 1638 { 1639 unsigned int seq; 1640 ktime_t total; 1641 1642 do { 1643 seq = read_seqbegin(&engine->stats.lock); 1644 total = __intel_engine_get_busy_time(engine); 1645 } while (read_seqretry(&engine->stats.lock, seq)); 1646 1647 return total; 1648 } 1649 1650 /** 1651 * intel_disable_engine_stats() - Disable engine busy tracking on engine 1652 * @engine: engine to disable stats collection 1653 * 1654 * Stops collecting the engine busyness data for @engine. 1655 */ 1656 void intel_disable_engine_stats(struct intel_engine_cs *engine) 1657 { 1658 unsigned long flags; 1659 1660 if (!intel_engine_supports_stats(engine)) 1661 return; 1662 1663 write_seqlock_irqsave(&engine->stats.lock, flags); 1664 WARN_ON_ONCE(engine->stats.enabled == 0); 1665 if (--engine->stats.enabled == 0) { 1666 engine->stats.total = __intel_engine_get_busy_time(engine); 1667 engine->stats.active = 0; 1668 } 1669 write_sequnlock_irqrestore(&engine->stats.lock, flags); 1670 } 1671 1672 static bool match_ring(struct i915_request *rq) 1673 { 1674 u32 ring = ENGINE_READ(rq->engine, RING_START); 1675 1676 return ring == i915_ggtt_offset(rq->ring->vma); 1677 } 1678 1679 struct i915_request * 1680 intel_engine_find_active_request(struct intel_engine_cs *engine) 1681 { 1682 struct i915_request *request, *active = NULL; 1683 1684 /* 1685 * We are called by the error capture, reset and to dump engine 1686 * state at random points in time. In particular, note that neither is 1687 * crucially ordered with an interrupt. After a hang, the GPU is dead 1688 * and we assume that no more writes can happen (we waited long enough 1689 * for all writes that were in transaction to be flushed) - adding an 1690 * extra delay for a recent interrupt is pointless. Hence, we do 1691 * not need an engine->irq_seqno_barrier() before the seqno reads. 1692 * At all other times, we must assume the GPU is still running, but 1693 * we only care about the snapshot of this moment. 1694 */ 1695 lockdep_assert_held(&engine->active.lock); 1696 1697 rcu_read_lock(); 1698 request = execlists_active(&engine->execlists); 1699 if (request) { 1700 struct intel_timeline *tl = request->context->timeline; 1701 1702 list_for_each_entry_from_reverse(request, &tl->requests, link) { 1703 if (i915_request_completed(request)) 1704 break; 1705 1706 active = request; 1707 } 1708 } 1709 rcu_read_unlock(); 1710 if (active) 1711 return active; 1712 1713 list_for_each_entry(request, &engine->active.requests, sched.link) { 1714 if (i915_request_completed(request)) 1715 continue; 1716 1717 if (!i915_request_started(request)) 1718 continue; 1719 1720 /* More than one preemptible request may match! */ 1721 if (!match_ring(request)) 1722 continue; 1723 1724 active = request; 1725 break; 1726 } 1727 1728 return active; 1729 } 1730 1731 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1732 #include "mock_engine.c" 1733 #include "selftest_engine.c" 1734 #include "selftest_engine_cs.c" 1735 #endif 1736