1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include <drm/drm_blend.h> 7 8 #include "i915_drv.h" 9 #include "i915_fixed.h" 10 #include "i915_reg.h" 11 #include "i9xx_wm.h" 12 #include "intel_atomic.h" 13 #include "intel_atomic_plane.h" 14 #include "intel_bw.h" 15 #include "intel_crtc.h" 16 #include "intel_de.h" 17 #include "intel_display.h" 18 #include "intel_display_power.h" 19 #include "intel_display_types.h" 20 #include "intel_fb.h" 21 #include "intel_pcode.h" 22 #include "intel_wm.h" 23 #include "skl_watermark.h" 24 #include "skl_watermark_regs.h" 25 26 /*It is expected that DSB can do posted writes to every register in 27 * the pipe and planes within 100us. For flip queue use case, the 28 * recommended DSB execution time is 100us + one SAGV block time. 29 */ 30 #define DSB_EXE_TIME 100 31 32 static void skl_sagv_disable(struct drm_i915_private *i915); 33 34 /* Stores plane specific WM parameters */ 35 struct skl_wm_params { 36 bool x_tiled, y_tiled; 37 bool rc_surface; 38 bool is_planar; 39 u32 width; 40 u8 cpp; 41 u32 plane_pixel_rate; 42 u32 y_min_scanlines; 43 u32 plane_bytes_per_line; 44 uint_fixed_16_16_t plane_blocks_per_line; 45 uint_fixed_16_16_t y_tile_minimum; 46 u32 linetime_us; 47 u32 dbuf_block_size; 48 }; 49 50 u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *i915) 51 { 52 u8 enabled_slices = 0; 53 enum dbuf_slice slice; 54 55 for_each_dbuf_slice(i915, slice) { 56 if (intel_de_read(i915, DBUF_CTL_S(slice)) & DBUF_POWER_STATE) 57 enabled_slices |= BIT(slice); 58 } 59 60 return enabled_slices; 61 } 62 63 /* 64 * FIXME: We still don't have the proper code detect if we need to apply the WA, 65 * so assume we'll always need it in order to avoid underruns. 66 */ 67 static bool skl_needs_memory_bw_wa(struct drm_i915_private *i915) 68 { 69 return DISPLAY_VER(i915) == 9; 70 } 71 72 static bool 73 intel_has_sagv(struct drm_i915_private *i915) 74 { 75 return HAS_SAGV(i915) && 76 i915->display.sagv.status != I915_SAGV_NOT_CONTROLLED; 77 } 78 79 static u32 80 intel_sagv_block_time(struct drm_i915_private *i915) 81 { 82 if (DISPLAY_VER(i915) >= 14) { 83 u32 val; 84 85 val = intel_de_read(i915, MTL_LATENCY_SAGV); 86 87 return REG_FIELD_GET(MTL_LATENCY_QCLK_SAGV, val); 88 } else if (DISPLAY_VER(i915) >= 12) { 89 u32 val = 0; 90 int ret; 91 92 ret = snb_pcode_read(&i915->uncore, 93 GEN12_PCODE_READ_SAGV_BLOCK_TIME_US, 94 &val, NULL); 95 if (ret) { 96 drm_dbg_kms(&i915->drm, "Couldn't read SAGV block time!\n"); 97 return 0; 98 } 99 100 return val; 101 } else if (DISPLAY_VER(i915) == 11) { 102 return 10; 103 } else if (HAS_SAGV(i915)) { 104 return 30; 105 } else { 106 return 0; 107 } 108 } 109 110 static void intel_sagv_init(struct drm_i915_private *i915) 111 { 112 if (!HAS_SAGV(i915)) 113 i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED; 114 115 /* 116 * Probe to see if we have working SAGV control. 117 * For icl+ this was already determined by intel_bw_init_hw(). 118 */ 119 if (DISPLAY_VER(i915) < 11) 120 skl_sagv_disable(i915); 121 122 drm_WARN_ON(&i915->drm, i915->display.sagv.status == I915_SAGV_UNKNOWN); 123 124 i915->display.sagv.block_time_us = intel_sagv_block_time(i915); 125 126 drm_dbg_kms(&i915->drm, "SAGV supported: %s, original SAGV block time: %u us\n", 127 str_yes_no(intel_has_sagv(i915)), i915->display.sagv.block_time_us); 128 129 /* avoid overflow when adding with wm0 latency/etc. */ 130 if (drm_WARN(&i915->drm, i915->display.sagv.block_time_us > U16_MAX, 131 "Excessive SAGV block time %u, ignoring\n", 132 i915->display.sagv.block_time_us)) 133 i915->display.sagv.block_time_us = 0; 134 135 if (!intel_has_sagv(i915)) 136 i915->display.sagv.block_time_us = 0; 137 } 138 139 /* 140 * SAGV dynamically adjusts the system agent voltage and clock frequencies 141 * depending on power and performance requirements. The display engine access 142 * to system memory is blocked during the adjustment time. Because of the 143 * blocking time, having this enabled can cause full system hangs and/or pipe 144 * underruns if we don't meet all of the following requirements: 145 * 146 * - <= 1 pipe enabled 147 * - All planes can enable watermarks for latencies >= SAGV engine block time 148 * - We're not using an interlaced display configuration 149 */ 150 static void skl_sagv_enable(struct drm_i915_private *i915) 151 { 152 int ret; 153 154 if (!intel_has_sagv(i915)) 155 return; 156 157 if (i915->display.sagv.status == I915_SAGV_ENABLED) 158 return; 159 160 drm_dbg_kms(&i915->drm, "Enabling SAGV\n"); 161 ret = snb_pcode_write(&i915->uncore, GEN9_PCODE_SAGV_CONTROL, 162 GEN9_SAGV_ENABLE); 163 164 /* We don't need to wait for SAGV when enabling */ 165 166 /* 167 * Some skl systems, pre-release machines in particular, 168 * don't actually have SAGV. 169 */ 170 if (IS_SKYLAKE(i915) && ret == -ENXIO) { 171 drm_dbg(&i915->drm, "No SAGV found on system, ignoring\n"); 172 i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED; 173 return; 174 } else if (ret < 0) { 175 drm_err(&i915->drm, "Failed to enable SAGV\n"); 176 return; 177 } 178 179 i915->display.sagv.status = I915_SAGV_ENABLED; 180 } 181 182 static void skl_sagv_disable(struct drm_i915_private *i915) 183 { 184 int ret; 185 186 if (!intel_has_sagv(i915)) 187 return; 188 189 if (i915->display.sagv.status == I915_SAGV_DISABLED) 190 return; 191 192 drm_dbg_kms(&i915->drm, "Disabling SAGV\n"); 193 /* bspec says to keep retrying for at least 1 ms */ 194 ret = skl_pcode_request(&i915->uncore, GEN9_PCODE_SAGV_CONTROL, 195 GEN9_SAGV_DISABLE, 196 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED, 197 1); 198 /* 199 * Some skl systems, pre-release machines in particular, 200 * don't actually have SAGV. 201 */ 202 if (IS_SKYLAKE(i915) && ret == -ENXIO) { 203 drm_dbg(&i915->drm, "No SAGV found on system, ignoring\n"); 204 i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED; 205 return; 206 } else if (ret < 0) { 207 drm_err(&i915->drm, "Failed to disable SAGV (%d)\n", ret); 208 return; 209 } 210 211 i915->display.sagv.status = I915_SAGV_DISABLED; 212 } 213 214 static void skl_sagv_pre_plane_update(struct intel_atomic_state *state) 215 { 216 struct drm_i915_private *i915 = to_i915(state->base.dev); 217 const struct intel_bw_state *new_bw_state = 218 intel_atomic_get_new_bw_state(state); 219 220 if (!new_bw_state) 221 return; 222 223 if (!intel_can_enable_sagv(i915, new_bw_state)) 224 skl_sagv_disable(i915); 225 } 226 227 static void skl_sagv_post_plane_update(struct intel_atomic_state *state) 228 { 229 struct drm_i915_private *i915 = to_i915(state->base.dev); 230 const struct intel_bw_state *new_bw_state = 231 intel_atomic_get_new_bw_state(state); 232 233 if (!new_bw_state) 234 return; 235 236 if (intel_can_enable_sagv(i915, new_bw_state)) 237 skl_sagv_enable(i915); 238 } 239 240 static void icl_sagv_pre_plane_update(struct intel_atomic_state *state) 241 { 242 struct drm_i915_private *i915 = to_i915(state->base.dev); 243 const struct intel_bw_state *old_bw_state = 244 intel_atomic_get_old_bw_state(state); 245 const struct intel_bw_state *new_bw_state = 246 intel_atomic_get_new_bw_state(state); 247 u16 old_mask, new_mask; 248 249 if (!new_bw_state) 250 return; 251 252 old_mask = old_bw_state->qgv_points_mask; 253 new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask; 254 255 if (old_mask == new_mask) 256 return; 257 258 WARN_ON(!new_bw_state->base.changed); 259 260 drm_dbg_kms(&i915->drm, "Restricting QGV points: 0x%x -> 0x%x\n", 261 old_mask, new_mask); 262 263 /* 264 * Restrict required qgv points before updating the configuration. 265 * According to BSpec we can't mask and unmask qgv points at the same 266 * time. Also masking should be done before updating the configuration 267 * and unmasking afterwards. 268 */ 269 icl_pcode_restrict_qgv_points(i915, new_mask); 270 } 271 272 static void icl_sagv_post_plane_update(struct intel_atomic_state *state) 273 { 274 struct drm_i915_private *i915 = to_i915(state->base.dev); 275 const struct intel_bw_state *old_bw_state = 276 intel_atomic_get_old_bw_state(state); 277 const struct intel_bw_state *new_bw_state = 278 intel_atomic_get_new_bw_state(state); 279 u16 old_mask, new_mask; 280 281 if (!new_bw_state) 282 return; 283 284 old_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask; 285 new_mask = new_bw_state->qgv_points_mask; 286 287 if (old_mask == new_mask) 288 return; 289 290 WARN_ON(!new_bw_state->base.changed); 291 292 drm_dbg_kms(&i915->drm, "Relaxing QGV points: 0x%x -> 0x%x\n", 293 old_mask, new_mask); 294 295 /* 296 * Allow required qgv points after updating the configuration. 297 * According to BSpec we can't mask and unmask qgv points at the same 298 * time. Also masking should be done before updating the configuration 299 * and unmasking afterwards. 300 */ 301 icl_pcode_restrict_qgv_points(i915, new_mask); 302 } 303 304 void intel_sagv_pre_plane_update(struct intel_atomic_state *state) 305 { 306 struct drm_i915_private *i915 = to_i915(state->base.dev); 307 308 /* 309 * Just return if we can't control SAGV or don't have it. 310 * This is different from situation when we have SAGV but just can't 311 * afford it due to DBuf limitation - in case if SAGV is completely 312 * disabled in a BIOS, we are not even allowed to send a PCode request, 313 * as it will throw an error. So have to check it here. 314 */ 315 if (!intel_has_sagv(i915)) 316 return; 317 318 if (DISPLAY_VER(i915) >= 11) 319 icl_sagv_pre_plane_update(state); 320 else 321 skl_sagv_pre_plane_update(state); 322 } 323 324 void intel_sagv_post_plane_update(struct intel_atomic_state *state) 325 { 326 struct drm_i915_private *i915 = to_i915(state->base.dev); 327 328 /* 329 * Just return if we can't control SAGV or don't have it. 330 * This is different from situation when we have SAGV but just can't 331 * afford it due to DBuf limitation - in case if SAGV is completely 332 * disabled in a BIOS, we are not even allowed to send a PCode request, 333 * as it will throw an error. So have to check it here. 334 */ 335 if (!intel_has_sagv(i915)) 336 return; 337 338 if (DISPLAY_VER(i915) >= 11) 339 icl_sagv_post_plane_update(state); 340 else 341 skl_sagv_post_plane_update(state); 342 } 343 344 static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state) 345 { 346 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 347 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 348 enum plane_id plane_id; 349 int max_level = INT_MAX; 350 351 if (!intel_has_sagv(i915)) 352 return false; 353 354 if (!crtc_state->hw.active) 355 return true; 356 357 if (crtc_state->hw.pipe_mode.flags & DRM_MODE_FLAG_INTERLACE) 358 return false; 359 360 for_each_plane_id_on_crtc(crtc, plane_id) { 361 const struct skl_plane_wm *wm = 362 &crtc_state->wm.skl.optimal.planes[plane_id]; 363 int level; 364 365 /* Skip this plane if it's not enabled */ 366 if (!wm->wm[0].enable) 367 continue; 368 369 /* Find the highest enabled wm level for this plane */ 370 for (level = i915->display.wm.num_levels - 1; 371 !wm->wm[level].enable; --level) 372 { } 373 374 /* Highest common enabled wm level for all planes */ 375 max_level = min(level, max_level); 376 } 377 378 /* No enabled planes? */ 379 if (max_level == INT_MAX) 380 return true; 381 382 for_each_plane_id_on_crtc(crtc, plane_id) { 383 const struct skl_plane_wm *wm = 384 &crtc_state->wm.skl.optimal.planes[plane_id]; 385 386 /* 387 * All enabled planes must have enabled a common wm level that 388 * can tolerate memory latencies higher than sagv_block_time_us 389 */ 390 if (wm->wm[0].enable && !wm->wm[max_level].can_sagv) 391 return false; 392 } 393 394 return true; 395 } 396 397 static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state) 398 { 399 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 400 enum plane_id plane_id; 401 402 if (!crtc_state->hw.active) 403 return true; 404 405 for_each_plane_id_on_crtc(crtc, plane_id) { 406 const struct skl_plane_wm *wm = 407 &crtc_state->wm.skl.optimal.planes[plane_id]; 408 409 if (wm->wm[0].enable && !wm->sagv.wm0.enable) 410 return false; 411 } 412 413 return true; 414 } 415 416 static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state) 417 { 418 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 419 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 420 421 if (!i915->display.params.enable_sagv) 422 return false; 423 424 if (DISPLAY_VER(i915) >= 12) 425 return tgl_crtc_can_enable_sagv(crtc_state); 426 else 427 return skl_crtc_can_enable_sagv(crtc_state); 428 } 429 430 bool intel_can_enable_sagv(struct drm_i915_private *i915, 431 const struct intel_bw_state *bw_state) 432 { 433 if (DISPLAY_VER(i915) < 11 && 434 bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes)) 435 return false; 436 437 return bw_state->pipe_sagv_reject == 0; 438 } 439 440 static int intel_compute_sagv_mask(struct intel_atomic_state *state) 441 { 442 struct drm_i915_private *i915 = to_i915(state->base.dev); 443 int ret; 444 struct intel_crtc *crtc; 445 struct intel_crtc_state *new_crtc_state; 446 struct intel_bw_state *new_bw_state = NULL; 447 const struct intel_bw_state *old_bw_state = NULL; 448 int i; 449 450 for_each_new_intel_crtc_in_state(state, crtc, 451 new_crtc_state, i) { 452 struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal; 453 454 new_bw_state = intel_atomic_get_bw_state(state); 455 if (IS_ERR(new_bw_state)) 456 return PTR_ERR(new_bw_state); 457 458 old_bw_state = intel_atomic_get_old_bw_state(state); 459 460 /* 461 * We store use_sagv_wm in the crtc state rather than relying on 462 * that bw state since we have no convenient way to get at the 463 * latter from the plane commit hooks (especially in the legacy 464 * cursor case). 465 * 466 * drm_atomic_check_only() gets upset if we pull more crtcs 467 * into the state, so we have to calculate this based on the 468 * individual intel_crtc_can_enable_sagv() rather than 469 * the overall intel_can_enable_sagv(). Otherwise the 470 * crtcs not included in the commit would not switch to the 471 * SAGV watermarks when we are about to enable SAGV, and that 472 * would lead to underruns. This does mean extra power draw 473 * when only a subset of the crtcs are blocking SAGV as the 474 * other crtcs can't be allowed to use the more optimal 475 * normal (ie. non-SAGV) watermarks. 476 */ 477 pipe_wm->use_sagv_wm = !HAS_HW_SAGV_WM(i915) && 478 DISPLAY_VER(i915) >= 12 && 479 intel_crtc_can_enable_sagv(new_crtc_state); 480 481 if (intel_crtc_can_enable_sagv(new_crtc_state)) 482 new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe); 483 else 484 new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe); 485 } 486 487 if (!new_bw_state) 488 return 0; 489 490 new_bw_state->active_pipes = 491 intel_calc_active_pipes(state, old_bw_state->active_pipes); 492 493 if (new_bw_state->active_pipes != old_bw_state->active_pipes) { 494 ret = intel_atomic_lock_global_state(&new_bw_state->base); 495 if (ret) 496 return ret; 497 } 498 499 if (intel_can_enable_sagv(i915, new_bw_state) != 500 intel_can_enable_sagv(i915, old_bw_state)) { 501 ret = intel_atomic_serialize_global_state(&new_bw_state->base); 502 if (ret) 503 return ret; 504 } else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) { 505 ret = intel_atomic_lock_global_state(&new_bw_state->base); 506 if (ret) 507 return ret; 508 } 509 510 return 0; 511 } 512 513 static u16 skl_ddb_entry_init(struct skl_ddb_entry *entry, 514 u16 start, u16 end) 515 { 516 entry->start = start; 517 entry->end = end; 518 519 return end; 520 } 521 522 static int intel_dbuf_slice_size(struct drm_i915_private *i915) 523 { 524 return DISPLAY_INFO(i915)->dbuf.size / 525 hweight8(DISPLAY_INFO(i915)->dbuf.slice_mask); 526 } 527 528 static void 529 skl_ddb_entry_for_slices(struct drm_i915_private *i915, u8 slice_mask, 530 struct skl_ddb_entry *ddb) 531 { 532 int slice_size = intel_dbuf_slice_size(i915); 533 534 if (!slice_mask) { 535 ddb->start = 0; 536 ddb->end = 0; 537 return; 538 } 539 540 ddb->start = (ffs(slice_mask) - 1) * slice_size; 541 ddb->end = fls(slice_mask) * slice_size; 542 543 WARN_ON(ddb->start >= ddb->end); 544 WARN_ON(ddb->end > DISPLAY_INFO(i915)->dbuf.size); 545 } 546 547 static unsigned int mbus_ddb_offset(struct drm_i915_private *i915, u8 slice_mask) 548 { 549 struct skl_ddb_entry ddb; 550 551 if (slice_mask & (BIT(DBUF_S1) | BIT(DBUF_S2))) 552 slice_mask = BIT(DBUF_S1); 553 else if (slice_mask & (BIT(DBUF_S3) | BIT(DBUF_S4))) 554 slice_mask = BIT(DBUF_S3); 555 556 skl_ddb_entry_for_slices(i915, slice_mask, &ddb); 557 558 return ddb.start; 559 } 560 561 u32 skl_ddb_dbuf_slice_mask(struct drm_i915_private *i915, 562 const struct skl_ddb_entry *entry) 563 { 564 int slice_size = intel_dbuf_slice_size(i915); 565 enum dbuf_slice start_slice, end_slice; 566 u8 slice_mask = 0; 567 568 if (!skl_ddb_entry_size(entry)) 569 return 0; 570 571 start_slice = entry->start / slice_size; 572 end_slice = (entry->end - 1) / slice_size; 573 574 /* 575 * Per plane DDB entry can in a really worst case be on multiple slices 576 * but single entry is anyway contigious. 577 */ 578 while (start_slice <= end_slice) { 579 slice_mask |= BIT(start_slice); 580 start_slice++; 581 } 582 583 return slice_mask; 584 } 585 586 static unsigned int intel_crtc_ddb_weight(const struct intel_crtc_state *crtc_state) 587 { 588 const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; 589 int hdisplay, vdisplay; 590 591 if (!crtc_state->hw.active) 592 return 0; 593 594 /* 595 * Watermark/ddb requirement highly depends upon width of the 596 * framebuffer, So instead of allocating DDB equally among pipes 597 * distribute DDB based on resolution/width of the display. 598 */ 599 drm_mode_get_hv_timing(pipe_mode, &hdisplay, &vdisplay); 600 601 return hdisplay; 602 } 603 604 static void intel_crtc_dbuf_weights(const struct intel_dbuf_state *dbuf_state, 605 enum pipe for_pipe, 606 unsigned int *weight_start, 607 unsigned int *weight_end, 608 unsigned int *weight_total) 609 { 610 struct drm_i915_private *i915 = 611 to_i915(dbuf_state->base.state->base.dev); 612 enum pipe pipe; 613 614 *weight_start = 0; 615 *weight_end = 0; 616 *weight_total = 0; 617 618 for_each_pipe(i915, pipe) { 619 int weight = dbuf_state->weight[pipe]; 620 621 /* 622 * Do not account pipes using other slice sets 623 * luckily as of current BSpec slice sets do not partially 624 * intersect(pipes share either same one slice or same slice set 625 * i.e no partial intersection), so it is enough to check for 626 * equality for now. 627 */ 628 if (dbuf_state->slices[pipe] != dbuf_state->slices[for_pipe]) 629 continue; 630 631 *weight_total += weight; 632 if (pipe < for_pipe) { 633 *weight_start += weight; 634 *weight_end += weight; 635 } else if (pipe == for_pipe) { 636 *weight_end += weight; 637 } 638 } 639 } 640 641 static int 642 skl_crtc_allocate_ddb(struct intel_atomic_state *state, struct intel_crtc *crtc) 643 { 644 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 645 unsigned int weight_total, weight_start, weight_end; 646 const struct intel_dbuf_state *old_dbuf_state = 647 intel_atomic_get_old_dbuf_state(state); 648 struct intel_dbuf_state *new_dbuf_state = 649 intel_atomic_get_new_dbuf_state(state); 650 struct intel_crtc_state *crtc_state; 651 struct skl_ddb_entry ddb_slices; 652 enum pipe pipe = crtc->pipe; 653 unsigned int mbus_offset = 0; 654 u32 ddb_range_size; 655 u32 dbuf_slice_mask; 656 u32 start, end; 657 int ret; 658 659 if (new_dbuf_state->weight[pipe] == 0) { 660 skl_ddb_entry_init(&new_dbuf_state->ddb[pipe], 0, 0); 661 goto out; 662 } 663 664 dbuf_slice_mask = new_dbuf_state->slices[pipe]; 665 666 skl_ddb_entry_for_slices(i915, dbuf_slice_mask, &ddb_slices); 667 mbus_offset = mbus_ddb_offset(i915, dbuf_slice_mask); 668 ddb_range_size = skl_ddb_entry_size(&ddb_slices); 669 670 intel_crtc_dbuf_weights(new_dbuf_state, pipe, 671 &weight_start, &weight_end, &weight_total); 672 673 start = ddb_range_size * weight_start / weight_total; 674 end = ddb_range_size * weight_end / weight_total; 675 676 skl_ddb_entry_init(&new_dbuf_state->ddb[pipe], 677 ddb_slices.start - mbus_offset + start, 678 ddb_slices.start - mbus_offset + end); 679 680 out: 681 if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe] && 682 skl_ddb_entry_equal(&old_dbuf_state->ddb[pipe], 683 &new_dbuf_state->ddb[pipe])) 684 return 0; 685 686 ret = intel_atomic_lock_global_state(&new_dbuf_state->base); 687 if (ret) 688 return ret; 689 690 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 691 if (IS_ERR(crtc_state)) 692 return PTR_ERR(crtc_state); 693 694 /* 695 * Used for checking overlaps, so we need absolute 696 * offsets instead of MBUS relative offsets. 697 */ 698 crtc_state->wm.skl.ddb.start = mbus_offset + new_dbuf_state->ddb[pipe].start; 699 crtc_state->wm.skl.ddb.end = mbus_offset + new_dbuf_state->ddb[pipe].end; 700 701 drm_dbg_kms(&i915->drm, 702 "[CRTC:%d:%s] dbuf slices 0x%x -> 0x%x, ddb (%d - %d) -> (%d - %d), active pipes 0x%x -> 0x%x\n", 703 crtc->base.base.id, crtc->base.name, 704 old_dbuf_state->slices[pipe], new_dbuf_state->slices[pipe], 705 old_dbuf_state->ddb[pipe].start, old_dbuf_state->ddb[pipe].end, 706 new_dbuf_state->ddb[pipe].start, new_dbuf_state->ddb[pipe].end, 707 old_dbuf_state->active_pipes, new_dbuf_state->active_pipes); 708 709 return 0; 710 } 711 712 static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state, 713 int width, const struct drm_format_info *format, 714 u64 modifier, unsigned int rotation, 715 u32 plane_pixel_rate, struct skl_wm_params *wp, 716 int color_plane); 717 718 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state, 719 struct intel_plane *plane, 720 int level, 721 unsigned int latency, 722 const struct skl_wm_params *wp, 723 const struct skl_wm_level *result_prev, 724 struct skl_wm_level *result /* out */); 725 726 static unsigned int skl_wm_latency(struct drm_i915_private *i915, int level, 727 const struct skl_wm_params *wp) 728 { 729 unsigned int latency = i915->display.wm.skl_latency[level]; 730 731 if (latency == 0) 732 return 0; 733 734 /* 735 * WaIncreaseLatencyIPCEnabled: kbl,cfl 736 * Display WA #1141: kbl,cfl 737 */ 738 if ((IS_KABYLAKE(i915) || IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) && 739 skl_watermark_ipc_enabled(i915)) 740 latency += 4; 741 742 if (skl_needs_memory_bw_wa(i915) && wp && wp->x_tiled) 743 latency += 15; 744 745 return latency; 746 } 747 748 static unsigned int 749 skl_cursor_allocation(const struct intel_crtc_state *crtc_state, 750 int num_active) 751 { 752 struct intel_plane *plane = to_intel_plane(crtc_state->uapi.crtc->cursor); 753 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 754 struct skl_wm_level wm = {}; 755 int ret, min_ddb_alloc = 0; 756 struct skl_wm_params wp; 757 int level; 758 759 ret = skl_compute_wm_params(crtc_state, 256, 760 drm_format_info(DRM_FORMAT_ARGB8888), 761 DRM_FORMAT_MOD_LINEAR, 762 DRM_MODE_ROTATE_0, 763 crtc_state->pixel_rate, &wp, 0); 764 drm_WARN_ON(&i915->drm, ret); 765 766 for (level = 0; level < i915->display.wm.num_levels; level++) { 767 unsigned int latency = skl_wm_latency(i915, level, &wp); 768 769 skl_compute_plane_wm(crtc_state, plane, level, latency, &wp, &wm, &wm); 770 if (wm.min_ddb_alloc == U16_MAX) 771 break; 772 773 min_ddb_alloc = wm.min_ddb_alloc; 774 } 775 776 return max(num_active == 1 ? 32 : 8, min_ddb_alloc); 777 } 778 779 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg) 780 { 781 skl_ddb_entry_init(entry, 782 REG_FIELD_GET(PLANE_BUF_START_MASK, reg), 783 REG_FIELD_GET(PLANE_BUF_END_MASK, reg)); 784 if (entry->end) 785 entry->end++; 786 } 787 788 static void 789 skl_ddb_get_hw_plane_state(struct drm_i915_private *i915, 790 const enum pipe pipe, 791 const enum plane_id plane_id, 792 struct skl_ddb_entry *ddb, 793 struct skl_ddb_entry *ddb_y) 794 { 795 u32 val; 796 797 /* Cursor doesn't support NV12/planar, so no extra calculation needed */ 798 if (plane_id == PLANE_CURSOR) { 799 val = intel_de_read(i915, CUR_BUF_CFG(pipe)); 800 skl_ddb_entry_init_from_hw(ddb, val); 801 return; 802 } 803 804 val = intel_de_read(i915, PLANE_BUF_CFG(pipe, plane_id)); 805 skl_ddb_entry_init_from_hw(ddb, val); 806 807 if (DISPLAY_VER(i915) >= 11) 808 return; 809 810 val = intel_de_read(i915, PLANE_NV12_BUF_CFG(pipe, plane_id)); 811 skl_ddb_entry_init_from_hw(ddb_y, val); 812 } 813 814 static void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc, 815 struct skl_ddb_entry *ddb, 816 struct skl_ddb_entry *ddb_y) 817 { 818 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 819 enum intel_display_power_domain power_domain; 820 enum pipe pipe = crtc->pipe; 821 intel_wakeref_t wakeref; 822 enum plane_id plane_id; 823 824 power_domain = POWER_DOMAIN_PIPE(pipe); 825 wakeref = intel_display_power_get_if_enabled(i915, power_domain); 826 if (!wakeref) 827 return; 828 829 for_each_plane_id_on_crtc(crtc, plane_id) 830 skl_ddb_get_hw_plane_state(i915, pipe, 831 plane_id, 832 &ddb[plane_id], 833 &ddb_y[plane_id]); 834 835 intel_display_power_put(i915, power_domain, wakeref); 836 } 837 838 struct dbuf_slice_conf_entry { 839 u8 active_pipes; 840 u8 dbuf_mask[I915_MAX_PIPES]; 841 bool join_mbus; 842 }; 843 844 /* 845 * Table taken from Bspec 12716 846 * Pipes do have some preferred DBuf slice affinity, 847 * plus there are some hardcoded requirements on how 848 * those should be distributed for multipipe scenarios. 849 * For more DBuf slices algorithm can get even more messy 850 * and less readable, so decided to use a table almost 851 * as is from BSpec itself - that way it is at least easier 852 * to compare, change and check. 853 */ 854 static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] = 855 /* Autogenerated with igt/tools/intel_dbuf_map tool: */ 856 { 857 { 858 .active_pipes = BIT(PIPE_A), 859 .dbuf_mask = { 860 [PIPE_A] = BIT(DBUF_S1), 861 }, 862 }, 863 { 864 .active_pipes = BIT(PIPE_B), 865 .dbuf_mask = { 866 [PIPE_B] = BIT(DBUF_S1), 867 }, 868 }, 869 { 870 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B), 871 .dbuf_mask = { 872 [PIPE_A] = BIT(DBUF_S1), 873 [PIPE_B] = BIT(DBUF_S2), 874 }, 875 }, 876 { 877 .active_pipes = BIT(PIPE_C), 878 .dbuf_mask = { 879 [PIPE_C] = BIT(DBUF_S2), 880 }, 881 }, 882 { 883 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C), 884 .dbuf_mask = { 885 [PIPE_A] = BIT(DBUF_S1), 886 [PIPE_C] = BIT(DBUF_S2), 887 }, 888 }, 889 { 890 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C), 891 .dbuf_mask = { 892 [PIPE_B] = BIT(DBUF_S1), 893 [PIPE_C] = BIT(DBUF_S2), 894 }, 895 }, 896 { 897 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C), 898 .dbuf_mask = { 899 [PIPE_A] = BIT(DBUF_S1), 900 [PIPE_B] = BIT(DBUF_S1), 901 [PIPE_C] = BIT(DBUF_S2), 902 }, 903 }, 904 {} 905 }; 906 907 /* 908 * Table taken from Bspec 49255 909 * Pipes do have some preferred DBuf slice affinity, 910 * plus there are some hardcoded requirements on how 911 * those should be distributed for multipipe scenarios. 912 * For more DBuf slices algorithm can get even more messy 913 * and less readable, so decided to use a table almost 914 * as is from BSpec itself - that way it is at least easier 915 * to compare, change and check. 916 */ 917 static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] = 918 /* Autogenerated with igt/tools/intel_dbuf_map tool: */ 919 { 920 { 921 .active_pipes = BIT(PIPE_A), 922 .dbuf_mask = { 923 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 924 }, 925 }, 926 { 927 .active_pipes = BIT(PIPE_B), 928 .dbuf_mask = { 929 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2), 930 }, 931 }, 932 { 933 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B), 934 .dbuf_mask = { 935 [PIPE_A] = BIT(DBUF_S2), 936 [PIPE_B] = BIT(DBUF_S1), 937 }, 938 }, 939 { 940 .active_pipes = BIT(PIPE_C), 941 .dbuf_mask = { 942 [PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1), 943 }, 944 }, 945 { 946 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C), 947 .dbuf_mask = { 948 [PIPE_A] = BIT(DBUF_S1), 949 [PIPE_C] = BIT(DBUF_S2), 950 }, 951 }, 952 { 953 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C), 954 .dbuf_mask = { 955 [PIPE_B] = BIT(DBUF_S1), 956 [PIPE_C] = BIT(DBUF_S2), 957 }, 958 }, 959 { 960 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C), 961 .dbuf_mask = { 962 [PIPE_A] = BIT(DBUF_S1), 963 [PIPE_B] = BIT(DBUF_S1), 964 [PIPE_C] = BIT(DBUF_S2), 965 }, 966 }, 967 { 968 .active_pipes = BIT(PIPE_D), 969 .dbuf_mask = { 970 [PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1), 971 }, 972 }, 973 { 974 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D), 975 .dbuf_mask = { 976 [PIPE_A] = BIT(DBUF_S1), 977 [PIPE_D] = BIT(DBUF_S2), 978 }, 979 }, 980 { 981 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D), 982 .dbuf_mask = { 983 [PIPE_B] = BIT(DBUF_S1), 984 [PIPE_D] = BIT(DBUF_S2), 985 }, 986 }, 987 { 988 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D), 989 .dbuf_mask = { 990 [PIPE_A] = BIT(DBUF_S1), 991 [PIPE_B] = BIT(DBUF_S1), 992 [PIPE_D] = BIT(DBUF_S2), 993 }, 994 }, 995 { 996 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D), 997 .dbuf_mask = { 998 [PIPE_C] = BIT(DBUF_S1), 999 [PIPE_D] = BIT(DBUF_S2), 1000 }, 1001 }, 1002 { 1003 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D), 1004 .dbuf_mask = { 1005 [PIPE_A] = BIT(DBUF_S1), 1006 [PIPE_C] = BIT(DBUF_S2), 1007 [PIPE_D] = BIT(DBUF_S2), 1008 }, 1009 }, 1010 { 1011 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), 1012 .dbuf_mask = { 1013 [PIPE_B] = BIT(DBUF_S1), 1014 [PIPE_C] = BIT(DBUF_S2), 1015 [PIPE_D] = BIT(DBUF_S2), 1016 }, 1017 }, 1018 { 1019 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), 1020 .dbuf_mask = { 1021 [PIPE_A] = BIT(DBUF_S1), 1022 [PIPE_B] = BIT(DBUF_S1), 1023 [PIPE_C] = BIT(DBUF_S2), 1024 [PIPE_D] = BIT(DBUF_S2), 1025 }, 1026 }, 1027 {} 1028 }; 1029 1030 static const struct dbuf_slice_conf_entry dg2_allowed_dbufs[] = { 1031 { 1032 .active_pipes = BIT(PIPE_A), 1033 .dbuf_mask = { 1034 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 1035 }, 1036 }, 1037 { 1038 .active_pipes = BIT(PIPE_B), 1039 .dbuf_mask = { 1040 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2), 1041 }, 1042 }, 1043 { 1044 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B), 1045 .dbuf_mask = { 1046 [PIPE_A] = BIT(DBUF_S1), 1047 [PIPE_B] = BIT(DBUF_S2), 1048 }, 1049 }, 1050 { 1051 .active_pipes = BIT(PIPE_C), 1052 .dbuf_mask = { 1053 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 1054 }, 1055 }, 1056 { 1057 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C), 1058 .dbuf_mask = { 1059 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 1060 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 1061 }, 1062 }, 1063 { 1064 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C), 1065 .dbuf_mask = { 1066 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2), 1067 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 1068 }, 1069 }, 1070 { 1071 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C), 1072 .dbuf_mask = { 1073 [PIPE_A] = BIT(DBUF_S1), 1074 [PIPE_B] = BIT(DBUF_S2), 1075 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 1076 }, 1077 }, 1078 { 1079 .active_pipes = BIT(PIPE_D), 1080 .dbuf_mask = { 1081 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4), 1082 }, 1083 }, 1084 { 1085 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D), 1086 .dbuf_mask = { 1087 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 1088 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4), 1089 }, 1090 }, 1091 { 1092 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D), 1093 .dbuf_mask = { 1094 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2), 1095 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4), 1096 }, 1097 }, 1098 { 1099 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D), 1100 .dbuf_mask = { 1101 [PIPE_A] = BIT(DBUF_S1), 1102 [PIPE_B] = BIT(DBUF_S2), 1103 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4), 1104 }, 1105 }, 1106 { 1107 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D), 1108 .dbuf_mask = { 1109 [PIPE_C] = BIT(DBUF_S3), 1110 [PIPE_D] = BIT(DBUF_S4), 1111 }, 1112 }, 1113 { 1114 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D), 1115 .dbuf_mask = { 1116 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 1117 [PIPE_C] = BIT(DBUF_S3), 1118 [PIPE_D] = BIT(DBUF_S4), 1119 }, 1120 }, 1121 { 1122 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), 1123 .dbuf_mask = { 1124 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2), 1125 [PIPE_C] = BIT(DBUF_S3), 1126 [PIPE_D] = BIT(DBUF_S4), 1127 }, 1128 }, 1129 { 1130 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), 1131 .dbuf_mask = { 1132 [PIPE_A] = BIT(DBUF_S1), 1133 [PIPE_B] = BIT(DBUF_S2), 1134 [PIPE_C] = BIT(DBUF_S3), 1135 [PIPE_D] = BIT(DBUF_S4), 1136 }, 1137 }, 1138 {} 1139 }; 1140 1141 static const struct dbuf_slice_conf_entry adlp_allowed_dbufs[] = { 1142 /* 1143 * Keep the join_mbus cases first so check_mbus_joined() 1144 * will prefer them over the !join_mbus cases. 1145 */ 1146 { 1147 .active_pipes = BIT(PIPE_A), 1148 .dbuf_mask = { 1149 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4), 1150 }, 1151 .join_mbus = true, 1152 }, 1153 { 1154 .active_pipes = BIT(PIPE_B), 1155 .dbuf_mask = { 1156 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4), 1157 }, 1158 .join_mbus = true, 1159 }, 1160 { 1161 .active_pipes = BIT(PIPE_A), 1162 .dbuf_mask = { 1163 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 1164 }, 1165 .join_mbus = false, 1166 }, 1167 { 1168 .active_pipes = BIT(PIPE_B), 1169 .dbuf_mask = { 1170 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), 1171 }, 1172 .join_mbus = false, 1173 }, 1174 { 1175 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B), 1176 .dbuf_mask = { 1177 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 1178 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), 1179 }, 1180 }, 1181 { 1182 .active_pipes = BIT(PIPE_C), 1183 .dbuf_mask = { 1184 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 1185 }, 1186 }, 1187 { 1188 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C), 1189 .dbuf_mask = { 1190 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 1191 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 1192 }, 1193 }, 1194 { 1195 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C), 1196 .dbuf_mask = { 1197 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), 1198 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 1199 }, 1200 }, 1201 { 1202 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C), 1203 .dbuf_mask = { 1204 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 1205 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), 1206 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 1207 }, 1208 }, 1209 { 1210 .active_pipes = BIT(PIPE_D), 1211 .dbuf_mask = { 1212 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), 1213 }, 1214 }, 1215 { 1216 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D), 1217 .dbuf_mask = { 1218 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 1219 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), 1220 }, 1221 }, 1222 { 1223 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D), 1224 .dbuf_mask = { 1225 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), 1226 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), 1227 }, 1228 }, 1229 { 1230 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D), 1231 .dbuf_mask = { 1232 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 1233 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), 1234 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), 1235 }, 1236 }, 1237 { 1238 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D), 1239 .dbuf_mask = { 1240 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 1241 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), 1242 }, 1243 }, 1244 { 1245 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D), 1246 .dbuf_mask = { 1247 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 1248 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 1249 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), 1250 }, 1251 }, 1252 { 1253 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), 1254 .dbuf_mask = { 1255 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), 1256 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 1257 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), 1258 }, 1259 }, 1260 { 1261 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), 1262 .dbuf_mask = { 1263 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 1264 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), 1265 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 1266 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), 1267 }, 1268 }, 1269 {} 1270 1271 }; 1272 1273 static bool check_mbus_joined(u8 active_pipes, 1274 const struct dbuf_slice_conf_entry *dbuf_slices) 1275 { 1276 int i; 1277 1278 for (i = 0; dbuf_slices[i].active_pipes != 0; i++) { 1279 if (dbuf_slices[i].active_pipes == active_pipes) 1280 return dbuf_slices[i].join_mbus; 1281 } 1282 return false; 1283 } 1284 1285 static bool adlp_check_mbus_joined(u8 active_pipes) 1286 { 1287 return check_mbus_joined(active_pipes, adlp_allowed_dbufs); 1288 } 1289 1290 static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus, 1291 const struct dbuf_slice_conf_entry *dbuf_slices) 1292 { 1293 int i; 1294 1295 for (i = 0; dbuf_slices[i].active_pipes != 0; i++) { 1296 if (dbuf_slices[i].active_pipes == active_pipes && 1297 dbuf_slices[i].join_mbus == join_mbus) 1298 return dbuf_slices[i].dbuf_mask[pipe]; 1299 } 1300 return 0; 1301 } 1302 1303 /* 1304 * This function finds an entry with same enabled pipe configuration and 1305 * returns correspondent DBuf slice mask as stated in BSpec for particular 1306 * platform. 1307 */ 1308 static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus) 1309 { 1310 /* 1311 * FIXME: For ICL this is still a bit unclear as prev BSpec revision 1312 * required calculating "pipe ratio" in order to determine 1313 * if one or two slices can be used for single pipe configurations 1314 * as additional constraint to the existing table. 1315 * However based on recent info, it should be not "pipe ratio" 1316 * but rather ratio between pixel_rate and cdclk with additional 1317 * constants, so for now we are using only table until this is 1318 * clarified. Also this is the reason why crtc_state param is 1319 * still here - we will need it once those additional constraints 1320 * pop up. 1321 */ 1322 return compute_dbuf_slices(pipe, active_pipes, join_mbus, 1323 icl_allowed_dbufs); 1324 } 1325 1326 static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus) 1327 { 1328 return compute_dbuf_slices(pipe, active_pipes, join_mbus, 1329 tgl_allowed_dbufs); 1330 } 1331 1332 static u8 adlp_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus) 1333 { 1334 return compute_dbuf_slices(pipe, active_pipes, join_mbus, 1335 adlp_allowed_dbufs); 1336 } 1337 1338 static u8 dg2_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus) 1339 { 1340 return compute_dbuf_slices(pipe, active_pipes, join_mbus, 1341 dg2_allowed_dbufs); 1342 } 1343 1344 static u8 skl_compute_dbuf_slices(struct intel_crtc *crtc, u8 active_pipes, bool join_mbus) 1345 { 1346 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 1347 enum pipe pipe = crtc->pipe; 1348 1349 if (IS_DG2(i915)) 1350 return dg2_compute_dbuf_slices(pipe, active_pipes, join_mbus); 1351 else if (DISPLAY_VER(i915) >= 13) 1352 return adlp_compute_dbuf_slices(pipe, active_pipes, join_mbus); 1353 else if (DISPLAY_VER(i915) == 12) 1354 return tgl_compute_dbuf_slices(pipe, active_pipes, join_mbus); 1355 else if (DISPLAY_VER(i915) == 11) 1356 return icl_compute_dbuf_slices(pipe, active_pipes, join_mbus); 1357 /* 1358 * For anything else just return one slice yet. 1359 * Should be extended for other platforms. 1360 */ 1361 return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0; 1362 } 1363 1364 static bool 1365 use_minimal_wm0_only(const struct intel_crtc_state *crtc_state, 1366 struct intel_plane *plane) 1367 { 1368 struct drm_i915_private *i915 = to_i915(plane->base.dev); 1369 1370 return DISPLAY_VER(i915) >= 13 && 1371 crtc_state->uapi.async_flip && 1372 plane->async_flip; 1373 } 1374 1375 static u64 1376 skl_total_relative_data_rate(const struct intel_crtc_state *crtc_state) 1377 { 1378 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1379 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 1380 enum plane_id plane_id; 1381 u64 data_rate = 0; 1382 1383 for_each_plane_id_on_crtc(crtc, plane_id) { 1384 if (plane_id == PLANE_CURSOR) 1385 continue; 1386 1387 data_rate += crtc_state->rel_data_rate[plane_id]; 1388 1389 if (DISPLAY_VER(i915) < 11) 1390 data_rate += crtc_state->rel_data_rate_y[plane_id]; 1391 } 1392 1393 return data_rate; 1394 } 1395 1396 static const struct skl_wm_level * 1397 skl_plane_wm_level(const struct skl_pipe_wm *pipe_wm, 1398 enum plane_id plane_id, 1399 int level) 1400 { 1401 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id]; 1402 1403 if (level == 0 && pipe_wm->use_sagv_wm) 1404 return &wm->sagv.wm0; 1405 1406 return &wm->wm[level]; 1407 } 1408 1409 static const struct skl_wm_level * 1410 skl_plane_trans_wm(const struct skl_pipe_wm *pipe_wm, 1411 enum plane_id plane_id) 1412 { 1413 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id]; 1414 1415 if (pipe_wm->use_sagv_wm) 1416 return &wm->sagv.trans_wm; 1417 1418 return &wm->trans_wm; 1419 } 1420 1421 /* 1422 * We only disable the watermarks for each plane if 1423 * they exceed the ddb allocation of said plane. This 1424 * is done so that we don't end up touching cursor 1425 * watermarks needlessly when some other plane reduces 1426 * our max possible watermark level. 1427 * 1428 * Bspec has this to say about the PLANE_WM enable bit: 1429 * "All the watermarks at this level for all enabled 1430 * planes must be enabled before the level will be used." 1431 * So this is actually safe to do. 1432 */ 1433 static void 1434 skl_check_wm_level(struct skl_wm_level *wm, const struct skl_ddb_entry *ddb) 1435 { 1436 if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb)) 1437 memset(wm, 0, sizeof(*wm)); 1438 } 1439 1440 static void 1441 skl_check_nv12_wm_level(struct skl_wm_level *wm, struct skl_wm_level *uv_wm, 1442 const struct skl_ddb_entry *ddb_y, const struct skl_ddb_entry *ddb) 1443 { 1444 if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb_y) || 1445 uv_wm->min_ddb_alloc > skl_ddb_entry_size(ddb)) { 1446 memset(wm, 0, sizeof(*wm)); 1447 memset(uv_wm, 0, sizeof(*uv_wm)); 1448 } 1449 } 1450 1451 static bool skl_need_wm_copy_wa(struct drm_i915_private *i915, int level, 1452 const struct skl_plane_wm *wm) 1453 { 1454 /* 1455 * Wa_1408961008:icl, ehl 1456 * Wa_14012656716:tgl, adl 1457 * Wa_14017887344:icl 1458 * Wa_14017868169:adl, tgl 1459 * Due to some power saving optimizations, different subsystems 1460 * like PSR, might still use even disabled wm level registers, 1461 * for "reference", so lets keep at least the values sane. 1462 * Considering amount of WA requiring us to do similar things, was 1463 * decided to simply do it for all of the platforms, as those wm 1464 * levels are disabled, this isn't going to do harm anyway. 1465 */ 1466 return level > 0 && !wm->wm[level].enable; 1467 } 1468 1469 struct skl_plane_ddb_iter { 1470 u64 data_rate; 1471 u16 start, size; 1472 }; 1473 1474 static void 1475 skl_allocate_plane_ddb(struct skl_plane_ddb_iter *iter, 1476 struct skl_ddb_entry *ddb, 1477 const struct skl_wm_level *wm, 1478 u64 data_rate) 1479 { 1480 u16 size, extra = 0; 1481 1482 if (data_rate) { 1483 extra = min_t(u16, iter->size, 1484 DIV64_U64_ROUND_UP(iter->size * data_rate, 1485 iter->data_rate)); 1486 iter->size -= extra; 1487 iter->data_rate -= data_rate; 1488 } 1489 1490 /* 1491 * Keep ddb entry of all disabled planes explicitly zeroed 1492 * to avoid skl_ddb_add_affected_planes() adding them to 1493 * the state when other planes change their allocations. 1494 */ 1495 size = wm->min_ddb_alloc + extra; 1496 if (size) 1497 iter->start = skl_ddb_entry_init(ddb, iter->start, 1498 iter->start + size); 1499 } 1500 1501 static int 1502 skl_crtc_allocate_plane_ddb(struct intel_atomic_state *state, 1503 struct intel_crtc *crtc) 1504 { 1505 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 1506 struct intel_crtc_state *crtc_state = 1507 intel_atomic_get_new_crtc_state(state, crtc); 1508 const struct intel_dbuf_state *dbuf_state = 1509 intel_atomic_get_new_dbuf_state(state); 1510 const struct skl_ddb_entry *alloc = &dbuf_state->ddb[crtc->pipe]; 1511 int num_active = hweight8(dbuf_state->active_pipes); 1512 struct skl_plane_ddb_iter iter; 1513 enum plane_id plane_id; 1514 u16 cursor_size; 1515 u32 blocks; 1516 int level; 1517 1518 /* Clear the partitioning for disabled planes. */ 1519 memset(crtc_state->wm.skl.plane_ddb, 0, sizeof(crtc_state->wm.skl.plane_ddb)); 1520 memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y)); 1521 1522 if (!crtc_state->hw.active) 1523 return 0; 1524 1525 iter.start = alloc->start; 1526 iter.size = skl_ddb_entry_size(alloc); 1527 if (iter.size == 0) 1528 return 0; 1529 1530 /* Allocate fixed number of blocks for cursor. */ 1531 cursor_size = skl_cursor_allocation(crtc_state, num_active); 1532 iter.size -= cursor_size; 1533 skl_ddb_entry_init(&crtc_state->wm.skl.plane_ddb[PLANE_CURSOR], 1534 alloc->end - cursor_size, alloc->end); 1535 1536 iter.data_rate = skl_total_relative_data_rate(crtc_state); 1537 1538 /* 1539 * Find the highest watermark level for which we can satisfy the block 1540 * requirement of active planes. 1541 */ 1542 for (level = i915->display.wm.num_levels - 1; level >= 0; level--) { 1543 blocks = 0; 1544 for_each_plane_id_on_crtc(crtc, plane_id) { 1545 const struct skl_plane_wm *wm = 1546 &crtc_state->wm.skl.optimal.planes[plane_id]; 1547 1548 if (plane_id == PLANE_CURSOR) { 1549 const struct skl_ddb_entry *ddb = 1550 &crtc_state->wm.skl.plane_ddb[plane_id]; 1551 1552 if (wm->wm[level].min_ddb_alloc > skl_ddb_entry_size(ddb)) { 1553 drm_WARN_ON(&i915->drm, 1554 wm->wm[level].min_ddb_alloc != U16_MAX); 1555 blocks = U32_MAX; 1556 break; 1557 } 1558 continue; 1559 } 1560 1561 blocks += wm->wm[level].min_ddb_alloc; 1562 blocks += wm->uv_wm[level].min_ddb_alloc; 1563 } 1564 1565 if (blocks <= iter.size) { 1566 iter.size -= blocks; 1567 break; 1568 } 1569 } 1570 1571 if (level < 0) { 1572 drm_dbg_kms(&i915->drm, 1573 "Requested display configuration exceeds system DDB limitations"); 1574 drm_dbg_kms(&i915->drm, "minimum required %d/%d\n", 1575 blocks, iter.size); 1576 return -EINVAL; 1577 } 1578 1579 /* avoid the WARN later when we don't allocate any extra DDB */ 1580 if (iter.data_rate == 0) 1581 iter.size = 0; 1582 1583 /* 1584 * Grant each plane the blocks it requires at the highest achievable 1585 * watermark level, plus an extra share of the leftover blocks 1586 * proportional to its relative data rate. 1587 */ 1588 for_each_plane_id_on_crtc(crtc, plane_id) { 1589 struct skl_ddb_entry *ddb = 1590 &crtc_state->wm.skl.plane_ddb[plane_id]; 1591 struct skl_ddb_entry *ddb_y = 1592 &crtc_state->wm.skl.plane_ddb_y[plane_id]; 1593 const struct skl_plane_wm *wm = 1594 &crtc_state->wm.skl.optimal.planes[plane_id]; 1595 1596 if (plane_id == PLANE_CURSOR) 1597 continue; 1598 1599 if (DISPLAY_VER(i915) < 11 && 1600 crtc_state->nv12_planes & BIT(plane_id)) { 1601 skl_allocate_plane_ddb(&iter, ddb_y, &wm->wm[level], 1602 crtc_state->rel_data_rate_y[plane_id]); 1603 skl_allocate_plane_ddb(&iter, ddb, &wm->uv_wm[level], 1604 crtc_state->rel_data_rate[plane_id]); 1605 } else { 1606 skl_allocate_plane_ddb(&iter, ddb, &wm->wm[level], 1607 crtc_state->rel_data_rate[plane_id]); 1608 } 1609 } 1610 drm_WARN_ON(&i915->drm, iter.size != 0 || iter.data_rate != 0); 1611 1612 /* 1613 * When we calculated watermark values we didn't know how high 1614 * of a level we'd actually be able to hit, so we just marked 1615 * all levels as "enabled." Go back now and disable the ones 1616 * that aren't actually possible. 1617 */ 1618 for (level++; level < i915->display.wm.num_levels; level++) { 1619 for_each_plane_id_on_crtc(crtc, plane_id) { 1620 const struct skl_ddb_entry *ddb = 1621 &crtc_state->wm.skl.plane_ddb[plane_id]; 1622 const struct skl_ddb_entry *ddb_y = 1623 &crtc_state->wm.skl.plane_ddb_y[plane_id]; 1624 struct skl_plane_wm *wm = 1625 &crtc_state->wm.skl.optimal.planes[plane_id]; 1626 1627 if (DISPLAY_VER(i915) < 11 && 1628 crtc_state->nv12_planes & BIT(plane_id)) 1629 skl_check_nv12_wm_level(&wm->wm[level], 1630 &wm->uv_wm[level], 1631 ddb_y, ddb); 1632 else 1633 skl_check_wm_level(&wm->wm[level], ddb); 1634 1635 if (skl_need_wm_copy_wa(i915, level, wm)) { 1636 wm->wm[level].blocks = wm->wm[level - 1].blocks; 1637 wm->wm[level].lines = wm->wm[level - 1].lines; 1638 wm->wm[level].ignore_lines = wm->wm[level - 1].ignore_lines; 1639 } 1640 } 1641 } 1642 1643 /* 1644 * Go back and disable the transition and SAGV watermarks 1645 * if it turns out we don't have enough DDB blocks for them. 1646 */ 1647 for_each_plane_id_on_crtc(crtc, plane_id) { 1648 const struct skl_ddb_entry *ddb = 1649 &crtc_state->wm.skl.plane_ddb[plane_id]; 1650 const struct skl_ddb_entry *ddb_y = 1651 &crtc_state->wm.skl.plane_ddb_y[plane_id]; 1652 struct skl_plane_wm *wm = 1653 &crtc_state->wm.skl.optimal.planes[plane_id]; 1654 1655 if (DISPLAY_VER(i915) < 11 && 1656 crtc_state->nv12_planes & BIT(plane_id)) { 1657 skl_check_wm_level(&wm->trans_wm, ddb_y); 1658 } else { 1659 WARN_ON(skl_ddb_entry_size(ddb_y)); 1660 1661 skl_check_wm_level(&wm->trans_wm, ddb); 1662 } 1663 1664 skl_check_wm_level(&wm->sagv.wm0, ddb); 1665 skl_check_wm_level(&wm->sagv.trans_wm, ddb); 1666 } 1667 1668 return 0; 1669 } 1670 1671 /* 1672 * The max latency should be 257 (max the punit can code is 255 and we add 2us 1673 * for the read latency) and cpp should always be <= 8, so that 1674 * should allow pixel_rate up to ~2 GHz which seems sufficient since max 1675 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that. 1676 */ 1677 static uint_fixed_16_16_t 1678 skl_wm_method1(const struct drm_i915_private *i915, u32 pixel_rate, 1679 u8 cpp, u32 latency, u32 dbuf_block_size) 1680 { 1681 u32 wm_intermediate_val; 1682 uint_fixed_16_16_t ret; 1683 1684 if (latency == 0) 1685 return FP_16_16_MAX; 1686 1687 wm_intermediate_val = latency * pixel_rate * cpp; 1688 ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size); 1689 1690 if (DISPLAY_VER(i915) >= 10) 1691 ret = add_fixed16_u32(ret, 1); 1692 1693 return ret; 1694 } 1695 1696 static uint_fixed_16_16_t 1697 skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency, 1698 uint_fixed_16_16_t plane_blocks_per_line) 1699 { 1700 u32 wm_intermediate_val; 1701 uint_fixed_16_16_t ret; 1702 1703 if (latency == 0) 1704 return FP_16_16_MAX; 1705 1706 wm_intermediate_val = latency * pixel_rate; 1707 wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val, 1708 pipe_htotal * 1000); 1709 ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line); 1710 return ret; 1711 } 1712 1713 static uint_fixed_16_16_t 1714 intel_get_linetime_us(const struct intel_crtc_state *crtc_state) 1715 { 1716 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 1717 u32 pixel_rate; 1718 u32 crtc_htotal; 1719 uint_fixed_16_16_t linetime_us; 1720 1721 if (!crtc_state->hw.active) 1722 return u32_to_fixed16(0); 1723 1724 pixel_rate = crtc_state->pixel_rate; 1725 1726 if (drm_WARN_ON(&i915->drm, pixel_rate == 0)) 1727 return u32_to_fixed16(0); 1728 1729 crtc_htotal = crtc_state->hw.pipe_mode.crtc_htotal; 1730 linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate); 1731 1732 return linetime_us; 1733 } 1734 1735 static int 1736 skl_compute_wm_params(const struct intel_crtc_state *crtc_state, 1737 int width, const struct drm_format_info *format, 1738 u64 modifier, unsigned int rotation, 1739 u32 plane_pixel_rate, struct skl_wm_params *wp, 1740 int color_plane) 1741 { 1742 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1743 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 1744 u32 interm_pbpl; 1745 1746 /* only planar format has two planes */ 1747 if (color_plane == 1 && 1748 !intel_format_info_is_yuv_semiplanar(format, modifier)) { 1749 drm_dbg_kms(&i915->drm, 1750 "Non planar format have single plane\n"); 1751 return -EINVAL; 1752 } 1753 1754 wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED; 1755 wp->y_tiled = modifier != I915_FORMAT_MOD_X_TILED && 1756 intel_fb_is_tiled_modifier(modifier); 1757 wp->rc_surface = intel_fb_is_ccs_modifier(modifier); 1758 wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier); 1759 1760 wp->width = width; 1761 if (color_plane == 1 && wp->is_planar) 1762 wp->width /= 2; 1763 1764 wp->cpp = format->cpp[color_plane]; 1765 wp->plane_pixel_rate = plane_pixel_rate; 1766 1767 if (DISPLAY_VER(i915) >= 11 && 1768 modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 1) 1769 wp->dbuf_block_size = 256; 1770 else 1771 wp->dbuf_block_size = 512; 1772 1773 if (drm_rotation_90_or_270(rotation)) { 1774 switch (wp->cpp) { 1775 case 1: 1776 wp->y_min_scanlines = 16; 1777 break; 1778 case 2: 1779 wp->y_min_scanlines = 8; 1780 break; 1781 case 4: 1782 wp->y_min_scanlines = 4; 1783 break; 1784 default: 1785 MISSING_CASE(wp->cpp); 1786 return -EINVAL; 1787 } 1788 } else { 1789 wp->y_min_scanlines = 4; 1790 } 1791 1792 if (skl_needs_memory_bw_wa(i915)) 1793 wp->y_min_scanlines *= 2; 1794 1795 wp->plane_bytes_per_line = wp->width * wp->cpp; 1796 if (wp->y_tiled) { 1797 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line * 1798 wp->y_min_scanlines, 1799 wp->dbuf_block_size); 1800 1801 if (DISPLAY_VER(i915) >= 10) 1802 interm_pbpl++; 1803 1804 wp->plane_blocks_per_line = div_fixed16(interm_pbpl, 1805 wp->y_min_scanlines); 1806 } else { 1807 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line, 1808 wp->dbuf_block_size); 1809 1810 if (!wp->x_tiled || DISPLAY_VER(i915) >= 10) 1811 interm_pbpl++; 1812 1813 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl); 1814 } 1815 1816 wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines, 1817 wp->plane_blocks_per_line); 1818 1819 wp->linetime_us = fixed16_to_u32_round_up(intel_get_linetime_us(crtc_state)); 1820 1821 return 0; 1822 } 1823 1824 static int 1825 skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state, 1826 const struct intel_plane_state *plane_state, 1827 struct skl_wm_params *wp, int color_plane) 1828 { 1829 const struct drm_framebuffer *fb = plane_state->hw.fb; 1830 int width; 1831 1832 /* 1833 * Src coordinates are already rotated by 270 degrees for 1834 * the 90/270 degree plane rotation cases (to match the 1835 * GTT mapping), hence no need to account for rotation here. 1836 */ 1837 width = drm_rect_width(&plane_state->uapi.src) >> 16; 1838 1839 return skl_compute_wm_params(crtc_state, width, 1840 fb->format, fb->modifier, 1841 plane_state->hw.rotation, 1842 intel_plane_pixel_rate(crtc_state, plane_state), 1843 wp, color_plane); 1844 } 1845 1846 static bool skl_wm_has_lines(struct drm_i915_private *i915, int level) 1847 { 1848 if (DISPLAY_VER(i915) >= 10) 1849 return true; 1850 1851 /* The number of lines are ignored for the level 0 watermark. */ 1852 return level > 0; 1853 } 1854 1855 static int skl_wm_max_lines(struct drm_i915_private *i915) 1856 { 1857 if (DISPLAY_VER(i915) >= 13) 1858 return 255; 1859 else 1860 return 31; 1861 } 1862 1863 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state, 1864 struct intel_plane *plane, 1865 int level, 1866 unsigned int latency, 1867 const struct skl_wm_params *wp, 1868 const struct skl_wm_level *result_prev, 1869 struct skl_wm_level *result /* out */) 1870 { 1871 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 1872 uint_fixed_16_16_t method1, method2; 1873 uint_fixed_16_16_t selected_result; 1874 u32 blocks, lines, min_ddb_alloc = 0; 1875 1876 if (latency == 0 || 1877 (use_minimal_wm0_only(crtc_state, plane) && level > 0)) { 1878 /* reject it */ 1879 result->min_ddb_alloc = U16_MAX; 1880 return; 1881 } 1882 1883 method1 = skl_wm_method1(i915, wp->plane_pixel_rate, 1884 wp->cpp, latency, wp->dbuf_block_size); 1885 method2 = skl_wm_method2(wp->plane_pixel_rate, 1886 crtc_state->hw.pipe_mode.crtc_htotal, 1887 latency, 1888 wp->plane_blocks_per_line); 1889 1890 if (wp->y_tiled) { 1891 selected_result = max_fixed16(method2, wp->y_tile_minimum); 1892 } else { 1893 if ((wp->cpp * crtc_state->hw.pipe_mode.crtc_htotal / 1894 wp->dbuf_block_size < 1) && 1895 (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) { 1896 selected_result = method2; 1897 } else if (latency >= wp->linetime_us) { 1898 if (DISPLAY_VER(i915) == 9) 1899 selected_result = min_fixed16(method1, method2); 1900 else 1901 selected_result = method2; 1902 } else { 1903 selected_result = method1; 1904 } 1905 } 1906 1907 blocks = fixed16_to_u32_round_up(selected_result) + 1; 1908 /* 1909 * Lets have blocks at minimum equivalent to plane_blocks_per_line 1910 * as there will be at minimum one line for lines configuration. This 1911 * is a work around for FIFO underruns observed with resolutions like 1912 * 4k 60 Hz in single channel DRAM configurations. 1913 * 1914 * As per the Bspec 49325, if the ddb allocation can hold at least 1915 * one plane_blocks_per_line, we should have selected method2 in 1916 * the above logic. Assuming that modern versions have enough dbuf 1917 * and method2 guarantees blocks equivalent to at least 1 line, 1918 * select the blocks as plane_blocks_per_line. 1919 * 1920 * TODO: Revisit the logic when we have better understanding on DRAM 1921 * channels' impact on the level 0 memory latency and the relevant 1922 * wm calculations. 1923 */ 1924 if (skl_wm_has_lines(i915, level)) 1925 blocks = max(blocks, 1926 fixed16_to_u32_round_up(wp->plane_blocks_per_line)); 1927 lines = div_round_up_fixed16(selected_result, 1928 wp->plane_blocks_per_line); 1929 1930 if (DISPLAY_VER(i915) == 9) { 1931 /* Display WA #1125: skl,bxt,kbl */ 1932 if (level == 0 && wp->rc_surface) 1933 blocks += fixed16_to_u32_round_up(wp->y_tile_minimum); 1934 1935 /* Display WA #1126: skl,bxt,kbl */ 1936 if (level >= 1 && level <= 7) { 1937 if (wp->y_tiled) { 1938 blocks += fixed16_to_u32_round_up(wp->y_tile_minimum); 1939 lines += wp->y_min_scanlines; 1940 } else { 1941 blocks++; 1942 } 1943 1944 /* 1945 * Make sure result blocks for higher latency levels are 1946 * at least as high as level below the current level. 1947 * Assumption in DDB algorithm optimization for special 1948 * cases. Also covers Display WA #1125 for RC. 1949 */ 1950 if (result_prev->blocks > blocks) 1951 blocks = result_prev->blocks; 1952 } 1953 } 1954 1955 if (DISPLAY_VER(i915) >= 11) { 1956 if (wp->y_tiled) { 1957 int extra_lines; 1958 1959 if (lines % wp->y_min_scanlines == 0) 1960 extra_lines = wp->y_min_scanlines; 1961 else 1962 extra_lines = wp->y_min_scanlines * 2 - 1963 lines % wp->y_min_scanlines; 1964 1965 min_ddb_alloc = mul_round_up_u32_fixed16(lines + extra_lines, 1966 wp->plane_blocks_per_line); 1967 } else { 1968 min_ddb_alloc = blocks + DIV_ROUND_UP(blocks, 10); 1969 } 1970 } 1971 1972 if (!skl_wm_has_lines(i915, level)) 1973 lines = 0; 1974 1975 if (lines > skl_wm_max_lines(i915)) { 1976 /* reject it */ 1977 result->min_ddb_alloc = U16_MAX; 1978 return; 1979 } 1980 1981 /* 1982 * If lines is valid, assume we can use this watermark level 1983 * for now. We'll come back and disable it after we calculate the 1984 * DDB allocation if it turns out we don't actually have enough 1985 * blocks to satisfy it. 1986 */ 1987 result->blocks = blocks; 1988 result->lines = lines; 1989 /* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */ 1990 result->min_ddb_alloc = max(min_ddb_alloc, blocks) + 1; 1991 result->enable = true; 1992 1993 if (DISPLAY_VER(i915) < 12 && i915->display.sagv.block_time_us) 1994 result->can_sagv = latency >= i915->display.sagv.block_time_us; 1995 } 1996 1997 static void 1998 skl_compute_wm_levels(const struct intel_crtc_state *crtc_state, 1999 struct intel_plane *plane, 2000 const struct skl_wm_params *wm_params, 2001 struct skl_wm_level *levels) 2002 { 2003 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 2004 struct skl_wm_level *result_prev = &levels[0]; 2005 int level; 2006 2007 for (level = 0; level < i915->display.wm.num_levels; level++) { 2008 struct skl_wm_level *result = &levels[level]; 2009 unsigned int latency = skl_wm_latency(i915, level, wm_params); 2010 2011 skl_compute_plane_wm(crtc_state, plane, level, latency, 2012 wm_params, result_prev, result); 2013 2014 result_prev = result; 2015 } 2016 } 2017 2018 static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state, 2019 struct intel_plane *plane, 2020 const struct skl_wm_params *wm_params, 2021 struct skl_plane_wm *plane_wm) 2022 { 2023 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 2024 struct skl_wm_level *sagv_wm = &plane_wm->sagv.wm0; 2025 struct skl_wm_level *levels = plane_wm->wm; 2026 unsigned int latency = 0; 2027 2028 if (i915->display.sagv.block_time_us) 2029 latency = i915->display.sagv.block_time_us + 2030 skl_wm_latency(i915, 0, wm_params); 2031 2032 skl_compute_plane_wm(crtc_state, plane, 0, latency, 2033 wm_params, &levels[0], 2034 sagv_wm); 2035 } 2036 2037 static void skl_compute_transition_wm(struct drm_i915_private *i915, 2038 struct skl_wm_level *trans_wm, 2039 const struct skl_wm_level *wm0, 2040 const struct skl_wm_params *wp) 2041 { 2042 u16 trans_min, trans_amount, trans_y_tile_min; 2043 u16 wm0_blocks, trans_offset, blocks; 2044 2045 /* Transition WM don't make any sense if ipc is disabled */ 2046 if (!skl_watermark_ipc_enabled(i915)) 2047 return; 2048 2049 /* 2050 * WaDisableTWM:skl,kbl,cfl,bxt 2051 * Transition WM are not recommended by HW team for GEN9 2052 */ 2053 if (DISPLAY_VER(i915) == 9) 2054 return; 2055 2056 if (DISPLAY_VER(i915) >= 11) 2057 trans_min = 4; 2058 else 2059 trans_min = 14; 2060 2061 /* Display WA #1140: glk,cnl */ 2062 if (DISPLAY_VER(i915) == 10) 2063 trans_amount = 0; 2064 else 2065 trans_amount = 10; /* This is configurable amount */ 2066 2067 trans_offset = trans_min + trans_amount; 2068 2069 /* 2070 * The spec asks for Selected Result Blocks for wm0 (the real value), 2071 * not Result Blocks (the integer value). Pay attention to the capital 2072 * letters. The value wm_l0->blocks is actually Result Blocks, but 2073 * since Result Blocks is the ceiling of Selected Result Blocks plus 1, 2074 * and since we later will have to get the ceiling of the sum in the 2075 * transition watermarks calculation, we can just pretend Selected 2076 * Result Blocks is Result Blocks minus 1 and it should work for the 2077 * current platforms. 2078 */ 2079 wm0_blocks = wm0->blocks - 1; 2080 2081 if (wp->y_tiled) { 2082 trans_y_tile_min = 2083 (u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum); 2084 blocks = max(wm0_blocks, trans_y_tile_min) + trans_offset; 2085 } else { 2086 blocks = wm0_blocks + trans_offset; 2087 } 2088 blocks++; 2089 2090 /* 2091 * Just assume we can enable the transition watermark. After 2092 * computing the DDB we'll come back and disable it if that 2093 * assumption turns out to be false. 2094 */ 2095 trans_wm->blocks = blocks; 2096 trans_wm->min_ddb_alloc = max_t(u16, wm0->min_ddb_alloc, blocks + 1); 2097 trans_wm->enable = true; 2098 } 2099 2100 static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state, 2101 const struct intel_plane_state *plane_state, 2102 struct intel_plane *plane, int color_plane) 2103 { 2104 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2105 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 2106 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id]; 2107 struct skl_wm_params wm_params; 2108 int ret; 2109 2110 ret = skl_compute_plane_wm_params(crtc_state, plane_state, 2111 &wm_params, color_plane); 2112 if (ret) 2113 return ret; 2114 2115 skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->wm); 2116 2117 skl_compute_transition_wm(i915, &wm->trans_wm, 2118 &wm->wm[0], &wm_params); 2119 2120 if (DISPLAY_VER(i915) >= 12) { 2121 tgl_compute_sagv_wm(crtc_state, plane, &wm_params, wm); 2122 2123 skl_compute_transition_wm(i915, &wm->sagv.trans_wm, 2124 &wm->sagv.wm0, &wm_params); 2125 } 2126 2127 return 0; 2128 } 2129 2130 static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state, 2131 const struct intel_plane_state *plane_state, 2132 struct intel_plane *plane) 2133 { 2134 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id]; 2135 struct skl_wm_params wm_params; 2136 int ret; 2137 2138 wm->is_planar = true; 2139 2140 /* uv plane watermarks must also be validated for NV12/Planar */ 2141 ret = skl_compute_plane_wm_params(crtc_state, plane_state, 2142 &wm_params, 1); 2143 if (ret) 2144 return ret; 2145 2146 skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->uv_wm); 2147 2148 return 0; 2149 } 2150 2151 static int skl_build_plane_wm(struct intel_crtc_state *crtc_state, 2152 const struct intel_plane_state *plane_state) 2153 { 2154 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 2155 enum plane_id plane_id = plane->id; 2156 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id]; 2157 const struct drm_framebuffer *fb = plane_state->hw.fb; 2158 int ret; 2159 2160 memset(wm, 0, sizeof(*wm)); 2161 2162 if (!intel_wm_plane_visible(crtc_state, plane_state)) 2163 return 0; 2164 2165 ret = skl_build_plane_wm_single(crtc_state, plane_state, 2166 plane, 0); 2167 if (ret) 2168 return ret; 2169 2170 if (fb->format->is_yuv && fb->format->num_planes > 1) { 2171 ret = skl_build_plane_wm_uv(crtc_state, plane_state, 2172 plane); 2173 if (ret) 2174 return ret; 2175 } 2176 2177 return 0; 2178 } 2179 2180 static int icl_build_plane_wm(struct intel_crtc_state *crtc_state, 2181 const struct intel_plane_state *plane_state) 2182 { 2183 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 2184 struct drm_i915_private *i915 = to_i915(plane->base.dev); 2185 enum plane_id plane_id = plane->id; 2186 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id]; 2187 int ret; 2188 2189 /* Watermarks calculated in master */ 2190 if (plane_state->planar_slave) 2191 return 0; 2192 2193 memset(wm, 0, sizeof(*wm)); 2194 2195 if (plane_state->planar_linked_plane) { 2196 const struct drm_framebuffer *fb = plane_state->hw.fb; 2197 2198 drm_WARN_ON(&i915->drm, 2199 !intel_wm_plane_visible(crtc_state, plane_state)); 2200 drm_WARN_ON(&i915->drm, !fb->format->is_yuv || 2201 fb->format->num_planes == 1); 2202 2203 ret = skl_build_plane_wm_single(crtc_state, plane_state, 2204 plane_state->planar_linked_plane, 0); 2205 if (ret) 2206 return ret; 2207 2208 ret = skl_build_plane_wm_single(crtc_state, plane_state, 2209 plane, 1); 2210 if (ret) 2211 return ret; 2212 } else if (intel_wm_plane_visible(crtc_state, plane_state)) { 2213 ret = skl_build_plane_wm_single(crtc_state, plane_state, 2214 plane, 0); 2215 if (ret) 2216 return ret; 2217 } 2218 2219 return 0; 2220 } 2221 2222 static bool 2223 skl_is_vblank_too_short(const struct intel_crtc_state *crtc_state, 2224 int wm0_lines, int latency) 2225 { 2226 const struct drm_display_mode *adjusted_mode = 2227 &crtc_state->hw.adjusted_mode; 2228 2229 /* FIXME missing scaler and DSC pre-fill time */ 2230 return crtc_state->framestart_delay + 2231 intel_usecs_to_scanlines(adjusted_mode, latency) + 2232 wm0_lines > 2233 adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vblank_start; 2234 } 2235 2236 static int skl_max_wm0_lines(const struct intel_crtc_state *crtc_state) 2237 { 2238 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2239 enum plane_id plane_id; 2240 int wm0_lines = 0; 2241 2242 for_each_plane_id_on_crtc(crtc, plane_id) { 2243 const struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id]; 2244 2245 /* FIXME what about !skl_wm_has_lines() platforms? */ 2246 wm0_lines = max_t(int, wm0_lines, wm->wm[0].lines); 2247 } 2248 2249 return wm0_lines; 2250 } 2251 2252 static int skl_max_wm_level_for_vblank(struct intel_crtc_state *crtc_state, 2253 int wm0_lines) 2254 { 2255 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2256 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 2257 int level; 2258 2259 for (level = i915->display.wm.num_levels - 1; level >= 0; level--) { 2260 int latency; 2261 2262 /* FIXME should we care about the latency w/a's? */ 2263 latency = skl_wm_latency(i915, level, NULL); 2264 if (latency == 0) 2265 continue; 2266 2267 /* FIXME is it correct to use 0 latency for wm0 here? */ 2268 if (level == 0) 2269 latency = 0; 2270 2271 if (!skl_is_vblank_too_short(crtc_state, wm0_lines, latency)) 2272 return level; 2273 } 2274 2275 return -EINVAL; 2276 } 2277 2278 static int skl_wm_check_vblank(struct intel_crtc_state *crtc_state) 2279 { 2280 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2281 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 2282 int wm0_lines, level; 2283 2284 if (!crtc_state->hw.active) 2285 return 0; 2286 2287 wm0_lines = skl_max_wm0_lines(crtc_state); 2288 2289 level = skl_max_wm_level_for_vblank(crtc_state, wm0_lines); 2290 if (level < 0) 2291 return level; 2292 2293 /* 2294 * PSR needs to toggle LATENCY_REPORTING_REMOVED_PIPE_* 2295 * based on whether we're limited by the vblank duration. 2296 */ 2297 crtc_state->wm_level_disabled = level < i915->display.wm.num_levels - 1; 2298 2299 for (level++; level < i915->display.wm.num_levels; level++) { 2300 enum plane_id plane_id; 2301 2302 for_each_plane_id_on_crtc(crtc, plane_id) { 2303 struct skl_plane_wm *wm = 2304 &crtc_state->wm.skl.optimal.planes[plane_id]; 2305 2306 /* 2307 * FIXME just clear enable or flag the entire 2308 * thing as bad via min_ddb_alloc=U16_MAX? 2309 */ 2310 wm->wm[level].enable = false; 2311 wm->uv_wm[level].enable = false; 2312 } 2313 } 2314 2315 if (DISPLAY_VER(i915) >= 12 && 2316 i915->display.sagv.block_time_us && 2317 skl_is_vblank_too_short(crtc_state, wm0_lines, 2318 i915->display.sagv.block_time_us)) { 2319 enum plane_id plane_id; 2320 2321 for_each_plane_id_on_crtc(crtc, plane_id) { 2322 struct skl_plane_wm *wm = 2323 &crtc_state->wm.skl.optimal.planes[plane_id]; 2324 2325 wm->sagv.wm0.enable = false; 2326 wm->sagv.trans_wm.enable = false; 2327 } 2328 } 2329 2330 return 0; 2331 } 2332 2333 static int skl_build_pipe_wm(struct intel_atomic_state *state, 2334 struct intel_crtc *crtc) 2335 { 2336 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 2337 struct intel_crtc_state *crtc_state = 2338 intel_atomic_get_new_crtc_state(state, crtc); 2339 const struct intel_plane_state *plane_state; 2340 struct intel_plane *plane; 2341 int ret, i; 2342 2343 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 2344 /* 2345 * FIXME should perhaps check {old,new}_plane_crtc->hw.crtc 2346 * instead but we don't populate that correctly for NV12 Y 2347 * planes so for now hack this. 2348 */ 2349 if (plane->pipe != crtc->pipe) 2350 continue; 2351 2352 if (DISPLAY_VER(i915) >= 11) 2353 ret = icl_build_plane_wm(crtc_state, plane_state); 2354 else 2355 ret = skl_build_plane_wm(crtc_state, plane_state); 2356 if (ret) 2357 return ret; 2358 } 2359 2360 crtc_state->wm.skl.optimal = crtc_state->wm.skl.raw; 2361 2362 return skl_wm_check_vblank(crtc_state); 2363 } 2364 2365 static void skl_ddb_entry_write(struct drm_i915_private *i915, 2366 i915_reg_t reg, 2367 const struct skl_ddb_entry *entry) 2368 { 2369 if (entry->end) 2370 intel_de_write_fw(i915, reg, 2371 PLANE_BUF_END(entry->end - 1) | 2372 PLANE_BUF_START(entry->start)); 2373 else 2374 intel_de_write_fw(i915, reg, 0); 2375 } 2376 2377 static void skl_write_wm_level(struct drm_i915_private *i915, 2378 i915_reg_t reg, 2379 const struct skl_wm_level *level) 2380 { 2381 u32 val = 0; 2382 2383 if (level->enable) 2384 val |= PLANE_WM_EN; 2385 if (level->ignore_lines) 2386 val |= PLANE_WM_IGNORE_LINES; 2387 val |= REG_FIELD_PREP(PLANE_WM_BLOCKS_MASK, level->blocks); 2388 val |= REG_FIELD_PREP(PLANE_WM_LINES_MASK, level->lines); 2389 2390 intel_de_write_fw(i915, reg, val); 2391 } 2392 2393 void skl_write_plane_wm(struct intel_plane *plane, 2394 const struct intel_crtc_state *crtc_state) 2395 { 2396 struct drm_i915_private *i915 = to_i915(plane->base.dev); 2397 enum plane_id plane_id = plane->id; 2398 enum pipe pipe = plane->pipe; 2399 const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal; 2400 const struct skl_ddb_entry *ddb = 2401 &crtc_state->wm.skl.plane_ddb[plane_id]; 2402 const struct skl_ddb_entry *ddb_y = 2403 &crtc_state->wm.skl.plane_ddb_y[plane_id]; 2404 int level; 2405 2406 for (level = 0; level < i915->display.wm.num_levels; level++) 2407 skl_write_wm_level(i915, PLANE_WM(pipe, plane_id, level), 2408 skl_plane_wm_level(pipe_wm, plane_id, level)); 2409 2410 skl_write_wm_level(i915, PLANE_WM_TRANS(pipe, plane_id), 2411 skl_plane_trans_wm(pipe_wm, plane_id)); 2412 2413 if (HAS_HW_SAGV_WM(i915)) { 2414 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id]; 2415 2416 skl_write_wm_level(i915, PLANE_WM_SAGV(pipe, plane_id), 2417 &wm->sagv.wm0); 2418 skl_write_wm_level(i915, PLANE_WM_SAGV_TRANS(pipe, plane_id), 2419 &wm->sagv.trans_wm); 2420 } 2421 2422 skl_ddb_entry_write(i915, 2423 PLANE_BUF_CFG(pipe, plane_id), ddb); 2424 2425 if (DISPLAY_VER(i915) < 11) 2426 skl_ddb_entry_write(i915, 2427 PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_y); 2428 } 2429 2430 void skl_write_cursor_wm(struct intel_plane *plane, 2431 const struct intel_crtc_state *crtc_state) 2432 { 2433 struct drm_i915_private *i915 = to_i915(plane->base.dev); 2434 enum plane_id plane_id = plane->id; 2435 enum pipe pipe = plane->pipe; 2436 const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal; 2437 const struct skl_ddb_entry *ddb = 2438 &crtc_state->wm.skl.plane_ddb[plane_id]; 2439 int level; 2440 2441 for (level = 0; level < i915->display.wm.num_levels; level++) 2442 skl_write_wm_level(i915, CUR_WM(pipe, level), 2443 skl_plane_wm_level(pipe_wm, plane_id, level)); 2444 2445 skl_write_wm_level(i915, CUR_WM_TRANS(pipe), 2446 skl_plane_trans_wm(pipe_wm, plane_id)); 2447 2448 if (HAS_HW_SAGV_WM(i915)) { 2449 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id]; 2450 2451 skl_write_wm_level(i915, CUR_WM_SAGV(pipe), 2452 &wm->sagv.wm0); 2453 skl_write_wm_level(i915, CUR_WM_SAGV_TRANS(pipe), 2454 &wm->sagv.trans_wm); 2455 } 2456 2457 skl_ddb_entry_write(i915, CUR_BUF_CFG(pipe), ddb); 2458 } 2459 2460 static bool skl_wm_level_equals(const struct skl_wm_level *l1, 2461 const struct skl_wm_level *l2) 2462 { 2463 return l1->enable == l2->enable && 2464 l1->ignore_lines == l2->ignore_lines && 2465 l1->lines == l2->lines && 2466 l1->blocks == l2->blocks; 2467 } 2468 2469 static bool skl_plane_wm_equals(struct drm_i915_private *i915, 2470 const struct skl_plane_wm *wm1, 2471 const struct skl_plane_wm *wm2) 2472 { 2473 int level; 2474 2475 for (level = 0; level < i915->display.wm.num_levels; level++) { 2476 /* 2477 * We don't check uv_wm as the hardware doesn't actually 2478 * use it. It only gets used for calculating the required 2479 * ddb allocation. 2480 */ 2481 if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level])) 2482 return false; 2483 } 2484 2485 return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm) && 2486 skl_wm_level_equals(&wm1->sagv.wm0, &wm2->sagv.wm0) && 2487 skl_wm_level_equals(&wm1->sagv.trans_wm, &wm2->sagv.trans_wm); 2488 } 2489 2490 static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a, 2491 const struct skl_ddb_entry *b) 2492 { 2493 return a->start < b->end && b->start < a->end; 2494 } 2495 2496 static void skl_ddb_entry_union(struct skl_ddb_entry *a, 2497 const struct skl_ddb_entry *b) 2498 { 2499 if (a->end && b->end) { 2500 a->start = min(a->start, b->start); 2501 a->end = max(a->end, b->end); 2502 } else if (b->end) { 2503 a->start = b->start; 2504 a->end = b->end; 2505 } 2506 } 2507 2508 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb, 2509 const struct skl_ddb_entry *entries, 2510 int num_entries, int ignore_idx) 2511 { 2512 int i; 2513 2514 for (i = 0; i < num_entries; i++) { 2515 if (i != ignore_idx && 2516 skl_ddb_entries_overlap(ddb, &entries[i])) 2517 return true; 2518 } 2519 2520 return false; 2521 } 2522 2523 static int 2524 skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state, 2525 struct intel_crtc_state *new_crtc_state) 2526 { 2527 struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state); 2528 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 2529 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 2530 struct intel_plane *plane; 2531 2532 for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) { 2533 struct intel_plane_state *plane_state; 2534 enum plane_id plane_id = plane->id; 2535 2536 if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb[plane_id], 2537 &new_crtc_state->wm.skl.plane_ddb[plane_id]) && 2538 skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id], 2539 &new_crtc_state->wm.skl.plane_ddb_y[plane_id])) 2540 continue; 2541 2542 plane_state = intel_atomic_get_plane_state(state, plane); 2543 if (IS_ERR(plane_state)) 2544 return PTR_ERR(plane_state); 2545 2546 new_crtc_state->update_planes |= BIT(plane_id); 2547 new_crtc_state->async_flip_planes = 0; 2548 new_crtc_state->do_async_flip = false; 2549 } 2550 2551 return 0; 2552 } 2553 2554 static u8 intel_dbuf_enabled_slices(const struct intel_dbuf_state *dbuf_state) 2555 { 2556 struct drm_i915_private *i915 = to_i915(dbuf_state->base.state->base.dev); 2557 u8 enabled_slices; 2558 enum pipe pipe; 2559 2560 /* 2561 * FIXME: For now we always enable slice S1 as per 2562 * the Bspec display initialization sequence. 2563 */ 2564 enabled_slices = BIT(DBUF_S1); 2565 2566 for_each_pipe(i915, pipe) 2567 enabled_slices |= dbuf_state->slices[pipe]; 2568 2569 return enabled_slices; 2570 } 2571 2572 static int 2573 skl_compute_ddb(struct intel_atomic_state *state) 2574 { 2575 struct drm_i915_private *i915 = to_i915(state->base.dev); 2576 const struct intel_dbuf_state *old_dbuf_state; 2577 struct intel_dbuf_state *new_dbuf_state = NULL; 2578 const struct intel_crtc_state *old_crtc_state; 2579 struct intel_crtc_state *new_crtc_state; 2580 struct intel_crtc *crtc; 2581 int ret, i; 2582 2583 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 2584 new_dbuf_state = intel_atomic_get_dbuf_state(state); 2585 if (IS_ERR(new_dbuf_state)) 2586 return PTR_ERR(new_dbuf_state); 2587 2588 old_dbuf_state = intel_atomic_get_old_dbuf_state(state); 2589 break; 2590 } 2591 2592 if (!new_dbuf_state) 2593 return 0; 2594 2595 new_dbuf_state->active_pipes = 2596 intel_calc_active_pipes(state, old_dbuf_state->active_pipes); 2597 2598 if (old_dbuf_state->active_pipes != new_dbuf_state->active_pipes) { 2599 ret = intel_atomic_lock_global_state(&new_dbuf_state->base); 2600 if (ret) 2601 return ret; 2602 } 2603 2604 if (HAS_MBUS_JOINING(i915)) 2605 new_dbuf_state->joined_mbus = 2606 adlp_check_mbus_joined(new_dbuf_state->active_pipes); 2607 2608 for_each_intel_crtc(&i915->drm, crtc) { 2609 enum pipe pipe = crtc->pipe; 2610 2611 new_dbuf_state->slices[pipe] = 2612 skl_compute_dbuf_slices(crtc, new_dbuf_state->active_pipes, 2613 new_dbuf_state->joined_mbus); 2614 2615 if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe]) 2616 continue; 2617 2618 ret = intel_atomic_lock_global_state(&new_dbuf_state->base); 2619 if (ret) 2620 return ret; 2621 } 2622 2623 new_dbuf_state->enabled_slices = intel_dbuf_enabled_slices(new_dbuf_state); 2624 2625 if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices || 2626 old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) { 2627 ret = intel_atomic_serialize_global_state(&new_dbuf_state->base); 2628 if (ret) 2629 return ret; 2630 2631 if (old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) { 2632 /* TODO: Implement vblank synchronized MBUS joining changes */ 2633 ret = intel_modeset_all_pipes_late(state, "MBUS joining change"); 2634 if (ret) 2635 return ret; 2636 } 2637 2638 drm_dbg_kms(&i915->drm, 2639 "Enabled dbuf slices 0x%x -> 0x%x (total dbuf slices 0x%x), mbus joined? %s->%s\n", 2640 old_dbuf_state->enabled_slices, 2641 new_dbuf_state->enabled_slices, 2642 DISPLAY_INFO(i915)->dbuf.slice_mask, 2643 str_yes_no(old_dbuf_state->joined_mbus), 2644 str_yes_no(new_dbuf_state->joined_mbus)); 2645 } 2646 2647 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 2648 enum pipe pipe = crtc->pipe; 2649 2650 new_dbuf_state->weight[pipe] = intel_crtc_ddb_weight(new_crtc_state); 2651 2652 if (old_dbuf_state->weight[pipe] == new_dbuf_state->weight[pipe]) 2653 continue; 2654 2655 ret = intel_atomic_lock_global_state(&new_dbuf_state->base); 2656 if (ret) 2657 return ret; 2658 } 2659 2660 for_each_intel_crtc(&i915->drm, crtc) { 2661 ret = skl_crtc_allocate_ddb(state, crtc); 2662 if (ret) 2663 return ret; 2664 } 2665 2666 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 2667 new_crtc_state, i) { 2668 ret = skl_crtc_allocate_plane_ddb(state, crtc); 2669 if (ret) 2670 return ret; 2671 2672 ret = skl_ddb_add_affected_planes(old_crtc_state, 2673 new_crtc_state); 2674 if (ret) 2675 return ret; 2676 } 2677 2678 return 0; 2679 } 2680 2681 static char enast(bool enable) 2682 { 2683 return enable ? '*' : ' '; 2684 } 2685 2686 static void 2687 skl_print_wm_changes(struct intel_atomic_state *state) 2688 { 2689 struct drm_i915_private *i915 = to_i915(state->base.dev); 2690 const struct intel_crtc_state *old_crtc_state; 2691 const struct intel_crtc_state *new_crtc_state; 2692 struct intel_plane *plane; 2693 struct intel_crtc *crtc; 2694 int i; 2695 2696 if (!drm_debug_enabled(DRM_UT_KMS)) 2697 return; 2698 2699 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 2700 new_crtc_state, i) { 2701 const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm; 2702 2703 old_pipe_wm = &old_crtc_state->wm.skl.optimal; 2704 new_pipe_wm = &new_crtc_state->wm.skl.optimal; 2705 2706 for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) { 2707 enum plane_id plane_id = plane->id; 2708 const struct skl_ddb_entry *old, *new; 2709 2710 old = &old_crtc_state->wm.skl.plane_ddb[plane_id]; 2711 new = &new_crtc_state->wm.skl.plane_ddb[plane_id]; 2712 2713 if (skl_ddb_entry_equal(old, new)) 2714 continue; 2715 2716 drm_dbg_kms(&i915->drm, 2717 "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n", 2718 plane->base.base.id, plane->base.name, 2719 old->start, old->end, new->start, new->end, 2720 skl_ddb_entry_size(old), skl_ddb_entry_size(new)); 2721 } 2722 2723 for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) { 2724 enum plane_id plane_id = plane->id; 2725 const struct skl_plane_wm *old_wm, *new_wm; 2726 2727 old_wm = &old_pipe_wm->planes[plane_id]; 2728 new_wm = &new_pipe_wm->planes[plane_id]; 2729 2730 if (skl_plane_wm_equals(i915, old_wm, new_wm)) 2731 continue; 2732 2733 drm_dbg_kms(&i915->drm, 2734 "[PLANE:%d:%s] level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm" 2735 " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm\n", 2736 plane->base.base.id, plane->base.name, 2737 enast(old_wm->wm[0].enable), enast(old_wm->wm[1].enable), 2738 enast(old_wm->wm[2].enable), enast(old_wm->wm[3].enable), 2739 enast(old_wm->wm[4].enable), enast(old_wm->wm[5].enable), 2740 enast(old_wm->wm[6].enable), enast(old_wm->wm[7].enable), 2741 enast(old_wm->trans_wm.enable), 2742 enast(old_wm->sagv.wm0.enable), 2743 enast(old_wm->sagv.trans_wm.enable), 2744 enast(new_wm->wm[0].enable), enast(new_wm->wm[1].enable), 2745 enast(new_wm->wm[2].enable), enast(new_wm->wm[3].enable), 2746 enast(new_wm->wm[4].enable), enast(new_wm->wm[5].enable), 2747 enast(new_wm->wm[6].enable), enast(new_wm->wm[7].enable), 2748 enast(new_wm->trans_wm.enable), 2749 enast(new_wm->sagv.wm0.enable), 2750 enast(new_wm->sagv.trans_wm.enable)); 2751 2752 drm_dbg_kms(&i915->drm, 2753 "[PLANE:%d:%s] lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d" 2754 " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d\n", 2755 plane->base.base.id, plane->base.name, 2756 enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].lines, 2757 enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].lines, 2758 enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].lines, 2759 enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].lines, 2760 enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].lines, 2761 enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].lines, 2762 enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].lines, 2763 enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].lines, 2764 enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.lines, 2765 enast(old_wm->sagv.wm0.ignore_lines), old_wm->sagv.wm0.lines, 2766 enast(old_wm->sagv.trans_wm.ignore_lines), old_wm->sagv.trans_wm.lines, 2767 enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].lines, 2768 enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].lines, 2769 enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].lines, 2770 enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].lines, 2771 enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].lines, 2772 enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].lines, 2773 enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].lines, 2774 enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].lines, 2775 enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.lines, 2776 enast(new_wm->sagv.wm0.ignore_lines), new_wm->sagv.wm0.lines, 2777 enast(new_wm->sagv.trans_wm.ignore_lines), new_wm->sagv.trans_wm.lines); 2778 2779 drm_dbg_kms(&i915->drm, 2780 "[PLANE:%d:%s] blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d" 2781 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n", 2782 plane->base.base.id, plane->base.name, 2783 old_wm->wm[0].blocks, old_wm->wm[1].blocks, 2784 old_wm->wm[2].blocks, old_wm->wm[3].blocks, 2785 old_wm->wm[4].blocks, old_wm->wm[5].blocks, 2786 old_wm->wm[6].blocks, old_wm->wm[7].blocks, 2787 old_wm->trans_wm.blocks, 2788 old_wm->sagv.wm0.blocks, 2789 old_wm->sagv.trans_wm.blocks, 2790 new_wm->wm[0].blocks, new_wm->wm[1].blocks, 2791 new_wm->wm[2].blocks, new_wm->wm[3].blocks, 2792 new_wm->wm[4].blocks, new_wm->wm[5].blocks, 2793 new_wm->wm[6].blocks, new_wm->wm[7].blocks, 2794 new_wm->trans_wm.blocks, 2795 new_wm->sagv.wm0.blocks, 2796 new_wm->sagv.trans_wm.blocks); 2797 2798 drm_dbg_kms(&i915->drm, 2799 "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d" 2800 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n", 2801 plane->base.base.id, plane->base.name, 2802 old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc, 2803 old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc, 2804 old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc, 2805 old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc, 2806 old_wm->trans_wm.min_ddb_alloc, 2807 old_wm->sagv.wm0.min_ddb_alloc, 2808 old_wm->sagv.trans_wm.min_ddb_alloc, 2809 new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc, 2810 new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc, 2811 new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc, 2812 new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc, 2813 new_wm->trans_wm.min_ddb_alloc, 2814 new_wm->sagv.wm0.min_ddb_alloc, 2815 new_wm->sagv.trans_wm.min_ddb_alloc); 2816 } 2817 } 2818 } 2819 2820 static bool skl_plane_selected_wm_equals(struct intel_plane *plane, 2821 const struct skl_pipe_wm *old_pipe_wm, 2822 const struct skl_pipe_wm *new_pipe_wm) 2823 { 2824 struct drm_i915_private *i915 = to_i915(plane->base.dev); 2825 int level; 2826 2827 for (level = 0; level < i915->display.wm.num_levels; level++) { 2828 /* 2829 * We don't check uv_wm as the hardware doesn't actually 2830 * use it. It only gets used for calculating the required 2831 * ddb allocation. 2832 */ 2833 if (!skl_wm_level_equals(skl_plane_wm_level(old_pipe_wm, plane->id, level), 2834 skl_plane_wm_level(new_pipe_wm, plane->id, level))) 2835 return false; 2836 } 2837 2838 if (HAS_HW_SAGV_WM(i915)) { 2839 const struct skl_plane_wm *old_wm = &old_pipe_wm->planes[plane->id]; 2840 const struct skl_plane_wm *new_wm = &new_pipe_wm->planes[plane->id]; 2841 2842 if (!skl_wm_level_equals(&old_wm->sagv.wm0, &new_wm->sagv.wm0) || 2843 !skl_wm_level_equals(&old_wm->sagv.trans_wm, &new_wm->sagv.trans_wm)) 2844 return false; 2845 } 2846 2847 return skl_wm_level_equals(skl_plane_trans_wm(old_pipe_wm, plane->id), 2848 skl_plane_trans_wm(new_pipe_wm, plane->id)); 2849 } 2850 2851 /* 2852 * To make sure the cursor watermark registers are always consistent 2853 * with our computed state the following scenario needs special 2854 * treatment: 2855 * 2856 * 1. enable cursor 2857 * 2. move cursor entirely offscreen 2858 * 3. disable cursor 2859 * 2860 * Step 2. does call .disable_plane() but does not zero the watermarks 2861 * (since we consider an offscreen cursor still active for the purposes 2862 * of watermarks). Step 3. would not normally call .disable_plane() 2863 * because the actual plane visibility isn't changing, and we don't 2864 * deallocate the cursor ddb until the pipe gets disabled. So we must 2865 * force step 3. to call .disable_plane() to update the watermark 2866 * registers properly. 2867 * 2868 * Other planes do not suffer from this issues as their watermarks are 2869 * calculated based on the actual plane visibility. The only time this 2870 * can trigger for the other planes is during the initial readout as the 2871 * default value of the watermarks registers is not zero. 2872 */ 2873 static int skl_wm_add_affected_planes(struct intel_atomic_state *state, 2874 struct intel_crtc *crtc) 2875 { 2876 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 2877 const struct intel_crtc_state *old_crtc_state = 2878 intel_atomic_get_old_crtc_state(state, crtc); 2879 struct intel_crtc_state *new_crtc_state = 2880 intel_atomic_get_new_crtc_state(state, crtc); 2881 struct intel_plane *plane; 2882 2883 for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) { 2884 struct intel_plane_state *plane_state; 2885 enum plane_id plane_id = plane->id; 2886 2887 /* 2888 * Force a full wm update for every plane on modeset. 2889 * Required because the reset value of the wm registers 2890 * is non-zero, whereas we want all disabled planes to 2891 * have zero watermarks. So if we turn off the relevant 2892 * power well the hardware state will go out of sync 2893 * with the software state. 2894 */ 2895 if (!intel_crtc_needs_modeset(new_crtc_state) && 2896 skl_plane_selected_wm_equals(plane, 2897 &old_crtc_state->wm.skl.optimal, 2898 &new_crtc_state->wm.skl.optimal)) 2899 continue; 2900 2901 plane_state = intel_atomic_get_plane_state(state, plane); 2902 if (IS_ERR(plane_state)) 2903 return PTR_ERR(plane_state); 2904 2905 new_crtc_state->update_planes |= BIT(plane_id); 2906 new_crtc_state->async_flip_planes = 0; 2907 new_crtc_state->do_async_flip = false; 2908 } 2909 2910 return 0; 2911 } 2912 2913 /* 2914 * If Fixed Refresh Rate: 2915 * Program DEEP PKG_C_LATENCY Pkg C with highest valid latency from 2916 * watermark level1 and up and above. If watermark level 1 is 2917 * invalid program it with all 1's. 2918 * Program PKG_C_LATENCY Added Wake Time = DSB execution time 2919 * If Variable Refresh Rate: 2920 * Program DEEP PKG_C_LATENCY Pkg C with all 1's. 2921 * Program PKG_C_LATENCY Added Wake Time = 0 2922 */ 2923 static void 2924 skl_program_dpkgc_latency(struct drm_i915_private *i915, bool vrr_enabled) 2925 { 2926 u32 max_latency = 0; 2927 u32 clear = 0, val = 0; 2928 u32 added_wake_time = 0; 2929 2930 if (DISPLAY_VER(i915) < 20) 2931 return; 2932 2933 if (vrr_enabled) { 2934 max_latency = LNL_PKG_C_LATENCY_MASK; 2935 added_wake_time = 0; 2936 } else { 2937 max_latency = skl_watermark_max_latency(i915, 1); 2938 if (max_latency == 0) 2939 max_latency = LNL_PKG_C_LATENCY_MASK; 2940 added_wake_time = DSB_EXE_TIME + 2941 i915->display.sagv.block_time_us; 2942 } 2943 2944 clear |= LNL_ADDED_WAKE_TIME_MASK | LNL_PKG_C_LATENCY_MASK; 2945 val |= REG_FIELD_PREP(LNL_PKG_C_LATENCY_MASK, max_latency); 2946 val |= REG_FIELD_PREP(LNL_ADDED_WAKE_TIME_MASK, added_wake_time); 2947 2948 intel_uncore_rmw(&i915->uncore, LNL_PKG_C_LATENCY, clear, val); 2949 } 2950 2951 static int 2952 skl_compute_wm(struct intel_atomic_state *state) 2953 { 2954 struct intel_crtc *crtc; 2955 struct intel_crtc_state __maybe_unused *new_crtc_state; 2956 int ret, i; 2957 bool vrr_enabled = false; 2958 2959 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 2960 ret = skl_build_pipe_wm(state, crtc); 2961 if (ret) 2962 return ret; 2963 } 2964 2965 ret = skl_compute_ddb(state); 2966 if (ret) 2967 return ret; 2968 2969 ret = intel_compute_sagv_mask(state); 2970 if (ret) 2971 return ret; 2972 2973 /* 2974 * skl_compute_ddb() will have adjusted the final watermarks 2975 * based on how much ddb is available. Now we can actually 2976 * check if the final watermarks changed. 2977 */ 2978 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 2979 ret = skl_wm_add_affected_planes(state, crtc); 2980 if (ret) 2981 return ret; 2982 2983 if (new_crtc_state->vrr.enable) 2984 vrr_enabled = true; 2985 } 2986 2987 skl_program_dpkgc_latency(to_i915(state->base.dev), vrr_enabled); 2988 2989 skl_print_wm_changes(state); 2990 2991 return 0; 2992 } 2993 2994 static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level) 2995 { 2996 level->enable = val & PLANE_WM_EN; 2997 level->ignore_lines = val & PLANE_WM_IGNORE_LINES; 2998 level->blocks = REG_FIELD_GET(PLANE_WM_BLOCKS_MASK, val); 2999 level->lines = REG_FIELD_GET(PLANE_WM_LINES_MASK, val); 3000 } 3001 3002 static void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc, 3003 struct skl_pipe_wm *out) 3004 { 3005 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 3006 enum pipe pipe = crtc->pipe; 3007 enum plane_id plane_id; 3008 int level; 3009 u32 val; 3010 3011 for_each_plane_id_on_crtc(crtc, plane_id) { 3012 struct skl_plane_wm *wm = &out->planes[plane_id]; 3013 3014 for (level = 0; level < i915->display.wm.num_levels; level++) { 3015 if (plane_id != PLANE_CURSOR) 3016 val = intel_de_read(i915, PLANE_WM(pipe, plane_id, level)); 3017 else 3018 val = intel_de_read(i915, CUR_WM(pipe, level)); 3019 3020 skl_wm_level_from_reg_val(val, &wm->wm[level]); 3021 } 3022 3023 if (plane_id != PLANE_CURSOR) 3024 val = intel_de_read(i915, PLANE_WM_TRANS(pipe, plane_id)); 3025 else 3026 val = intel_de_read(i915, CUR_WM_TRANS(pipe)); 3027 3028 skl_wm_level_from_reg_val(val, &wm->trans_wm); 3029 3030 if (HAS_HW_SAGV_WM(i915)) { 3031 if (plane_id != PLANE_CURSOR) 3032 val = intel_de_read(i915, PLANE_WM_SAGV(pipe, plane_id)); 3033 else 3034 val = intel_de_read(i915, CUR_WM_SAGV(pipe)); 3035 3036 skl_wm_level_from_reg_val(val, &wm->sagv.wm0); 3037 3038 if (plane_id != PLANE_CURSOR) 3039 val = intel_de_read(i915, PLANE_WM_SAGV_TRANS(pipe, plane_id)); 3040 else 3041 val = intel_de_read(i915, CUR_WM_SAGV_TRANS(pipe)); 3042 3043 skl_wm_level_from_reg_val(val, &wm->sagv.trans_wm); 3044 } else if (DISPLAY_VER(i915) >= 12) { 3045 wm->sagv.wm0 = wm->wm[0]; 3046 wm->sagv.trans_wm = wm->trans_wm; 3047 } 3048 } 3049 } 3050 3051 static void skl_wm_get_hw_state(struct drm_i915_private *i915) 3052 { 3053 struct intel_dbuf_state *dbuf_state = 3054 to_intel_dbuf_state(i915->display.dbuf.obj.state); 3055 struct intel_crtc *crtc; 3056 3057 if (HAS_MBUS_JOINING(i915)) 3058 dbuf_state->joined_mbus = intel_de_read(i915, MBUS_CTL) & MBUS_JOIN; 3059 3060 for_each_intel_crtc(&i915->drm, crtc) { 3061 struct intel_crtc_state *crtc_state = 3062 to_intel_crtc_state(crtc->base.state); 3063 enum pipe pipe = crtc->pipe; 3064 unsigned int mbus_offset; 3065 enum plane_id plane_id; 3066 u8 slices; 3067 3068 memset(&crtc_state->wm.skl.optimal, 0, 3069 sizeof(crtc_state->wm.skl.optimal)); 3070 if (crtc_state->hw.active) 3071 skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal); 3072 crtc_state->wm.skl.raw = crtc_state->wm.skl.optimal; 3073 3074 memset(&dbuf_state->ddb[pipe], 0, sizeof(dbuf_state->ddb[pipe])); 3075 3076 for_each_plane_id_on_crtc(crtc, plane_id) { 3077 struct skl_ddb_entry *ddb = 3078 &crtc_state->wm.skl.plane_ddb[plane_id]; 3079 struct skl_ddb_entry *ddb_y = 3080 &crtc_state->wm.skl.plane_ddb_y[plane_id]; 3081 3082 if (!crtc_state->hw.active) 3083 continue; 3084 3085 skl_ddb_get_hw_plane_state(i915, crtc->pipe, 3086 plane_id, ddb, ddb_y); 3087 3088 skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb); 3089 skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_y); 3090 } 3091 3092 dbuf_state->weight[pipe] = intel_crtc_ddb_weight(crtc_state); 3093 3094 /* 3095 * Used for checking overlaps, so we need absolute 3096 * offsets instead of MBUS relative offsets. 3097 */ 3098 slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes, 3099 dbuf_state->joined_mbus); 3100 mbus_offset = mbus_ddb_offset(i915, slices); 3101 crtc_state->wm.skl.ddb.start = mbus_offset + dbuf_state->ddb[pipe].start; 3102 crtc_state->wm.skl.ddb.end = mbus_offset + dbuf_state->ddb[pipe].end; 3103 3104 /* The slices actually used by the planes on the pipe */ 3105 dbuf_state->slices[pipe] = 3106 skl_ddb_dbuf_slice_mask(i915, &crtc_state->wm.skl.ddb); 3107 3108 drm_dbg_kms(&i915->drm, 3109 "[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x, mbus joined: %s\n", 3110 crtc->base.base.id, crtc->base.name, 3111 dbuf_state->slices[pipe], dbuf_state->ddb[pipe].start, 3112 dbuf_state->ddb[pipe].end, dbuf_state->active_pipes, 3113 str_yes_no(dbuf_state->joined_mbus)); 3114 } 3115 3116 dbuf_state->enabled_slices = i915->display.dbuf.enabled_slices; 3117 } 3118 3119 static bool skl_dbuf_is_misconfigured(struct drm_i915_private *i915) 3120 { 3121 const struct intel_dbuf_state *dbuf_state = 3122 to_intel_dbuf_state(i915->display.dbuf.obj.state); 3123 struct skl_ddb_entry entries[I915_MAX_PIPES] = {}; 3124 struct intel_crtc *crtc; 3125 3126 for_each_intel_crtc(&i915->drm, crtc) { 3127 const struct intel_crtc_state *crtc_state = 3128 to_intel_crtc_state(crtc->base.state); 3129 3130 entries[crtc->pipe] = crtc_state->wm.skl.ddb; 3131 } 3132 3133 for_each_intel_crtc(&i915->drm, crtc) { 3134 const struct intel_crtc_state *crtc_state = 3135 to_intel_crtc_state(crtc->base.state); 3136 u8 slices; 3137 3138 slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes, 3139 dbuf_state->joined_mbus); 3140 if (dbuf_state->slices[crtc->pipe] & ~slices) 3141 return true; 3142 3143 if (skl_ddb_allocation_overlaps(&crtc_state->wm.skl.ddb, entries, 3144 I915_MAX_PIPES, crtc->pipe)) 3145 return true; 3146 } 3147 3148 return false; 3149 } 3150 3151 static void skl_wm_sanitize(struct drm_i915_private *i915) 3152 { 3153 struct intel_crtc *crtc; 3154 3155 /* 3156 * On TGL/RKL (at least) the BIOS likes to assign the planes 3157 * to the wrong DBUF slices. This will cause an infinite loop 3158 * in skl_commit_modeset_enables() as it can't find a way to 3159 * transition between the old bogus DBUF layout to the new 3160 * proper DBUF layout without DBUF allocation overlaps between 3161 * the planes (which cannot be allowed or else the hardware 3162 * may hang). If we detect a bogus DBUF layout just turn off 3163 * all the planes so that skl_commit_modeset_enables() can 3164 * simply ignore them. 3165 */ 3166 if (!skl_dbuf_is_misconfigured(i915)) 3167 return; 3168 3169 drm_dbg_kms(&i915->drm, "BIOS has misprogrammed the DBUF, disabling all planes\n"); 3170 3171 for_each_intel_crtc(&i915->drm, crtc) { 3172 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 3173 const struct intel_plane_state *plane_state = 3174 to_intel_plane_state(plane->base.state); 3175 struct intel_crtc_state *crtc_state = 3176 to_intel_crtc_state(crtc->base.state); 3177 3178 if (plane_state->uapi.visible) 3179 intel_plane_disable_noatomic(crtc, plane); 3180 3181 drm_WARN_ON(&i915->drm, crtc_state->active_planes != 0); 3182 3183 memset(&crtc_state->wm.skl.ddb, 0, sizeof(crtc_state->wm.skl.ddb)); 3184 } 3185 } 3186 3187 static void skl_wm_get_hw_state_and_sanitize(struct drm_i915_private *i915) 3188 { 3189 skl_wm_get_hw_state(i915); 3190 skl_wm_sanitize(i915); 3191 } 3192 3193 void intel_wm_state_verify(struct intel_atomic_state *state, 3194 struct intel_crtc *crtc) 3195 { 3196 struct drm_i915_private *i915 = to_i915(state->base.dev); 3197 const struct intel_crtc_state *new_crtc_state = 3198 intel_atomic_get_new_crtc_state(state, crtc); 3199 struct skl_hw_state { 3200 struct skl_ddb_entry ddb[I915_MAX_PLANES]; 3201 struct skl_ddb_entry ddb_y[I915_MAX_PLANES]; 3202 struct skl_pipe_wm wm; 3203 } *hw; 3204 const struct skl_pipe_wm *sw_wm = &new_crtc_state->wm.skl.optimal; 3205 struct intel_plane *plane; 3206 u8 hw_enabled_slices; 3207 int level; 3208 3209 if (DISPLAY_VER(i915) < 9 || !new_crtc_state->hw.active) 3210 return; 3211 3212 hw = kzalloc(sizeof(*hw), GFP_KERNEL); 3213 if (!hw) 3214 return; 3215 3216 skl_pipe_wm_get_hw_state(crtc, &hw->wm); 3217 3218 skl_pipe_ddb_get_hw_state(crtc, hw->ddb, hw->ddb_y); 3219 3220 hw_enabled_slices = intel_enabled_dbuf_slices_mask(i915); 3221 3222 if (DISPLAY_VER(i915) >= 11 && 3223 hw_enabled_slices != i915->display.dbuf.enabled_slices) 3224 drm_err(&i915->drm, 3225 "mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n", 3226 i915->display.dbuf.enabled_slices, 3227 hw_enabled_slices); 3228 3229 for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) { 3230 const struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry; 3231 const struct skl_wm_level *hw_wm_level, *sw_wm_level; 3232 3233 /* Watermarks */ 3234 for (level = 0; level < i915->display.wm.num_levels; level++) { 3235 hw_wm_level = &hw->wm.planes[plane->id].wm[level]; 3236 sw_wm_level = skl_plane_wm_level(sw_wm, plane->id, level); 3237 3238 if (skl_wm_level_equals(hw_wm_level, sw_wm_level)) 3239 continue; 3240 3241 drm_err(&i915->drm, 3242 "[PLANE:%d:%s] mismatch in WM%d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 3243 plane->base.base.id, plane->base.name, level, 3244 sw_wm_level->enable, 3245 sw_wm_level->blocks, 3246 sw_wm_level->lines, 3247 hw_wm_level->enable, 3248 hw_wm_level->blocks, 3249 hw_wm_level->lines); 3250 } 3251 3252 hw_wm_level = &hw->wm.planes[plane->id].trans_wm; 3253 sw_wm_level = skl_plane_trans_wm(sw_wm, plane->id); 3254 3255 if (!skl_wm_level_equals(hw_wm_level, sw_wm_level)) { 3256 drm_err(&i915->drm, 3257 "[PLANE:%d:%s] mismatch in trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 3258 plane->base.base.id, plane->base.name, 3259 sw_wm_level->enable, 3260 sw_wm_level->blocks, 3261 sw_wm_level->lines, 3262 hw_wm_level->enable, 3263 hw_wm_level->blocks, 3264 hw_wm_level->lines); 3265 } 3266 3267 hw_wm_level = &hw->wm.planes[plane->id].sagv.wm0; 3268 sw_wm_level = &sw_wm->planes[plane->id].sagv.wm0; 3269 3270 if (HAS_HW_SAGV_WM(i915) && 3271 !skl_wm_level_equals(hw_wm_level, sw_wm_level)) { 3272 drm_err(&i915->drm, 3273 "[PLANE:%d:%s] mismatch in SAGV WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 3274 plane->base.base.id, plane->base.name, 3275 sw_wm_level->enable, 3276 sw_wm_level->blocks, 3277 sw_wm_level->lines, 3278 hw_wm_level->enable, 3279 hw_wm_level->blocks, 3280 hw_wm_level->lines); 3281 } 3282 3283 hw_wm_level = &hw->wm.planes[plane->id].sagv.trans_wm; 3284 sw_wm_level = &sw_wm->planes[plane->id].sagv.trans_wm; 3285 3286 if (HAS_HW_SAGV_WM(i915) && 3287 !skl_wm_level_equals(hw_wm_level, sw_wm_level)) { 3288 drm_err(&i915->drm, 3289 "[PLANE:%d:%s] mismatch in SAGV trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 3290 plane->base.base.id, plane->base.name, 3291 sw_wm_level->enable, 3292 sw_wm_level->blocks, 3293 sw_wm_level->lines, 3294 hw_wm_level->enable, 3295 hw_wm_level->blocks, 3296 hw_wm_level->lines); 3297 } 3298 3299 /* DDB */ 3300 hw_ddb_entry = &hw->ddb[PLANE_CURSOR]; 3301 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb[PLANE_CURSOR]; 3302 3303 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 3304 drm_err(&i915->drm, 3305 "[PLANE:%d:%s] mismatch in DDB (expected (%u,%u), found (%u,%u))\n", 3306 plane->base.base.id, plane->base.name, 3307 sw_ddb_entry->start, sw_ddb_entry->end, 3308 hw_ddb_entry->start, hw_ddb_entry->end); 3309 } 3310 } 3311 3312 kfree(hw); 3313 } 3314 3315 bool skl_watermark_ipc_enabled(struct drm_i915_private *i915) 3316 { 3317 return i915->display.wm.ipc_enabled; 3318 } 3319 3320 void skl_watermark_ipc_update(struct drm_i915_private *i915) 3321 { 3322 if (!HAS_IPC(i915)) 3323 return; 3324 3325 intel_de_rmw(i915, DISP_ARB_CTL2, DISP_IPC_ENABLE, 3326 skl_watermark_ipc_enabled(i915) ? DISP_IPC_ENABLE : 0); 3327 } 3328 3329 static bool skl_watermark_ipc_can_enable(struct drm_i915_private *i915) 3330 { 3331 /* Display WA #0477 WaDisableIPC: skl */ 3332 if (IS_SKYLAKE(i915)) 3333 return false; 3334 3335 /* Display WA #1141: SKL:all KBL:all CFL */ 3336 if (IS_KABYLAKE(i915) || 3337 IS_COFFEELAKE(i915) || 3338 IS_COMETLAKE(i915)) 3339 return i915->dram_info.symmetric_memory; 3340 3341 return true; 3342 } 3343 3344 void skl_watermark_ipc_init(struct drm_i915_private *i915) 3345 { 3346 if (!HAS_IPC(i915)) 3347 return; 3348 3349 i915->display.wm.ipc_enabled = skl_watermark_ipc_can_enable(i915); 3350 3351 skl_watermark_ipc_update(i915); 3352 } 3353 3354 static void 3355 adjust_wm_latency(struct drm_i915_private *i915, 3356 u16 wm[], int num_levels, int read_latency) 3357 { 3358 bool wm_lv_0_adjust_needed = i915->dram_info.wm_lv_0_adjust_needed; 3359 int i, level; 3360 3361 /* 3362 * If a level n (n > 1) has a 0us latency, all levels m (m >= n) 3363 * need to be disabled. We make sure to sanitize the values out 3364 * of the punit to satisfy this requirement. 3365 */ 3366 for (level = 1; level < num_levels; level++) { 3367 if (wm[level] == 0) { 3368 for (i = level + 1; i < num_levels; i++) 3369 wm[i] = 0; 3370 3371 num_levels = level; 3372 break; 3373 } 3374 } 3375 3376 /* 3377 * WaWmMemoryReadLatency 3378 * 3379 * punit doesn't take into account the read latency so we need 3380 * to add proper adjustement to each valid level we retrieve 3381 * from the punit when level 0 response data is 0us. 3382 */ 3383 if (wm[0] == 0) { 3384 for (level = 0; level < num_levels; level++) 3385 wm[level] += read_latency; 3386 } 3387 3388 /* 3389 * WA Level-0 adjustment for 16GB DIMMs: SKL+ 3390 * If we could not get dimm info enable this WA to prevent from 3391 * any underrun. If not able to get Dimm info assume 16GB dimm 3392 * to avoid any underrun. 3393 */ 3394 if (wm_lv_0_adjust_needed) 3395 wm[0] += 1; 3396 } 3397 3398 static void mtl_read_wm_latency(struct drm_i915_private *i915, u16 wm[]) 3399 { 3400 int num_levels = i915->display.wm.num_levels; 3401 u32 val; 3402 3403 val = intel_de_read(i915, MTL_LATENCY_LP0_LP1); 3404 wm[0] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val); 3405 wm[1] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val); 3406 3407 val = intel_de_read(i915, MTL_LATENCY_LP2_LP3); 3408 wm[2] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val); 3409 wm[3] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val); 3410 3411 val = intel_de_read(i915, MTL_LATENCY_LP4_LP5); 3412 wm[4] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val); 3413 wm[5] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val); 3414 3415 adjust_wm_latency(i915, wm, num_levels, 6); 3416 } 3417 3418 static void skl_read_wm_latency(struct drm_i915_private *i915, u16 wm[]) 3419 { 3420 int num_levels = i915->display.wm.num_levels; 3421 int read_latency = DISPLAY_VER(i915) >= 12 ? 3 : 2; 3422 int mult = IS_DG2(i915) ? 2 : 1; 3423 u32 val; 3424 int ret; 3425 3426 /* read the first set of memory latencies[0:3] */ 3427 val = 0; /* data0 to be programmed to 0 for first set */ 3428 ret = snb_pcode_read(&i915->uncore, GEN9_PCODE_READ_MEM_LATENCY, &val, NULL); 3429 if (ret) { 3430 drm_err(&i915->drm, "SKL Mailbox read error = %d\n", ret); 3431 return; 3432 } 3433 3434 wm[0] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_0_4_MASK, val) * mult; 3435 wm[1] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_1_5_MASK, val) * mult; 3436 wm[2] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_2_6_MASK, val) * mult; 3437 wm[3] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_3_7_MASK, val) * mult; 3438 3439 /* read the second set of memory latencies[4:7] */ 3440 val = 1; /* data0 to be programmed to 1 for second set */ 3441 ret = snb_pcode_read(&i915->uncore, GEN9_PCODE_READ_MEM_LATENCY, &val, NULL); 3442 if (ret) { 3443 drm_err(&i915->drm, "SKL Mailbox read error = %d\n", ret); 3444 return; 3445 } 3446 3447 wm[4] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_0_4_MASK, val) * mult; 3448 wm[5] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_1_5_MASK, val) * mult; 3449 wm[6] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_2_6_MASK, val) * mult; 3450 wm[7] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_3_7_MASK, val) * mult; 3451 3452 adjust_wm_latency(i915, wm, num_levels, read_latency); 3453 } 3454 3455 static void skl_setup_wm_latency(struct drm_i915_private *i915) 3456 { 3457 if (HAS_HW_SAGV_WM(i915)) 3458 i915->display.wm.num_levels = 6; 3459 else 3460 i915->display.wm.num_levels = 8; 3461 3462 if (DISPLAY_VER(i915) >= 14) 3463 mtl_read_wm_latency(i915, i915->display.wm.skl_latency); 3464 else 3465 skl_read_wm_latency(i915, i915->display.wm.skl_latency); 3466 3467 intel_print_wm_latency(i915, "Gen9 Plane", i915->display.wm.skl_latency); 3468 } 3469 3470 static const struct intel_wm_funcs skl_wm_funcs = { 3471 .compute_global_watermarks = skl_compute_wm, 3472 .get_hw_state = skl_wm_get_hw_state_and_sanitize, 3473 }; 3474 3475 void skl_wm_init(struct drm_i915_private *i915) 3476 { 3477 intel_sagv_init(i915); 3478 3479 skl_setup_wm_latency(i915); 3480 3481 i915->display.funcs.wm = &skl_wm_funcs; 3482 } 3483 3484 static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj) 3485 { 3486 struct intel_dbuf_state *dbuf_state; 3487 3488 dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL); 3489 if (!dbuf_state) 3490 return NULL; 3491 3492 return &dbuf_state->base; 3493 } 3494 3495 static void intel_dbuf_destroy_state(struct intel_global_obj *obj, 3496 struct intel_global_state *state) 3497 { 3498 kfree(state); 3499 } 3500 3501 static const struct intel_global_state_funcs intel_dbuf_funcs = { 3502 .atomic_duplicate_state = intel_dbuf_duplicate_state, 3503 .atomic_destroy_state = intel_dbuf_destroy_state, 3504 }; 3505 3506 struct intel_dbuf_state * 3507 intel_atomic_get_dbuf_state(struct intel_atomic_state *state) 3508 { 3509 struct drm_i915_private *i915 = to_i915(state->base.dev); 3510 struct intel_global_state *dbuf_state; 3511 3512 dbuf_state = intel_atomic_get_global_obj_state(state, &i915->display.dbuf.obj); 3513 if (IS_ERR(dbuf_state)) 3514 return ERR_CAST(dbuf_state); 3515 3516 return to_intel_dbuf_state(dbuf_state); 3517 } 3518 3519 int intel_dbuf_init(struct drm_i915_private *i915) 3520 { 3521 struct intel_dbuf_state *dbuf_state; 3522 3523 dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL); 3524 if (!dbuf_state) 3525 return -ENOMEM; 3526 3527 intel_atomic_global_obj_init(i915, &i915->display.dbuf.obj, 3528 &dbuf_state->base, &intel_dbuf_funcs); 3529 3530 return 0; 3531 } 3532 3533 /* 3534 * Configure MBUS_CTL and all DBUF_CTL_S of each slice to join_mbus state before 3535 * update the request state of all DBUS slices. 3536 */ 3537 static void update_mbus_pre_enable(struct intel_atomic_state *state) 3538 { 3539 struct drm_i915_private *i915 = to_i915(state->base.dev); 3540 u32 mbus_ctl, dbuf_min_tracker_val; 3541 enum dbuf_slice slice; 3542 const struct intel_dbuf_state *dbuf_state = 3543 intel_atomic_get_new_dbuf_state(state); 3544 3545 if (!HAS_MBUS_JOINING(i915)) 3546 return; 3547 3548 /* 3549 * TODO: Implement vblank synchronized MBUS joining changes. 3550 * Must be properly coordinated with dbuf reprogramming. 3551 */ 3552 if (dbuf_state->joined_mbus) { 3553 mbus_ctl = MBUS_HASHING_MODE_1x4 | MBUS_JOIN | 3554 MBUS_JOIN_PIPE_SELECT_NONE; 3555 dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(3); 3556 } else { 3557 mbus_ctl = MBUS_HASHING_MODE_2x2 | 3558 MBUS_JOIN_PIPE_SELECT_NONE; 3559 dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(1); 3560 } 3561 3562 intel_de_rmw(i915, MBUS_CTL, 3563 MBUS_HASHING_MODE_MASK | MBUS_JOIN | 3564 MBUS_JOIN_PIPE_SELECT_MASK, mbus_ctl); 3565 3566 for_each_dbuf_slice(i915, slice) 3567 intel_de_rmw(i915, DBUF_CTL_S(slice), 3568 DBUF_MIN_TRACKER_STATE_SERVICE_MASK, 3569 dbuf_min_tracker_val); 3570 } 3571 3572 void intel_dbuf_pre_plane_update(struct intel_atomic_state *state) 3573 { 3574 struct drm_i915_private *i915 = to_i915(state->base.dev); 3575 const struct intel_dbuf_state *new_dbuf_state = 3576 intel_atomic_get_new_dbuf_state(state); 3577 const struct intel_dbuf_state *old_dbuf_state = 3578 intel_atomic_get_old_dbuf_state(state); 3579 3580 if (!new_dbuf_state || 3581 (new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices && 3582 new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus)) 3583 return; 3584 3585 WARN_ON(!new_dbuf_state->base.changed); 3586 3587 update_mbus_pre_enable(state); 3588 gen9_dbuf_slices_update(i915, 3589 old_dbuf_state->enabled_slices | 3590 new_dbuf_state->enabled_slices); 3591 } 3592 3593 void intel_dbuf_post_plane_update(struct intel_atomic_state *state) 3594 { 3595 struct drm_i915_private *i915 = to_i915(state->base.dev); 3596 const struct intel_dbuf_state *new_dbuf_state = 3597 intel_atomic_get_new_dbuf_state(state); 3598 const struct intel_dbuf_state *old_dbuf_state = 3599 intel_atomic_get_old_dbuf_state(state); 3600 3601 if (!new_dbuf_state || 3602 (new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices && 3603 new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus)) 3604 return; 3605 3606 WARN_ON(!new_dbuf_state->base.changed); 3607 3608 gen9_dbuf_slices_update(i915, 3609 new_dbuf_state->enabled_slices); 3610 } 3611 3612 static bool xelpdp_is_only_pipe_per_dbuf_bank(enum pipe pipe, u8 active_pipes) 3613 { 3614 switch (pipe) { 3615 case PIPE_A: 3616 return !(active_pipes & BIT(PIPE_D)); 3617 case PIPE_D: 3618 return !(active_pipes & BIT(PIPE_A)); 3619 case PIPE_B: 3620 return !(active_pipes & BIT(PIPE_C)); 3621 case PIPE_C: 3622 return !(active_pipes & BIT(PIPE_B)); 3623 default: /* to suppress compiler warning */ 3624 MISSING_CASE(pipe); 3625 break; 3626 } 3627 3628 return false; 3629 } 3630 3631 void intel_mbus_dbox_update(struct intel_atomic_state *state) 3632 { 3633 struct drm_i915_private *i915 = to_i915(state->base.dev); 3634 const struct intel_dbuf_state *new_dbuf_state, *old_dbuf_state; 3635 const struct intel_crtc_state *new_crtc_state; 3636 const struct intel_crtc *crtc; 3637 u32 val = 0; 3638 int i; 3639 3640 if (DISPLAY_VER(i915) < 11) 3641 return; 3642 3643 new_dbuf_state = intel_atomic_get_new_dbuf_state(state); 3644 old_dbuf_state = intel_atomic_get_old_dbuf_state(state); 3645 if (!new_dbuf_state || 3646 (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus && 3647 new_dbuf_state->active_pipes == old_dbuf_state->active_pipes)) 3648 return; 3649 3650 if (DISPLAY_VER(i915) >= 14) 3651 val |= MBUS_DBOX_I_CREDIT(2); 3652 3653 if (DISPLAY_VER(i915) >= 12) { 3654 val |= MBUS_DBOX_B2B_TRANSACTIONS_MAX(16); 3655 val |= MBUS_DBOX_B2B_TRANSACTIONS_DELAY(1); 3656 val |= MBUS_DBOX_REGULATE_B2B_TRANSACTIONS_EN; 3657 } 3658 3659 if (DISPLAY_VER(i915) >= 14) 3660 val |= new_dbuf_state->joined_mbus ? MBUS_DBOX_A_CREDIT(12) : 3661 MBUS_DBOX_A_CREDIT(8); 3662 else if (IS_ALDERLAKE_P(i915)) 3663 /* Wa_22010947358:adl-p */ 3664 val |= new_dbuf_state->joined_mbus ? MBUS_DBOX_A_CREDIT(6) : 3665 MBUS_DBOX_A_CREDIT(4); 3666 else 3667 val |= MBUS_DBOX_A_CREDIT(2); 3668 3669 if (DISPLAY_VER(i915) >= 14) { 3670 val |= MBUS_DBOX_B_CREDIT(0xA); 3671 } else if (IS_ALDERLAKE_P(i915)) { 3672 val |= MBUS_DBOX_BW_CREDIT(2); 3673 val |= MBUS_DBOX_B_CREDIT(8); 3674 } else if (DISPLAY_VER(i915) >= 12) { 3675 val |= MBUS_DBOX_BW_CREDIT(2); 3676 val |= MBUS_DBOX_B_CREDIT(12); 3677 } else { 3678 val |= MBUS_DBOX_BW_CREDIT(1); 3679 val |= MBUS_DBOX_B_CREDIT(8); 3680 } 3681 3682 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 3683 u32 pipe_val = val; 3684 3685 if (!new_crtc_state->hw.active) 3686 continue; 3687 3688 if (DISPLAY_VER(i915) >= 14) { 3689 if (xelpdp_is_only_pipe_per_dbuf_bank(crtc->pipe, 3690 new_dbuf_state->active_pipes)) 3691 pipe_val |= MBUS_DBOX_BW_8CREDITS_MTL; 3692 else 3693 pipe_val |= MBUS_DBOX_BW_4CREDITS_MTL; 3694 } 3695 3696 intel_de_write(i915, PIPE_MBUS_DBOX_CTL(crtc->pipe), pipe_val); 3697 } 3698 } 3699 3700 static int skl_watermark_ipc_status_show(struct seq_file *m, void *data) 3701 { 3702 struct drm_i915_private *i915 = m->private; 3703 3704 seq_printf(m, "Isochronous Priority Control: %s\n", 3705 str_yes_no(skl_watermark_ipc_enabled(i915))); 3706 return 0; 3707 } 3708 3709 static int skl_watermark_ipc_status_open(struct inode *inode, struct file *file) 3710 { 3711 struct drm_i915_private *i915 = inode->i_private; 3712 3713 return single_open(file, skl_watermark_ipc_status_show, i915); 3714 } 3715 3716 static ssize_t skl_watermark_ipc_status_write(struct file *file, 3717 const char __user *ubuf, 3718 size_t len, loff_t *offp) 3719 { 3720 struct seq_file *m = file->private_data; 3721 struct drm_i915_private *i915 = m->private; 3722 intel_wakeref_t wakeref; 3723 bool enable; 3724 int ret; 3725 3726 ret = kstrtobool_from_user(ubuf, len, &enable); 3727 if (ret < 0) 3728 return ret; 3729 3730 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 3731 if (!skl_watermark_ipc_enabled(i915) && enable) 3732 drm_info(&i915->drm, 3733 "Enabling IPC: WM will be proper only after next commit\n"); 3734 i915->display.wm.ipc_enabled = enable; 3735 skl_watermark_ipc_update(i915); 3736 } 3737 3738 return len; 3739 } 3740 3741 static const struct file_operations skl_watermark_ipc_status_fops = { 3742 .owner = THIS_MODULE, 3743 .open = skl_watermark_ipc_status_open, 3744 .read = seq_read, 3745 .llseek = seq_lseek, 3746 .release = single_release, 3747 .write = skl_watermark_ipc_status_write 3748 }; 3749 3750 static int intel_sagv_status_show(struct seq_file *m, void *unused) 3751 { 3752 struct drm_i915_private *i915 = m->private; 3753 static const char * const sagv_status[] = { 3754 [I915_SAGV_UNKNOWN] = "unknown", 3755 [I915_SAGV_DISABLED] = "disabled", 3756 [I915_SAGV_ENABLED] = "enabled", 3757 [I915_SAGV_NOT_CONTROLLED] = "not controlled", 3758 }; 3759 3760 seq_printf(m, "SAGV available: %s\n", str_yes_no(intel_has_sagv(i915))); 3761 seq_printf(m, "SAGV modparam: %s\n", 3762 str_enabled_disabled(i915->display.params.enable_sagv)); 3763 seq_printf(m, "SAGV status: %s\n", sagv_status[i915->display.sagv.status]); 3764 seq_printf(m, "SAGV block time: %d usec\n", i915->display.sagv.block_time_us); 3765 3766 return 0; 3767 } 3768 3769 DEFINE_SHOW_ATTRIBUTE(intel_sagv_status); 3770 3771 void skl_watermark_debugfs_register(struct drm_i915_private *i915) 3772 { 3773 struct drm_minor *minor = i915->drm.primary; 3774 3775 if (HAS_IPC(i915)) 3776 debugfs_create_file("i915_ipc_status", 0644, minor->debugfs_root, i915, 3777 &skl_watermark_ipc_status_fops); 3778 3779 if (HAS_SAGV(i915)) 3780 debugfs_create_file("i915_sagv_status", 0444, minor->debugfs_root, i915, 3781 &intel_sagv_status_fops); 3782 } 3783 3784 unsigned int skl_watermark_max_latency(struct drm_i915_private *i915, int initial_wm_level) 3785 { 3786 int level; 3787 3788 for (level = i915->display.wm.num_levels - 1; level >= initial_wm_level; level--) { 3789 unsigned int latency = skl_wm_latency(i915, level, NULL); 3790 3791 if (latency) 3792 return latency; 3793 } 3794 3795 return 0; 3796 } 3797